linux/mm/page-writeback.c
<<
>>
Prefs
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002    Andrew Morton
  11 *              Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE               max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT    10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125struct wb_domain global_wb_domain;
 126
 127/* consolidated parameters for balance_dirty_pages() and its subroutines */
 128struct dirty_throttle_control {
 129#ifdef CONFIG_CGROUP_WRITEBACK
 130        struct wb_domain        *dom;
 131        struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
 132#endif
 133        struct bdi_writeback    *wb;
 134        struct fprop_local_percpu *wb_completions;
 135
 136        unsigned long           avail;          /* dirtyable */
 137        unsigned long           dirty;          /* file_dirty + write + nfs */
 138        unsigned long           thresh;         /* dirty threshold */
 139        unsigned long           bg_thresh;      /* dirty background threshold */
 140
 141        unsigned long           wb_dirty;       /* per-wb counterparts */
 142        unsigned long           wb_thresh;
 143        unsigned long           wb_bg_thresh;
 144
 145        unsigned long           pos_ratio;
 146};
 147
 148/*
 149 * Length of period for aging writeout fractions of bdis. This is an
 150 * arbitrarily chosen number. The longer the period, the slower fractions will
 151 * reflect changes in current writeout rate.
 152 */
 153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 154
 155#ifdef CONFIG_CGROUP_WRITEBACK
 156
 157#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 158                                .dom = &global_wb_domain,               \
 159                                .wb_completions = &(__wb)->completions
 160
 161#define GDTC_INIT_NO_WB         .dom = &global_wb_domain
 162
 163#define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
 164                                .dom = mem_cgroup_wb_domain(__wb),      \
 165                                .wb_completions = &(__wb)->memcg_completions, \
 166                                .gdtc = __gdtc
 167
 168static bool mdtc_valid(struct dirty_throttle_control *dtc)
 169{
 170        return dtc->dom;
 171}
 172
 173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 174{
 175        return dtc->dom;
 176}
 177
 178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 179{
 180        return mdtc->gdtc;
 181}
 182
 183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 184{
 185        return &wb->memcg_completions;
 186}
 187
 188static void wb_min_max_ratio(struct bdi_writeback *wb,
 189                             unsigned long *minp, unsigned long *maxp)
 190{
 191        unsigned long this_bw = wb->avg_write_bandwidth;
 192        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 193        unsigned long long min = wb->bdi->min_ratio;
 194        unsigned long long max = wb->bdi->max_ratio;
 195
 196        /*
 197         * @wb may already be clean by the time control reaches here and
 198         * the total may not include its bw.
 199         */
 200        if (this_bw < tot_bw) {
 201                if (min) {
 202                        min *= this_bw;
 203                        do_div(min, tot_bw);
 204                }
 205                if (max < 100) {
 206                        max *= this_bw;
 207                        do_div(max, tot_bw);
 208                }
 209        }
 210
 211        *minp = min;
 212        *maxp = max;
 213}
 214
 215#else   /* CONFIG_CGROUP_WRITEBACK */
 216
 217#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 218                                .wb_completions = &(__wb)->completions
 219#define GDTC_INIT_NO_WB
 220#define MDTC_INIT(__wb, __gdtc)
 221
 222static bool mdtc_valid(struct dirty_throttle_control *dtc)
 223{
 224        return false;
 225}
 226
 227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 228{
 229        return &global_wb_domain;
 230}
 231
 232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 233{
 234        return NULL;
 235}
 236
 237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 238{
 239        return NULL;
 240}
 241
 242static void wb_min_max_ratio(struct bdi_writeback *wb,
 243                             unsigned long *minp, unsigned long *maxp)
 244{
 245        *minp = wb->bdi->min_ratio;
 246        *maxp = wb->bdi->max_ratio;
 247}
 248
 249#endif  /* CONFIG_CGROUP_WRITEBACK */
 250
 251/*
 252 * In a memory zone, there is a certain amount of pages we consider
 253 * available for the page cache, which is essentially the number of
 254 * free and reclaimable pages, minus some zone reserves to protect
 255 * lowmem and the ability to uphold the zone's watermarks without
 256 * requiring writeback.
 257 *
 258 * This number of dirtyable pages is the base value of which the
 259 * user-configurable dirty ratio is the effictive number of pages that
 260 * are allowed to be actually dirtied.  Per individual zone, or
 261 * globally by using the sum of dirtyable pages over all zones.
 262 *
 263 * Because the user is allowed to specify the dirty limit globally as
 264 * absolute number of bytes, calculating the per-zone dirty limit can
 265 * require translating the configured limit into a percentage of
 266 * global dirtyable memory first.
 267 */
 268
 269/**
 270 * zone_dirtyable_memory - number of dirtyable pages in a zone
 271 * @zone: the zone
 272 *
 273 * Returns the zone's number of pages potentially available for dirty
 274 * page cache.  This is the base value for the per-zone dirty limits.
 275 */
 276static unsigned long zone_dirtyable_memory(struct zone *zone)
 277{
 278        unsigned long nr_pages;
 279
 280        nr_pages = zone_page_state(zone, NR_FREE_PAGES);
 281        nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
 282
 283        nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
 284        nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
 285
 286        return nr_pages;
 287}
 288
 289static unsigned long highmem_dirtyable_memory(unsigned long total)
 290{
 291#ifdef CONFIG_HIGHMEM
 292        int node;
 293        unsigned long x = 0;
 294
 295        for_each_node_state(node, N_HIGH_MEMORY) {
 296                struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 297
 298                x += zone_dirtyable_memory(z);
 299        }
 300        /*
 301         * Unreclaimable memory (kernel memory or anonymous memory
 302         * without swap) can bring down the dirtyable pages below
 303         * the zone's dirty balance reserve and the above calculation
 304         * will underflow.  However we still want to add in nodes
 305         * which are below threshold (negative values) to get a more
 306         * accurate calculation but make sure that the total never
 307         * underflows.
 308         */
 309        if ((long)x < 0)
 310                x = 0;
 311
 312        /*
 313         * Make sure that the number of highmem pages is never larger
 314         * than the number of the total dirtyable memory. This can only
 315         * occur in very strange VM situations but we want to make sure
 316         * that this does not occur.
 317         */
 318        return min(x, total);
 319#else
 320        return 0;
 321#endif
 322}
 323
 324/**
 325 * global_dirtyable_memory - number of globally dirtyable pages
 326 *
 327 * Returns the global number of pages potentially available for dirty
 328 * page cache.  This is the base value for the global dirty limits.
 329 */
 330static unsigned long global_dirtyable_memory(void)
 331{
 332        unsigned long x;
 333
 334        x = global_page_state(NR_FREE_PAGES);
 335        x -= min(x, dirty_balance_reserve);
 336
 337        x += global_page_state(NR_INACTIVE_FILE);
 338        x += global_page_state(NR_ACTIVE_FILE);
 339
 340        if (!vm_highmem_is_dirtyable)
 341                x -= highmem_dirtyable_memory(x);
 342
 343        return x + 1;   /* Ensure that we never return 0 */
 344}
 345
 346/**
 347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 348 * @dtc: dirty_throttle_control of interest
 349 *
 350 * Calculate @dtc->thresh and ->bg_thresh considering
 351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 352 * must ensure that @dtc->avail is set before calling this function.  The
 353 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 354 * real-time tasks.
