linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
  60#include <linux/migrate.h>
  61#include <linux/string.h>
  62#include <linux/dma-debug.h>
  63#include <linux/debugfs.h>
  64#include <linux/userfaultfd_k.h>
  65
  66#include <asm/io.h>
  67#include <asm/pgalloc.h>
  68#include <asm/uaccess.h>
  69#include <asm/tlb.h>
  70#include <asm/tlbflush.h>
  71#include <asm/pgtable.h>
  72
  73#include "internal.h"
  74
  75#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  76#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  77#endif
  78
  79#ifndef CONFIG_NEED_MULTIPLE_NODES
  80/* use the per-pgdat data instead for discontigmem - mbligh */
  81unsigned long max_mapnr;
  82struct page *mem_map;
  83
  84EXPORT_SYMBOL(max_mapnr);
  85EXPORT_SYMBOL(mem_map);
  86#endif
  87
  88/*
  89 * A number of key systems in x86 including ioremap() rely on the assumption
  90 * that high_memory defines the upper bound on direct map memory, then end
  91 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  93 * and ZONE_HIGHMEM.
  94 */
  95void * high_memory;
  96
  97EXPORT_SYMBOL(high_memory);
  98
  99/*
 100 * Randomize the address space (stacks, mmaps, brk, etc.).
 101 *
 102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 103 *   as ancient (libc5 based) binaries can segfault. )
 104 */
 105int randomize_va_space __read_mostly =
 106#ifdef CONFIG_COMPAT_BRK
 107                                        1;
 108#else
 109                                        2;
 110#endif
 111
 112static int __init disable_randmaps(char *s)
 113{
 114        randomize_va_space = 0;
 115        return 1;
 116}
 117__setup("norandmaps", disable_randmaps);
 118
 119unsigned long zero_pfn __read_mostly;
 120unsigned long highest_memmap_pfn __read_mostly;
 121
 122EXPORT_SYMBOL(zero_pfn);
 123
 124/*
 125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 126 */
 127static int __init init_zero_pfn(void)
 128{
 129        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 130        return 0;
 131}
 132core_initcall(init_zero_pfn);
 133
 134
 135#if defined(SPLIT_RSS_COUNTING)
 136
 137void sync_mm_rss(struct mm_struct *mm)
 138{
 139        int i;
 140
 141        for (i = 0; i < NR_MM_COUNTERS; i++) {
 142                if (current->rss_stat.count[i]) {
 143                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 144                        current->rss_stat.count[i] = 0;
 145                }
 146        }
 147        current->rss_stat.events = 0;
 148}
 149
 150static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 151{
 152        struct task_struct *task = current;
 153
 154        if (likely(task->mm == mm))
 155                task->rss_stat.count[member] += val;
 156        else
 157                add_mm_counter(mm, member, val);
 158}
 159#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 160#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 161
 162/* sync counter once per 64 page faults */
 163#define TASK_RSS_EVENTS_THRESH  (64)
 164static void check_sync_rss_stat(struct task_struct *task)
 165{
 166        if (unlikely(task != current))
 167                return;
 168        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 169                sync_mm_rss(task->mm);
 170}
 171#else /* SPLIT_RSS_COUNTING */
 172
 173#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 174#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 175
 176static void check_sync_rss_stat(struct task_struct *task)
 177{
 178}
 179
 180#endif /* SPLIT_RSS_COUNTING */
 181
 182#ifdef HAVE_GENERIC_MMU_GATHER
 183
 184static bool tlb_next_batch(struct mmu_gather *tlb)
 185{
 186        struct mmu_gather_batch *batch;
 187
 188        batch = tlb->active;
 189        if (batch->next) {
 190                tlb->active = batch->next;
 191                return true;
 192        }
 193
 194        if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 195                return false;
 196
 197        batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 198        if (!batch)
 199                return false;
 200
 201        tlb->batch_count++;
 202        batch->next = NULL;
 203        batch->nr   = 0;
 204        batch->max  = MAX_GATHER_BATCH;
 205
 206        tlb->active->next = batch;
 207        tlb->active = batch;
 208
 209        return true;
 210}
 211
 212/* tlb_gather_mmu
 213 *      Called to initialize an (on-stack) mmu_gather structure for page-table
 214 *      tear-down from @mm. The @fullmm argument is used when @mm is without
 215 *      users and we're going to destroy the full address space (exit/execve).
 216 */
 217void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 218{
 219        tlb->mm = mm;
 220
 221        /* Is it from 0 to ~0? */
 222        tlb->fullmm     = !(start | (end+1));
 223        tlb->need_flush_all = 0;
 224        tlb->local.next = NULL;
 225        tlb->local.nr   = 0;
 226        tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 227        tlb->active     = &tlb->local;
 228        tlb->batch_count = 0;
 229
 230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 231        tlb->batch = NULL;
 232#endif
 233
 234        __tlb_reset_range(tlb);
 235}
 236
 237static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 238{
 239        if (!tlb->end)
 240                return;
 241
 242        tlb_flush(tlb);
 243        mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 244#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 245        tlb_table_flush(tlb);
 246#endif
 247        __tlb_reset_range(tlb);
 248}
 249
 250static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 251{
 252        struct mmu_gather_batch *batch;
 253
 254        for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 255                free_pages_and_swap_cache(batch->pages, batch->nr);
 256                batch->nr = 0;
 257        }
 258        tlb->active = &tlb->local;
 259}
 260
 261void tlb_flush_mmu(struct mmu_gather *tlb)
 262{
 263        tlb_flush_mmu_tlbonly(tlb);
 264        tlb_flush_mmu_free(tlb);
 265}
 266
 267/* tlb_finish_mmu
 268 *      Called at the end of the shootdown operation to free up any resources
 269 *      that were required.
 270 */
 271void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 272{
 273        struct mmu_gather_batch *batch, *next;
 274
 275        tlb_flush_mmu(tlb);
 276
 277        /* keep the page table cache within bounds */
 278        check_pgt_cache();
 279
 280        for (batch = tlb->local.next; batch; batch = next) {
 281                next = batch->next;
 282                free_pages((unsigned long)batch, 0);
 283        }
 284        tlb->local.next = NULL;
 285}
 286
 287/* __tlb_remove_page
 288 *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 289 *      handling the additional races in SMP caused by other CPUs caching valid
 290 *      mappings in their TLBs. Returns the number of free page slots left.
 291 *      When out of page slots we must call tlb_flush_mmu().
 292 */
 293int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 294{
 295        struct mmu_gather_batch *batch;
 296
 297        VM_BUG_ON(!tlb->end);
 298
 299        batch = tlb->active;
 300        batch->pages[batch->nr++] = page;
 301        if (batch->nr == batch->max) {
 302                if (!tlb_next_batch(tlb))
 303                        return 0;
 304                batch = tlb->active;
 305        }
 306        VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 307
 308        return batch->max - batch->nr;
 309}
 310
 311#endif /* HAVE_GENERIC_MMU_GATHER */
 312
 313#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 314
 315/*
 316 * See the comment near struct mmu_table_batch.
 317 */
 318
 319static void tlb_remove_table_smp_sync(void *arg)
 320{
 321        /* Simply deliver the interrupt */
 322}
 323
 324static void tlb_remove_table_one(void *table)
 325{
 326        /*
 327         * This isn't an RCU grace period and hence the page-tables cannot be
 328         * assumed to be actually RCU-freed.
 329         *
 330         * It is however sufficient for software page-table walkers that rely on
 331         * IRQ disabling. See the comment near struct mmu_table_batch.
 332         */
 333        smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 334        __tlb_remove_table(table);
 335}
 336
 337static void tlb_remove_table_rcu(struct rcu_head *head)
 338{
 339        struct mmu_table_batch *batch;
 340        int i;
 341
 342        batch = container_of(head, struct mmu_table_batch, rcu);
 343
 344        for (i = 0; i < batch->nr; i++)
 345                __tlb_remove_table(batch->tables[i]);
 346
 347        free_page((unsigned long)batch);
 348}
 349
 350void tlb_table_flush(struct mmu_gather *tlb)
 351{
 352        struct mmu_table_batch **batch = &tlb->batch;
 353
 354        if (*batch) {
 355                call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 356                *batch = NULL;
 357        }
 358}
 359
 360void tlb_remove_table(struct mmu_gather *tlb, void *table)
 361{
 362        struct mmu_table_batch **batch = &tlb->batch;
 363
 364        /*
 365         * When there's less then two users of this mm there cannot be a
 366         * concurrent page-table walk.
 367         */
 368        if (atomic_read(&tlb->mm->mm_users) < 2) {
 369                __tlb_remove_table(table);
 370                return;
 371        }
 372
 373        if (*batch == NULL) {
 374                *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 375                if (*batch == NULL) {
 376                        tlb_remove_table_one(table);
 377                        return;
 378                }
 379                (*batch)->nr = 0;
 380        }
 381        (*batch)->tables[(*batch)->nr++] = table;
 382        if ((*batch)->nr == MAX_TABLE_BATCH)
 383                tlb_table_flush(tlb);
 384}
 385
 386#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 387
 388/*
 389 * Note: this doesn't free the actual pages themselves. That
 390 * has been handled earlier when unmapping all the memory regions.
 391 */
 392static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 393                           unsigned long addr)
 394{
 395        pgtable_t token = pmd_pgtable(*pmd);
 396        pmd_clear(pmd);
 397        pte_free_tlb(tlb, token, addr);
 398        atomic_long_dec(&tlb->mm->nr_ptes);
 399}
 400
 401static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 402                                unsigned long addr, unsigned long end,
 403                                unsigned long floor, unsigned long ceiling)
 404{
 405        pmd_t *pmd;
 406        unsigned long next;
 407        unsigned long start;
 408
 409        start = addr;
 410        pmd = pmd_offset(pud, addr);
 411        do {
 412                next = pmd_addr_end(addr, end);
 413                if (pmd_none_or_clear_bad(pmd))
 414                        continue;
 415                free_pte_range(tlb, pmd, addr);
 416        } while (pmd++, addr = next, addr != end);
 417
 418        start &= PUD_MASK;
 419        if (start < floor)
 420                return;
 421        if (ceiling) {
 422                ceiling &= PUD_MASK;
 423                if (!ceiling)
 424                        return;
 425        }
 426        if (end - 1 > ceiling - 1)
 427                return;
 428
 429        pmd = pmd_offset(pud, start);
 430        pud_clear(pud);
 431        pmd_free_tlb(tlb, pmd, start);
 432        mm_dec_nr_pmds(tlb->mm);
 433}
 434
 435static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 436                                unsigned long addr, unsigned long end,
 437                                unsigned long floor, unsigned long ceiling)
 438{
 439        pud_t *pud;
 440        unsigned long next;
 441        unsigned long start;
 442
 443        start = addr;
 444        pud = pud_offset(pgd, addr);
 445        do {
 446                next = pud_addr_end(addr, end);
 447                if (pud_none_or_clear_bad(pud))
 448                        continue;
 449                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 450        } while (pud++, addr = next, addr != end);
 451
 452        start &= PGDIR_MASK;
 453        if (start < floor)
 454                return;
 455        if (ceiling) {
 456                ceiling &= PGDIR_MASK;
 457                if (!ceiling)
 458                        return;
 459        }
 460        if (end - 1 > ceiling - 1)
 461                return;
 462
 463        pud = pud_offset(pgd, start);
 464        pgd_clear(pgd);
 465        pud_free_tlb(tlb, pud, start);
 466}
 467
 468/*
 469 * This function frees user-level page tables of a process.
 470 */
 471void free_pgd_range(struct mmu_gather *tlb,
 472                        unsigned long addr, unsigned long end,
 473                        unsigned long floor, unsigned long ceiling)
 474{
 475        pgd_t *pgd;
 476        unsigned long next;
 477
 478        /*
 479         * The next few lines have given us lots of grief...
 480         *
 481         * Why are we testing PMD* at this top level?  Because often
 482         * there will be no work to do at all, and we'd prefer not to
 483         * go all the way down to the bottom just to discover that.
 484         *
 485         * Why all these "- 1"s?  Because 0 represents both the bottom
 486         * of the address space and the top of it (using -1 for the
 487         * top wouldn't help much: the masks would do the wrong thing).
 488         * The rule is that addr 0 and floor 0 refer to the bottom of
 489         * the address space, but end 0 and ceiling 0 refer to the top
 490         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 491         * that end 0 case should be mythical).
 492         *
 493         * Wherever addr is brought up or ceiling brought down, we must
 494         * be careful to reject "the opposite 0" before it confuses the
 495         * subsequent tests.  But what about where end is brought down
 496         * by PMD_SIZE below? no, end can't go down to 0 there.
 497         *
 498         * Whereas we round start (addr) and ceiling down, by different
 499         * masks at different levels, in order to test whether a table
 500         * now has no other vmas using it, so can be freed, we don't
 501         * bother to round floor or end up - the tests don't need that.
 502         */
 503
 504        addr &= PMD_MASK;
 505        if (addr < floor) {
 506                addr += PMD_SIZE;
 507                if (!addr)
 508                        return;
 509        }
 510        if (ceiling) {
 511                ceiling &= PMD_MASK;
 512                if (!ceiling)
 513                        return;
 514        }
 515        if (end - 1 > ceiling - 1)
 516                end -= PMD_SIZE;
 517        if (addr > end - 1)
 518                return;
 519
 520        pgd = pgd_offset(tlb->mm, addr);
 521        do {
 522                next = pgd_addr_end(addr, end);
 523                if (pgd_none_or_clear_bad(pgd))
 524                        continue;
 525                free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 526        } while (pgd++, addr = next, addr != end);
 527}
 528
 529void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 530                unsigned long floor, unsigned long ceiling)
 531{
 532        while (vma) {
 533                struct vm_area_struct *next = vma->vm_next;
 534                unsigned long addr = vma->vm_start;
 535
 536                /*
 537                 * Hide vma from rmap and truncate_pagecache before freeing
 538                 * pgtables
 539                 */
 540                unlink_anon_vmas(vma);
 541                unlink_file_vma(vma);
 542
 543                if (is_vm_hugetlb_page(vma)) {
 544                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 545                                floor, next? next->vm_start: ceiling);
 546                } else {
 547                        /*
 548                         * Optimization: gather nearby vmas into one call down
 549                         */
 550                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 551                               && !is_vm_hugetlb_page(next)) {
 552                                vma = next;
 553                                next = vma->vm_next;
 554                                unlink_anon_vmas(vma);
 555                                unlink_file_vma(vma);
 556                        }
 557                        free_pgd_range(tlb, addr, vma->vm_end,
 558                                floor, next? next->vm_start: ceiling);
 559                }
 560                vma = next;
 561        }
 562}
 563
 564int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 565                pmd_t *pmd, unsigned long address)
 566{
 567        spinlock_t *ptl;
 568        pgtable_t new = pte_alloc_one(mm, address);
 569        int wait_split_huge_page;
 570        if (!new)
 571                return -ENOMEM;
 572
 573        /*
 574         * Ensure all pte setup (eg. pte page lock and page clearing) are
 575         * visible before the pte is made visible to other CPUs by being
 576         * put into page tables.
