linux/mm/migrate.c
<<
>>
Prefs
   1/*
   2 * Memory Migration functionality - linux/mm/migrate.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
  34#include <linux/syscalls.h>
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/gfp.h>
  38#include <linux/balloon_compaction.h>
  39#include <linux/mmu_notifier.h>
  40#include <linux/page_idle.h>
  41
  42#include <asm/tlbflush.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/migrate.h>
  46
  47#include "internal.h"
  48
  49/*
  50 * migrate_prep() needs to be called before we start compiling a list of pages
  51 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  52 * undesirable, use migrate_prep_local()
  53 */
  54int migrate_prep(void)
  55{
  56        /*
  57         * Clear the LRU lists so pages can be isolated.
  58         * Note that pages may be moved off the LRU after we have
  59         * drained them. Those pages will fail to migrate like other
  60         * pages that may be busy.
  61         */
  62        lru_add_drain_all();
  63
  64        return 0;
  65}
  66
  67/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  68int migrate_prep_local(void)
  69{
  70        lru_add_drain();
  71
  72        return 0;
  73}
  74
  75/*
  76 * Put previously isolated pages back onto the appropriate lists
  77 * from where they were once taken off for compaction/migration.
  78 *
  79 * This function shall be used whenever the isolated pageset has been
  80 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
  81 * and isolate_huge_page().
  82 */
  83void putback_movable_pages(struct list_head *l)
  84{
  85        struct page *page;
  86        struct page *page2;
  87
  88        list_for_each_entry_safe(page, page2, l, lru) {
  89                if (unlikely(PageHuge(page))) {
  90                        putback_active_hugepage(page);
  91                        continue;
  92                }
  93                list_del(&page->lru);
  94                dec_zone_page_state(page, NR_ISOLATED_ANON +
  95                                page_is_file_cache(page));
  96                if (unlikely(isolated_balloon_page(page)))
  97                        balloon_page_putback(page);
  98                else
  99                        putback_lru_page(page);
 100        }
 101}
 102
 103/*
 104 * Restore a potential migration pte to a working pte entry
 105 */
 106static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 107                                 unsigned long addr, void *old)
 108{
 109        struct mm_struct *mm = vma->vm_mm;
 110        swp_entry_t entry;
 111        pmd_t *pmd;
 112        pte_t *ptep, pte;
 113        spinlock_t *ptl;
 114
 115        if (unlikely(PageHuge(new))) {
 116                ptep = huge_pte_offset(mm, addr);
 117                if (!ptep)
 118                        goto out;
 119                ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 120        } else {
 121                pmd = mm_find_pmd(mm, addr);
 122                if (!pmd)
 123                        goto out;
 124
 125                ptep = pte_offset_map(pmd, addr);
 126
 127                /*
 128                 * Peek to check is_swap_pte() before taking ptlock?  No, we
 129                 * can race mremap's move_ptes(), which skips anon_vma lock.
 130                 */
 131
 132                ptl = pte_lockptr(mm, pmd);
 133        }
 134
 135        spin_lock(ptl);
 136        pte = *ptep;
 137        if (!is_swap_pte(pte))
 138                goto unlock;
 139
 140        entry = pte_to_swp_entry(pte);
 141
 142        if (!is_migration_entry(entry) ||
 143            migration_entry_to_page(entry) != old)
 144                goto unlock;
 145
 146        get_page(new);
 147        pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 148        if (pte_swp_soft_dirty(*ptep))
 149                pte = pte_mksoft_dirty(pte);
 150
 151        /* Recheck VMA as permissions can change since migration started  */
 152        if (is_write_migration_entry(entry))
 153                pte = maybe_mkwrite(pte, vma);
 154
 155#ifdef CONFIG_HUGETLB_PAGE
 156        if (PageHuge(new)) {
 157                pte = pte_mkhuge(pte);
 158                pte = arch_make_huge_pte(pte, vma, new, 0);
 159        }
 160#endif
 161        flush_dcache_page(new);
 162        set_pte_at(mm, addr, ptep, pte);
 163
 164        if (PageHuge(new)) {
 165                if (PageAnon(new))
 166                        hugepage_add_anon_rmap(new, vma, addr);
 167                else
 168                        page_dup_rmap(new);
 169        } else if (PageAnon(new))
 170                page_add_anon_rmap(new, vma, addr);
 171        else
 172                page_add_file_rmap(new);
 173
 174        if (vma->vm_flags & VM_LOCKED)
 175                mlock_vma_page(new);
 176
 177        /* No need to invalidate - it was non-present before */
 178        update_mmu_cache(vma, addr, ptep);
 179unlock:
 180        pte_unmap_unlock(ptep, ptl);
 181out:
 182        return SWAP_AGAIN;
 183}
 184
 185/*
 186 * Get rid of all migration entries and replace them by
 187 * references to the indicated page.
 188 */
 189static void remove_migration_ptes(struct page *old, struct page *new)
 190{
 191        struct rmap_walk_control rwc = {
 192                .rmap_one = remove_migration_pte,
 193                .arg = old,
 194        };
 195
 196        rmap_walk(new, &rwc);
 197}
 198
 199/*
 200 * Something used the pte of a page under migration. We need to
 201 * get to the page and wait until migration is finished.
 202 * When we return from this function the fault will be retried.
 203 */
 204void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 205                                spinlock_t *ptl)
 206{
 207        pte_t pte;
 208        swp_entry_t entry;
 209        struct page *page;
 210
 211        spin_lock(ptl);
 212        pte = *ptep;
 213        if (!is_swap_pte(pte))
 214                goto out;
 215
 216        entry = pte_to_swp_entry(pte);
 217        if (!is_migration_entry(entry))
 218                goto out;
 219
 220        page = migration_entry_to_page(entry);
 221
 222        /*
 223         * Once radix-tree replacement of page migration started, page_count
 224         * *must* be zero. And, we don't want to call wait_on_page_locked()
 225         * against a page without get_page().
 226         * So, we use get_page_unless_zero(), here. Even failed, page fault
 227         * will occur again.
 228         */
 229        if (!get_page_unless_zero(page))
 230                goto out;
 231        pte_unmap_unlock(ptep, ptl);
 232        wait_on_page_locked(page);
 233        put_page(page);
 234        return;
 235out:
 236        pte_unmap_unlock(ptep, ptl);
 237}
 238
 239void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 240                                unsigned long address)
 241{
 242        spinlock_t *ptl = pte_lockptr(mm, pmd);
 243        pte_t *ptep = pte_offset_map(pmd, address);
 244        __migration_entry_wait(mm, ptep, ptl);
 245}
 246
 247void migration_entry_wait_huge(struct vm_area_struct *vma,
 248                struct mm_struct *mm, pte_t *pte)
 249{
 250        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 251        __migration_entry_wait(mm, pte, ptl);
 252}
 253
 254#ifdef CONFIG_BLOCK
 255/* Returns true if all buffers are successfully locked */
 256static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 257                                                        enum migrate_mode mode)
 258{
 259        struct buffer_head *bh = head;
 260
 261        /* Simple case, sync compaction */
 262        if (mode != MIGRATE_ASYNC) {
 263                do {
 264                        get_bh(bh);
 265                        lock_buffer(bh);
 266                        bh = bh->b_this_page;
 267
 268                } while (bh != head);
 269
 270                return true;
 271        }
 272
 273        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 274        do {
 275                get_bh(bh);
 276                if (!trylock_buffer(bh)) {
 277                        /*
 278                         * We failed to lock the buffer and cannot stall in
 279                         * async migration. Release the taken locks
 280                         */
 281                        struct buffer_head *failed_bh = bh;
 282                        put_bh(failed_bh);
 283                        bh = head;
 284                        while (bh != failed_bh) {
 285                                unlock_buffer(bh);
 286                                put_bh(bh);
 287                                bh = bh->b_this_page;
 288                        }
 289                        return false;
 290                }
 291
 292                bh = bh->b_this_page;
 293        } while (bh != head);
 294        return true;
 295}
 296#else
 297static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 298                                                        enum migrate_mode mode)
 299{
 300        return true;
 301}
 302#endif /* CONFIG_BLOCK */
 303
 304/*
 305 * Replace the page in the mapping.