 355 */
 356static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 357{
 358        const unsigned long available_memory = dtc->avail;
 359        struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 360        unsigned long bytes = vm_dirty_bytes;
 361        unsigned long bg_bytes = dirty_background_bytes;
 362        unsigned long ratio = vm_dirty_ratio;
 363        unsigned long bg_ratio = dirty_background_ratio;
 364        unsigned long thresh;
 365        unsigned long bg_thresh;
 366        struct task_struct *tsk;
 367
 368        /* gdtc is !NULL iff @dtc is for memcg domain */
 369        if (gdtc) {
 370                unsigned long global_avail = gdtc->avail;
 371
 372                /*
 373                 * The byte settings can't be applied directly to memcg
 374                 * domains.  Convert them to ratios by scaling against
 375                 * globally available memory.
 376                 */
 377                if (bytes)
 378                        ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
 379                                    global_avail, 100UL);
 380                if (bg_bytes)
 381                        bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
 382                                       global_avail, 100UL);
 383                bytes = bg_bytes = 0;
 384        }
 385
 386        if (bytes)
 387                thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 388        else
 389                thresh = (ratio * available_memory) / 100;
 390
 391        if (bg_bytes)
 392                bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 393        else
 394                bg_thresh = (bg_ratio * available_memory) / 100;
 395
 396        if (bg_thresh >= thresh)
 397                bg_thresh = thresh / 2;
 398        tsk = current;
 399        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 400                bg_thresh += bg_thresh / 4;
 401                thresh += thresh / 4;
 402        }
 403        dtc->thresh = thresh;
 404        dtc->bg_thresh = bg_thresh;
 405
 406        /* we should eventually report the domain in the TP */
 407        if (!gdtc)
 408                trace_global_dirty_state(bg_thresh, thresh);
 409}
 410
 411/**
 412 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 413 * @pbackground: out parameter for bg_thresh
 414 * @pdirty: out parameter for thresh
 415 *
 416 * Calculate bg_thresh and thresh for global_wb_domain.  See
 417 * domain_dirty_limits() for details.
 418 */
 419void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 420{
 421        struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 422
 423        gdtc.avail = global_dirtyable_memory();
 424        domain_dirty_limits(&gdtc);
 425
 426        *pbackground = gdtc.bg_thresh;
 427        *pdirty = gdtc.thresh;
 428}
 429
 430/**
 431 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 432 * @zone: the zone
 433 *
 434 * Returns the maximum number of dirty pages allowed in a zone, based
 435 * on the zone's dirtyable memory.
 436 */
 437static unsigned long zone_dirty_limit(struct zone *zone)
 438{
 439        unsigned long zone_memory = zone_dirtyable_memory(zone);
 440        struct task_struct *tsk = current;
 441        unsigned long dirty;
 442
 443        if (vm_dirty_bytes)
 444                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 445                        zone_memory / global_dirtyable_memory();
 446        else
 447                dirty = vm_dirty_ratio * zone_memory / 100;
 448
 449        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 450                dirty += dirty / 4;
 451
 452        return dirty;
 453}
 454
 455/**
 456 * zone_dirty_ok - tells whether a zone is within its dirty limits
 457 * @zone: the zone to check
 458 *
 459 * Returns %true when the dirty pages in @zone are within the zone's
 460 * dirty limit, %false if the limit is exceeded.
 461 */
 462bool zone_dirty_ok(struct zone *zone)
 463{
 464        unsigned long limit = zone_dirty_limit(zone);
 465
 466        return zone_page_state(zone, NR_FILE_DIRTY) +
 467               zone_page_state(zone, NR_UNSTABLE_NFS) +
 468               zone_page_state(zone, NR_WRITEBACK) <= limit;
 469}
 470
 471int dirty_background_ratio_handler(struct ctl_table *table, int write,
 472                void __user *buffer, size_t *lenp,
 473                loff_t *ppos)
 474{
 475        int ret;
 476
 477        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 478        if (ret == 0 && write)
 479                dirty_background_bytes = 0;
 480        return ret;
 481}
 482
 483int dirty_background_bytes_handler(struct ctl_table *table, int write,
 484                void __user *buffer, size_t *lenp,
 485                loff_t *ppos)
 486{
 487        int ret;
 488
 489        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 490        if (ret == 0 && write)
 491                dirty_background_ratio = 0;
 492        return ret;
 493}
 494
 495int dirty_ratio_handler(struct ctl_table *table, int write,
 496                void __user *buffer, size_t *lenp,
 497                loff_t *ppos)
 498{
 499        int old_ratio = vm_dirty_ratio;
 500        int ret;
 501
 502        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 503        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 504                writeback_set_ratelimit();
 505                vm_dirty_bytes = 0;
 506        }
 507        return ret;
 508}
 509
 510int dirty_bytes_handler(struct ctl_table *table, int write,
 511                void __user *buffer, size_t *lenp,
 512                loff_t *ppos)
 513{
 514        unsigned long old_bytes = vm_dirty_bytes;
 515        int ret;
 516
 517        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 518        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 519                writeback_set_ratelimit();
 520                vm_dirty_ratio = 0;
 521        }
 522        return ret;
 523}
 524
 525static unsigned long wp_next_time(unsigned long cur_time)
 526{
 527        cur_time += VM_COMPLETIONS_PERIOD_LEN;
 528        /* 0 has a special meaning... */
 529        if (!cur_time)
 530                return 1;
 531        return cur_time;
 532}
 533
 534static void wb_domain_writeout_inc(struct wb_domain *dom,
 535                                   struct fprop_local_percpu *completions,
 536                                   unsigned int max_prop_frac)
 537{
 538        __fprop_inc_percpu_max(&dom->completions, completions,
 539                               max_prop_frac);
 540        /* First event after period switching was turned off? */
 541        if (!unlikely(dom->period_time)) {
 542                /*
 543                 * We can race with other __bdi_writeout_inc calls here but
 544                 * it does not cause any harm since the resulting time when
 545                 * timer will fire and what is in writeout_period_time will be
 546                 * roughly the same.
 547                 */
 548                dom->period_time = wp_next_time(jiffies);
 549                mod_timer(&dom->period_timer, dom->period_time);
 550        }
 551}
 552
 553/*
 554 * Increment @wb's writeout completion count and the global writeout
 555 * completion count. Called from test_clear_page_writeback().
 556 */
 557static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 558{
 559        struct wb_domain *cgdom;
 560
 561        __inc_wb_stat(wb, WB_WRITTEN);
 562        wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 563                               wb->bdi->max_prop_frac);
 564
 565        cgdom = mem_cgroup_wb_domain(wb);
 566        if (cgdom)
 567                wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 568                                       wb->bdi->max_prop_frac);
 569}
 570
 571void wb_writeout_inc(struct bdi_writeback *wb)
 572{
 573        unsigned long flags;
 574
 575        local_irq_save(flags);
 576        __wb_writeout_inc(wb);
 577        local_irq_restore(flags);
 578}
 579EXPORT_SYMBOL_GPL(wb_writeout_inc);
 580
 581/*
 582 * On idle system, we can be called long after we scheduled because we use
 583 * deferred timers so count with missed periods.