 577         *
 578         * The other side of the story is the pointer chasing in the page
 579         * table walking code (when walking the page table without locking;
 580         * ie. most of the time). Fortunately, these data accesses consist
 581         * of a chain of data-dependent loads, meaning most CPUs (alpha
 582         * being the notable exception) will already guarantee loads are
 583         * seen in-order. See the alpha page table accessors for the
 584         * smp_read_barrier_depends() barriers in page table walking code.
 585         */
 586        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 587
 588        ptl = pmd_lock(mm, pmd);
 589        wait_split_huge_page = 0;
 590        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 591                atomic_long_inc(&mm->nr_ptes);
 592                pmd_populate(mm, pmd, new);
 593                new = NULL;
 594        } else if (unlikely(pmd_trans_splitting(*pmd)))
 595                wait_split_huge_page = 1;
 596        spin_unlock(ptl);
 597        if (new)
 598                pte_free(mm, new);
 599        if (wait_split_huge_page)
 600                wait_split_huge_page(vma->anon_vma, pmd);
 601        return 0;
 602}
 603
 604int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 605{
 606        pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 607        if (!new)
 608                return -ENOMEM;
 609
 610        smp_wmb(); /* See comment in __pte_alloc */
 611
 612        spin_lock(&init_mm.page_table_lock);
 613        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 614                pmd_populate_kernel(&init_mm, pmd, new);
 615                new = NULL;
 616        } else
 617                VM_BUG_ON(pmd_trans_splitting(*pmd));
 618        spin_unlock(&init_mm.page_table_lock);
 619        if (new)
 620                pte_free_kernel(&init_mm, new);
 621        return 0;
 622}
 623
 624static inline void init_rss_vec(int *rss)
 625{
 626        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 627}
 628
 629static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 630{
 631        int i;
 632
 633        if (current->mm == mm)
 634                sync_mm_rss(mm);
 635        for (i = 0; i < NR_MM_COUNTERS; i++)
 636                if (rss[i])
 637                        add_mm_counter(mm, i, rss[i]);
 638}
 639
 640/*
 641 * This function is called to print an error when a bad pte
 642 * is found. For example, we might have a PFN-mapped pte in
 643 * a region that doesn't allow it.
 644 *
 645 * The calling function must still handle the error.
 646 */
 647static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 648                          pte_t pte, struct page *page)
 649{
 650        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 651        pud_t *pud = pud_offset(pgd, addr);
 652        pmd_t *pmd = pmd_offset(pud, addr);
 653        struct address_space *mapping;
 654        pgoff_t index;
 655        static unsigned long resume;
 656        static unsigned long nr_shown;
 657        static unsigned long nr_unshown;
 658
 659        /*
 660         * Allow a burst of 60 reports, then keep quiet for that minute;
 661         * or allow a steady drip of one report per second.
 662         */
 663        if (nr_shown == 60) {
 664                if (time_before(jiffies, resume)) {
 665                        nr_unshown++;
 666                        return;
 667                }
 668                if (nr_unshown) {
 669                        printk(KERN_ALERT
 670                                "BUG: Bad page map: %lu messages suppressed\n",
 671                                nr_unshown);
 672                        nr_unshown = 0;
 673                }
 674                nr_shown = 0;
 675        }
 676        if (nr_shown++ == 0)
 677                resume = jiffies + 60 * HZ;
 678
 679        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 680        index = linear_page_index(vma, addr);
 681
 682        printk(KERN_ALERT
 683                "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 684                current->comm,
 685                (long long)pte_val(pte), (long long)pmd_val(*pmd));
 686        if (page)
 687                dump_page(page, "bad pte");
 688        printk(KERN_ALERT
 689                "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 690                (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 691        /*
 692         * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 693         */
 694        pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 695                 vma->vm_file,
 696                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 697                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 698                 mapping ? mapping->a_ops->readpage : NULL);
 699        dump_stack();
 700        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 701}
 702
 703/*
 704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 705 *
 706 * "Special" mappings do not wish to be associated with a "struct page" (either
 707 * it doesn't exist, or it exists but they don't want to touch it). In this
 708 * case, NULL is returned here. "Normal" mappings do have a struct page.
 709 *
 710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 711 * pte bit, in which case this function is trivial. Secondly, an architecture
 712 * may not have a spare pte bit, which requires a more complicated scheme,
 713 * described below.
 714 *
 715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 716 * special mapping (even if there are underlying and valid "struct pages").
 717 * COWed pages of a VM_PFNMAP are always normal.
 718 *
 719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 722 * mapping will always honor the rule
 723 *
 724 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 725 *
 726 * And for normal mappings this is false.
 727 *
 728 * This restricts such mappings to be a linear translation from virtual address
 729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 730 * as the vma is not a COW mapping; in that case, we know that all ptes are
 731 * special (because none can have been COWed).
 732 *
 733 *
 734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 735 *
 736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 737 * page" backing, however the difference is that _all_ pages with a struct
 738 * page (that is, those where pfn_valid is true) are refcounted and considered
 739 * normal pages by the VM. The disadvantage is that pages are refcounted
 740 * (which can be slower and simply not an option for some PFNMAP users). The
 741 * advantage is that we don't have to follow the strict linearity rule of
 742 * PFNMAP mappings in order to support COWable mappings.
 743 *
 744 */
 745#ifdef __HAVE_ARCH_PTE_SPECIAL
 746# define HAVE_PTE_SPECIAL 1
 747#else
 748# define HAVE_PTE_SPECIAL 0
 749#endif
 750struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 751                                pte_t pte)
 752{
 753        unsigned long pfn = pte_pfn(pte);
 754
 755        if (HAVE_PTE_SPECIAL) {
 756                if (likely(!pte_special(pte)))
 757                        goto check_pfn;
 758                if (vma->vm_ops && vma->vm_ops->find_special_page)
 759                        return vma->vm_ops->find_special_page(vma, addr);
 760                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 761                        return NULL;
 762                if (!is_zero_pfn(pfn))
 763                        print_bad_pte(vma, addr, pte, NULL);
 764                return NULL;
 765        }
 766
 767        /* !HAVE_PTE_SPECIAL case follows: */
 768
 769        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 770                if (vma->vm_flags & VM_MIXEDMAP) {
 771                        if (!pfn_valid(pfn))
 772                                return NULL;
 773                        goto out;
 774                } else {
 775                        unsigned long off;
 776                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 777                        if (pfn == vma->vm_pgoff + off)
 778                                return NULL;
 779                        if (!is_cow_mapping(vma->vm_flags))
 780                                return NULL;
 781                }
 782        }
 783
 784        if (is_zero_pfn(pfn))
 785                return NULL;
 786check_pfn:
 787        if (unlikely(pfn > highest_memmap_pfn)) {
 788                print_bad_pte(vma, addr, pte, NULL);
 789                return NULL;
 790        }
 791
 792        /*
 793         * NOTE! We still have PageReserved() pages in the page tables.
 794         * eg. VDSO mappings can cause them to exist.
 795         */
 796out:
 797        return pfn_to_page(pfn);
 798}
 799
 800/*
 801 * copy one vm_area from one task to the other. Assumes the page tables
 802 * already present in the new task to be cleared in the whole range
 803 * covered by this vma.
 804 */
 805
 806static inline unsigned long
 807copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 808                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 809                unsigned long addr, int *rss)
 810{
 811        unsigned long vm_flags = vma->vm_flags;
 812        pte_t pte = *src_pte;
 813        struct page *page;
 814
 815        /* pte contains position in swap or file, so copy. */
 816        if (unlikely(!pte_present(pte))) {
 817                swp_entry_t entry = pte_to_swp_entry(pte);
 818
 819                if (likely(!non_swap_entry(entry))) {
 820                        if (swap_duplicate(entry) < 0)
 821                                return entry.val;
 822
 823                        /* make sure dst_mm is on swapoff's mmlist. */
 824                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 825                                spin_lock(&mmlist_lock);
 826                                if (list_empty(&dst_mm->mmlist))
 827                                        list_add(&dst_mm->mmlist,
 828                                                        &src_mm->mmlist);
 829                                spin_unlock(&mmlist_lock);
 830                        }
 831                        rss[MM_SWAPENTS]++;
 832                } else if (is_migration_entry(entry)) {
 833                        page = migration_entry_to_page(entry);
 834
 835                        if (PageAnon(page))
 836                                rss[MM_ANONPAGES]++;
 837                        else
 838                                rss[MM_FILEPAGES]++;
 839
 840                        if (is_write_migration_entry(entry) &&
 841                                        is_cow_mapping(vm_flags)) {
 842                                /*
 843                                 * COW mappings require pages in both
 844                                 * parent and child to be set to read.
 845                                 */
 846                                make_migration_entry_read(&entry);
 847                                pte = swp_entry_to_pte(entry);
 848                                if (pte_swp_soft_dirty(*src_pte))
 849                                        pte = pte_swp_mksoft_dirty(pte);
 850                                set_pte_at(src_mm, addr, src_pte, pte);
 851                        }
 852                }
 853                goto out_set_pte;
 854        }
 855
 856        /*
 857         * If it's a COW mapping, write protect it both
 858         * in the parent and the child
 859         */
 860        if (is_cow_mapping(vm_flags)) {
 861                ptep_set_wrprotect(src_mm, addr, src_pte);
 862                pte = pte_wrprotect(pte);
 863        }
 864
 865        /*
 866         * If it's a shared mapping, mark it clean in
 867         * the child
 868         */
 869        if (vm_flags & VM_SHARED)
 870                pte = pte_mkclean(pte);
 871        pte = pte_mkold(pte);
 872
 873        page = vm_normal_page(vma, addr, pte);
 874        if (page) {
 875                get_page(page);
 876                page_dup_rmap(page);
 877                if (PageAnon(page))
 878                        rss[MM_ANONPAGES]++;
 879                else
 880                        rss[MM_FILEPAGES]++;
 881        }
 882
 883out_set_pte:
 884        set_pte_at(dst_mm, addr, dst_pte, pte);
 885        return 0;
 886}
 887
 888static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 889                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 890                   unsigned long addr, unsigned long end)
 891{
 892        pte_t *orig_src_pte, *orig_dst_pte;
 893        pte_t *src_pte, *dst_pte;
 894        spinlock_t *src_ptl, *dst_ptl;
 895        int progress = 0;
 896        int rss[NR_MM_COUNTERS];
 897        swp_entry_t entry = (swp_entry_t){0};
 898
 899again:
 900        init_rss_vec(rss);
 901
 902        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 903        if (!dst_pte)
 904                return -ENOMEM;
 905        src_pte = pte_offset_map(src_pmd, addr);
 906        src_ptl = pte_lockptr(src_mm, src_pmd);
 907        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 908        orig_src_pte = src_pte;
 909        orig_dst_pte = dst_pte;
 910        arch_enter_lazy_mmu_mode();
 911
 912        do {
 913                /*
 914                 * We are holding two locks at this point - either of them
 915                 * could generate latencies in another task on another CPU.
 916                 */
 917                if (progress >= 32) {
 918                        progress = 0;
 919                        if (need_resched() ||
 920                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 921                                break;
 922                }
 923                if (pte_none(*src_pte)) {
 924                        progress++;
 925                        continue;
 926                }
 927                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 928                                                        vma, addr, rss);
 929                if (entry.val)
 930                        break;
 931                progress += 8;
 932        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 933
 934        arch_leave_lazy_mmu_mode();
 935        spin_unlock(src_ptl);
 936        pte_unmap(orig_src_pte);
 937        add_mm_rss_vec(dst_mm, rss);
 938        pte_unmap_unlock(orig_dst_pte, dst_ptl);
 939        cond_resched();
 940
 941        if (entry.val) {
 942                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 943                        return -ENOMEM;
 944                progress = 0;
 945        }
 946        if (addr != end)
 947                goto again;
 948        return 0;
 949}
 950
 951static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 952                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 953                unsigned long addr, unsigned long end)
 954{
 955        pmd_t *src_pmd, *dst_pmd;
 956        unsigned long next;
 957
 958        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 959        if (!dst_pmd)
 960                return -ENOMEM;
 961        src_pmd = pmd_offset(src_pud, addr);
 962        do {
 963                next = pmd_addr_end(addr, end);
 964                if (pmd_trans_huge(*src_pmd)) {
 965                        int err;
 966                        VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 967                        err = copy_huge_pmd(dst_mm, src_mm,
 968                                            dst_pmd, src_pmd, addr, vma);
 969                        if (err == -ENOMEM)
 970                                return -ENOMEM;
 971                        if (!err)
 972                                continue;
 973                        /* fall through */
 974                }
 975                if (pmd_none_or_clear_bad(src_pmd))
 976                        continue;
 977                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 978                                                vma, addr, next))
 979                        return -ENOMEM;
 980        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
 981        return 0;
 982}
 983
 984static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 985                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 986                unsigned long addr, unsigned long end)
 987{
 988        pud_t *src_pud, *dst_pud;
 989        unsigned long next;
 990
 991        dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
 992        if (!dst_pud)
 993                return -ENOMEM;
 994        src_pud = pud_offset(src_pgd, addr);
 995        do {
 996                next = pud_addr_end(addr, end);
 997                if (pud_none_or_clear_bad(src_pud))
 998                        continue;
 999                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000                                                vma, addr, next))
1001                        return -ENOMEM;
1002        } while (dst_pud++, src_pud++, addr = next, addr != end);
1003        return 0;
1004}
1005
1006int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007                struct vm_area_struct *vma)
1008{
1009        pgd_t *src_pgd, *dst_pgd;
1010        unsigned long next;
1011        unsigned long addr = vma->vm_start;
1012        unsigned long end = vma->vm_end;
1013        unsigned long mmun_start;       /* For mmu_notifiers */
1014        unsigned long mmun_end;         /* For mmu_notifiers */
1015        bool is_cow;
1016        int ret;
1017
1018        /*
1019         * Don't copy ptes where a page fault will fill them correctly.
1020         * Fork becomes much lighter when there are big shared or private
1021         * readonly mappings. The tradeoff is that copy_page_range is more
1022         * efficient than faulting.
1023         */
1024        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1025                        !vma->anon_vma)
1026                return 0;
1027
1028        if (is_vm_hugetlb_page(vma))
1029                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030
1031        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1032                /*
1033                 * We do not free on error cases below as remove_vma
1034                 * gets called on error from higher level routine
1035                 */
1036                ret = track_pfn_copy(vma);
1037                if (ret)
1038                        return ret;
1039        }
1040
1041        /*
1042         * We need to invalidate the secondary MMU mappings only when
1043         * there could be a permission downgrade on the ptes of the
1044         * parent mm. And a permission downgrade will only happen if
1045         * is_cow_mapping() returns true.