 306 *
 307 * The number of remaining references must be:
 308 * 1 for anonymous pages without a mapping
 309 * 2 for pages with a mapping
 310 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 311 */
 312int migrate_page_move_mapping(struct address_space *mapping,
 313                struct page *newpage, struct page *page,
 314                struct buffer_head *head, enum migrate_mode mode,
 315                int extra_count)
 316{
 317        struct zone *oldzone, *newzone;
 318        int dirty;
 319        int expected_count = 1 + extra_count;
 320        void **pslot;
 321
 322        if (!mapping) {
 323                /* Anonymous page without mapping */
 324                if (page_count(page) != expected_count)
 325                        return -EAGAIN;
 326
 327                /* No turning back from here */
 328                set_page_memcg(newpage, page_memcg(page));
 329                newpage->index = page->index;
 330                newpage->mapping = page->mapping;
 331                if (PageSwapBacked(page))
 332                        SetPageSwapBacked(newpage);
 333
 334                return MIGRATEPAGE_SUCCESS;
 335        }
 336
 337        oldzone = page_zone(page);
 338        newzone = page_zone(newpage);
 339
 340        spin_lock_irq(&mapping->tree_lock);
 341
 342        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 343                                        page_index(page));
 344
 345        expected_count += 1 + page_has_private(page);
 346        if (page_count(page) != expected_count ||
 347                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 348                spin_unlock_irq(&mapping->tree_lock);
 349                return -EAGAIN;
 350        }
 351
 352        if (!page_freeze_refs(page, expected_count)) {
 353                spin_unlock_irq(&mapping->tree_lock);
 354                return -EAGAIN;
 355        }
 356
 357        /*
 358         * In the async migration case of moving a page with buffers, lock the
 359         * buffers using trylock before the mapping is moved. If the mapping
 360         * was moved, we later failed to lock the buffers and could not move
 361         * the mapping back due to an elevated page count, we would have to
 362         * block waiting on other references to be dropped.
 363         */
 364        if (mode == MIGRATE_ASYNC && head &&
 365                        !buffer_migrate_lock_buffers(head, mode)) {
 366                page_unfreeze_refs(page, expected_count);
 367                spin_unlock_irq(&mapping->tree_lock);
 368                return -EAGAIN;
 369        }
 370
 371        /*
 372         * Now we know that no one else is looking at the page:
 373         * no turning back from here.
 374         */
 375        set_page_memcg(newpage, page_memcg(page));
 376        newpage->index = page->index;
 377        newpage->mapping = page->mapping;
 378        if (PageSwapBacked(page))
 379                SetPageSwapBacked(newpage);
 380
 381        get_page(newpage);      /* add cache reference */
 382        if (PageSwapCache(page)) {
 383                SetPageSwapCache(newpage);
 384                set_page_private(newpage, page_private(page));
 385        }
 386
 387        /* Move dirty while page refs frozen and newpage not yet exposed */
 388        dirty = PageDirty(page);
 389        if (dirty) {
 390                ClearPageDirty(page);
 391                SetPageDirty(newpage);
 392        }
 393
 394        radix_tree_replace_slot(pslot, newpage);
 395
 396        /*
 397         * Drop cache reference from old page by unfreezing
 398         * to one less reference.
 399         * We know this isn't the last reference.
 400         */
 401        page_unfreeze_refs(page, expected_count - 1);
 402
 403        spin_unlock(&mapping->tree_lock);
 404        /* Leave irq disabled to prevent preemption while updating stats */
 405
 406        /*
 407         * If moved to a different zone then also account
 408         * the page for that zone. Other VM counters will be
 409         * taken care of when we establish references to the
 410         * new page and drop references to the old page.
 411         *
 412         * Note that anonymous pages are accounted for
 413         * via NR_FILE_PAGES and NR_ANON_PAGES if they
 414         * are mapped to swap space.
 415         */
 416        if (newzone != oldzone) {
 417                __dec_zone_state(oldzone, NR_FILE_PAGES);
 418                __inc_zone_state(newzone, NR_FILE_PAGES);
 419                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 420                        __dec_zone_state(oldzone, NR_SHMEM);
 421                        __inc_zone_state(newzone, NR_SHMEM);
 422                }
 423                if (dirty && mapping_cap_account_dirty(mapping)) {
 424                        __dec_zone_state(oldzone, NR_FILE_DIRTY);
 425                        __inc_zone_state(newzone, NR_FILE_DIRTY);
 426                }
 427        }
 428        local_irq_enable();
 429
 430        return MIGRATEPAGE_SUCCESS;
 431}
 432
 433/*
 434 * The expected number of remaining references is the same as that
 435 * of migrate_page_move_mapping().
 436 */
 437int migrate_huge_page_move_mapping(struct address_space *mapping,
 438                                   struct page *newpage, struct page *page)
 439{
 440        int expected_count;
 441        void **pslot;
 442
 443        spin_lock_irq(&mapping->tree_lock);
 444
 445        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 446                                        page_index(page));
 447
 448        expected_count = 2 + page_has_private(page);
 449        if (page_count(page) != expected_count ||
 450                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 451                spin_unlock_irq(&mapping->tree_lock);
 452                return -EAGAIN;
 453        }
 454
 455        if (!page_freeze_refs(page, expected_count)) {
 456                spin_unlock_irq(&mapping->tree_lock);
 457                return -EAGAIN;
 458        }
 459
 460        set_page_memcg(newpage, page_memcg(page));
 461        newpage->index = page->index;
 462        newpage->mapping = page->mapping;
 463        get_page(newpage);
 464
 465        radix_tree_replace_slot(pslot, newpage);
 466
 467        page_unfreeze_refs(page, expected_count - 1);
 468
 469        spin_unlock_irq(&mapping->tree_lock);
 470        return MIGRATEPAGE_SUCCESS;
 471}
 472
 473/*
 474 * Gigantic pages are so large that we do not guarantee that page++ pointer
 475 * arithmetic will work across the entire page.  We need something more
 476 * specialized.