 584 */
 585static void writeout_period(unsigned long t)
 586{
 587        struct wb_domain *dom = (void *)t;
 588        int miss_periods = (jiffies - dom->period_time) /
 589                                                 VM_COMPLETIONS_PERIOD_LEN;
 590
 591        if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 592                dom->period_time = wp_next_time(dom->period_time +
 593                                miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 594                mod_timer(&dom->period_timer, dom->period_time);
 595        } else {
 596                /*
 597                 * Aging has zeroed all fractions. Stop wasting CPU on period
 598                 * updates.
 599                 */
 600                dom->period_time = 0;
 601        }
 602}
 603
 604int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 605{
 606        memset(dom, 0, sizeof(*dom));
 607
 608        spin_lock_init(&dom->lock);
 609
 610        init_timer_deferrable(&dom->period_timer);
 611        dom->period_timer.function = writeout_period;
 612        dom->period_timer.data = (unsigned long)dom;
 613
 614        dom->dirty_limit_tstamp = jiffies;
 615
 616        return fprop_global_init(&dom->completions, gfp);
 617}
 618
 619#ifdef CONFIG_CGROUP_WRITEBACK
 620void wb_domain_exit(struct wb_domain *dom)
 621{
 622        del_timer_sync(&dom->period_timer);
 623        fprop_global_destroy(&dom->completions);
 624}
 625#endif
 626
 627/*
 628 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 629 * registered backing devices, which, for obvious reasons, can not
 630 * exceed 100%.
 631 */
 632static unsigned int bdi_min_ratio;
 633
 634int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 635{
 636        int ret = 0;
 637
 638        spin_lock_bh(&bdi_lock);
 639        if (min_ratio > bdi->max_ratio) {
 640                ret = -EINVAL;
 641        } else {
 642                min_ratio -= bdi->min_ratio;
 643                if (bdi_min_ratio + min_ratio < 100) {
 644                        bdi_min_ratio += min_ratio;
 645                        bdi->min_ratio += min_ratio;
 646                } else {
 647                        ret = -EINVAL;
 648                }
 649        }
 650        spin_unlock_bh(&bdi_lock);
 651
 652        return ret;
 653}
 654
 655int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 656{
 657        int ret = 0;
 658
 659        if (max_ratio > 100)
 660                return -EINVAL;
 661
 662        spin_lock_bh(&bdi_lock);
 663        if (bdi->min_ratio > max_ratio) {
 664                ret = -EINVAL;
 665        } else {
 666                bdi->max_ratio = max_ratio;
 667                bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 668        }
 669        spin_unlock_bh(&bdi_lock);
 670
 671        return ret;
 672}
 673EXPORT_SYMBOL(bdi_set_max_ratio);
 674
 675static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 676                                           unsigned long bg_thresh)
 677{
 678        return (thresh + bg_thresh) / 2;
 679}
 680
 681static unsigned long hard_dirty_limit(struct wb_domain *dom,
 682                                      unsigned long thresh)
 683{
 684        return max(thresh, dom->dirty_limit);
 685}
 686
 687/*
 688 * Memory which can be further allocated to a memcg domain is capped by
 689 * system-wide clean memory excluding the amount being used in the domain.
 690 */
 691static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 692                            unsigned long filepages, unsigned long headroom)
 693{
 694        struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 695        unsigned long clean = filepages - min(filepages, mdtc->dirty);
 696        unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 697        unsigned long other_clean = global_clean - min(global_clean, clean);
 698
 699        mdtc->avail = filepages + min(headroom, other_clean);
 700}
 701
 702/**
 703 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 704 * @dtc: dirty_throttle_context of interest
 705 *
 706 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
 707 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 708 *
 709 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 710 * when sleeping max_pause per page is not enough to keep the dirty pages under
 711 * control. For example, when the device is completely stalled due to some error
 712 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 713 * In the other normal situations, it acts more gently by throttling the tasks
 714 * more (rather than completely block them) when the wb dirty pages go high.
 715 *
 716 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 717 * - starving fast devices
 718 * - piling up dirty pages (that will take long time to sync) on slow devices
 719 *
 720 * The wb's share of dirty limit will be adapting to its throughput and
 721 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 722 */
 723static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 724{
 725        struct wb_domain *dom = dtc_dom(dtc);
 726        unsigned long thresh = dtc->thresh;
 727        u64 wb_thresh;
 728        long numerator, denominator;
 729        unsigned long wb_min_ratio, wb_max_ratio;
 730
 731        /*
 732         * Calculate this BDI's share of the thresh ratio.
 733         */
 734        fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 735                              &numerator, &denominator);
 736
 737        wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 738        wb_thresh *= numerator;
 739        do_div(wb_thresh, denominator);
 740
 741        wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 742
 743        wb_thresh += (thresh * wb_min_ratio) / 100;
 744        if (wb_thresh > (thresh * wb_max_ratio) / 100)
 745                wb_thresh = thresh * wb_max_ratio / 100;
 746
 747        return wb_thresh;
 748}
 749
 750unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 751{
 752        struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 753                                               .thresh = thresh };
 754        return __wb_calc_thresh(&gdtc);
 755}
 756
 757/*
 758 *                           setpoint - dirty 3
 759 *        f(dirty) := 1.0 + (----------------)
 760 *                           limit - setpoint
 761 *
 762 * it's a 3rd order polynomial that subjects to
 763 *
 764 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 765 * (2) f(setpoint) = 1.0 => the balance point
 766 * (3) f(limit)    = 0   => the hard limit
 767 * (4) df/dx      <= 0   => negative feedback control
 768 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 769 *     => fast response on large errors; small oscillation near setpoint
 770 */
 771static long long pos_ratio_polynom(unsigned long setpoint,
 772                                          unsigned long dirty,
 773                                          unsigned long limit)
 774{
 775        long long pos_ratio;
 776        long x;
 777
 778        x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 779                      (limit - setpoint) | 1);
 780        pos_ratio = x;
 781        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 782        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 783        pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 784
 785        return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 786}
 787
 788/*
 789 * Dirty position control.
 790 *
 791 * (o) global/bdi setpoints
 792 *
 793 * We want the dirty pages be balanced around the global/wb setpoints.
 794 * When the number of dirty pages is higher/lower than the setpoint, the
 795 * dirty position control ratio (and hence task dirty ratelimit) will be
 796 * decreased/increased to bring the dirty pages back to the setpoint.