1046         */
1047        is_cow = is_cow_mapping(vma->vm_flags);
1048        mmun_start = addr;
1049        mmun_end   = end;
1050        if (is_cow)
1051                mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052                                                    mmun_end);
1053
1054        ret = 0;
1055        dst_pgd = pgd_offset(dst_mm, addr);
1056        src_pgd = pgd_offset(src_mm, addr);
1057        do {
1058                next = pgd_addr_end(addr, end);
1059                if (pgd_none_or_clear_bad(src_pgd))
1060                        continue;
1061                if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062                                            vma, addr, next))) {
1063                        ret = -ENOMEM;
1064                        break;
1065                }
1066        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1067
1068        if (is_cow)
1069                mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1070        return ret;
1071}
1072
1073static unsigned long zap_pte_range(struct mmu_gather *tlb,
1074                                struct vm_area_struct *vma, pmd_t *pmd,
1075                                unsigned long addr, unsigned long end,
1076                                struct zap_details *details)
1077{
1078        struct mm_struct *mm = tlb->mm;
1079        int force_flush = 0;
1080        int rss[NR_MM_COUNTERS];
1081        spinlock_t *ptl;
1082        pte_t *start_pte;
1083        pte_t *pte;
1084        swp_entry_t entry;
1085
1086again:
1087        init_rss_vec(rss);
1088        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089        pte = start_pte;
1090        arch_enter_lazy_mmu_mode();
1091        do {
1092                pte_t ptent = *pte;
1093                if (pte_none(ptent)) {
1094                        continue;
1095                }
1096
1097                if (pte_present(ptent)) {
1098                        struct page *page;
1099
1100                        page = vm_normal_page(vma, addr, ptent);
1101                        if (unlikely(details) && page) {
1102                                /*
1103                                 * unmap_shared_mapping_pages() wants to
1104                                 * invalidate cache without truncating:
1105                                 * unmap shared but keep private pages.
1106                                 */
1107                                if (details->check_mapping &&
1108                                    details->check_mapping != page->mapping)
1109                                        continue;
1110                        }
1111                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1112                                                        tlb->fullmm);
1113                        tlb_remove_tlb_entry(tlb, pte, addr);
1114                        if (unlikely(!page))
1115                                continue;
1116                        if (PageAnon(page))
1117                                rss[MM_ANONPAGES]--;
1118                        else {
1119                                if (pte_dirty(ptent)) {
1120                                        force_flush = 1;
1121                                        set_page_dirty(page);
1122                                }
1123                                if (pte_young(ptent) &&
1124                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1125                                        mark_page_accessed(page);
1126                                rss[MM_FILEPAGES]--;
1127                        }
1128                        page_remove_rmap(page);
1129                        if (unlikely(page_mapcount(page) < 0))
1130                                print_bad_pte(vma, addr, ptent, page);
1131                        if (unlikely(!__tlb_remove_page(tlb, page))) {
1132                                force_flush = 1;
1133                                addr += PAGE_SIZE;
1134                                break;
1135                        }
1136                        continue;
1137                }
1138                /* If details->check_mapping, we leave swap entries. */
1139                if (unlikely(details))
1140                        continue;
1141
1142                entry = pte_to_swp_entry(ptent);
1143                if (!non_swap_entry(entry))
1144                        rss[MM_SWAPENTS]--;
1145                else if (is_migration_entry(entry)) {
1146                        struct page *page;
1147
1148                        page = migration_entry_to_page(entry);
1149
1150                        if (PageAnon(page))
1151                                rss[MM_ANONPAGES]--;
1152                        else
1153                                rss[MM_FILEPAGES]--;
1154                }
1155                if (unlikely(!free_swap_and_cache(entry)))
1156                        print_bad_pte(vma, addr, ptent, NULL);
1157                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1158        } while (pte++, addr += PAGE_SIZE, addr != end);
1159
1160        add_mm_rss_vec(mm, rss);
1161        arch_leave_lazy_mmu_mode();
1162
1163        /* Do the actual TLB flush before dropping ptl */
1164        if (force_flush)
1165                tlb_flush_mmu_tlbonly(tlb);
1166        pte_unmap_unlock(start_pte, ptl);
1167
1168        /*
1169         * If we forced a TLB flush (either due to running out of
1170         * batch buffers or because we needed to flush dirty TLB
1171         * entries before releasing the ptl), free the batched
1172         * memory too. Restart if we didn't do everything.
1173         */
1174        if (force_flush) {
1175                force_flush = 0;
1176                tlb_flush_mmu_free(tlb);
1177
1178                if (addr != end)
1179                        goto again;
1180        }
1181
1182        return addr;
1183}
1184
1185static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1186                                struct vm_area_struct *vma, pud_t *pud,
1187                                unsigned long addr, unsigned long end,
1188                                struct zap_details *details)
1189{
1190        pmd_t *pmd;
1191        unsigned long next;
1192
1193        pmd = pmd_offset(pud, addr);
1194        do {
1195                next = pmd_addr_end(addr, end);
1196                if (pmd_trans_huge(*pmd)) {
1197                        if (next - addr != HPAGE_PMD_SIZE) {
1198#ifdef CONFIG_DEBUG_VM
1199                                if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1200                                        pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1201                                                __func__, addr, end,
1202                                                vma->vm_start,
1203                                                vma->vm_end);
1204                                        BUG();
1205                                }
1206#endif
1207                                split_huge_page_pmd(vma, addr, pmd);
1208                        } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1209                                goto next;
1210                        /* fall through */
1211                }
1212                /*
1213                 * Here there can be other concurrent MADV_DONTNEED or
1214                 * trans huge page faults running, and if the pmd is
1215                 * none or trans huge it can change under us. This is
1216                 * because MADV_DONTNEED holds the mmap_sem in read
1217                 * mode.
1218                 */
1219                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1220                        goto next;
1221                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1222next:
1223                cond_resched();
1224        } while (pmd++, addr = next, addr != end);
1225
1226        return addr;
1227}
1228
1229static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1230                                struct vm_area_struct *vma, pgd_t *pgd,
1231                                unsigned long addr, unsigned long end,
1232                                struct zap_details *details)
1233{
1234        pud_t *pud;
1235        unsigned long next;
1236
1237        pud = pud_offset(pgd, addr);
1238        do {
1239                next = pud_addr_end(addr, end);
1240                if (pud_none_or_clear_bad(pud))
1241                        continue;
1242                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1243        } while (pud++, addr = next, addr != end);
1244
1245        return addr;
1246}
1247
1248static void unmap_page_range(struct mmu_gather *tlb,
1249                             struct vm_area_struct *vma,
1250                             unsigned long addr, unsigned long end,
1251                             struct zap_details *details)
1252{
1253        pgd_t *pgd;
1254        unsigned long next;
1255
1256        if (details && !details->check_mapping)
1257                details = NULL;
1258
1259        BUG_ON(addr >= end);
1260        tlb_start_vma(tlb, vma);
1261        pgd = pgd_offset(vma->vm_mm, addr);
1262        do {
1263                next = pgd_addr_end(addr, end);
1264                if (pgd_none_or_clear_bad(pgd))
1265                        continue;
1266                next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1267        } while (pgd++, addr = next, addr != end);
1268        tlb_end_vma(tlb, vma);
1269}
1270
1271
1272static void unmap_single_vma(struct mmu_gather *tlb,
1273                struct vm_area_struct *vma, unsigned long start_addr,
1274                unsigned long end_addr,
1275                struct zap_details *details)
1276{
1277        unsigned long start = max(vma->vm_start, start_addr);
1278        unsigned long end;
1279
1280        if (start >= vma->vm_end)
1281                return;
1282        end = min(vma->vm_end, end_addr);
1283        if (end <= vma->vm_start)
1284                return;
1285
1286        if (vma->vm_file)
1287                uprobe_munmap(vma, start, end);
1288
1289        if (unlikely(vma->vm_flags & VM_PFNMAP))
1290                untrack_pfn(vma, 0, 0);
1291
1292        if (start != end) {
1293                if (unlikely(is_vm_hugetlb_page(vma))) {
1294                        /*
1295                         * It is undesirable to test vma->vm_file as it
1296                         * should be non-null for valid hugetlb area.
1297                         * However, vm_file will be NULL in the error
1298                         * cleanup path of mmap_region. When
1299                         * hugetlbfs ->mmap method fails,
1300                         * mmap_region() nullifies vma->vm_file
1301                         * before calling this function to clean up.
1302                         * Since no pte has actually been setup, it is
1303                         * safe to do nothing in this case.
1304                         */
1305                        if (vma->vm_file) {
1306                                i_mmap_lock_write(vma->vm_file->f_mapping);
1307                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1309                        }
1310                } else
1311                        unmap_page_range(tlb, vma, start, end, details);
1312        }
1313}
1314
1315/**
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1321 *
1322 * Unmap all pages in the vma list.
1323 *
1324 * Only addresses between `start' and `end' will be unmapped.
1325 *
1326 * The VMA list must be sorted in ascending virtual address order.
1327 *
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns.  So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1332 */
1333void unmap_vmas(struct mmu_gather *tlb,
1334                struct vm_area_struct *vma, unsigned long start_addr,
1335                unsigned long end_addr)
1336{
1337        struct mm_struct *mm = vma->vm_mm;
1338
1339        mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1340        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342        mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1343}
1344
1345/**
1346 * zap_page_range - remove user pages in a given range
1347 * @vma: vm_area_struct holding the applicable pages
1348 * @start: starting address of pages to zap
1349 * @size: number of bytes to zap
1350 * @details: details of shared cache invalidation
1351 *
1352 * Caller must protect the VMA list
1353 */
1354void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355                unsigned long size, struct zap_details *details)
1356{
1357        struct mm_struct *mm = vma->vm_mm;
1358        struct mmu_gather tlb;
1359        unsigned long end = start + size;
1360
1361        lru_add_drain();
1362        tlb_gather_mmu(&tlb, mm, start, end);
1363        update_hiwater_rss(mm);
1364        mmu_notifier_invalidate_range_start(mm, start, end);
1365        for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1366                unmap_single_vma(&tlb, vma, start, end, details);
1367        mmu_notifier_invalidate_range_end(mm, start, end);
1368        tlb_finish_mmu(&tlb, start, end);
1369}
1370
1371/**
1372 * zap_page_range_single - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @address: starting address of pages to zap
1375 * @size: number of bytes to zap
1376 * @details: details of shared cache invalidation
1377 *
1378 * The range must fit into one VMA.
1379 */
1380static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381                unsigned long size, struct zap_details *details)
1382{
1383        struct mm_struct *mm = vma->vm_mm;
1384        struct mmu_gather tlb;
1385        unsigned long end = address + size;
1386
1387        lru_add_drain();
1388        tlb_gather_mmu(&tlb, mm, address, end);
1389        update_hiwater_rss(mm);
1390        mmu_notifier_invalidate_range_start(mm, address, end);
1391        unmap_single_vma(&tlb, vma, address, end, details);
1392        mmu_notifier_invalidate_range_end(mm, address, end);
1393        tlb_finish_mmu(&tlb, address, end);
1394}
1395
1396/**
1397 * zap_vma_ptes - remove ptes mapping the vma
1398 * @vma: vm_area_struct holding ptes to be zapped
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 *
1402 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1403 *
1404 * The entire address range must be fully contained within the vma.
1405 *
1406 * Returns 0 if successful.
1407 */
1408int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409                unsigned long size)
1410{
1411        if (address < vma->vm_start || address + size > vma->vm_end ||
1412                        !(vma->vm_flags & VM_PFNMAP))
1413                return -1;
1414        zap_page_range_single(vma, address, size, NULL);
1415        return 0;
1416}
1417EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418
1419pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1420                        spinlock_t **ptl)
1421{
1422        pgd_t * pgd = pgd_offset(mm, addr);
1423        pud_t * pud = pud_alloc(mm, pgd, addr);
1424        if (pud) {
1425                pmd_t * pmd = pmd_alloc(mm, pud, addr);
1426                if (pmd) {
1427                        VM_BUG_ON(pmd_trans_huge(*pmd));
1428                        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1429                }
1430        }
1431        return NULL;
1432}
1433
1434/*
1435 * This is the old fallback for page remapping.
1436 *
1437 * For historical reasons, it only allows reserved pages. Only
1438 * old drivers should use this, and they needed to mark their
1439 * pages reserved for the old functions anyway.
1440 */
1441static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1442                        struct page *page, pgprot_t prot)
1443{
1444        struct mm_struct *mm = vma->vm_mm;
1445        int retval;
1446        pte_t *pte;
1447        spinlock_t *ptl;
1448
1449        retval = -EINVAL;
1450        if (PageAnon(page))
1451                goto out;
1452        retval = -ENOMEM;
1453        flush_dcache_page(page);
1454        pte = get_locked_pte(mm, addr, &ptl);
1455        if (!pte)
1456                goto out;
1457        retval = -EBUSY;
1458        if (!pte_none(*pte))
1459                goto out_unlock;
1460
1461        /* Ok, finally just insert the thing.. */
1462        get_page(page);
1463        inc_mm_counter_fast(mm, MM_FILEPAGES);
1464        page_add_file_rmap(page);
1465        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1466
1467        retval = 0;
1468        pte_unmap_unlock(pte, ptl);
1469        return retval;
1470out_unlock:
1471        pte_unmap_unlock(pte, ptl);
1472out:
1473        return retval;
1474}
1475
1476/**
1477 * vm_insert_page - insert single page into user vma
1478 * @vma: user vma to map to
1479 * @addr: target user address of this page
1480 * @page: source kernel page
1481 *
1482 * This allows drivers to insert individual pages they've allocated
1483 * into a user vma.
1484 *
1485 * The page has to be a nice clean _individual_ kernel allocation.
1486 * If you allocate a compound page, you need to have marked it as
1487 * such (__GFP_COMP), or manually just split the page up yourself
1488 * (see split_page()).
1489 *
1490 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1491 * took an arbitrary page protection parameter. This doesn't allow
1492 * that. Your vma protection will have to be set up correctly, which
1493 * means that if you want a shared writable mapping, you'd better
1494 * ask for a shared writable mapping!
1495 *
1496 * The page does not need to be reserved.
1497 *
1498 * Usually this function is called from f_op->mmap() handler
1499 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1500 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1501 * function from other places, for example from page-fault handler.
1502 */
1503int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1504                        struct page *page)
1505{
1506        if (addr < vma->vm_start || addr >= vma->vm_end)
1507                return -EFAULT;
1508        if (!page_count(page))
1509                return -EINVAL;
1510        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1511                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1512                BUG_ON(vma->vm_flags & VM_PFNMAP);
1513                vma->vm_flags |= VM_MIXEDMAP;
1514        }
1515        return insert_page(vma, addr, page, vma->vm_page_prot);
1516}
1517EXPORT_SYMBOL(vm_insert_page);
1518
1519static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1520                        unsigned long pfn, pgprot_t prot)
1521{
1522        struct mm_struct *mm = vma->vm_mm;
1523        int retval;
1524        pte_t *pte, entry;
1525        spinlock_t *ptl;
1526
1527        retval = -ENOMEM;
1528        pte = get_locked_pte(mm, addr, &ptl);
1529        if (!pte)
1530                goto out;
1531        retval = -EBUSY;
1532        if (!pte_none(*pte))
1533                goto out_unlock;
1534
1535        /* Ok, finally just insert the thing.. */
1536        entry = pte_mkspecial(pfn_pte(pfn, prot));
1537        set_pte_at(mm, addr, pte, entry);
1538        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1539
1540        retval = 0;
1541out_unlock:
1542        pte_unmap_unlock(pte, ptl);
1543out:
1544        return retval;
1545}
1546
1547/**
1548 * vm_insert_pfn - insert single pfn into user vma
1549 * @vma: user vma to map to
1550 * @addr: target user address of this page
1551 * @pfn: source kernel pfn
1552 *
1553 * Similar to vm_insert_page, this allows drivers to insert individual pages
1554 * they've allocated into a user vma. Same comments apply.