 477 */
 478static void __copy_gigantic_page(struct page *dst, struct page *src,
 479                                int nr_pages)
 480{
 481        int i;
 482        struct page *dst_base = dst;
 483        struct page *src_base = src;
 484
 485        for (i = 0; i < nr_pages; ) {
 486                cond_resched();
 487                copy_highpage(dst, src);
 488
 489                i++;
 490                dst = mem_map_next(dst, dst_base, i);
 491                src = mem_map_next(src, src_base, i);
 492        }
 493}
 494
 495static void copy_huge_page(struct page *dst, struct page *src)
 496{
 497        int i;
 498        int nr_pages;
 499
 500        if (PageHuge(src)) {
 501                /* hugetlbfs page */
 502                struct hstate *h = page_hstate(src);
 503                nr_pages = pages_per_huge_page(h);
 504
 505                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 506                        __copy_gigantic_page(dst, src, nr_pages);
 507                        return;
 508                }
 509        } else {
 510                /* thp page */
 511                BUG_ON(!PageTransHuge(src));
 512                nr_pages = hpage_nr_pages(src);
 513        }
 514
 515        for (i = 0; i < nr_pages; i++) {
 516                cond_resched();
 517                copy_highpage(dst + i, src + i);
 518        }
 519}
 520
 521/*
 522 * Copy the page to its new location
 523 */
 524void migrate_page_copy(struct page *newpage, struct page *page)
 525{
 526        int cpupid;
 527
 528        if (PageHuge(page) || PageTransHuge(page))
 529                copy_huge_page(newpage, page);
 530        else
 531                copy_highpage(newpage, page);
 532
 533        if (PageError(page))
 534                SetPageError(newpage);
 535        if (PageReferenced(page))
 536                SetPageReferenced(newpage);
 537        if (PageUptodate(page))
 538                SetPageUptodate(newpage);
 539        if (TestClearPageActive(page)) {
 540                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 541                SetPageActive(newpage);
 542        } else if (TestClearPageUnevictable(page))
 543                SetPageUnevictable(newpage);
 544        if (PageChecked(page))
 545                SetPageChecked(newpage);
 546        if (PageMappedToDisk(page))
 547                SetPageMappedToDisk(newpage);
 548
 549        /* Move dirty on pages not done by migrate_page_move_mapping() */
 550        if (PageDirty(page))
 551                SetPageDirty(newpage);
 552
 553        if (page_is_young(page))
 554                set_page_young(newpage);
 555        if (page_is_idle(page))
 556                set_page_idle(newpage);
 557
 558        /*
 559         * Copy NUMA information to the new page, to prevent over-eager
 560         * future migrations of this same page.
 561         */
 562        cpupid = page_cpupid_xchg_last(page, -1);
 563        page_cpupid_xchg_last(newpage, cpupid);
 564
 565        ksm_migrate_page(newpage, page);
 566        /*
 567         * Please do not reorder this without considering how mm/ksm.c's
 568         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 569         */
 570        if (PageSwapCache(page))
 571                ClearPageSwapCache(page);
 572        ClearPagePrivate(page);
 573        set_page_private(page, 0);
 574
 575        /*
 576         * If any waiters have accumulated on the new page then
 577         * wake them up.
 578         */
 579        if (PageWriteback(newpage))
 580                end_page_writeback(newpage);
 581}
 582
 583/************************************************************
 584 *                    Migration functions
 585 ***********************************************************/
 586
 587/*
 588 * Common logic to directly migrate a single page suitable for
 589 * pages that do not use PagePrivate/PagePrivate2.
 590 *
 591 * Pages are locked upon entry and exit.
 592 */
 593int migrate_page(struct address_space *mapping,
 594                struct page *newpage, struct page *page,
 595                enum migrate_mode mode)
 596{
 597        int rc;
 598
 599        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 600
 601        rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 602
 603        if (rc != MIGRATEPAGE_SUCCESS)
 604                return rc;
 605
 606        migrate_page_copy(newpage, page);
 607        return MIGRATEPAGE_SUCCESS;
 608}
 609EXPORT_SYMBOL(migrate_page);
 610
 611#ifdef CONFIG_BLOCK
 612/*
 613 * Migration function for pages with buffers. This function can only be used
 614 * if the underlying filesystem guarantees that no other references to "page"
 615 * exist.
 616 */
 617int buffer_migrate_page(struct address_space *mapping,
 618                struct page *newpage, struct page *page, enum migrate_mode mode)
 619{
 620        struct buffer_head *bh, *head;
 621        int rc;
 622
 623        if (!page_has_buffers(page))
 624                return migrate_page(mapping, newpage, page, mode);
 625
 626        head = page_buffers(page);
 627
 628        rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 629
 630        if (rc != MIGRATEPAGE_SUCCESS)
 631                return rc;
 632
 633        /*
 634         * In the async case, migrate_page_move_mapping locked the buffers
 635         * with an IRQ-safe spinlock held. In the sync case, the buffers
 636         * need to be locked now
 637         */
 638        if (mode != MIGRATE_ASYNC)
 639                BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 640
 641        ClearPagePrivate(page);
 642        set_page_private(newpage, page_private(page));
 643        set_page_private(page, 0);
 644        put_page(page);
 645        get_page(newpage);
 646
 647        bh = head;
 648        do {
 649                set_bh_page(bh, newpage, bh_offset(bh));
 650                bh = bh->b_this_page;
 651
 652        } while (bh != head);
 653
 654        SetPagePrivate(newpage);
 655
 656        migrate_page_copy(newpage, page);
 657
 658        bh = head;
 659        do {
 660                unlock_buffer(bh);
 661                put_bh(bh);
 662                bh = bh->b_this_page;
 663
 664        } while (bh != head);
 665
 666        return MIGRATEPAGE_SUCCESS;
 667}
 668EXPORT_SYMBOL(buffer_migrate_page);
 669#endif
 670
 671/*
 672 * Writeback a page to clean the dirty state
 673 */
 674static int writeout(struct address_space *mapping, struct page *page)
 675{
 676        struct writeback_control wbc = {
 677                .sync_mode = WB_SYNC_NONE,
 678                .nr_to_write = 1,
 679                .range_start = 0,
 680                .range_end = LLONG_MAX,
 681                .for_reclaim = 1
 682        };
 683        int rc;
 684
 685        if (!mapping->a_ops->writepage)
 686                /* No write method for the address space */
 687                return -EINVAL;
 688
 689        if (!clear_page_dirty_for_io(page))
 690                /* Someone else already triggered a write */
 691                return -EAGAIN;
 692
 693        /*
 694         * A dirty page may imply that the underlying filesystem has
 695         * the page on some queue. So the page must be clean for
 696         * migration. Writeout may mean we loose the lock and the
 697         * page state is no longer what we checked for earlier.
 698         * At this point we know that the migration attempt cannot
 699         * be successful.
 700         */
 701        remove_migration_ptes(page, page);
 702
 703        rc = mapping->a_ops->writepage(page, &wbc);
 704
 705        if (rc != AOP_WRITEPAGE_ACTIVATE)
 706                /* unlocked. Relock */
 707                lock_page(page);
 708
 709        return (rc < 0) ? -EIO : -EAGAIN;
 710}
 711
 712/*
 713 * Default handling if a filesystem does not provide a migration function.
 714 */
 715static int fallback_migrate_page(struct address_space *mapping,
 716        struct page *newpage, struct page *page, enum migrate_mode mode)
 717{
 718        if (PageDirty(page)) {
 719                /* Only writeback pages in full synchronous migration */
 720                if (mode != MIGRATE_SYNC)
 721                        return -EBUSY;
 722                return writeout(mapping, page);
 723        }
 724
 725        /*
 726         * Buffers may be managed in a filesystem specific way.
 727         * We must have no buffers or drop them.