 797 *
 798 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 799 *
 800 *     if (dirty < setpoint) scale up   pos_ratio
 801 *     if (dirty > setpoint) scale down pos_ratio
 802 *
 803 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 804 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 805 *
 806 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 807 *
 808 * (o) global control line
 809 *
 810 *     ^ pos_ratio
 811 *     |
 812 *     |            |<===== global dirty control scope ======>|
 813 * 2.0 .............*
 814 *     |            .*
 815 *     |            . *
 816 *     |            .   *
 817 *     |            .     *
 818 *     |            .        *
 819 *     |            .            *
 820 * 1.0 ................................*
 821 *     |            .                  .     *
 822 *     |            .                  .          *
 823 *     |            .                  .              *
 824 *     |            .                  .                 *
 825 *     |            .                  .                    *
 826 *   0 +------------.------------------.----------------------*------------->
 827 *           freerun^          setpoint^                 limit^   dirty pages
 828 *
 829 * (o) wb control line
 830 *
 831 *     ^ pos_ratio
 832 *     |
 833 *     |            *
 834 *     |              *
 835 *     |                *
 836 *     |                  *
 837 *     |                    * |<=========== span ============>|
 838 * 1.0 .......................*
 839 *     |                      . *
 840 *     |                      .   *
 841 *     |                      .     *
 842 *     |                      .       *
 843 *     |                      .         *
 844 *     |                      .           *
 845 *     |                      .             *
 846 *     |                      .               *
 847 *     |                      .                 *
 848 *     |                      .                   *
 849 *     |                      .                     *
 850 * 1/4 ...............................................* * * * * * * * * * * *
 851 *     |                      .                         .
 852 *     |                      .                           .
 853 *     |                      .                             .
 854 *   0 +----------------------.-------------------------------.------------->
 855 *                wb_setpoint^                    x_intercept^
 856 *
 857 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 858 * be smoothly throttled down to normal if it starts high in situations like
 859 * - start writing to a slow SD card and a fast disk at the same time. The SD
 860 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 861 * - the wb dirty thresh drops quickly due to change of JBOD workload
 862 */
 863static void wb_position_ratio(struct dirty_throttle_control *dtc)
 864{
 865        struct bdi_writeback *wb = dtc->wb;
 866        unsigned long write_bw = wb->avg_write_bandwidth;
 867        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 868        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 869        unsigned long wb_thresh = dtc->wb_thresh;
 870        unsigned long x_intercept;
 871        unsigned long setpoint;         /* dirty pages' target balance point */
 872        unsigned long wb_setpoint;
 873        unsigned long span;
 874        long long pos_ratio;            /* for scaling up/down the rate limit */
 875        long x;
 876
 877        dtc->pos_ratio = 0;
 878
 879        if (unlikely(dtc->dirty >= limit))
 880                return;
 881
 882        /*
 883         * global setpoint
 884         *
 885         * See comment for pos_ratio_polynom().
 886         */
 887        setpoint = (freerun + limit) / 2;
 888        pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 889
 890        /*
 891         * The strictlimit feature is a tool preventing mistrusted filesystems
 892         * from growing a large number of dirty pages before throttling. For
 893         * such filesystems balance_dirty_pages always checks wb counters
 894         * against wb limits. Even if global "nr_dirty" is under "freerun".
 895         * This is especially important for fuse which sets bdi->max_ratio to
 896         * 1% by default. Without strictlimit feature, fuse writeback may
 897         * consume arbitrary amount of RAM because it is accounted in
 898         * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 899         *
 900         * Here, in wb_position_ratio(), we calculate pos_ratio based on
 901         * two values: wb_dirty and wb_thresh. Let's consider an example:
 902         * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 903         * limits are set by default to 10% and 20% (background and throttle).
 904         * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 905         * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 906         * about ~6K pages (as the average of background and throttle wb
 907         * limits). The 3rd order polynomial will provide positive feedback if
 908         * wb_dirty is under wb_setpoint and vice versa.
 909         *
 910         * Note, that we cannot use global counters in these calculations
 911         * because we want to throttle process writing to a strictlimit wb
 912         * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 913         * in the example above).
 914         */
 915        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 916                long long wb_pos_ratio;
 917
 918                if (dtc->wb_dirty < 8) {
 919                        dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 920                                           2 << RATELIMIT_CALC_SHIFT);
 921                        return;
 922                }
 923
 924                if (dtc->wb_dirty >= wb_thresh)
 925                        return;
 926
 927                wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 928                                                    dtc->wb_bg_thresh);
 929
 930                if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 931                        return;
 932
 933                wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 934                                                 wb_thresh);
 935
 936                /*
 937                 * Typically, for strictlimit case, wb_setpoint << setpoint
 938                 * and pos_ratio >> wb_pos_ratio. In the other words global
 939                 * state ("dirty") is not limiting factor and we have to
 940                 * make decision based on wb counters. But there is an
 941                 * important case when global pos_ratio should get precedence:
 942                 * global limits are exceeded (e.g. due to activities on other
 943                 * wb's) while given strictlimit wb is below limit.
 944                 *
 945                 * "pos_ratio * wb_pos_ratio" would work for the case above,
 946                 * but it would look too non-natural for the case of all
 947                 * activity in the system coming from a single strictlimit wb
 948                 * with bdi->max_ratio == 100%.
 949                 *
 950                 * Note that min() below somewhat changes the dynamics of the
 951                 * control system. Normally, pos_ratio value can be well over 3
 952                 * (when globally we are at freerun and wb is well below wb
 953                 * setpoint). Now the maximum pos_ratio in the same situation
 954                 * is 2. We might want to tweak this if we observe the control
 955                 * system is too slow to adapt.
 956                 */
 957                dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 958                return;
 959        }
 960
 961        /*
 962         * We have computed basic pos_ratio above based on global situation. If
 963         * the wb is over/under its share of dirty pages, we want to scale
 964         * pos_ratio further down/up. That is done by the following mechanism.
 965         */
 966
 967        /*
 968         * wb setpoint
 969         *
 970         *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
 971         *
 972         *                        x_intercept - wb_dirty
 973         *                     := --------------------------
 974         *                        x_intercept - wb_setpoint
 975         *
 976         * The main wb control line is a linear function that subjects to
 977         *
 978         * (1) f(wb_setpoint) = 1.0
 979         * (2) k = - 1 / (8 * write_bw)  (in single wb case)
 980         *     or equally: x_intercept = wb_setpoint + 8 * write_bw
 981         *
 982         * For single wb case, the dirty pages are observed to fluctuate
 983         * regularly within range
 984         *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
 985         * for various filesystems, where (2) can yield in a reasonable 12.5%
 986         * fluctuation range for pos_ratio.
 987         *
 988         * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
 989         * own size, so move the slope over accordingly and choose a slope that
 990         * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
 991         */
 992        if (unlikely(wb_thresh > dtc->thresh))
 993                wb_thresh = dtc->thresh;
 994        /*
 995         * It's very possible that wb_thresh is close to 0 not because the
 996         * device is slow, but that it has remained inactive for long time.
 997         * Honour such devices a reasonable good (hopefully IO efficient)
 998         * threshold, so that the occasional writes won't be blocked and active
 999         * writes can rampup the threshold quickly.