1555 *
1556 * This function should only be called from a vm_ops->fault handler, and
1557 * in that case the handler should return NULL.
1558 *
1559 * vma cannot be a COW mapping.
1560 *
1561 * As this is called only for pages that do not currently exist, we
1562 * do not need to flush old virtual caches or the TLB.
1563 */
1564int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1565                        unsigned long pfn)
1566{
1567        int ret;
1568        pgprot_t pgprot = vma->vm_page_prot;
1569        /*
1570         * Technically, architectures with pte_special can avoid all these
1571         * restrictions (same for remap_pfn_range).  However we would like
1572         * consistency in testing and feature parity among all, so we should
1573         * try to keep these invariants in place for everybody.
1574         */
1575        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1576        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1577                                                (VM_PFNMAP|VM_MIXEDMAP));
1578        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1579        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1580
1581        if (addr < vma->vm_start || addr >= vma->vm_end)
1582                return -EFAULT;
1583        if (track_pfn_insert(vma, &pgprot, pfn))
1584                return -EINVAL;
1585
1586        ret = insert_pfn(vma, addr, pfn, pgprot);
1587
1588        return ret;
1589}
1590EXPORT_SYMBOL(vm_insert_pfn);
1591
1592int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1593                        unsigned long pfn)
1594{
1595        BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1596
1597        if (addr < vma->vm_start || addr >= vma->vm_end)
1598                return -EFAULT;
1599
1600        /*
1601         * If we don't have pte special, then we have to use the pfn_valid()
1602         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1603         * refcount the page if pfn_valid is true (hence insert_page rather
1604         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1605         * without pte special, it would there be refcounted as a normal page.
1606         */
1607        if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1608                struct page *page;
1609
1610                page = pfn_to_page(pfn);
1611                return insert_page(vma, addr, page, vma->vm_page_prot);
1612        }
1613        return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1614}
1615EXPORT_SYMBOL(vm_insert_mixed);
1616
1617/*
1618 * maps a range of physical memory into the requested pages. the old
1619 * mappings are removed. any references to nonexistent pages results
1620 * in null mappings (currently treated as "copy-on-access")
1621 */
1622static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1623                        unsigned long addr, unsigned long end,
1624                        unsigned long pfn, pgprot_t prot)
1625{
1626        pte_t *pte;
1627        spinlock_t *ptl;
1628
1629        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1630        if (!pte)
1631                return -ENOMEM;
1632        arch_enter_lazy_mmu_mode();
1633        do {
1634                BUG_ON(!pte_none(*pte));
1635                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1636                pfn++;
1637        } while (pte++, addr += PAGE_SIZE, addr != end);
1638        arch_leave_lazy_mmu_mode();
1639        pte_unmap_unlock(pte - 1, ptl);
1640        return 0;
1641}
1642
1643static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1644                        unsigned long addr, unsigned long end,
1645                        unsigned long pfn, pgprot_t prot)
1646{
1647        pmd_t *pmd;
1648        unsigned long next;
1649
1650        pfn -= addr >> PAGE_SHIFT;
1651        pmd = pmd_alloc(mm, pud, addr);
1652        if (!pmd)
1653                return -ENOMEM;
1654        VM_BUG_ON(pmd_trans_huge(*pmd));
1655        do {
1656                next = pmd_addr_end(addr, end);
1657                if (remap_pte_range(mm, pmd, addr, next,
1658                                pfn + (addr >> PAGE_SHIFT), prot))
1659                        return -ENOMEM;
1660        } while (pmd++, addr = next, addr != end);
1661        return 0;
1662}
1663
1664static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1665                        unsigned long addr, unsigned long end,
1666                        unsigned long pfn, pgprot_t prot)
1667{
1668        pud_t *pud;
1669        unsigned long next;
1670
1671        pfn -= addr >> PAGE_SHIFT;
1672        pud = pud_alloc(mm, pgd, addr);
1673        if (!pud)
1674                return -ENOMEM;
1675        do {
1676                next = pud_addr_end(addr, end);
1677                if (remap_pmd_range(mm, pud, addr, next,
1678                                pfn + (addr >> PAGE_SHIFT), prot))
1679                        return -ENOMEM;
1680        } while (pud++, addr = next, addr != end);
1681        return 0;
1682}
1683
1684/**
1685 * remap_pfn_range - remap kernel memory to userspace
1686 * @vma: user vma to map to
1687 * @addr: target user address to start at
1688 * @pfn: physical address of kernel memory
1689 * @size: size of map area
1690 * @prot: page protection flags for this mapping
1691 *
1692 *  Note: this is only safe if the mm semaphore is held when called.
1693 */
1694int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1695                    unsigned long pfn, unsigned long size, pgprot_t prot)
1696{
1697        pgd_t *pgd;
1698        unsigned long next;
1699        unsigned long end = addr + PAGE_ALIGN(size);
1700        struct mm_struct *mm = vma->vm_mm;
1701        int err;
1702
1703        /*
1704         * Physically remapped pages are special. Tell the
1705         * rest of the world about it:
1706         *   VM_IO tells people not to look at these pages
1707         *      (accesses can have side effects).
1708         *   VM_PFNMAP tells the core MM that the base pages are just
1709         *      raw PFN mappings, and do not have a "struct page" associated
1710         *      with them.
1711         *   VM_DONTEXPAND
1712         *      Disable vma merging and expanding with mremap().
1713         *   VM_DONTDUMP
1714         *      Omit vma from core dump, even when VM_IO turned off.
1715         *
1716         * There's a horrible special case to handle copy-on-write
1717         * behaviour that some programs depend on. We mark the "original"
1718         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1719         * See vm_normal_page() for details.
1720         */
1721        if (is_cow_mapping(vma->vm_flags)) {
1722                if (addr != vma->vm_start || end != vma->vm_end)
1723                        return -EINVAL;
1724                vma->vm_pgoff = pfn;
1725        }
1726
1727        err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1728        if (err)
1729                return -EINVAL;
1730
1731        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1732
1733        BUG_ON(addr >= end);
1734        pfn -= addr >> PAGE_SHIFT;
1735        pgd = pgd_offset(mm, addr);
1736        flush_cache_range(vma, addr, end);
1737        do {
1738                next = pgd_addr_end(addr, end);
1739                err = remap_pud_range(mm, pgd, addr, next,
1740                                pfn + (addr >> PAGE_SHIFT), prot);
1741                if (err)
1742                        break;
1743        } while (pgd++, addr = next, addr != end);
1744
1745        if (err)
1746                untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1747
1748        return err;
1749}
1750EXPORT_SYMBOL(remap_pfn_range);
1751
1752/**
1753 * vm_iomap_memory - remap memory to userspace
1754 * @vma: user vma to map to
1755 * @start: start of area
1756 * @len: size of area
1757 *
1758 * This is a simplified io_remap_pfn_range() for common driver use. The
1759 * driver just needs to give us the physical memory range to be mapped,
1760 * we'll figure out the rest from the vma information.
1761 *
1762 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1763 * whatever write-combining details or similar.
1764 */
1765int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1766{
1767        unsigned long vm_len, pfn, pages;
1768
1769        /* Check that the physical memory area passed in looks valid */
1770        if (start + len < start)
1771                return -EINVAL;
1772        /*
1773         * You *really* shouldn't map things that aren't page-aligned,
1774         * but we've historically allowed it because IO memory might
1775         * just have smaller alignment.
1776         */
1777        len += start & ~PAGE_MASK;
1778        pfn = start >> PAGE_SHIFT;
1779        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1780        if (pfn + pages < pfn)
1781                return -EINVAL;
1782
1783        /* We start the mapping 'vm_pgoff' pages into the area */
1784        if (vma->vm_pgoff > pages)
1785                return -EINVAL;
1786        pfn += vma->vm_pgoff;
1787        pages -= vma->vm_pgoff;
1788
1789        /* Can we fit all of the mapping? */
1790        vm_len = vma->vm_end - vma->vm_start;
1791        if (vm_len >> PAGE_SHIFT > pages)
1792                return -EINVAL;
1793
1794        /* Ok, let it rip */
1795        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1796}
1797EXPORT_SYMBOL(vm_iomap_memory);
1798
1799static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800                                     unsigned long addr, unsigned long end,
1801                                     pte_fn_t fn, void *data)
1802{
1803        pte_t *pte;
1804        int err;
1805        pgtable_t token;
1806        spinlock_t *uninitialized_var(ptl);
1807
1808        pte = (mm == &init_mm) ?
1809                pte_alloc_kernel(pmd, addr) :
1810                pte_alloc_map_lock(mm, pmd, addr, &ptl);
1811        if (!pte)
1812                return -ENOMEM;
1813
1814        BUG_ON(pmd_huge(*pmd));
1815
1816        arch_enter_lazy_mmu_mode();
1817
1818        token = pmd_pgtable(*pmd);
1819
1820        do {
1821                err = fn(pte++, token, addr, data);
1822                if (err)
1823                        break;
1824        } while (addr += PAGE_SIZE, addr != end);
1825
1826        arch_leave_lazy_mmu_mode();
1827
1828        if (mm != &init_mm)
1829                pte_unmap_unlock(pte-1, ptl);
1830        return err;
1831}
1832
1833static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1834                                     unsigned long addr, unsigned long end,
1835                                     pte_fn_t fn, void *data)
1836{
1837        pmd_t *pmd;
1838        unsigned long next;
1839        int err;
1840
1841        BUG_ON(pud_huge(*pud));
1842
1843        pmd = pmd_alloc(mm, pud, addr);
1844        if (!pmd)
1845                return -ENOMEM;
1846        do {
1847                next = pmd_addr_end(addr, end);
1848                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1849                if (err)
1850                        break;
1851        } while (pmd++, addr = next, addr != end);
1852        return err;
1853}
1854
1855static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1856                                     unsigned long addr, unsigned long end,
1857                                     pte_fn_t fn, void *data)
1858{
1859        pud_t *pud;
1860        unsigned long next;
1861        int err;
1862
1863        pud = pud_alloc(mm, pgd, addr);
1864        if (!pud)
1865                return -ENOMEM;
1866        do {
1867                next = pud_addr_end(addr, end);
1868                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1869                if (err)
1870                        break;
1871        } while (pud++, addr = next, addr != end);
1872        return err;
1873}
1874
1875/*
1876 * Scan a region of virtual memory, filling in page tables as necessary
1877 * and calling a provided function on each leaf page table.
1878 */
1879int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1880                        unsigned long size, pte_fn_t fn, void *data)
1881{
1882        pgd_t *pgd;
1883        unsigned long next;
1884        unsigned long end = addr + size;
1885        int err;
1886
1887        BUG_ON(addr >= end);
1888        pgd = pgd_offset(mm, addr);
1889        do {
1890                next = pgd_addr_end(addr, end);
1891                err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1892                if (err)
1893                        break;
1894        } while (pgd++, addr = next, addr != end);
1895
1896        return err;
1897}
1898EXPORT_SYMBOL_GPL(apply_to_page_range);
1899
1900/*
1901 * handle_pte_fault chooses page fault handler according to an entry which was
1902 * read non-atomically.  Before making any commitment, on those architectures
1903 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1904 * parts, do_swap_page must check under lock before unmapping the pte and
1905 * proceeding (but do_wp_page is only called after already making such a check;
1906 * and do_anonymous_page can safely check later on).
1907 */
1908static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1909                                pte_t *page_table, pte_t orig_pte)
1910{
1911        int same = 1;
1912#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1913        if (sizeof(pte_t) > sizeof(unsigned long)) {
1914                spinlock_t *ptl = pte_lockptr(mm, pmd);
1915                spin_lock(ptl);
1916                same = pte_same(*page_table, orig_pte);
1917                spin_unlock(ptl);
1918        }
1919#endif
1920        pte_unmap(page_table);
1921        return same;
1922}
1923
1924static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1925{
1926        debug_dma_assert_idle(src);
1927
1928        /*
1929         * If the source page was a PFN mapping, we don't have
1930         * a "struct page" for it. We do a best-effort copy by
1931         * just copying from the original user address. If that
1932         * fails, we just zero-fill it. Live with it.
1933         */
1934        if (unlikely(!src)) {
1935                void *kaddr = kmap_atomic(dst);
1936                void __user *uaddr = (void __user *)(va & PAGE_MASK);
1937
1938                /*
1939                 * This really shouldn't fail, because the page is there
1940                 * in the page tables. But it might just be unreadable,
1941                 * in which case we just give up and fill the result with
1942                 * zeroes.
1943                 */
1944                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1945                        clear_page(kaddr);
1946                kunmap_atomic(kaddr);
1947                flush_dcache_page(dst);
1948        } else
1949                copy_user_highpage(dst, src, va, vma);
1950}
1951
1952/*
1953 * Notify the address space that the page is about to become writable so that
1954 * it can prohibit this or wait for the page to get into an appropriate state.
1955 *
1956 * We do this without the lock held, so that it can sleep if it needs to.
1957 */
1958static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1959               unsigned long address)
1960{
1961        struct vm_fault vmf;
1962        int ret;
1963
1964        vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1965        vmf.pgoff = page->index;
1966        vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1967        vmf.page = page;
1968        vmf.cow_page = NULL;
1969
1970        ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1971        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1972                return ret;
1973        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1974                lock_page(page);
1975                if (!page->mapping) {
1976                        unlock_page(page);
1977                        return 0; /* retry */
1978                }
1979                ret |= VM_FAULT_LOCKED;
1980        } else
1981                VM_BUG_ON_PAGE(!PageLocked(page), page);
1982        return ret;
1983}
1984
1985/*
1986 * Handle write page faults for pages that can be reused in the current vma
1987 *
1988 * This can happen either due to the mapping being with the VM_SHARED flag,
1989 * or due to us being the last reference standing to the page. In either
1990 * case, all we need to do here is to mark the page as writable and update
1991 * any related book-keeping.
1992 */
1993static inline int wp_page_reuse(struct mm_struct *mm,
1994                        struct vm_area_struct *vma, unsigned long address,
1995                        pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1996                        struct page *page, int page_mkwrite,
1997                        int dirty_shared)
1998        __releases(ptl)
1999{
2000        pte_t entry;
2001        /*
2002         * Clear the pages cpupid information as the existing
2003         * information potentially belongs to a now completely
2004         * unrelated process.