 728         */
 729        if (page_has_private(page) &&
 730            !try_to_release_page(page, GFP_KERNEL))
 731                return -EAGAIN;
 732
 733        return migrate_page(mapping, newpage, page, mode);
 734}
 735
 736/*
 737 * Move a page to a newly allocated page
 738 * The page is locked and all ptes have been successfully removed.
 739 *
 740 * The new page will have replaced the old page if this function
 741 * is successful.
 742 *
 743 * Return value:
 744 *   < 0 - error code
 745 *  MIGRATEPAGE_SUCCESS - success
 746 */
 747static int move_to_new_page(struct page *newpage, struct page *page,
 748                                enum migrate_mode mode)
 749{
 750        struct address_space *mapping;
 751        int rc;
 752
 753        VM_BUG_ON_PAGE(!PageLocked(page), page);
 754        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 755
 756        mapping = page_mapping(page);
 757        if (!mapping)
 758                rc = migrate_page(mapping, newpage, page, mode);
 759        else if (mapping->a_ops->migratepage)
 760                /*
 761                 * Most pages have a mapping and most filesystems provide a
 762                 * migratepage callback. Anonymous pages are part of swap
 763                 * space which also has its own migratepage callback. This
 764                 * is the most common path for page migration.
 765                 */
 766                rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
 767        else
 768                rc = fallback_migrate_page(mapping, newpage, page, mode);
 769
 770        /*
 771         * When successful, old pagecache page->mapping must be cleared before
 772         * page is freed; but stats require that PageAnon be left as PageAnon.
 773         */
 774        if (rc == MIGRATEPAGE_SUCCESS) {
 775                set_page_memcg(page, NULL);
 776                if (!PageAnon(page))
 777                        page->mapping = NULL;
 778        }
 779        return rc;
 780}
 781
 782static int __unmap_and_move(struct page *page, struct page *newpage,
 783                                int force, enum migrate_mode mode)
 784{
 785        int rc = -EAGAIN;
 786        int page_was_mapped = 0;
 787        struct anon_vma *anon_vma = NULL;
 788
 789        if (!trylock_page(page)) {
 790                if (!force || mode == MIGRATE_ASYNC)
 791                        goto out;
 792
 793                /*
 794                 * It's not safe for direct compaction to call lock_page.
 795                 * For example, during page readahead pages are added locked
 796                 * to the LRU. Later, when the IO completes the pages are
 797                 * marked uptodate and unlocked. However, the queueing
 798                 * could be merging multiple pages for one bio (e.g.
 799                 * mpage_readpages). If an allocation happens for the
 800                 * second or third page, the process can end up locking
 801                 * the same page twice and deadlocking. Rather than
 802                 * trying to be clever about what pages can be locked,
 803                 * avoid the use of lock_page for direct compaction
 804                 * altogether.
 805                 */
 806                if (current->flags & PF_MEMALLOC)
 807                        goto out;
 808
 809                lock_page(page);
 810        }
 811
 812        if (PageWriteback(page)) {
 813                /*
 814                 * Only in the case of a full synchronous migration is it
 815                 * necessary to wait for PageWriteback. In the async case,
 816                 * the retry loop is too short and in the sync-light case,
 817                 * the overhead of stalling is too much
 818                 */
 819                if (mode != MIGRATE_SYNC) {
 820                        rc = -EBUSY;
 821                        goto out_unlock;
 822                }
 823                if (!force)
 824                        goto out_unlock;
 825                wait_on_page_writeback(page);
 826        }
 827
 828        /*
 829         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 830         * we cannot notice that anon_vma is freed while we migrates a page.
 831         * This get_anon_vma() delays freeing anon_vma pointer until the end
 832         * of migration. File cache pages are no problem because of page_lock()
 833         * File Caches may use write_page() or lock_page() in migration, then,
 834         * just care Anon page here.
 835         *
 836         * Only page_get_anon_vma() understands the subtleties of
 837         * getting a hold on an anon_vma from outside one of its mms.
 838         * But if we cannot get anon_vma, then we won't need it anyway,
 839         * because that implies that the anon page is no longer mapped
 840         * (and cannot be remapped so long as we hold the page lock).
 841         */
 842        if (PageAnon(page) && !PageKsm(page))
 843                anon_vma = page_get_anon_vma(page);
 844
 845        /*
 846         * Block others from accessing the new page when we get around to
 847         * establishing additional references. We are usually the only one
 848         * holding a reference to newpage at this point. We used to have a BUG
 849         * here if trylock_page(newpage) fails, but would like to allow for
 850         * cases where there might be a race with the previous use of newpage.
 851         * This is much like races on refcount of oldpage: just don't BUG().
 852         */
 853        if (unlikely(!trylock_page(newpage)))
 854                goto out_unlock;
 855
 856        if (unlikely(isolated_balloon_page(page))) {
 857                /*
 858                 * A ballooned page does not need any special attention from
 859                 * physical to virtual reverse mapping procedures.
 860                 * Skip any attempt to unmap PTEs or to remap swap cache,
 861                 * in order to avoid burning cycles at rmap level, and perform
 862                 * the page migration right away (proteced by page lock).
 863                 */
 864                rc = balloon_page_migrate(newpage, page, mode);
 865                goto out_unlock_both;
 866        }
 867
 868        /*
 869         * Corner case handling:
 870         * 1. When a new swap-cache page is read into, it is added to the LRU
 871         * and treated as swapcache but it has no rmap yet.
 872         * Calling try_to_unmap() against a page->mapping==NULL page will
 873         * trigger a BUG.  So handle it here.
 874         * 2. An orphaned page (see truncate_complete_page) might have
 875         * fs-private metadata. The page can be picked up due to memory
 876         * offlining.  Everywhere else except page reclaim, the page is
 877         * invisible to the vm, so the page can not be migrated.  So try to
 878         * free the metadata, so the page can be freed.
 879         */
 880        if (!page->mapping) {
 881                VM_BUG_ON_PAGE(PageAnon(page), page);
 882                if (page_has_private(page)) {
 883                        try_to_free_buffers(page);
 884                        goto out_unlock_both;
 885                }
 886        } else if (page_mapped(page)) {
 887                /* Establish migration ptes */
 888                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
 889                                page);
 890                try_to_unmap(page,
 891                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 892                page_was_mapped = 1;
 893        }
 894
 895        if (!page_mapped(page))
 896                rc = move_to_new_page(newpage, page, mode);
 897
 898        if (page_was_mapped)
 899                remove_migration_ptes(page,
 900                        rc == MIGRATEPAGE_SUCCESS ? newpage : page);
 901
 902out_unlock_both:
 903        unlock_page(newpage);
 904out_unlock:
 905        /* Drop an anon_vma reference if we took one */
 906        if (anon_vma)
 907                put_anon_vma(anon_vma);
 908        unlock_page(page);
 909out:
 910        return rc;
 911}
 912
 913/*
 914 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 915 * around it.
 916 */
 917#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
 918#define ICE_noinline noinline
 919#else
 920#define ICE_noinline
 921#endif
 922
 923/*
 924 * Obtain the lock on page, remove all ptes and migrate the page
 925 * to the newly allocated page in newpage.