1000         */
1001        wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1002        /*
1003         * scale global setpoint to wb's:
1004         *      wb_setpoint = setpoint * wb_thresh / thresh
1005         */
1006        x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1007        wb_setpoint = setpoint * (u64)x >> 16;
1008        /*
1009         * Use span=(8*write_bw) in single wb case as indicated by
1010         * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1011         *
1012         *        wb_thresh                    thresh - wb_thresh
1013         * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1014         *         thresh                           thresh
1015         */
1016        span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1017        x_intercept = wb_setpoint + span;
1018
1019        if (dtc->wb_dirty < x_intercept - span / 4) {
1020                pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1021                                      (x_intercept - wb_setpoint) | 1);
1022        } else
1023                pos_ratio /= 4;
1024
1025        /*
1026         * wb reserve area, safeguard against dirty pool underrun and disk idle
1027         * It may push the desired control point of global dirty pages higher
1028         * than setpoint.
1029         */
1030        x_intercept = wb_thresh / 2;
1031        if (dtc->wb_dirty < x_intercept) {
1032                if (dtc->wb_dirty > x_intercept / 8)
1033                        pos_ratio = div_u64(pos_ratio * x_intercept,
1034                                            dtc->wb_dirty);
1035                else
1036                        pos_ratio *= 8;
1037        }
1038
1039        dtc->pos_ratio = pos_ratio;
1040}
1041
1042static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1043                                      unsigned long elapsed,
1044                                      unsigned long written)
1045{
1046        const unsigned long period = roundup_pow_of_two(3 * HZ);
1047        unsigned long avg = wb->avg_write_bandwidth;
1048        unsigned long old = wb->write_bandwidth;
1049        u64 bw;
1050
1051        /*
1052         * bw = written * HZ / elapsed
1053         *
1054         *                   bw * elapsed + write_bandwidth * (period - elapsed)
1055         * write_bandwidth = ---------------------------------------------------
1056         *                                          period
1057         *
1058         * @written may have decreased due to account_page_redirty().
1059         * Avoid underflowing @bw calculation.
1060         */
1061        bw = written - min(written, wb->written_stamp);
1062        bw *= HZ;
1063        if (unlikely(elapsed > period)) {
1064                do_div(bw, elapsed);
1065                avg = bw;
1066                goto out;
1067        }
1068        bw += (u64)wb->write_bandwidth * (period - elapsed);
1069        bw >>= ilog2(period);
1070
1071        /*
1072         * one more level of smoothing, for filtering out sudden spikes
1073         */
1074        if (avg > old && old >= (unsigned long)bw)
1075                avg -= (avg - old) >> 3;
1076
1077        if (avg < old && old <= (unsigned long)bw)
1078                avg += (old - avg) >> 3;
1079
1080out:
1081        /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1082        avg = max(avg, 1LU);
1083        if (wb_has_dirty_io(wb)) {
1084                long delta = avg - wb->avg_write_bandwidth;
1085                WARN_ON_ONCE(atomic_long_add_return(delta,
1086                                        &wb->bdi->tot_write_bandwidth) <= 0);
1087        }
1088        wb->write_bandwidth = bw;
1089        wb->avg_write_bandwidth = avg;
1090}
1091
1092static void update_dirty_limit(struct dirty_throttle_control *dtc)
1093{
1094        struct wb_domain *dom = dtc_dom(dtc);
1095        unsigned long thresh = dtc->thresh;
1096        unsigned long limit = dom->dirty_limit;
1097
1098        /*
1099         * Follow up in one step.
1100         */
1101        if (limit < thresh) {
1102                limit = thresh;
1103                goto update;
1104        }
1105
1106        /*
1107         * Follow down slowly. Use the higher one as the target, because thresh
1108         * may drop below dirty. This is exactly the reason to introduce
1109         * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1110         */
1111        thresh = max(thresh, dtc->dirty);
1112        if (limit > thresh) {
1113                limit -= (limit - thresh) >> 5;
1114                goto update;
1115        }
1116        return;
1117update:
1118        dom->dirty_limit = limit;
1119}
1120
1121static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1122                                    unsigned long now)
1123{
1124        struct wb_domain *dom = dtc_dom(dtc);
1125
1126        /*
1127         * check locklessly first to optimize away locking for the most time
1128         */
1129        if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1130                return;
1131
1132        spin_lock(&dom->lock);
1133        if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1134                update_dirty_limit(dtc);
1135                dom->dirty_limit_tstamp = now;
1136        }
1137        spin_unlock(&dom->lock);
1138}
1139
1140/*
1141 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1142 *
1143 * Normal wb tasks will be curbed at or below it in long term.
1144 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1145 */
1146static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1147                                      unsigned long dirtied,
1148                                      unsigned long elapsed)
1149{
1150        struct bdi_writeback *wb = dtc->wb;
1151        unsigned long dirty = dtc->dirty;
1152        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1153        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1154        unsigned long setpoint = (freerun + limit) / 2;
1155        unsigned long write_bw = wb->avg_write_bandwidth;
1156        unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1157        unsigned long dirty_rate;
1158        unsigned long task_ratelimit;
1159        unsigned long balanced_dirty_ratelimit;
1160        unsigned long step;
1161        unsigned long x;
1162
1163        /*
1164         * The dirty rate will match the writeout rate in long term, except
1165         * when dirty pages are truncated by userspace or re-dirtied by FS.
1166         */
1167        dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1168
1169        /*
1170         * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1171         */
1172        task_ratelimit = (u64)dirty_ratelimit *
1173                                        dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1174        task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1175
1176        /*
1177         * A linear estimation of the "balanced" throttle rate. The theory is,
1178         * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1179         * dirty_rate will be measured to be (N * task_ratelimit). So the below
1180         * formula will yield the balanced rate limit (write_bw / N).
1181         *
1182         * Note that the expanded form is not a pure rate feedback:
1183         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1184         * but also takes pos_ratio into account:
1185         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1186         *
1187         * (1) is not realistic because pos_ratio also takes part in balancing
1188         * the dirty rate.  Consider the state
1189         *      pos_ratio = 0.5                                              (3)
1190         *      rate = 2 * (write_bw / N)                                    (4)
1191         * If (1) is used, it will stuck in that state! Because each dd will
1192         * be throttled at
1193         *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1194         * yielding
1195         *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1196         * put (6) into (1) we get
1197         *      rate_(i+1) = rate_(i)                                        (7)
1198         *
1199         * So we end up using (2) to always keep
1200         *      rate_(i+1) ~= (write_bw / N)                                 (8)
1201         * regardless of the value of pos_ratio. As long as (8) is satisfied,
1202         * pos_ratio is able to drive itself to 1.0, which is not only where
1203         * the dirty count meet the setpoint, but also where the slope of
1204         * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1205         */
1206        balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1207                                           dirty_rate | 1);
1208        /*
1209         * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1210         */
1211        if (unlikely(balanced_dirty_ratelimit > write_bw))
1212                balanced_dirty_ratelimit = write_bw;
1213
1214        /*
1215         * We could safely do this and return immediately:
1216         *
1217         *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1218         *
1219         * However to get a more stable dirty_ratelimit, the below elaborated
1220         * code makes use of task_ratelimit to filter out singular points and
1221         * limit the step size.