2005         */
2006        if (page)
2007                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2008
2009        flush_cache_page(vma, address, pte_pfn(orig_pte));
2010        entry = pte_mkyoung(orig_pte);
2011        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2012        if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2013                update_mmu_cache(vma, address, page_table);
2014        pte_unmap_unlock(page_table, ptl);
2015
2016        if (dirty_shared) {
2017                struct address_space *mapping;
2018                int dirtied;
2019
2020                if (!page_mkwrite)
2021                        lock_page(page);
2022
2023                dirtied = set_page_dirty(page);
2024                VM_BUG_ON_PAGE(PageAnon(page), page);
2025                mapping = page->mapping;
2026                unlock_page(page);
2027                page_cache_release(page);
2028
2029                if ((dirtied || page_mkwrite) && mapping) {
2030                        /*
2031                         * Some device drivers do not set page.mapping
2032                         * but still dirty their pages
2033                         */
2034                        balance_dirty_pages_ratelimited(mapping);
2035                }
2036
2037                if (!page_mkwrite)
2038                        file_update_time(vma->vm_file);
2039        }
2040
2041        return VM_FAULT_WRITE;
2042}
2043
2044/*
2045 * Handle the case of a page which we actually need to copy to a new page.
2046 *
2047 * Called with mmap_sem locked and the old page referenced, but
2048 * without the ptl held.
2049 *
2050 * High level logic flow:
2051 *
2052 * - Allocate a page, copy the content of the old page to the new one.
2053 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2054 * - Take the PTL. If the pte changed, bail out and release the allocated page
2055 * - If the pte is still the way we remember it, update the page table and all
2056 *   relevant references. This includes dropping the reference the page-table
2057 *   held to the old page, as well as updating the rmap.
2058 * - In any case, unlock the PTL and drop the reference we took to the old page.
2059 */
2060static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2061                        unsigned long address, pte_t *page_table, pmd_t *pmd,
2062                        pte_t orig_pte, struct page *old_page)
2063{
2064        struct page *new_page = NULL;
2065        spinlock_t *ptl = NULL;
2066        pte_t entry;
2067        int page_copied = 0;
2068        const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2069        const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2070        struct mem_cgroup *memcg;
2071
2072        if (unlikely(anon_vma_prepare(vma)))
2073                goto oom;
2074
2075        if (is_zero_pfn(pte_pfn(orig_pte))) {
2076                new_page = alloc_zeroed_user_highpage_movable(vma, address);
2077                if (!new_page)
2078                        goto oom;
2079        } else {
2080                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2081                if (!new_page)
2082                        goto oom;
2083                cow_user_page(new_page, old_page, address, vma);
2084        }
2085
2086        if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2087                goto oom_free_new;
2088
2089        __SetPageUptodate(new_page);
2090
2091        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2092
2093        /*
2094         * Re-check the pte - we dropped the lock
2095         */
2096        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2097        if (likely(pte_same(*page_table, orig_pte))) {
2098                if (old_page) {
2099                        if (!PageAnon(old_page)) {
2100                                dec_mm_counter_fast(mm, MM_FILEPAGES);
2101                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2102                        }
2103                } else {
2104                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2105                }
2106                flush_cache_page(vma, address, pte_pfn(orig_pte));
2107                entry = mk_pte(new_page, vma->vm_page_prot);
2108                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2109                /*
2110                 * Clear the pte entry and flush it first, before updating the
2111                 * pte with the new entry. This will avoid a race condition
2112                 * seen in the presence of one thread doing SMC and another
2113                 * thread doing COW.
2114                 */
2115                ptep_clear_flush_notify(vma, address, page_table);
2116                page_add_new_anon_rmap(new_page, vma, address);
2117                mem_cgroup_commit_charge(new_page, memcg, false);
2118                lru_cache_add_active_or_unevictable(new_page, vma);
2119                /*
2120                 * We call the notify macro here because, when using secondary
2121                 * mmu page tables (such as kvm shadow page tables), we want the
2122                 * new page to be mapped directly into the secondary page table.
2123                 */
2124                set_pte_at_notify(mm, address, page_table, entry);
2125                update_mmu_cache(vma, address, page_table);
2126                if (old_page) {
2127                        /*
2128                         * Only after switching the pte to the new page may
2129                         * we remove the mapcount here. Otherwise another
2130                         * process may come and find the rmap count decremented
2131                         * before the pte is switched to the new page, and
2132                         * "reuse" the old page writing into it while our pte
2133                         * here still points into it and can be read by other
2134                         * threads.
2135                         *
2136                         * The critical issue is to order this
2137                         * page_remove_rmap with the ptp_clear_flush above.
2138                         * Those stores are ordered by (if nothing else,)
2139                         * the barrier present in the atomic_add_negative
2140                         * in page_remove_rmap.
2141                         *
2142                         * Then the TLB flush in ptep_clear_flush ensures that
2143                         * no process can access the old page before the
2144                         * decremented mapcount is visible. And the old page
2145                         * cannot be reused until after the decremented
2146                         * mapcount is visible. So transitively, TLBs to
2147                         * old page will be flushed before it can be reused.
2148                         */
2149                        page_remove_rmap(old_page);
2150                }
2151
2152                /* Free the old page.. */
2153                new_page = old_page;
2154                page_copied = 1;
2155        } else {
2156                mem_cgroup_cancel_charge(new_page, memcg);
2157        }
2158
2159        if (new_page)
2160                page_cache_release(new_page);
2161
2162        pte_unmap_unlock(page_table, ptl);
2163        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2164        if (old_page) {
2165                /*
2166                 * Don't let another task, with possibly unlocked vma,
2167                 * keep the mlocked page.
2168                 */
2169                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2170                        lock_page(old_page);    /* LRU manipulation */
2171                        munlock_vma_page(old_page);
2172                        unlock_page(old_page);
2173                }
2174                page_cache_release(old_page);
2175        }
2176        return page_copied ? VM_FAULT_WRITE : 0;
2177oom_free_new:
2178        page_cache_release(new_page);
2179oom:
2180        if (old_page)
2181                page_cache_release(old_page);
2182        return VM_FAULT_OOM;
2183}
2184
2185/*
2186 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2187 * mapping
2188 */
2189static int wp_pfn_shared(struct mm_struct *mm,
2190                        struct vm_area_struct *vma, unsigned long address,
2191                        pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2192                        pmd_t *pmd)
2193{
2194        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2195                struct vm_fault vmf = {
2196                        .page = NULL,
2197                        .pgoff = linear_page_index(vma, address),
2198                        .virtual_address = (void __user *)(address & PAGE_MASK),
2199                        .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2200                };
2201                int ret;
2202
2203                pte_unmap_unlock(page_table, ptl);
2204                ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2205                if (ret & VM_FAULT_ERROR)
2206                        return ret;
2207                page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2208                /*
2209                 * We might have raced with another page fault while we
2210                 * released the pte_offset_map_lock.
2211                 */
2212                if (!pte_same(*page_table, orig_pte)) {
2213                        pte_unmap_unlock(page_table, ptl);
2214                        return 0;
2215                }
2216        }
2217        return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2218                             NULL, 0, 0);
2219}
2220
2221static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2222                          unsigned long address, pte_t *page_table,
2223                          pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2224                          struct page *old_page)
2225        __releases(ptl)
2226{
2227        int page_mkwrite = 0;
2228
2229        page_cache_get(old_page);
2230
2231        /*
2232         * Only catch write-faults on shared writable pages,
2233         * read-only shared pages can get COWed by
2234         * get_user_pages(.write=1, .force=1).
2235         */
2236        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2237                int tmp;
2238
2239                pte_unmap_unlock(page_table, ptl);
2240                tmp = do_page_mkwrite(vma, old_page, address);
2241                if (unlikely(!tmp || (tmp &
2242                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2243                        page_cache_release(old_page);
2244                        return tmp;
2245                }
2246                /*
2247                 * Since we dropped the lock we need to revalidate
2248                 * the PTE as someone else may have changed it.  If
2249                 * they did, we just return, as we can count on the
2250                 * MMU to tell us if they didn't also make it writable.
2251                 */
2252                page_table = pte_offset_map_lock(mm, pmd, address,
2253                                                 &ptl);
2254                if (!pte_same(*page_table, orig_pte)) {
2255                        unlock_page(old_page);
2256                        pte_unmap_unlock(page_table, ptl);
2257                        page_cache_release(old_page);
2258                        return 0;
2259                }
2260                page_mkwrite = 1;
2261        }
2262
2263        return wp_page_reuse(mm, vma, address, page_table, ptl,
2264                             orig_pte, old_page, page_mkwrite, 1);
2265}
2266
2267/*
2268 * This routine handles present pages, when users try to write
2269 * to a shared page. It is done by copying the page to a new address
2270 * and decrementing the shared-page counter for the old page.
2271 *
2272 * Note that this routine assumes that the protection checks have been
2273 * done by the caller (the low-level page fault routine in most cases).
2274 * Thus we can safely just mark it writable once we've done any necessary
2275 * COW.
2276 *
2277 * We also mark the page dirty at this point even though the page will
2278 * change only once the write actually happens. This avoids a few races,
2279 * and potentially makes it more efficient.
2280 *
2281 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2282 * but allow concurrent faults), with pte both mapped and locked.
2283 * We return with mmap_sem still held, but pte unmapped and unlocked.
2284 */
2285static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2286                unsigned long address, pte_t *page_table, pmd_t *pmd,
2287                spinlock_t *ptl, pte_t orig_pte)
2288        __releases(ptl)
2289{
2290        struct page *old_page;
2291
2292        old_page = vm_normal_page(vma, address, orig_pte);
2293        if (!old_page) {
2294                /*
2295                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2296                 * VM_PFNMAP VMA.
2297                 *
2298                 * We should not cow pages in a shared writeable mapping.
2299                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2300                 */
2301                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2302                                     (VM_WRITE|VM_SHARED))
2303                        return wp_pfn_shared(mm, vma, address, page_table, ptl,
2304                                             orig_pte, pmd);
2305
2306                pte_unmap_unlock(page_table, ptl);
2307                return wp_page_copy(mm, vma, address, page_table, pmd,
2308                                    orig_pte, old_page);
2309        }
2310
2311        /*
2312         * Take out anonymous pages first, anonymous shared vmas are
2313         * not dirty accountable.
2314         */
2315        if (PageAnon(old_page) && !PageKsm(old_page)) {
2316                if (!trylock_page(old_page)) {
2317                        page_cache_get(old_page);
2318                        pte_unmap_unlock(page_table, ptl);
2319                        lock_page(old_page);
2320                        page_table = pte_offset_map_lock(mm, pmd, address,
2321                                                         &ptl);
2322                        if (!pte_same(*page_table, orig_pte)) {
2323                                unlock_page(old_page);
2324                                pte_unmap_unlock(page_table, ptl);
2325                                page_cache_release(old_page);
2326                                return 0;
2327                        }
2328                        page_cache_release(old_page);
2329                }
2330                if (reuse_swap_page(old_page)) {
2331                        /*
2332                         * The page is all ours.  Move it to our anon_vma so
2333                         * the rmap code will not search our parent or siblings.
2334                         * Protected against the rmap code by the page lock.
2335                         */
2336                        page_move_anon_rmap(old_page, vma, address);
2337                        unlock_page(old_page);
2338                        return wp_page_reuse(mm, vma, address, page_table, ptl,
2339                                             orig_pte, old_page, 0, 0);
2340                }
2341                unlock_page(old_page);
2342        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2343                                        (VM_WRITE|VM_SHARED))) {
2344                return wp_page_shared(mm, vma, address, page_table, pmd,
2345                                      ptl, orig_pte, old_page);
2346        }
2347
2348        /*
2349         * Ok, we need to copy. Oh, well..
2350         */
2351        page_cache_get(old_page);
2352
2353        pte_unmap_unlock(page_table, ptl);
2354        return wp_page_copy(mm, vma, address, page_table, pmd,
2355                            orig_pte, old_page);
2356}
2357
2358static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2359                unsigned long start_addr, unsigned long end_addr,
2360                struct zap_details *details)
2361{
2362        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2363}
2364
2365static inline void unmap_mapping_range_tree(struct rb_root *root,
2366                                            struct zap_details *details)
2367{
2368        struct vm_area_struct *vma;
2369        pgoff_t vba, vea, zba, zea;
2370
2371        vma_interval_tree_foreach(vma, root,
2372                        details->first_index, details->last_index) {
2373
2374                vba = vma->vm_pgoff;
2375                vea = vba + vma_pages(vma) - 1;
2376                /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2377                zba = details->first_index;
2378                if (zba < vba)
2379                        zba = vba;
2380                zea = details->last_index;
2381                if (zea > vea)
2382                        zea = vea;
2383
2384                unmap_mapping_range_vma(vma,
2385                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2386                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2387                                details);
2388        }
2389}
2390
2391/**
2392 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2393 * address_space corresponding to the specified page range in the underlying
2394 * file.
2395 *
2396 * @mapping: the address space containing mmaps to be unmapped.
2397 * @holebegin: byte in first page to unmap, relative to the start of
2398 * the underlying file.  This will be rounded down to a PAGE_SIZE
2399 * boundary.  Note that this is different from truncate_pagecache(), which
2400 * must keep the partial page.  In contrast, we must get rid of
2401 * partial pages.
2402 * @holelen: size of prospective hole in bytes.  This will be rounded
2403 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2404 * end of the file.
2405 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2406 * but 0 when invalidating pagecache, don't throw away private data.
2407 */
2408void unmap_mapping_range(struct address_space *mapping,
2409                loff_t const holebegin, loff_t const holelen, int even_cows)
2410{
2411        struct zap_details details;
2412        pgoff_t hba = holebegin >> PAGE_SHIFT;
2413        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2414
2415        /* Check for overflow. */
2416        if (sizeof(holelen) > sizeof(hlen)) {
2417                long long holeend =
2418                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2419                if (holeend & ~(long long)ULONG_MAX)
2420                        hlen = ULONG_MAX - hba + 1;
2421        }
2422
2423        details.check_mapping = even_cows? NULL: mapping;
2424        details.first_index = hba;
2425        details.last_index = hba + hlen - 1;
2426        if (details.last_index < details.first_index)
2427                details.last_index = ULONG_MAX;
2428
2429
2430        /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2431        i_mmap_lock_write(mapping);
2432        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2433                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2434        i_mmap_unlock_write(mapping);
2435}
2436EXPORT_SYMBOL(unmap_mapping_range);
2437
2438/*
2439 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2440 * but allow concurrent faults), and pte mapped but not yet locked.
2441 * We return with pte unmapped and unlocked.
2442 *
2443 * We return with the mmap_sem locked or unlocked in the same cases
2444 * as does filemap_fault().