 926 */
 927static ICE_noinline int unmap_and_move(new_page_t get_new_page,
 928                                   free_page_t put_new_page,
 929                                   unsigned long private, struct page *page,
 930                                   int force, enum migrate_mode mode,
 931                                   enum migrate_reason reason)
 932{
 933        int rc = MIGRATEPAGE_SUCCESS;
 934        int *result = NULL;
 935        struct page *newpage;
 936
 937        newpage = get_new_page(page, private, &result);
 938        if (!newpage)
 939                return -ENOMEM;
 940
 941        if (page_count(page) == 1) {
 942                /* page was freed from under us. So we are done. */
 943                goto out;
 944        }
 945
 946        if (unlikely(PageTransHuge(page)))
 947                if (unlikely(split_huge_page(page)))
 948                        goto out;
 949
 950        rc = __unmap_and_move(page, newpage, force, mode);
 951        if (rc == MIGRATEPAGE_SUCCESS)
 952                put_new_page = NULL;
 953
 954out:
 955        if (rc != -EAGAIN) {
 956                /*
 957                 * A page that has been migrated has all references
 958                 * removed and will be freed. A page that has not been
 959                 * migrated will have kepts its references and be
 960                 * restored.
 961                 */
 962                list_del(&page->lru);
 963                dec_zone_page_state(page, NR_ISOLATED_ANON +
 964                                page_is_file_cache(page));
 965                /* Soft-offlined page shouldn't go through lru cache list */
 966                if (reason == MR_MEMORY_FAILURE) {
 967                        put_page(page);
 968                        if (!test_set_page_hwpoison(page))
 969                                num_poisoned_pages_inc();
 970                } else
 971                        putback_lru_page(page);
 972        }
 973
 974        /*
 975         * If migration was not successful and there's a freeing callback, use
 976         * it.  Otherwise, putback_lru_page() will drop the reference grabbed
 977         * during isolation.
 978         */
 979        if (put_new_page)
 980                put_new_page(newpage, private);
 981        else if (unlikely(__is_movable_balloon_page(newpage))) {
 982                /* drop our reference, page already in the balloon */
 983                put_page(newpage);
 984        } else
 985                putback_lru_page(newpage);
 986
 987        if (result) {
 988                if (rc)
 989                        *result = rc;
 990                else
 991                        *result = page_to_nid(newpage);
 992        }
 993        return rc;
 994}
 995
 996/*
 997 * Counterpart of unmap_and_move_page() for hugepage migration.
 998 *
 999 * This function doesn't wait the completion of hugepage I/O
1000 * because there is no race between I/O and migration for hugepage.
1001 * Note that currently hugepage I/O occurs only in direct I/O
1002 * where no lock is held and PG_writeback is irrelevant,
1003 * and writeback status of all subpages are counted in the reference
1004 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1005 * under direct I/O, the reference of the head page is 512 and a bit more.)
1006 * This means that when we try to migrate hugepage whose subpages are
1007 * doing direct I/O, some references remain after try_to_unmap() and
1008 * hugepage migration fails without data corruption.
1009 *
1010 * There is also no race when direct I/O is issued on the page under migration,
1011 * because then pte is replaced with migration swap entry and direct I/O code
1012 * will wait in the page fault for migration to complete.
1013 */
1014static int unmap_and_move_huge_page(new_page_t get_new_page,
1015                                free_page_t put_new_page, unsigned long private,
1016                                struct page *hpage, int force,
1017                                enum migrate_mode mode)
1018{
1019        int rc = -EAGAIN;
1020        int *result = NULL;
1021        int page_was_mapped = 0;
1022        struct page *new_hpage;
1023        struct anon_vma *anon_vma = NULL;
1024
1025        /*
1026         * Movability of hugepages depends on architectures and hugepage size.
1027         * This check is necessary because some callers of hugepage migration
1028         * like soft offline and memory hotremove don't walk through page
1029         * tables or check whether the hugepage is pmd-based or not before
1030         * kicking migration.
1031         */
1032        if (!hugepage_migration_supported(page_hstate(hpage))) {
1033                putback_active_hugepage(hpage);
1034                return -ENOSYS;
1035        }
1036
1037        new_hpage = get_new_page(hpage, private, &result);
1038        if (!new_hpage)
1039                return -ENOMEM;
1040
1041        if (!trylock_page(hpage)) {
1042                if (!force || mode != MIGRATE_SYNC)
1043                        goto out;
1044                lock_page(hpage);
1045        }
1046
1047        if (PageAnon(hpage))
1048                anon_vma = page_get_anon_vma(hpage);
1049
1050        if (unlikely(!trylock_page(new_hpage)))
1051                goto put_anon;
1052
1053        if (page_mapped(hpage)) {
1054                try_to_unmap(hpage,
1055                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1056                page_was_mapped = 1;
1057        }
1058
1059        if (!page_mapped(hpage))
1060                rc = move_to_new_page(new_hpage, hpage, mode);
1061
1062        if (page_was_mapped)
1063                remove_migration_ptes(hpage,
1064                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1065
1066        unlock_page(new_hpage);
1067
1068put_anon:
1069        if (anon_vma)
1070                put_anon_vma(anon_vma);
1071
1072        if (rc == MIGRATEPAGE_SUCCESS) {
1073                hugetlb_cgroup_migrate(hpage, new_hpage);
1074                put_new_page = NULL;
1075        }
1076
1077        unlock_page(hpage);
1078out:
1079        if (rc != -EAGAIN)
1080                putback_active_hugepage(hpage);
1081
1082        /*
1083         * If migration was not successful and there's a freeing callback, use
1084         * it.  Otherwise, put_page() will drop the reference grabbed during
1085         * isolation.
1086         */
1087        if (put_new_page)
1088                put_new_page(new_hpage, private);
1089        else
1090                putback_active_hugepage(new_hpage);
1091
1092        if (result) {
1093                if (rc)
1094                        *result = rc;
1095                else
1096                        *result = page_to_nid(new_hpage);
1097        }
1098        return rc;
1099}
1100
1101/*
1102 * migrate_pages - migrate the pages specified in a list, to the free pages
1103 *                 supplied as the target for the page migration
1104 *
1105 * @from:               The list of pages to be migrated.
1106 * @get_new_page:       The function used to allocate free pages to be used
1107 *                      as the target of the page migration.
1108 * @put_new_page:       The function used to free target pages if migration
1109 *                      fails, or NULL if no special handling is necessary.
1110 * @private:            Private data to be passed on to get_new_page()
1111 * @mode:               The migration mode that specifies the constraints for
1112 *                      page migration, if any.
1113 * @reason:             The reason for page migration.
1114 *
1115 * The function returns after 10 attempts or if no pages are movable any more
1116 * because the list has become empty or no retryable pages exist any more.
1117 * The caller should call putback_movable_pages() to return pages to the LRU
1118 * or free list only if ret != 0.
1119 *
1120 * Returns the number of pages that were not migrated, or an error code.
1121 */
1122int migrate_pages(struct list_head *from, new_page_t get_new_page,
1123                free_page_t put_new_page, unsigned long private,
1124                enum migrate_mode mode, int reason)
1125{
1126        int retry = 1;
1127        int nr_failed = 0;
1128        int nr_succeeded = 0;
1129        int pass = 0;
1130        struct page *page;
1131        struct page *page2;
1132        int swapwrite = current->flags & PF_SWAPWRITE;
1133        int rc;
1134
1135        if (!swapwrite)
1136                current->flags |= PF_SWAPWRITE;
1137
1138        for(pass = 0; pass < 10 && retry; pass++) {
1139                retry = 0;
1140
1141                list_for_each_entry_safe(page, page2, from, lru) {
1142                        cond_resched();
1143
1144                        if (PageHuge(page))
1145                                rc = unmap_and_move_huge_page(get_new_page,
1146                                                put_new_page, private, page,
1147                                                pass > 2, mode);
1148                        else
1149                                rc = unmap_and_move(get_new_page, put_new_page,
1150                                                private, page, pass > 2, mode,
1151                                                reason);
1152
1153                        switch(rc) {
1154                        case -ENOMEM:
1155                                goto out;
1156                        case -EAGAIN:
1157                                retry++;
1158                                break;
1159                        case MIGRATEPAGE_SUCCESS:
1160                                nr_succeeded++;
1161                                break;
1162                        default:
1163                                /*
1164                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1165                                 * unlike -EAGAIN case, the failed page is
1166                                 * removed from migration page list and not
1167                                 * retried in the next outer loop.