1222         *
1223         * The below code essentially only uses the relative value of
1224         *
1225         *      task_ratelimit - dirty_ratelimit
1226         *      = (pos_ratio - 1) * dirty_ratelimit
1227         *
1228         * which reflects the direction and size of dirty position error.
1229         */
1230
1231        /*
1232         * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1233         * task_ratelimit is on the same side of dirty_ratelimit, too.
1234         * For example, when
1235         * - dirty_ratelimit > balanced_dirty_ratelimit
1236         * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1237         * lowering dirty_ratelimit will help meet both the position and rate
1238         * control targets. Otherwise, don't update dirty_ratelimit if it will
1239         * only help meet the rate target. After all, what the users ultimately
1240         * feel and care are stable dirty rate and small position error.
1241         *
1242         * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1243         * and filter out the singular points of balanced_dirty_ratelimit. Which
1244         * keeps jumping around randomly and can even leap far away at times
1245         * due to the small 200ms estimation period of dirty_rate (we want to
1246         * keep that period small to reduce time lags).
1247         */
1248        step = 0;
1249
1250        /*
1251         * For strictlimit case, calculations above were based on wb counters
1252         * and limits (starting from pos_ratio = wb_position_ratio() and up to
1253         * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1254         * Hence, to calculate "step" properly, we have to use wb_dirty as
1255         * "dirty" and wb_setpoint as "setpoint".
1256         *
1257         * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1258         * it's possible that wb_thresh is close to zero due to inactivity
1259         * of backing device.
1260         */
1261        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1262                dirty = dtc->wb_dirty;
1263                if (dtc->wb_dirty < 8)
1264                        setpoint = dtc->wb_dirty + 1;
1265                else
1266                        setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1267        }
1268
1269        if (dirty < setpoint) {
1270                x = min3(wb->balanced_dirty_ratelimit,
1271                         balanced_dirty_ratelimit, task_ratelimit);
1272                if (dirty_ratelimit < x)
1273                        step = x - dirty_ratelimit;
1274        } else {
1275                x = max3(wb->balanced_dirty_ratelimit,
1276                         balanced_dirty_ratelimit, task_ratelimit);
1277                if (dirty_ratelimit > x)
1278                        step = dirty_ratelimit - x;
1279        }
1280
1281        /*
1282         * Don't pursue 100% rate matching. It's impossible since the balanced
1283         * rate itself is constantly fluctuating. So decrease the track speed
1284         * when it gets close to the target. Helps eliminate pointless tremors.
1285         */
1286        step >>= dirty_ratelimit / (2 * step + 1);
1287        /*
1288         * Limit the tracking speed to avoid overshooting.
1289         */
1290        step = (step + 7) / 8;
1291
1292        if (dirty_ratelimit < balanced_dirty_ratelimit)
1293                dirty_ratelimit += step;
1294        else
1295                dirty_ratelimit -= step;
1296
1297        wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1298        wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1299
1300        trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1301}
1302
1303static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1304                                  struct dirty_throttle_control *mdtc,
1305                                  unsigned long start_time,
1306                                  bool update_ratelimit)
1307{
1308        struct bdi_writeback *wb = gdtc->wb;
1309        unsigned long now = jiffies;
1310        unsigned long elapsed = now - wb->bw_time_stamp;
1311        unsigned long dirtied;
1312        unsigned long written;
1313
1314        lockdep_assert_held(&wb->list_lock);
1315
1316        /*
1317         * rate-limit, only update once every 200ms.
1318         */
1319        if (elapsed < BANDWIDTH_INTERVAL)
1320                return;
1321
1322        dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1323        written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1324
1325        /*
1326         * Skip quiet periods when disk bandwidth is under-utilized.
1327         * (at least 1s idle time between two flusher runs)
1328         */
1329        if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1330                goto snapshot;
1331
1332        if (update_ratelimit) {
1333                domain_update_bandwidth(gdtc, now);
1334                wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1335
1336                /*
1337                 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1338                 * compiler has no way to figure that out.  Help it.
1339                 */
1340                if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1341                        domain_update_bandwidth(mdtc, now);
1342                        wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1343                }
1344        }
1345        wb_update_write_bandwidth(wb, elapsed, written);
1346
1347snapshot:
1348        wb->dirtied_stamp = dirtied;
1349        wb->written_stamp = written;
1350        wb->bw_time_stamp = now;
1351}
1352
1353void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1354{
1355        struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1356
1357        __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1358}
1359
1360/*
1361 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1362 * will look to see if it needs to start dirty throttling.
1363 *
1364 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1365 * global_page_state() too often. So scale it near-sqrt to the safety margin
1366 * (the number of pages we may dirty without exceeding the dirty limits).
1367 */
1368static unsigned long dirty_poll_interval(unsigned long dirty,
1369                                         unsigned long thresh)
1370{
1371        if (thresh > dirty)
1372                return 1UL << (ilog2(thresh - dirty) >> 1);
1373
1374        return 1;
1375}
1376
1377static unsigned long wb_max_pause(struct bdi_writeback *wb,
1378                                  unsigned long wb_dirty)
1379{
1380        unsigned long bw = wb->avg_write_bandwidth;
1381        unsigned long t;
1382
1383        /*
1384         * Limit pause time for small memory systems. If sleeping for too long
1385         * time, a small pool of dirty/writeback pages may go empty and disk go
1386         * idle.
1387         *
1388         * 8 serves as the safety ratio.
1389         */
1390        t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1391        t++;
1392
1393        return min_t(unsigned long, t, MAX_PAUSE);
1394}
1395
1396static long wb_min_pause(struct bdi_writeback *wb,
1397                         long max_pause,
1398                         unsigned long task_ratelimit,
1399                         unsigned long dirty_ratelimit,
1400                         int *nr_dirtied_pause)
1401{
1402        long hi = ilog2(wb->avg_write_bandwidth);
1403        long lo = ilog2(wb->dirty_ratelimit);
1404        long t;         /* target pause */
1405        long pause;     /* estimated next pause */
1406        int pages;      /* target nr_dirtied_pause */
1407
1408        /* target for 10ms pause on 1-dd case */
1409        t = max(1, HZ / 100);
1410
1411        /*
1412         * Scale up pause time for concurrent dirtiers in order to reduce CPU
1413         * overheads.
1414         *
1415         * (N * 10ms) on 2^N concurrent tasks.
1416         */
1417        if (hi > lo)
1418                t += (hi - lo) * (10 * HZ) / 1024;
1419
1420        /*
1421         * This is a bit convoluted. We try to base the next nr_dirtied_pause
1422         * on the much more stable dirty_ratelimit. However the next pause time
1423         * will be computed based on task_ratelimit and the two rate limits may
1424         * depart considerably at some time. Especially if task_ratelimit goes
1425         * below dirty_ratelimit/2 and the target pause is max_pause, the next
1426         * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1427         * result task_ratelimit won't be executed faithfully, which could
1428         * eventually bring down dirty_ratelimit.