2445 */
2446static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2447                unsigned long address, pte_t *page_table, pmd_t *pmd,
2448                unsigned int flags, pte_t orig_pte)
2449{
2450        spinlock_t *ptl;
2451        struct page *page, *swapcache;
2452        struct mem_cgroup *memcg;
2453        swp_entry_t entry;
2454        pte_t pte;
2455        int locked;
2456        int exclusive = 0;
2457        int ret = 0;
2458
2459        if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2460                goto out;
2461
2462        entry = pte_to_swp_entry(orig_pte);
2463        if (unlikely(non_swap_entry(entry))) {
2464                if (is_migration_entry(entry)) {
2465                        migration_entry_wait(mm, pmd, address);
2466                } else if (is_hwpoison_entry(entry)) {
2467                        ret = VM_FAULT_HWPOISON;
2468                } else {
2469                        print_bad_pte(vma, address, orig_pte, NULL);
2470                        ret = VM_FAULT_SIGBUS;
2471                }
2472                goto out;
2473        }
2474        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2475        page = lookup_swap_cache(entry);
2476        if (!page) {
2477                page = swapin_readahead(entry,
2478                                        GFP_HIGHUSER_MOVABLE, vma, address);
2479                if (!page) {
2480                        /*
2481                         * Back out if somebody else faulted in this pte
2482                         * while we released the pte lock.
2483                         */
2484                        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2485                        if (likely(pte_same(*page_table, orig_pte)))
2486                                ret = VM_FAULT_OOM;
2487                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2488                        goto unlock;
2489                }
2490
2491                /* Had to read the page from swap area: Major fault */
2492                ret = VM_FAULT_MAJOR;
2493                count_vm_event(PGMAJFAULT);
2494                mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2495        } else if (PageHWPoison(page)) {
2496                /*
2497                 * hwpoisoned dirty swapcache pages are kept for killing
2498                 * owner processes (which may be unknown at hwpoison time)
2499                 */
2500                ret = VM_FAULT_HWPOISON;
2501                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2502                swapcache = page;
2503                goto out_release;
2504        }
2505
2506        swapcache = page;
2507        locked = lock_page_or_retry(page, mm, flags);
2508
2509        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2510        if (!locked) {
2511                ret |= VM_FAULT_RETRY;
2512                goto out_release;
2513        }
2514
2515        /*
2516         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2517         * release the swapcache from under us.  The page pin, and pte_same
2518         * test below, are not enough to exclude that.  Even if it is still
2519         * swapcache, we need to check that the page's swap has not changed.
2520         */
2521        if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2522                goto out_page;
2523
2524        page = ksm_might_need_to_copy(page, vma, address);
2525        if (unlikely(!page)) {
2526                ret = VM_FAULT_OOM;
2527                page = swapcache;
2528                goto out_page;
2529        }
2530
2531        if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2532                ret = VM_FAULT_OOM;
2533                goto out_page;
2534        }
2535
2536        /*
2537         * Back out if somebody else already faulted in this pte.
2538         */
2539        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2540        if (unlikely(!pte_same(*page_table, orig_pte)))
2541                goto out_nomap;
2542
2543        if (unlikely(!PageUptodate(page))) {
2544                ret = VM_FAULT_SIGBUS;
2545                goto out_nomap;
2546        }
2547
2548        /*
2549         * The page isn't present yet, go ahead with the fault.
2550         *
2551         * Be careful about the sequence of operations here.
2552         * To get its accounting right, reuse_swap_page() must be called
2553         * while the page is counted on swap but not yet in mapcount i.e.
2554         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2555         * must be called after the swap_free(), or it will never succeed.
2556         */
2557
2558        inc_mm_counter_fast(mm, MM_ANONPAGES);
2559        dec_mm_counter_fast(mm, MM_SWAPENTS);
2560        pte = mk_pte(page, vma->vm_page_prot);
2561        if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2562                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2563                flags &= ~FAULT_FLAG_WRITE;
2564                ret |= VM_FAULT_WRITE;
2565                exclusive = 1;
2566        }
2567        flush_icache_page(vma, page);
2568        if (pte_swp_soft_dirty(orig_pte))
2569                pte = pte_mksoft_dirty(pte);
2570        set_pte_at(mm, address, page_table, pte);
2571        if (page == swapcache) {
2572                do_page_add_anon_rmap(page, vma, address, exclusive);
2573                mem_cgroup_commit_charge(page, memcg, true);
2574        } else { /* ksm created a completely new copy */
2575                page_add_new_anon_rmap(page, vma, address);
2576                mem_cgroup_commit_charge(page, memcg, false);
2577                lru_cache_add_active_or_unevictable(page, vma);
2578        }
2579
2580        swap_free(entry);
2581        if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2582                try_to_free_swap(page);
2583        unlock_page(page);
2584        if (page != swapcache) {
2585                /*
2586                 * Hold the lock to avoid the swap entry to be reused
2587                 * until we take the PT lock for the pte_same() check
2588                 * (to avoid false positives from pte_same). For
2589                 * further safety release the lock after the swap_free
2590                 * so that the swap count won't change under a
2591                 * parallel locked swapcache.
2592                 */
2593                unlock_page(swapcache);
2594                page_cache_release(swapcache);
2595        }
2596
2597        if (flags & FAULT_FLAG_WRITE) {
2598                ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2599                if (ret & VM_FAULT_ERROR)
2600                        ret &= VM_FAULT_ERROR;
2601                goto out;
2602        }
2603
2604        /* No need to invalidate - it was non-present before */
2605        update_mmu_cache(vma, address, page_table);
2606unlock:
2607        pte_unmap_unlock(page_table, ptl);
2608out:
2609        return ret;
2610out_nomap:
2611        mem_cgroup_cancel_charge(page, memcg);
2612        pte_unmap_unlock(page_table, ptl);
2613out_page:
2614        unlock_page(page);
2615out_release:
2616        page_cache_release(page);
2617        if (page != swapcache) {
2618                unlock_page(swapcache);
2619                page_cache_release(swapcache);
2620        }
2621        return ret;
2622}
2623
2624/*
2625 * This is like a special single-page "expand_{down|up}wards()",
2626 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2627 * doesn't hit another vma.
2628 */
2629static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2630{
2631        address &= PAGE_MASK;
2632        if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2633                struct vm_area_struct *prev = vma->vm_prev;
2634
2635                /*
2636                 * Is there a mapping abutting this one below?
2637                 *
2638                 * That's only ok if it's the same stack mapping
2639                 * that has gotten split..
2640                 */
2641                if (prev && prev->vm_end == address)
2642                        return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2643
2644                return expand_downwards(vma, address - PAGE_SIZE);
2645        }
2646        if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2647                struct vm_area_struct *next = vma->vm_next;
2648
2649                /* As VM_GROWSDOWN but s/below/above/ */
2650                if (next && next->vm_start == address + PAGE_SIZE)
2651                        return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2652
2653                return expand_upwards(vma, address + PAGE_SIZE);
2654        }
2655        return 0;
2656}
2657
2658/*
2659 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2660 * but allow concurrent faults), and pte mapped but not yet locked.
2661 * We return with mmap_sem still held, but pte unmapped and unlocked.
2662 */
2663static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2664                unsigned long address, pte_t *page_table, pmd_t *pmd,
2665                unsigned int flags)
2666{
2667        struct mem_cgroup *memcg;
2668        struct page *page;
2669        spinlock_t *ptl;
2670        pte_t entry;
2671
2672        pte_unmap(page_table);
2673
2674        /* File mapping without ->vm_ops ? */
2675        if (vma->vm_flags & VM_SHARED)
2676                return VM_FAULT_SIGBUS;
2677
2678        /* Check if we need to add a guard page to the stack */
2679        if (check_stack_guard_page(vma, address) < 0)
2680                return VM_FAULT_SIGSEGV;
2681
2682        /* Use the zero-page for reads */
2683        if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2684                entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2685                                                vma->vm_page_prot));
2686                page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2687                if (!pte_none(*page_table))
2688                        goto unlock;
2689                /* Deliver the page fault to userland, check inside PT lock */
2690                if (userfaultfd_missing(vma)) {
2691                        pte_unmap_unlock(page_table, ptl);
2692                        return handle_userfault(vma, address, flags,
2693                                                VM_UFFD_MISSING);
2694                }
2695                goto setpte;
2696        }
2697
2698        /* Allocate our own private page. */
2699        if (unlikely(anon_vma_prepare(vma)))
2700                goto oom;
2701        page = alloc_zeroed_user_highpage_movable(vma, address);
2702        if (!page)
2703                goto oom;
2704
2705        if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2706                goto oom_free_page;
2707
2708        /*
2709         * The memory barrier inside __SetPageUptodate makes sure that
2710         * preceeding stores to the page contents become visible before
2711         * the set_pte_at() write.
2712         */
2713        __SetPageUptodate(page);
2714
2715        entry = mk_pte(page, vma->vm_page_prot);
2716        if (vma->vm_flags & VM_WRITE)
2717                entry = pte_mkwrite(pte_mkdirty(entry));
2718
2719        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2720        if (!pte_none(*page_table))
2721                goto release;
2722
2723        /* Deliver the page fault to userland, check inside PT lock */
2724        if (userfaultfd_missing(vma)) {
2725                pte_unmap_unlock(page_table, ptl);
2726                mem_cgroup_cancel_charge(page, memcg);
2727                page_cache_release(page);
2728                return handle_userfault(vma, address, flags,
2729                                        VM_UFFD_MISSING);
2730        }
2731
2732        inc_mm_counter_fast(mm, MM_ANONPAGES);
2733        page_add_new_anon_rmap(page, vma, address);
2734        mem_cgroup_commit_charge(page, memcg, false);
2735        lru_cache_add_active_or_unevictable(page, vma);
2736setpte:
2737        set_pte_at(mm, address, page_table, entry);
2738
2739        /* No need to invalidate - it was non-present before */
2740        update_mmu_cache(vma, address, page_table);
2741unlock:
2742        pte_unmap_unlock(page_table, ptl);
2743        return 0;
2744release:
2745        mem_cgroup_cancel_charge(page, memcg);
2746        page_cache_release(page);
2747        goto unlock;
2748oom_free_page:
2749        page_cache_release(page);
2750oom:
2751        return VM_FAULT_OOM;
2752}
2753
2754/*
2755 * The mmap_sem must have been held on entry, and may have been
2756 * released depending on flags and vma->vm_ops->fault() return value.
2757 * See filemap_fault() and __lock_page_retry().
2758 */
2759static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2760                        pgoff_t pgoff, unsigned int flags,
2761                        struct page *cow_page, struct page **page)
2762{
2763        struct vm_fault vmf;
2764        int ret;
2765
2766        vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2767        vmf.pgoff = pgoff;
2768        vmf.flags = flags;
2769        vmf.page = NULL;
2770        vmf.cow_page = cow_page;
2771
2772        ret = vma->vm_ops->fault(vma, &vmf);
2773        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2774                return ret;
2775        if (!vmf.page)
2776                goto out;
2777
2778        if (unlikely(PageHWPoison(vmf.page))) {
2779                if (ret & VM_FAULT_LOCKED)
2780                        unlock_page(vmf.page);
2781                page_cache_release(vmf.page);
2782                return VM_FAULT_HWPOISON;
2783        }
2784
2785        if (unlikely(!(ret & VM_FAULT_LOCKED)))
2786                lock_page(vmf.page);
2787        else
2788                VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2789
2790 out:
2791        *page = vmf.page;
2792        return ret;
2793}
2794
2795/**
2796 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2797 *
2798 * @vma: virtual memory area
2799 * @address: user virtual address
2800 * @page: page to map
2801 * @pte: pointer to target page table entry
2802 * @write: true, if new entry is writable
2803 * @anon: true, if it's anonymous page
2804 *
2805 * Caller must hold page table lock relevant for @pte.
2806 *
2807 * Target users are page handler itself and implementations of
2808 * vm_ops->map_pages.
2809 */
2810void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2811                struct page *page, pte_t *pte, bool write, bool anon)
2812{
2813        pte_t entry;
2814
2815        flush_icache_page(vma, page);
2816        entry = mk_pte(page, vma->vm_page_prot);
2817        if (write)
2818                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2819        if (anon) {
2820                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2821                page_add_new_anon_rmap(page, vma, address);
2822        } else {
2823                inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2824                page_add_file_rmap(page);
2825        }
2826        set_pte_at(vma->vm_mm, address, pte, entry);
2827
2828        /* no need to invalidate: a not-present page won't be cached */
2829        update_mmu_cache(vma, address, pte);
2830}
2831
2832static unsigned long fault_around_bytes __read_mostly =
2833        rounddown_pow_of_two(65536);
2834
2835#ifdef CONFIG_DEBUG_FS
2836static int fault_around_bytes_get(void *data, u64 *val)
2837{
2838        *val = fault_around_bytes;
2839        return 0;
2840}
2841
2842/*
2843 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2844 * rounded down to nearest page order. It's what do_fault_around() expects to
2845 * see.
2846 */
2847static int fault_around_bytes_set(void *data, u64 val)
2848{
2849        if (val / PAGE_SIZE > PTRS_PER_PTE)
2850                return -EINVAL;
2851        if (val > PAGE_SIZE)
2852                fault_around_bytes = rounddown_pow_of_two(val);
2853        else
2854                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2855        return 0;
2856}
2857DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2858                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2859
2860static int __init fault_around_debugfs(void)
2861{
2862        void *ret;
2863
2864        ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2865                        &fault_around_bytes_fops);
2866        if (!ret)
2867                pr_warn("Failed to create fault_around_bytes in debugfs");
2868        return 0;
2869}
2870late_initcall(fault_around_debugfs);
2871#endif
2872
2873/*
2874 * do_fault_around() tries to map few pages around the fault address. The hope
2875 * is that the pages will be needed soon and this will lower the number of
2876 * faults to handle.
2877 *
2878 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2879 * not ready to be mapped: not up-to-date, locked, etc.
2880 *
2881 * This function is called with the page table lock taken. In the split ptlock
2882 * case the page table lock only protects only those entries which belong to
2883 * the page table corresponding to the fault address.
2884 *
2885 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2886 * only once.
2887 *
2888 * fault_around_pages() defines how many pages we'll try to map.
2889 * do_fault_around() expects it to return a power of two less than or equal to
2890 * PTRS_PER_PTE.
2891 *
2892 * The virtual address of the area that we map is naturally aligned to the
2893 * fault_around_pages() value (and therefore to page order).  This way it's
2894 * easier to guarantee that we don't cross page table boundaries.
2895 */
2896static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2897                pte_t *pte, pgoff_t pgoff, unsigned int flags)
2898{
2899        unsigned long start_addr, nr_pages, mask;
2900        pgoff_t max_pgoff;
2901        struct vm_fault vmf;
2902        int off;
2903
2904        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2905        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2906
2907        start_addr = max(address & mask, vma->vm_start);
2908        off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2909        pte -= off;
2910        pgoff -= off;
2911
2912        /*
2913         *  max_pgoff is either end of page table or end of vma
2914         *  or fault_around_pages() from pgoff, depending what is nearest.