1168                                 */
1169                                nr_failed++;
1170                                break;
1171                        }
1172                }
1173        }
1174        nr_failed += retry;
1175        rc = nr_failed;
1176out:
1177        if (nr_succeeded)
1178                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1179        if (nr_failed)
1180                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1181        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1182
1183        if (!swapwrite)
1184                current->flags &= ~PF_SWAPWRITE;
1185
1186        return rc;
1187}
1188
1189#ifdef CONFIG_NUMA
1190/*
1191 * Move a list of individual pages
1192 */
1193struct page_to_node {
1194        unsigned long addr;
1195        struct page *page;
1196        int node;
1197        int status;
1198};
1199
1200static struct page *new_page_node(struct page *p, unsigned long private,
1201                int **result)
1202{
1203        struct page_to_node *pm = (struct page_to_node *)private;
1204
1205        while (pm->node != MAX_NUMNODES && pm->page != p)
1206                pm++;
1207
1208        if (pm->node == MAX_NUMNODES)
1209                return NULL;
1210
1211        *result = &pm->status;
1212
1213        if (PageHuge(p))
1214                return alloc_huge_page_node(page_hstate(compound_head(p)),
1215                                        pm->node);
1216        else
1217                return __alloc_pages_node(pm->node,
1218                                GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1219}
1220
1221/*
1222 * Move a set of pages as indicated in the pm array. The addr
1223 * field must be set to the virtual address of the page to be moved
1224 * and the node number must contain a valid target node.
1225 * The pm array ends with node = MAX_NUMNODES.
1226 */
1227static int do_move_page_to_node_array(struct mm_struct *mm,
1228                                      struct page_to_node *pm,
1229                                      int migrate_all)
1230{
1231        int err;
1232        struct page_to_node *pp;
1233        LIST_HEAD(pagelist);
1234
1235        down_read(&mm->mmap_sem);
1236
1237        /*
1238         * Build a list of pages to migrate
1239         */
1240        for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1241                struct vm_area_struct *vma;
1242                struct page *page;
1243
1244                err = -EFAULT;
1245                vma = find_vma(mm, pp->addr);
1246                if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1247                        goto set_status;
1248
1249                /* FOLL_DUMP to ignore special (like zero) pages */
1250                page = follow_page(vma, pp->addr,
1251                                FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1252
1253                err = PTR_ERR(page);
1254                if (IS_ERR(page))
1255                        goto set_status;
1256
1257                err = -ENOENT;
1258                if (!page)
1259                        goto set_status;
1260
1261                pp->page = page;
1262                err = page_to_nid(page);
1263
1264                if (err == pp->node)
1265                        /*
1266                         * Node already in the right place
1267                         */
1268                        goto put_and_set;
1269
1270                err = -EACCES;
1271                if (page_mapcount(page) > 1 &&
1272                                !migrate_all)
1273                        goto put_and_set;
1274
1275                if (PageHuge(page)) {
1276                        if (PageHead(page))
1277                                isolate_huge_page(page, &pagelist);
1278                        goto put_and_set;
1279                }
1280
1281                err = isolate_lru_page(page);
1282                if (!err) {
1283                        list_add_tail(&page->lru, &pagelist);
1284                        inc_zone_page_state(page, NR_ISOLATED_ANON +
1285                                            page_is_file_cache(page));
1286                }
1287put_and_set:
1288                /*
1289                 * Either remove the duplicate refcount from
1290                 * isolate_lru_page() or drop the page ref if it was
1291                 * not isolated.
1292                 */
1293                put_page(page);
1294set_status:
1295                pp->status = err;
1296        }
1297
1298        err = 0;
1299        if (!list_empty(&pagelist)) {
1300                err = migrate_pages(&pagelist, new_page_node, NULL,
1301                                (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1302                if (err)
1303                        putback_movable_pages(&pagelist);
1304        }
1305
1306        up_read(&mm->mmap_sem);
1307        return err;
1308}
1309
1310/*
1311 * Migrate an array of page address onto an array of nodes and fill
1312 * the corresponding array of status.
1313 */
1314static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1315                         unsigned long nr_pages,
1316                         const void __user * __user *pages,
1317                         const int __user *nodes,
1318                         int __user *status, int flags)
1319{
1320        struct page_to_node *pm;
1321        unsigned long chunk_nr_pages;
1322        unsigned long chunk_start;
1323        int err;
1324
1325        err = -ENOMEM;
1326        pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1327        if (!pm)
1328                goto out;
1329
1330        migrate_prep();
1331
1332        /*
1333         * Store a chunk of page_to_node array in a page,
1334         * but keep the last one as a marker
1335         */
1336        chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1337
1338        for (chunk_start = 0;
1339             chunk_start < nr_pages;
1340             chunk_start += chunk_nr_pages) {
1341                int j;
1342
1343                if (chunk_start + chunk_nr_pages > nr_pages)
1344                        chunk_nr_pages = nr_pages - chunk_start;
1345
1346                /* fill the chunk pm with addrs and nodes from user-space */
1347                for (j = 0; j < chunk_nr_pages; j++) {
1348                        const void __user *p;
1349                        int node;
1350
1351                        err = -EFAULT;
1352                        if (get_user(p, pages + j + chunk_start))
1353                                goto out_pm;
1354                        pm[j].addr = (unsigned long) p;
1355
1356                        if (get_user(node, nodes + j + chunk_start))
1357                                goto out_pm;
1358
1359                        err = -ENODEV;
1360                        if (node < 0 || node >= MAX_NUMNODES)
1361                                goto out_pm;
1362
1363                        if (!node_state(node, N_MEMORY))
1364                                goto out_pm;
1365
1366                        err = -EACCES;
1367                        if (!node_isset(node, task_nodes))
1368                                goto out_pm;
1369
1370                        pm[j].node = node;
1371                }
1372
1373                /* End marker for this chunk */
1374                pm[chunk_nr_pages].node = MAX_NUMNODES;
1375
1376                /* Migrate this chunk */
1377                err = do_move_page_to_node_array(mm, pm,
1378                                                 flags & MPOL_MF_MOVE_ALL);
1379                if (err < 0)
1380                        goto out_pm;
1381
1382                /* Return status information */
1383                for (j = 0; j < chunk_nr_pages; j++)
1384                        if (put_user(pm[j].status, status + j + chunk_start)) {
1385                                err = -EFAULT;
1386                                goto out_pm;
1387                        }
1388        }
1389        err = 0;
1390
1391out_pm:
1392        free_page((unsigned long)pm);
1393out:
1394        return err;
1395}
1396
1397/*
1398 * Determine the nodes of an array of pages and store it in an array of status.