1429         *
1430         * We apply two rules to fix it up:
1431         * 1) try to estimate the next pause time and if necessary, use a lower
1432         *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1433         *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1434         * 2) limit the target pause time to max_pause/2, so that the normal
1435         *    small fluctuations of task_ratelimit won't trigger rule (1) and
1436         *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1437         */
1438        t = min(t, 1 + max_pause / 2);
1439        pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1440
1441        /*
1442         * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1443         * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1444         * When the 16 consecutive reads are often interrupted by some dirty
1445         * throttling pause during the async writes, cfq will go into idles
1446         * (deadline is fine). So push nr_dirtied_pause as high as possible
1447         * until reaches DIRTY_POLL_THRESH=32 pages.
1448         */
1449        if (pages < DIRTY_POLL_THRESH) {
1450                t = max_pause;
1451                pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1452                if (pages > DIRTY_POLL_THRESH) {
1453                        pages = DIRTY_POLL_THRESH;
1454                        t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1455                }
1456        }
1457
1458        pause = HZ * pages / (task_ratelimit + 1);
1459        if (pause > max_pause) {
1460                t = max_pause;
1461                pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1462        }
1463
1464        *nr_dirtied_pause = pages;
1465        /*
1466         * The minimal pause time will normally be half the target pause time.
1467         */
1468        return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1469}
1470
1471static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1472{
1473        struct bdi_writeback *wb = dtc->wb;
1474        unsigned long wb_reclaimable;
1475
1476        /*
1477         * wb_thresh is not treated as some limiting factor as
1478         * dirty_thresh, due to reasons
1479         * - in JBOD setup, wb_thresh can fluctuate a lot
1480         * - in a system with HDD and USB key, the USB key may somehow
1481         *   go into state (wb_dirty >> wb_thresh) either because
1482         *   wb_dirty starts high, or because wb_thresh drops low.
1483         *   In this case we don't want to hard throttle the USB key
1484         *   dirtiers for 100 seconds until wb_dirty drops under
1485         *   wb_thresh. Instead the auxiliary wb control line in
1486         *   wb_position_ratio() will let the dirtier task progress
1487         *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1488         */
1489        dtc->wb_thresh = __wb_calc_thresh(dtc);
1490        dtc->wb_bg_thresh = dtc->thresh ?
1491                div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1492
1493        /*
1494         * In order to avoid the stacked BDI deadlock we need
1495         * to ensure we accurately count the 'dirty' pages when
1496         * the threshold is low.
1497         *
1498         * Otherwise it would be possible to get thresh+n pages
1499         * reported dirty, even though there are thresh-m pages
1500         * actually dirty; with m+n sitting in the percpu
1501         * deltas.
1502         */
1503        if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1504                wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1505                dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1506        } else {
1507                wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1508                dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1509        }
1510}
1511
1512/*
1513 * balance_dirty_pages() must be called by processes which are generating dirty
1514 * data.  It looks at the number of dirty pages in the machine and will force
1515 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1516 * If we're over `background_thresh' then the writeback threads are woken to
1517 * perform some writeout.
1518 */
1519static void balance_dirty_pages(struct address_space *mapping,
1520                                struct bdi_writeback *wb,
1521                                unsigned long pages_dirtied)
1522{
1523        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1524        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1525        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1526        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1527                                                     &mdtc_stor : NULL;
1528        struct dirty_throttle_control *sdtc;
1529        unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1530        long period;
1531        long pause;
1532        long max_pause;
1533        long min_pause;
1534        int nr_dirtied_pause;
1535        bool dirty_exceeded = false;
1536        unsigned long task_ratelimit;
1537        unsigned long dirty_ratelimit;
1538        struct backing_dev_info *bdi = wb->bdi;
1539        bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1540        unsigned long start_time = jiffies;
1541
1542        for (;;) {
1543                unsigned long now = jiffies;
1544                unsigned long dirty, thresh, bg_thresh;
1545                unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1546                unsigned long m_thresh = 0;
1547                unsigned long m_bg_thresh = 0;
1548
1549                /*
1550                 * Unstable writes are a feature of certain networked
1551                 * filesystems (i.e. NFS) in which data may have been
1552                 * written to the server's write cache, but has not yet
1553                 * been flushed to permanent storage.
1554                 */
1555                nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1556                                        global_page_state(NR_UNSTABLE_NFS);
1557                gdtc->avail = global_dirtyable_memory();
1558                gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1559
1560                domain_dirty_limits(gdtc);
1561
1562                if (unlikely(strictlimit)) {
1563                        wb_dirty_limits(gdtc);
1564
1565                        dirty = gdtc->wb_dirty;
1566                        thresh = gdtc->wb_thresh;
1567                        bg_thresh = gdtc->wb_bg_thresh;
1568                } else {
1569                        dirty = gdtc->dirty;
1570                        thresh = gdtc->thresh;
1571                        bg_thresh = gdtc->bg_thresh;
1572                }
1573
1574                if (mdtc) {
1575                        unsigned long filepages, headroom, writeback;
1576
1577                        /*
1578                         * If @wb belongs to !root memcg, repeat the same
1579                         * basic calculations for the memcg domain.
1580                         */
1581                        mem_cgroup_wb_stats(wb, &filepages, &headroom,
1582                                            &mdtc->dirty, &writeback);
1583                        mdtc->dirty += writeback;
1584                        mdtc_calc_avail(mdtc, filepages, headroom);
1585
1586                        domain_dirty_limits(mdtc);
1587
1588                        if (unlikely(strictlimit)) {
1589                                wb_dirty_limits(mdtc);
1590                                m_dirty = mdtc->wb_dirty;
1591                                m_thresh = mdtc->wb_thresh;
1592                                m_bg_thresh = mdtc->wb_bg_thresh;
1593                        } else {
1594                                m_dirty = mdtc->dirty;
1595                                m_thresh = mdtc->thresh;
1596                                m_bg_thresh = mdtc->bg_thresh;
1597                        }
1598                }
1599
1600                /*
1601                 * Throttle it only when the background writeback cannot
1602                 * catch-up. This avoids (excessively) small writeouts
1603                 * when the wb limits are ramping up in case of !strictlimit.
1604                 *
1605                 * In strictlimit case make decision based on the wb counters
1606                 * and limits. Small writeouts when the wb limits are ramping
1607                 * up are the price we consciously pay for strictlimit-ing.
1608                 *
1609                 * If memcg domain is in effect, @dirty should be under
1610                 * both global and memcg freerun ceilings.
1611                 */
1612                if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1613                    (!mdtc ||
1614                     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1615                        unsigned long intv = dirty_poll_interval(dirty, thresh);
1616                        unsigned long m_intv = ULONG_MAX;
1617
1618                        current->dirty_paused_when = now;
1619                        current->nr_dirtied = 0;
1620                        if (mdtc)
1621                                m_intv = dirty_poll_interval(m_dirty, m_thresh);
1622                        current->nr_dirtied_pause = min(intv, m_intv);
1623                        break;
1624                }
1625
1626                if (unlikely(!writeback_in_progress(wb)))
1627                        wb_start_background_writeback(wb);
1628
1629                /*
1630                 * Calculate global domain's pos_ratio and select the
1631                 * global dtc by default.