2915         */
2916        max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2917                PTRS_PER_PTE - 1;
2918        max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2919                        pgoff + nr_pages - 1);
2920
2921        /* Check if it makes any sense to call ->map_pages */
2922        while (!pte_none(*pte)) {
2923                if (++pgoff > max_pgoff)
2924                        return;
2925                start_addr += PAGE_SIZE;
2926                if (start_addr >= vma->vm_end)
2927                        return;
2928                pte++;
2929        }
2930
2931        vmf.virtual_address = (void __user *) start_addr;
2932        vmf.pte = pte;
2933        vmf.pgoff = pgoff;
2934        vmf.max_pgoff = max_pgoff;
2935        vmf.flags = flags;
2936        vma->vm_ops->map_pages(vma, &vmf);
2937}
2938
2939static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2940                unsigned long address, pmd_t *pmd,
2941                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2942{
2943        struct page *fault_page;
2944        spinlock_t *ptl;
2945        pte_t *pte;
2946        int ret = 0;
2947
2948        /*
2949         * Let's call ->map_pages() first and use ->fault() as fallback
2950         * if page by the offset is not ready to be mapped (cold cache or
2951         * something).
2952         */
2953        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2954                pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2955                do_fault_around(vma, address, pte, pgoff, flags);
2956                if (!pte_same(*pte, orig_pte))
2957                        goto unlock_out;
2958                pte_unmap_unlock(pte, ptl);
2959        }
2960
2961        ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2962        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2963                return ret;
2964
2965        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2966        if (unlikely(!pte_same(*pte, orig_pte))) {
2967                pte_unmap_unlock(pte, ptl);
2968                unlock_page(fault_page);
2969                page_cache_release(fault_page);
2970                return ret;
2971        }
2972        do_set_pte(vma, address, fault_page, pte, false, false);
2973        unlock_page(fault_page);
2974unlock_out:
2975        pte_unmap_unlock(pte, ptl);
2976        return ret;
2977}
2978
2979static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2980                unsigned long address, pmd_t *pmd,
2981                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2982{
2983        struct page *fault_page, *new_page;
2984        struct mem_cgroup *memcg;
2985        spinlock_t *ptl;
2986        pte_t *pte;
2987        int ret;
2988
2989        if (unlikely(anon_vma_prepare(vma)))
2990                return VM_FAULT_OOM;
2991
2992        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2993        if (!new_page)
2994                return VM_FAULT_OOM;
2995
2996        if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2997                page_cache_release(new_page);
2998                return VM_FAULT_OOM;
2999        }
3000
3001        ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3002        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3003                goto uncharge_out;
3004
3005        if (fault_page)
3006                copy_user_highpage(new_page, fault_page, address, vma);
3007        __SetPageUptodate(new_page);
3008
3009        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3010        if (unlikely(!pte_same(*pte, orig_pte))) {
3011                pte_unmap_unlock(pte, ptl);
3012                if (fault_page) {
3013                        unlock_page(fault_page);
3014                        page_cache_release(fault_page);
3015                } else {
3016                        /*
3017                         * The fault handler has no page to lock, so it holds
3018                         * i_mmap_lock for read to protect against truncate.
3019                         */
3020                        i_mmap_unlock_read(vma->vm_file->f_mapping);
3021                }
3022                goto uncharge_out;
3023        }
3024        do_set_pte(vma, address, new_page, pte, true, true);
3025        mem_cgroup_commit_charge(new_page, memcg, false);
3026        lru_cache_add_active_or_unevictable(new_page, vma);
3027        pte_unmap_unlock(pte, ptl);
3028        if (fault_page) {
3029                unlock_page(fault_page);
3030                page_cache_release(fault_page);
3031        } else {
3032                /*
3033                 * The fault handler has no page to lock, so it holds
3034                 * i_mmap_lock for read to protect against truncate.
3035                 */
3036                i_mmap_unlock_read(vma->vm_file->f_mapping);
3037        }
3038        return ret;
3039uncharge_out:
3040        mem_cgroup_cancel_charge(new_page, memcg);
3041        page_cache_release(new_page);
3042        return ret;
3043}
3044
3045static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3046                unsigned long address, pmd_t *pmd,
3047                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3048{
3049        struct page *fault_page;
3050        struct address_space *mapping;
3051        spinlock_t *ptl;
3052        pte_t *pte;
3053        int dirtied = 0;
3054        int ret, tmp;
3055
3056        ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3057        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3058                return ret;
3059
3060        /*
3061         * Check if the backing address space wants to know that the page is
3062         * about to become writable
3063         */
3064        if (vma->vm_ops->page_mkwrite) {
3065                unlock_page(fault_page);
3066                tmp = do_page_mkwrite(vma, fault_page, address);
3067                if (unlikely(!tmp ||
3068                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3069                        page_cache_release(fault_page);
3070                        return tmp;
3071                }
3072        }
3073
3074        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3075        if (unlikely(!pte_same(*pte, orig_pte))) {
3076                pte_unmap_unlock(pte, ptl);
3077                unlock_page(fault_page);
3078                page_cache_release(fault_page);
3079                return ret;
3080        }
3081        do_set_pte(vma, address, fault_page, pte, true, false);
3082        pte_unmap_unlock(pte, ptl);
3083
3084        if (set_page_dirty(fault_page))
3085                dirtied = 1;
3086        /*
3087         * Take a local copy of the address_space - page.mapping may be zeroed
3088         * by truncate after unlock_page().   The address_space itself remains
3089         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3090         * release semantics to prevent the compiler from undoing this copying.
3091         */
3092        mapping = fault_page->mapping;
3093        unlock_page(fault_page);
3094        if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3095                /*
3096                 * Some device drivers do not set page.mapping but still
3097                 * dirty their pages
3098                 */
3099                balance_dirty_pages_ratelimited(mapping);
3100        }
3101
3102        if (!vma->vm_ops->page_mkwrite)
3103                file_update_time(vma->vm_file);
3104
3105        return ret;
3106}
3107
3108/*
3109 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3110 * but allow concurrent faults).
3111 * The mmap_sem may have been released depending on flags and our
3112 * return value.  See filemap_fault() and __lock_page_or_retry().
3113 */
3114static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3115                unsigned long address, pte_t *page_table, pmd_t *pmd,
3116                unsigned int flags, pte_t orig_pte)
3117{
3118        pgoff_t pgoff = (((address & PAGE_MASK)
3119                        - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3120
3121        pte_unmap(page_table);
3122        /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3123        if (!vma->vm_ops->fault)
3124                return VM_FAULT_SIGBUS;
3125        if (!(flags & FAULT_FLAG_WRITE))
3126                return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3127                                orig_pte);
3128        if (!(vma->vm_flags & VM_SHARED))
3129                return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3130                                orig_pte);
3131        return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3132}
3133
3134static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3135                                unsigned long addr, int page_nid,
3136                                int *flags)
3137{
3138        get_page(page);
3139
3140        count_vm_numa_event(NUMA_HINT_FAULTS);
3141        if (page_nid == numa_node_id()) {
3142                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3143                *flags |= TNF_FAULT_LOCAL;
3144        }
3145
3146        return mpol_misplaced(page, vma, addr);
3147}
3148
3149static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3150                   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3151{
3152        struct page *page = NULL;
3153        spinlock_t *ptl;
3154        int page_nid = -1;
3155        int last_cpupid;
3156        int target_nid;
3157        bool migrated = false;
3158        bool was_writable = pte_write(pte);
3159        int flags = 0;
3160
3161        /* A PROT_NONE fault should not end up here */
3162        BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3163
3164        /*
3165        * The "pte" at this point cannot be used safely without
3166        * validation through pte_unmap_same(). It's of NUMA type but
3167        * the pfn may be screwed if the read is non atomic.
3168        *
3169        * We can safely just do a "set_pte_at()", because the old
3170        * page table entry is not accessible, so there would be no
3171        * concurrent hardware modifications to the PTE.
3172        */
3173        ptl = pte_lockptr(mm, pmd);
3174        spin_lock(ptl);
3175        if (unlikely(!pte_same(*ptep, pte))) {
3176                pte_unmap_unlock(ptep, ptl);
3177                goto out;
3178        }
3179
3180        /* Make it present again */
3181        pte = pte_modify(pte, vma->vm_page_prot);
3182        pte = pte_mkyoung(pte);
3183        if (was_writable)
3184                pte = pte_mkwrite(pte);
3185        set_pte_at(mm, addr, ptep, pte);
3186        update_mmu_cache(vma, addr, ptep);
3187
3188        page = vm_normal_page(vma, addr, pte);
3189        if (!page) {
3190                pte_unmap_unlock(ptep, ptl);
3191                return 0;
3192        }
3193
3194        /*
3195         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3196         * much anyway since they can be in shared cache state. This misses
3197         * the case where a mapping is writable but the process never writes
3198         * to it but pte_write gets cleared during protection updates and
3199         * pte_dirty has unpredictable behaviour between PTE scan updates,
3200         * background writeback, dirty balancing and application behaviour.
3201         */
3202        if (!(vma->vm_flags & VM_WRITE))
3203                flags |= TNF_NO_GROUP;
3204
3205        /*
3206         * Flag if the page is shared between multiple address spaces. This
3207         * is later used when determining whether to group tasks together
3208         */
3209        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3210                flags |= TNF_SHARED;
3211
3212        last_cpupid = page_cpupid_last(page);
3213        page_nid = page_to_nid(page);
3214        target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3215        pte_unmap_unlock(ptep, ptl);
3216        if (target_nid == -1) {
3217                put_page(page);
3218                goto out;
3219        }
3220
3221        /* Migrate to the requested node */
3222        migrated = migrate_misplaced_page(page, vma, target_nid);
3223        if (migrated) {
3224                page_nid = target_nid;
3225                flags |= TNF_MIGRATED;
3226        } else
3227                flags |= TNF_MIGRATE_FAIL;
3228
3229out:
3230        if (page_nid != -1)
3231                task_numa_fault(last_cpupid, page_nid, 1, flags);
3232        return 0;
3233}
3234
3235static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3236                        unsigned long address, pmd_t *pmd, unsigned int flags)
3237{
3238        if (vma_is_anonymous(vma))
3239                return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3240        if (vma->vm_ops->pmd_fault)
3241                return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3242        return VM_FAULT_FALLBACK;
3243}
3244
3245static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3246                        unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3247                        unsigned int flags)
3248{
3249        if (vma_is_anonymous(vma))
3250                return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3251        if (vma->vm_ops->pmd_fault)
3252                return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3253        return VM_FAULT_FALLBACK;
3254}
3255
3256/*
3257 * These routines also need to handle stuff like marking pages dirty
3258 * and/or accessed for architectures that don't do it in hardware (most
3259 * RISC architectures).  The early dirtying is also good on the i386.
3260 *
3261 * There is also a hook called "update_mmu_cache()" that architectures
3262 * with external mmu caches can use to update those (ie the Sparc or
3263 * PowerPC hashed page tables that act as extended TLBs).
3264 *
3265 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3266 * but allow concurrent faults), and pte mapped but not yet locked.
3267 * We return with pte unmapped and unlocked.
3268 *
3269 * The mmap_sem may have been released depending on flags and our
3270 * return value.  See filemap_fault() and __lock_page_or_retry().
3271 */
3272static int handle_pte_fault(struct mm_struct *mm,
3273                     struct vm_area_struct *vma, unsigned long address,
3274                     pte_t *pte, pmd_t *pmd, unsigned int flags)
3275{
3276        pte_t entry;
3277        spinlock_t *ptl;
3278
3279        /*
3280         * some architectures can have larger ptes than wordsize,
3281         * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3282         * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3283         * The code below just needs a consistent view for the ifs and
3284         * we later double check anyway with the ptl lock held. So here
3285         * a barrier will do.
3286         */
3287        entry = *pte;
3288        barrier();
3289        if (!pte_present(entry)) {
3290                if (pte_none(entry)) {
3291                        if (vma_is_anonymous(vma))
3292                                return do_anonymous_page(mm, vma, address,
3293                                                         pte, pmd, flags);
3294                        else
3295                                return do_fault(mm, vma, address, pte, pmd,
3296                                                flags, entry);
3297                }
3298                return do_swap_page(mm, vma, address,
3299                                        pte, pmd, flags, entry);
3300        }
3301
3302        if (pte_protnone(entry))
3303                return do_numa_page(mm, vma, address, entry, pte, pmd);
3304
3305        ptl = pte_lockptr(mm, pmd);
3306        spin_lock(ptl);
3307        if (unlikely(!pte_same(*pte, entry)))
3308                goto unlock;
3309        if (flags & FAULT_FLAG_WRITE) {
3310                if (!pte_write(entry))
3311                        return do_wp_page(mm, vma, address,
3312                                        pte, pmd, ptl, entry);
3313                entry = pte_mkdirty(entry);
3314        }
3315        entry = pte_mkyoung(entry);
3316        if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3317                update_mmu_cache(vma, address, pte);
3318        } else {
3319                /*
3320                 * This is needed only for protection faults but the arch code
3321                 * is not yet telling us if this is a protection fault or not.
3322                 * This still avoids useless tlb flushes for .text page faults
3323                 * with threads.
3324                 */
3325                if (flags & FAULT_FLAG_WRITE)
3326                        flush_tlb_fix_spurious_fault(vma, address);
3327        }
3328unlock:
3329        pte_unmap_unlock(pte, ptl);
3330        return 0;
3331}
3332
3333/*
3334 * By the time we get here, we already hold the mm semaphore
3335 *
3336 * The mmap_sem may have been released depending on flags and our
3337 * return value.  See filemap_fault() and __lock_page_or_retry().
3338 */
3339static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3340                             unsigned long address, unsigned int flags)
3341{
3342        pgd_t *pgd;
3343        pud_t *pud;
3344        pmd_t *pmd;
3345        pte_t *pte;
3346
3347        if (unlikely(is_vm_hugetlb_page(vma)))
3348                return hugetlb_fault(mm, vma, address, flags);
3349
3350        pgd = pgd_offset(mm, address);
3351        pud = pud_alloc(mm, pgd, address);
3352        if (!pud)
3353                return VM_FAULT_OOM;
3354        pmd = pmd_alloc(mm, pud, address);
3355        if (!pmd)
3356                return VM_FAULT_OOM;
3357        if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3358                int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3359                if (!(ret & VM_FAULT_FALLBACK))
3360                        return ret;
3361        } else {
3362                pmd_t orig_pmd = *pmd;
3363                int ret;
3364
3365                barrier();
3366                if (pmd_trans_huge(orig_pmd)) {
3367                        unsigned int dirty = flags & FAULT_FLAG_WRITE;
3368
3369                        /*
3370                         * If the pmd is splitting, return and retry the
3371                         * the fault.  Alternative: wait until the split
3372                         * is done, and goto retry.
3373                         */
3374                        if (pmd_trans_splitting(orig_pmd))
3375                                return 0;
3376
3377                        if (pmd_protnone(orig_pmd))
3378                                return do_huge_pmd_numa_page(mm, vma, address,
3379                                                             orig_pmd, pmd);
3380
3381                        if (dirty && !pmd_write(orig_pmd)) {
3382                                ret = wp_huge_pmd(mm, vma, address, pmd,
3383                                                        orig_pmd, flags);
3384                                if (!(ret & VM_FAULT_FALLBACK))
3385                                        return ret;
3386                        } else {
3387                                huge_pmd_set_accessed(mm, vma, address, pmd,
3388                                                      orig_pmd, dirty);
3389                                return 0;
3390                        }
3391                }
3392        }
3393
3394        /*
3395         * Use __pte_alloc instead of pte_alloc_map, because we can't
3396         * run pte_offset_map on the pmd, if an huge pmd could
3397         * materialize from under us from a different thread.