1399 */
1400static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1401                                const void __user **pages, int *status)
1402{
1403        unsigned long i;
1404
1405        down_read(&mm->mmap_sem);
1406
1407        for (i = 0; i < nr_pages; i++) {
1408                unsigned long addr = (unsigned long)(*pages);
1409                struct vm_area_struct *vma;
1410                struct page *page;
1411                int err = -EFAULT;
1412
1413                vma = find_vma(mm, addr);
1414                if (!vma || addr < vma->vm_start)
1415                        goto set_status;
1416
1417                /* FOLL_DUMP to ignore special (like zero) pages */
1418                page = follow_page(vma, addr, FOLL_DUMP);
1419
1420                err = PTR_ERR(page);
1421                if (IS_ERR(page))
1422                        goto set_status;
1423
1424                err = page ? page_to_nid(page) : -ENOENT;
1425set_status:
1426                *status = err;
1427
1428                pages++;
1429                status++;
1430        }
1431
1432        up_read(&mm->mmap_sem);
1433}
1434
1435/*
1436 * Determine the nodes of a user array of pages and store it in
1437 * a user array of status.
1438 */
1439static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1440                         const void __user * __user *pages,
1441                         int __user *status)
1442{
1443#define DO_PAGES_STAT_CHUNK_NR 16
1444        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1445        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1446
1447        while (nr_pages) {
1448                unsigned long chunk_nr;
1449
1450                chunk_nr = nr_pages;
1451                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1452                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1453
1454                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1455                        break;
1456
1457                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1458
1459                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1460                        break;
1461
1462                pages += chunk_nr;
1463                status += chunk_nr;
1464                nr_pages -= chunk_nr;
1465        }
1466        return nr_pages ? -EFAULT : 0;
1467}
1468
1469/*
1470 * Move a list of pages in the address space of the currently executing
1471 * process.
1472 */
1473SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1474                const void __user * __user *, pages,
1475                const int __user *, nodes,
1476                int __user *, status, int, flags)
1477{
1478        const struct cred *cred = current_cred(), *tcred;
1479        struct task_struct *task;
1480        struct mm_struct *mm;
1481        int err;
1482        nodemask_t task_nodes;
1483
1484        /* Check flags */
1485        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1486                return -EINVAL;
1487
1488        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1489                return -EPERM;
1490
1491        /* Find the mm_struct */
1492        rcu_read_lock();
1493        task = pid ? find_task_by_vpid(pid) : current;
1494        if (!task) {
1495                rcu_read_unlock();
1496                return -ESRCH;
1497        }
1498        get_task_struct(task);
1499
1500        /*
1501         * Check if this process has the right to modify the specified
1502         * process. The right exists if the process has administrative
1503         * capabilities, superuser privileges or the same
1504         * userid as the target process.
1505         */
1506        tcred = __task_cred(task);
1507        if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1508            !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1509            !capable(CAP_SYS_NICE)) {
1510                rcu_read_unlock();
1511                err = -EPERM;
1512                goto out;
1513        }
1514        rcu_read_unlock();
1515
1516        err = security_task_movememory(task);
1517        if (err)
1518                goto out;
1519
1520        task_nodes = cpuset_mems_allowed(task);
1521        mm = get_task_mm(task);
1522        put_task_struct(task);
1523
1524        if (!mm)
1525                return -EINVAL;
1526
1527        if (nodes)
1528                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1529                                    nodes, status, flags);
1530        else
1531                err = do_pages_stat(mm, nr_pages, pages, status);
1532
1533        mmput(mm);
1534        return err;
1535
1536out:
1537        put_task_struct(task);
1538        return err;
1539}
1540
1541#ifdef CONFIG_NUMA_BALANCING
1542/*
1543 * Returns true if this is a safe migration target node for misplaced NUMA
1544 * pages. Currently it only checks the watermarks which crude
1545 */
1546static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1547                                   unsigned long nr_migrate_pages)
1548{
1549        int z;
1550        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1551                struct zone *zone = pgdat->node_zones + z;
1552
1553                if (!populated_zone(zone))
1554                        continue;
1555
1556                if (!zone_reclaimable(zone))
1557                        continue;
1558
1559                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1560                if (!zone_watermark_ok(zone, 0,
1561                                       high_wmark_pages(zone) +
1562                                       nr_migrate_pages,
1563                                       0, 0))
1564                        continue;
1565                return true;
1566        }
1567        return false;
1568}
1569
1570static struct page *alloc_misplaced_dst_page(struct page *page,
1571                                           unsigned long data,
1572                                           int **result)
1573{
1574        int nid = (int) data;
1575        struct page *newpage;
1576
1577        newpage = __alloc_pages_node(nid,
1578                                         (GFP_HIGHUSER_MOVABLE |
1579                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1580                                          __GFP_NORETRY | __GFP_NOWARN) &
1581                                         ~(__GFP_IO | __GFP_FS), 0);
1582
1583        return newpage;
1584}
1585
1586/*
1587 * page migration rate limiting control.
1588 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1589 * window of time. Default here says do not migrate more than 1280M per second.
1590 */
1591static unsigned int migrate_interval_millisecs __read_mostly = 100;
1592static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1593
1594/* Returns true if the node is migrate rate-limited after the update */
1595static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1596                                        unsigned long nr_pages)
1597{
1598        /*
1599         * Rate-limit the amount of data that is being migrated to a node.
1600         * Optimal placement is no good if the memory bus is saturated and
1601         * all the time is being spent migrating!
1602         */
1603        if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1604                spin_lock(&pgdat->numabalancing_migrate_lock);
1605                pgdat->numabalancing_migrate_nr_pages = 0;
1606                pgdat->numabalancing_migrate_next_window = jiffies +
1607                        msecs_to_jiffies(migrate_interval_millisecs);
1608                spin_unlock(&pgdat->numabalancing_migrate_lock);
1609        }
1610        if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1611                trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1612                                                                nr_pages);
1613                return true;
1614        }
1615
1616        /*
1617         * This is an unlocked non-atomic update so errors are possible.
1618         * The consequences are failing to migrate when we potentiall should
1619         * have which is not severe enough to warrant locking. If it is ever
1620         * a problem, it can be converted to a per-cpu counter.
1621         */
1622        pgdat->numabalancing_migrate_nr_pages += nr_pages;
1623        return false;
1624}
1625
1626static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1627{
1628        int page_lru;
1629
1630        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1631
1632        /* Avoid migrating to a node that is nearly full */
1633        if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1634                return 0;
1635
1636        if (isolate_lru_page(page))
1637                return 0;
1638
1639        /*
1640         * migrate_misplaced_transhuge_page() skips page migration's usual
1641         * check on page_count(), so we must do it here, now that the page
1642         * has been isolated: a GUP pin, or any other pin, prevents migration.
1643         * The expected page count is 3: 1 for page's mapcount and 1 for the
1644         * caller's pin and 1 for the reference taken by isolate_lru_page().
1645         */
1646        if (PageTransHuge(page) && page_count(page) != 3) {
1647                putback_lru_page(page);
1648                return 0;
1649        }
1650
1651        page_lru = page_is_file_cache(page);
1652        mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1653                                hpage_nr_pages(page));
1654
1655        /*
1656         * Isolating the page has taken another reference, so the
1657         * caller's reference can be safely dropped without the page
1658         * disappearing underneath us during migration.
1659         */
1660        put_page(page);
1661        return 1;
1662}
1663
1664bool pmd_trans_migrating(pmd_t pmd)
1665{
1666        struct page *page = pmd_page(pmd);
1667        return PageLocked(page);
1668}
1669
1670/*
1671 * Attempt to migrate a misplaced page to the specified destination
1672 * node. Caller is expected to have an elevated reference count on
1673 * the page that will be dropped by this function before returning.
1674 */
1675int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1676                           int node)
1677{
1678        pg_data_t *pgdat = NODE_DATA(node);
1679        int isolated;
1680        int nr_remaining;
1681        LIST_HEAD(migratepages);
1682
1683        /*
1684         * Don't migrate file pages that are mapped in multiple processes
1685         * with execute permissions as they are probably shared libraries.
1686         */
1687        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1688            (vma->vm_flags & VM_EXEC))
1689                goto out;
1690
1691        /*
1692         * Rate-limit the amount of data that is being migrated to a node.
1693         * Optimal placement is no good if the memory bus is saturated and
1694         * all the time is being spent migrating!
1695         */
1696        if (numamigrate_update_ratelimit(pgdat, 1))
1697                goto out;
1698
1699        isolated = numamigrate_isolate_page(pgdat, page);
1700        if (!isolated)
1701                goto out;
1702
1703        list_add(&page->lru, &migratepages);
1704        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1705                                     NULL, node, MIGRATE_ASYNC,
1706                                     MR_NUMA_MISPLACED);
1707        if (nr_remaining) {
1708                if (!list_empty(&migratepages)) {
1709                        list_del(&page->lru);
1710                        dec_zone_page_state(page, NR_ISOLATED_ANON +
1711                                        page_is_file_cache(page));
1712                        putback_lru_page(page);
1713                }
1714                isolated = 0;
1715        } else
1716                count_vm_numa_event(NUMA_PAGE_MIGRATE);
1717        BUG_ON(!list_empty(&migratepages));
1718        return isolated;
1719
1720out:
1721        put_page(page);
1722        return 0;
1723}
1724#endif /* CONFIG_NUMA_BALANCING */
1725
1726#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1727/*
1728 * Migrates a THP to a given target node. page must be locked and is unlocked
1729 * before returning.
1730 */
1731int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1732                                struct vm_area_struct *vma,
1733                                pmd_t *pmd, pmd_t entry,
1734                                unsigned long address,
1735                                struct page *page, int node)
1736{
1737        spinlock_t *ptl;
1738        pg_data_t *pgdat = NODE_DATA(node);
1739        int isolated = 0;
1740        struct page *new_page = NULL;
1741        int page_lru = page_is_file_cache(page);
1742        unsigned long mmun_start = address & HPAGE_PMD_MASK;
1743        unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1744        pmd_t orig_entry;
1745
1746        /*
1747         * Rate-limit the amount of data that is being migrated to a node.
1748         * Optimal placement is no good if the memory bus is saturated and
1749         * all the time is being spent migrating!
1750         */
1751        if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1752                goto out_dropref;
1753
1754        new_page = alloc_pages_node(node,
1755                (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1756                HPAGE_PMD_ORDER);
1757        if (!new_page)
1758                goto out_fail;
1759
1760        isolated = numamigrate_isolate_page(pgdat, page);
1761        if (!isolated) {
1762                put_page(new_page);
1763                goto out_fail;
1764        }
1765
1766        if (mm_tlb_flush_pending(mm))
1767                flush_tlb_range(vma, mmun_start, mmun_end);
1768
1769        /* Prepare a page as a migration target */
1770        __set_page_locked(new_page);
1771        SetPageSwapBacked(new_page);
1772
1773        /* anon mapping, we can simply copy page->mapping to the new page: */
1774        new_page->mapping = page->mapping;
1775        new_page->index = page->index;
1776        migrate_page_copy(new_page, page);
1777        WARN_ON(PageLRU(new_page));
1778
1779        /* Recheck the target PMD */
1780        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1781        ptl = pmd_lock(mm, pmd);
1782        if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1783fail_putback:
1784                spin_unlock(ptl);
1785                mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1786
1787                /* Reverse changes made by migrate_page_copy() */
1788                if (TestClearPageActive(new_page))
1789                        SetPageActive(page);
1790                if (TestClearPageUnevictable(new_page))
1791                        SetPageUnevictable(page);
1792
1793                unlock_page(new_page);
1794                put_page(new_page);             /* Free it */
1795
1796                /* Retake the callers reference and putback on LRU */
1797                get_page(page);
1798                putback_lru_page(page);
1799                mod_zone_page_state(page_zone(page),
1800                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1801
1802                goto out_unlock;
1803        }
1804
1805        orig_entry = *pmd;
1806        entry = mk_pmd(new_page, vma->vm_page_prot);
1807        entry = pmd_mkhuge(entry);
1808        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1809
1810        /*
1811         * Clear the old entry under pagetable lock and establish the new PTE.
1812         * Any parallel GUP will either observe the old page blocking on the
1813         * page lock, block on the page table lock or observe the new page.
1814         * The SetPageUptodate on the new page and page_add_new_anon_rmap
1815         * guarantee the copy is visible before the pagetable update.
1816         */
1817        flush_cache_range(vma, mmun_start, mmun_end);
1818        page_add_anon_rmap(new_page, vma, mmun_start);
1819        pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1820        set_pmd_at(mm, mmun_start, pmd, entry);
1821        flush_tlb_range(vma, mmun_start, mmun_end);
1822        update_mmu_cache_pmd(vma, address, &entry);
1823
1824        if (page_count(page) != 2) {
1825                set_pmd_at(mm, mmun_start, pmd, orig_entry);
1826                flush_tlb_range(vma, mmun_start, mmun_end);
1827                mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1828                update_mmu_cache_pmd(vma, address, &entry);
1829                page_remove_rmap(new_page);
1830                goto fail_putback;
1831        }
1832
1833        mlock_migrate_page(new_page, page);
1834        set_page_memcg(new_page, page_memcg(page));
1835        set_page_memcg(page, NULL);
1836        page_remove_rmap(page);
1837
1838        spin_unlock(ptl);
1839        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1840
1841        /* Take an "isolate" reference and put new page on the LRU. */
1842        get_page(new_page);
1843        putback_lru_page(new_page);
1844
1845        unlock_page(new_page);
1846        unlock_page(page);
1847        put_page(page);                 /* Drop the rmap reference */
1848        put_page(page);                 /* Drop the LRU isolation reference */
1849
1850        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1851        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1852
1853        mod_zone_page_state(page_zone(page),
1854                        NR_ISOLATED_ANON + page_lru,
1855                        -HPAGE_PMD_NR);
1856        return isolated;
1857
1858out_fail:
1859        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1860out_dropref:
1861        ptl = pmd_lock(mm, pmd);
1862        if (pmd_same(*pmd, entry)) {
1863                entry = pmd_modify(entry, vma->vm_page_prot);
1864                set_pmd_at(mm, mmun_start, pmd, entry);
1865                update_mmu_cache_pmd(vma, address, &entry);
1866        }
1867        spin_unlock(ptl);
1868
1869out_unlock:
1870        unlock_page(page);
1871        put_page(page);
1872        return 0;
1873}
1874#endif /* CONFIG_NUMA_BALANCING */
1875
1876#endif /* CONFIG_NUMA */
1877