3398         */
3399        if (unlikely(pmd_none(*pmd)) &&
3400            unlikely(__pte_alloc(mm, vma, pmd, address)))
3401                return VM_FAULT_OOM;
3402        /* if an huge pmd materialized from under us just retry later */
3403        if (unlikely(pmd_trans_huge(*pmd)))
3404                return 0;
3405        /*
3406         * A regular pmd is established and it can't morph into a huge pmd
3407         * from under us anymore at this point because we hold the mmap_sem
3408         * read mode and khugepaged takes it in write mode. So now it's
3409         * safe to run pte_offset_map().
3410         */
3411        pte = pte_offset_map(pmd, address);
3412
3413        return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3414}
3415
3416/*
3417 * By the time we get here, we already hold the mm semaphore
3418 *
3419 * The mmap_sem may have been released depending on flags and our
3420 * return value.  See filemap_fault() and __lock_page_or_retry().
3421 */
3422int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3423                    unsigned long address, unsigned int flags)
3424{
3425        int ret;
3426
3427        __set_current_state(TASK_RUNNING);
3428
3429        count_vm_event(PGFAULT);
3430        mem_cgroup_count_vm_event(mm, PGFAULT);
3431
3432        /* do counter updates before entering really critical section. */
3433        check_sync_rss_stat(current);
3434
3435        /*
3436         * Enable the memcg OOM handling for faults triggered in user
3437         * space.  Kernel faults are handled more gracefully.
3438         */
3439        if (flags & FAULT_FLAG_USER)
3440                mem_cgroup_oom_enable();
3441
3442        ret = __handle_mm_fault(mm, vma, address, flags);
3443
3444        if (flags & FAULT_FLAG_USER) {
3445                mem_cgroup_oom_disable();
3446                /*
3447                 * The task may have entered a memcg OOM situation but
3448                 * if the allocation error was handled gracefully (no
3449                 * VM_FAULT_OOM), there is no need to kill anything.
3450                 * Just clean up the OOM state peacefully.
3451                 */
3452                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3453                        mem_cgroup_oom_synchronize(false);
3454        }
3455
3456        return ret;
3457}
3458EXPORT_SYMBOL_GPL(handle_mm_fault);
3459
3460#ifndef __PAGETABLE_PUD_FOLDED
3461/*
3462 * Allocate page upper directory.
3463 * We've already handled the fast-path in-line.
3464 */
3465int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3466{
3467        pud_t *new = pud_alloc_one(mm, address);
3468        if (!new)
3469                return -ENOMEM;
3470
3471        smp_wmb(); /* See comment in __pte_alloc */
3472
3473        spin_lock(&mm->page_table_lock);
3474        if (pgd_present(*pgd))          /* Another has populated it */
3475                pud_free(mm, new);
3476        else
3477                pgd_populate(mm, pgd, new);
3478        spin_unlock(&mm->page_table_lock);
3479        return 0;
3480}
3481#endif /* __PAGETABLE_PUD_FOLDED */
3482
3483#ifndef __PAGETABLE_PMD_FOLDED
3484/*
3485 * Allocate page middle directory.
3486 * We've already handled the fast-path in-line.
3487 */
3488int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3489{
3490        pmd_t *new = pmd_alloc_one(mm, address);
3491        if (!new)
3492                return -ENOMEM;
3493
3494        smp_wmb(); /* See comment in __pte_alloc */
3495
3496        spin_lock(&mm->page_table_lock);
3497#ifndef __ARCH_HAS_4LEVEL_HACK
3498        if (!pud_present(*pud)) {
3499                mm_inc_nr_pmds(mm);
3500                pud_populate(mm, pud, new);
3501        } else  /* Another has populated it */
3502                pmd_free(mm, new);
3503#else
3504        if (!pgd_present(*pud)) {
3505                mm_inc_nr_pmds(mm);
3506                pgd_populate(mm, pud, new);
3507        } else /* Another has populated it */
3508                pmd_free(mm, new);
3509#endif /* __ARCH_HAS_4LEVEL_HACK */
3510        spin_unlock(&mm->page_table_lock);
3511        return 0;
3512}
3513#endif /* __PAGETABLE_PMD_FOLDED */
3514
3515static int __follow_pte(struct mm_struct *mm, unsigned long address,
3516                pte_t **ptepp, spinlock_t **ptlp)
3517{
3518        pgd_t *pgd;
3519        pud_t *pud;
3520        pmd_t *pmd;
3521        pte_t *ptep;
3522
3523        pgd = pgd_offset(mm, address);
3524        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3525                goto out;
3526
3527        pud = pud_offset(pgd, address);
3528        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3529                goto out;
3530
3531        pmd = pmd_offset(pud, address);
3532        VM_BUG_ON(pmd_trans_huge(*pmd));
3533        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3534                goto out;
3535
3536        /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3537        if (pmd_huge(*pmd))
3538                goto out;
3539
3540        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3541        if (!ptep)
3542                goto out;
3543        if (!pte_present(*ptep))
3544                goto unlock;
3545        *ptepp = ptep;
3546        return 0;
3547unlock:
3548        pte_unmap_unlock(ptep, *ptlp);
3549out:
3550        return -EINVAL;
3551}
3552
3553static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3554                             pte_t **ptepp, spinlock_t **ptlp)
3555{
3556        int res;
3557
3558        /* (void) is needed to make gcc happy */
3559        (void) __cond_lock(*ptlp,
3560                           !(res = __follow_pte(mm, address, ptepp, ptlp)));
3561        return res;
3562}
3563
3564/**
3565 * follow_pfn - look up PFN at a user virtual address
3566 * @vma: memory mapping
3567 * @address: user virtual address
3568 * @pfn: location to store found PFN
3569 *
3570 * Only IO mappings and raw PFN mappings are allowed.
3571 *
3572 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3573 */
3574int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3575        unsigned long *pfn)
3576{
3577        int ret = -EINVAL;
3578        spinlock_t *ptl;
3579        pte_t *ptep;
3580
3581        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3582                return ret;
3583
3584        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3585        if (ret)
3586                return ret;
3587        *pfn = pte_pfn(*ptep);
3588        pte_unmap_unlock(ptep, ptl);
3589        return 0;
3590}
3591EXPORT_SYMBOL(follow_pfn);
3592
3593#ifdef CONFIG_HAVE_IOREMAP_PROT
3594int follow_phys(struct vm_area_struct *vma,
3595                unsigned long address, unsigned int flags,
3596                unsigned long *prot, resource_size_t *phys)
3597{
3598        int ret = -EINVAL;
3599        pte_t *ptep, pte;
3600        spinlock_t *ptl;
3601
3602        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3603                goto out;
3604
3605        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3606                goto out;
3607        pte = *ptep;
3608
3609        if ((flags & FOLL_WRITE) && !pte_write(pte))
3610                goto unlock;
3611
3612        *prot = pgprot_val(pte_pgprot(pte));
3613        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3614
3615        ret = 0;
3616unlock:
3617        pte_unmap_unlock(ptep, ptl);
3618out:
3619        return ret;
3620}
3621
3622int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3623                        void *buf, int len, int write)
3624{
3625        resource_size_t phys_addr;
3626        unsigned long prot = 0;
3627        void __iomem *maddr;
3628        int offset = addr & (PAGE_SIZE-1);
3629
3630        if (follow_phys(vma, addr, write, &prot, &phys_addr))
3631                return -EINVAL;
3632
3633        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3634        if (write)
3635                memcpy_toio(maddr + offset, buf, len);
3636        else
3637                memcpy_fromio(buf, maddr + offset, len);
3638        iounmap(maddr);
3639
3640        return len;
3641}
3642EXPORT_SYMBOL_GPL(generic_access_phys);
3643#endif
3644
3645/*
3646 * Access another process' address space as given in mm.  If non-NULL, use the
3647 * given task for page fault accounting.
3648 */
3649static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3650                unsigned long addr, void *buf, int len, int write)
3651{
3652        struct vm_area_struct *vma;
3653        void *old_buf = buf;
3654
3655        down_read(&mm->mmap_sem);
3656        /* ignore errors, just check how much was successfully transferred */
3657        while (len) {
3658                int bytes, ret, offset;
3659                void *maddr;
3660                struct page *page = NULL;
3661
3662                ret = get_user_pages(tsk, mm, addr, 1,
3663                                write, 1, &page, &vma);
3664                if (ret <= 0) {
3665#ifndef CONFIG_HAVE_IOREMAP_PROT
3666                        break;
3667#else
3668                        /*
3669                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
3670                         * we can access using slightly different code.
3671                         */
3672                        vma = find_vma(mm, addr);
3673                        if (!vma || vma->vm_start > addr)
3674                                break;
3675                        if (vma->vm_ops && vma->vm_ops->access)
3676                                ret = vma->vm_ops->access(vma, addr, buf,
3677                                                          len, write);
3678                        if (ret <= 0)
3679                                break;
3680                        bytes = ret;
3681#endif
3682                } else {
3683                        bytes = len;
3684                        offset = addr & (PAGE_SIZE-1);
3685                        if (bytes > PAGE_SIZE-offset)
3686                                bytes = PAGE_SIZE-offset;
3687
3688                        maddr = kmap(page);
3689                        if (write) {
3690                                copy_to_user_page(vma, page, addr,
3691                                                  maddr + offset, buf, bytes);
3692                                set_page_dirty_lock(page);
3693                        } else {
3694                                copy_from_user_page(vma, page, addr,
3695                                                    buf, maddr + offset, bytes);
3696                        }
3697                        kunmap(page);
3698                        page_cache_release(page);
3699                }
3700                len -= bytes;
3701                buf += bytes;
3702                addr += bytes;
3703        }
3704        up_read(&mm->mmap_sem);
3705
3706        return buf - old_buf;
3707}
3708
3709/**
3710 * access_remote_vm - access another process' address space
3711 * @mm:         the mm_struct of the target address space
3712 * @addr:       start address to access
3713 * @buf:        source or destination buffer
3714 * @len:        number of bytes to transfer
3715 * @write:      whether the access is a write
3716 *
3717 * The caller must hold a reference on @mm.
3718 */
3719int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3720                void *buf, int len, int write)
3721{
3722        return __access_remote_vm(NULL, mm, addr, buf, len, write);
3723}
3724
3725/*
3726 * Access another process' address space.
3727 * Source/target buffer must be kernel space,
3728 * Do not walk the page table directly, use get_user_pages
3729 */
3730int access_process_vm(struct task_struct *tsk, unsigned long addr,
3731                void *buf, int len, int write)
3732{
3733        struct mm_struct *mm;
3734        int ret;
3735
3736        mm = get_task_mm(tsk);
3737        if (!mm)
3738                return 0;
3739
3740        ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3741        mmput(mm);
3742
3743        return ret;
3744}
3745
3746/*
3747 * Print the name of a VMA.
3748 */
3749void print_vma_addr(char *prefix, unsigned long ip)
3750{
3751        struct mm_struct *mm = current->mm;
3752        struct vm_area_struct *vma;
3753
3754        /*
3755         * Do not print if we are in atomic
3756         * contexts (in exception stacks, etc.):
3757         */
3758        if (preempt_count())
3759                return;
3760
3761        down_read(&mm->mmap_sem);
3762        vma = find_vma(mm, ip);
3763        if (vma && vma->vm_file) {
3764                struct file *f = vma->vm_file;
3765                char *buf = (char *)__get_free_page(GFP_KERNEL);
3766                if (buf) {
3767                        char *p;
3768
3769                        p = file_path(f, buf, PAGE_SIZE);
3770                        if (IS_ERR(p))
3771                                p = "?";
3772                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3773                                        vma->vm_start,
3774                                        vma->vm_end - vma->vm_start);
3775                        free_page((unsigned long)buf);
3776                }
3777        }
3778        up_read(&mm->mmap_sem);
3779}
3780
3781#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3782void __might_fault(const char *file, int line)
3783{
3784        /*
3785         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3786         * holding the mmap_sem, this is safe because kernel memory doesn't
3787         * get paged out, therefore we'll never actually fault, and the
3788         * below annotations will generate false positives.
3789         */
3790        if (segment_eq(get_fs(), KERNEL_DS))
3791                return;
3792        if (pagefault_disabled())
3793                return;
3794        __might_sleep(file, line, 0);
3795#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3796        if (current->mm)
3797                might_lock_read(&current->mm->mmap_sem);
3798#endif
3799}
3800EXPORT_SYMBOL(__might_fault);
3801#endif
3802
3803#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3804static void clear_gigantic_page(struct page *page,
3805                                unsigned long addr,
3806                                unsigned int pages_per_huge_page)
3807{
3808        int i;
3809        struct page *p = page;
3810
3811        might_sleep();
3812        for (i = 0; i < pages_per_huge_page;
3813             i++, p = mem_map_next(p, page, i)) {
3814                cond_resched();
3815                clear_user_highpage(p, addr + i * PAGE_SIZE);
3816        }
3817}
3818void clear_huge_page(struct page *page,
3819                     unsigned long addr, unsigned int pages_per_huge_page)
3820{
3821        int i;
3822
3823        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3824                clear_gigantic_page(page, addr, pages_per_huge_page);
3825                return;
3826        }
3827
3828        might_sleep();
3829        for (i = 0; i < pages_per_huge_page; i++) {
3830                cond_resched();
3831                clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3832        }
3833}
3834
3835static void copy_user_gigantic_page(struct page *dst, struct page *src,
3836                                    unsigned long addr,
3837                                    struct vm_area_struct *vma,
3838                                    unsigned int pages_per_huge_page)
3839{
3840        int i;
3841        struct page *dst_base = dst;
3842        struct page *src_base = src;
3843
3844        for (i = 0; i < pages_per_huge_page; ) {
3845                cond_resched();
3846                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3847
3848                i++;
3849                dst = mem_map_next(dst, dst_base, i);
3850                src = mem_map_next(src, src_base, i);
3851        }
3852}
3853
3854void copy_user_huge_page(struct page *dst, struct page *src,
3855                         unsigned long addr, struct vm_area_struct *vma,
3856                         unsigned int pages_per_huge_page)
3857{
3858        int i;
3859
3860        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3861                copy_user_gigantic_page(dst, src, addr, vma,
3862                                        pages_per_huge_page);
3863                return;
3864        }
3865
3866        might_sleep();
3867        for (i = 0; i < pages_per_huge_page; i++) {
3868                cond_resched();
3869                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3870        }
3871}
3872#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3873
3874#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3875
3876static struct kmem_cache *page_ptl_cachep;
3877
3878void __init ptlock_cache_init(void)
3879{
3880        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3881                        SLAB_PANIC, NULL);
3882}
3883
3884bool ptlock_alloc(struct page *page)
3885{
3886        spinlock_t *ptl;
3887
3888        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3889        if (!ptl)
3890                return false;
3891        page->ptl = ptl;
3892        return true;
3893}
3894
3895void ptlock_free(struct page *page)
3896{
3897        kmem_cache_free(page_ptl_cachep, page->ptl);
3898}
3899#endif
3900