1632                 */
1633                if (!strictlimit)
1634                        wb_dirty_limits(gdtc);
1635
1636                dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1637                        ((gdtc->dirty > gdtc->thresh) || strictlimit);
1638
1639                wb_position_ratio(gdtc);
1640                sdtc = gdtc;
1641
1642                if (mdtc) {
1643                        /*
1644                         * If memcg domain is in effect, calculate its
1645                         * pos_ratio.  @wb should satisfy constraints from
1646                         * both global and memcg domains.  Choose the one
1647                         * w/ lower pos_ratio.
1648                         */
1649                        if (!strictlimit)
1650                                wb_dirty_limits(mdtc);
1651
1652                        dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1653                                ((mdtc->dirty > mdtc->thresh) || strictlimit);
1654
1655                        wb_position_ratio(mdtc);
1656                        if (mdtc->pos_ratio < gdtc->pos_ratio)
1657                                sdtc = mdtc;
1658                }
1659
1660                if (dirty_exceeded && !wb->dirty_exceeded)
1661                        wb->dirty_exceeded = 1;
1662
1663                if (time_is_before_jiffies(wb->bw_time_stamp +
1664                                           BANDWIDTH_INTERVAL)) {
1665                        spin_lock(&wb->list_lock);
1666                        __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1667                        spin_unlock(&wb->list_lock);
1668                }
1669
1670                /* throttle according to the chosen dtc */
1671                dirty_ratelimit = wb->dirty_ratelimit;
1672                task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1673                                                        RATELIMIT_CALC_SHIFT;
1674                max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1675                min_pause = wb_min_pause(wb, max_pause,
1676                                         task_ratelimit, dirty_ratelimit,
1677                                         &nr_dirtied_pause);
1678
1679                if (unlikely(task_ratelimit == 0)) {
1680                        period = max_pause;
1681                        pause = max_pause;
1682                        goto pause;
1683                }
1684                period = HZ * pages_dirtied / task_ratelimit;
1685                pause = period;
1686                if (current->dirty_paused_when)
1687                        pause -= now - current->dirty_paused_when;
1688                /*
1689                 * For less than 1s think time (ext3/4 may block the dirtier
1690                 * for up to 800ms from time to time on 1-HDD; so does xfs,
1691                 * however at much less frequency), try to compensate it in
1692                 * future periods by updating the virtual time; otherwise just
1693                 * do a reset, as it may be a light dirtier.
1694                 */
1695                if (pause < min_pause) {
1696                        trace_balance_dirty_pages(wb,
1697                                                  sdtc->thresh,
1698                                                  sdtc->bg_thresh,
1699                                                  sdtc->dirty,
1700                                                  sdtc->wb_thresh,
1701                                                  sdtc->wb_dirty,
1702                                                  dirty_ratelimit,
1703                                                  task_ratelimit,
1704                                                  pages_dirtied,
1705                                                  period,
1706                                                  min(pause, 0L),
1707                                                  start_time);
1708                        if (pause < -HZ) {
1709                                current->dirty_paused_when = now;
1710                                current->nr_dirtied = 0;
1711                        } else if (period) {
1712                                current->dirty_paused_when += period;
1713                                current->nr_dirtied = 0;
1714                        } else if (current->nr_dirtied_pause <= pages_dirtied)
1715                                current->nr_dirtied_pause += pages_dirtied;
1716                        break;
1717                }
1718                if (unlikely(pause > max_pause)) {
1719                        /* for occasional dropped task_ratelimit */
1720                        now += min(pause - max_pause, max_pause);
1721                        pause = max_pause;
1722                }
1723
1724pause:
1725                trace_balance_dirty_pages(wb,
1726                                          sdtc->thresh,
1727                                          sdtc->bg_thresh,
1728                                          sdtc->dirty,
1729                                          sdtc->wb_thresh,
1730                                          sdtc->wb_dirty,
1731                                          dirty_ratelimit,
1732                                          task_ratelimit,
1733                                          pages_dirtied,
1734                                          period,
1735                                          pause,
1736                                          start_time);
1737                __set_current_state(TASK_KILLABLE);
1738                io_schedule_timeout(pause);
1739
1740                current->dirty_paused_when = now + pause;
1741                current->nr_dirtied = 0;
1742                current->nr_dirtied_pause = nr_dirtied_pause;
1743
1744                /*
1745                 * This is typically equal to (dirty < thresh) and can also
1746                 * keep "1000+ dd on a slow USB stick" under control.
1747                 */
1748                if (task_ratelimit)
1749                        break;
1750
1751                /*
1752                 * In the case of an unresponding NFS server and the NFS dirty
1753                 * pages exceeds dirty_thresh, give the other good wb's a pipe
1754                 * to go through, so that tasks on them still remain responsive.
1755                 *
1756                 * In theory 1 page is enough to keep the comsumer-producer
1757                 * pipe going: the flusher cleans 1 page => the task dirties 1
1758                 * more page. However wb_dirty has accounting errors.  So use
1759                 * the larger and more IO friendly wb_stat_error.
1760                 */
1761                if (sdtc->wb_dirty <= wb_stat_error(wb))
1762                        break;
1763
1764                if (fatal_signal_pending(current))
1765                        break;
1766        }
1767
1768        if (!dirty_exceeded && wb->dirty_exceeded)
1769                wb->dirty_exceeded = 0;
1770
1771        if (writeback_in_progress(wb))
1772                return;
1773
1774        /*
1775         * In laptop mode, we wait until hitting the higher threshold before
1776         * starting background writeout, and then write out all the way down
1777         * to the lower threshold.  So slow writers cause minimal disk activity.
1778         *
1779         * In normal mode, we start background writeout at the lower
1780         * background_thresh, to keep the amount of dirty memory low.
1781         */
1782        if (laptop_mode)
1783                return;
1784
1785        if (nr_reclaimable > gdtc->bg_thresh)
1786                wb_start_background_writeback(wb);
1787}
1788
1789static DEFINE_PER_CPU(int, bdp_ratelimits);
1790
1791/*
1792 * Normal tasks are throttled by
1793 *      loop {
1794 *              dirty tsk->nr_dirtied_pause pages;
1795 *              take a snap in balance_dirty_pages();
1796 *      }
1797 * However there is a worst case. If every task exit immediately when dirtied
1798 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1799 * called to throttle the page dirties. The solution is to save the not yet
1800 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1801 * randomly into the running tasks. This works well for the above worst case,
1802 * as the new task will pick up and accumulate the old task's leaked dirty
1803 * count and eventually get throttled.
1804 */
1805DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1806
1807/**
1808 * balance_dirty_pages_ratelimited - balance dirty memory state
1809 * @mapping: address_space which was dirtied
1810 *
1811 * Processes which are dirtying memory should call in here once for each page
1812 * which was newly dirtied.  The function will periodically check the system's
1813 * dirty state and will initiate writeback if needed.
1814 *
1815 * On really big machines, get_writeback_state is expensive, so try to avoid
1816 * calling it too often (ratelimiting).  But once we're over the dirty memory
1817 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1818 * from overshooting the limit by (ratelimit_pages) each.
1819 */
1820void balance_dirty_pages_ratelimited(struct address_space *mapping)
1821{
1822        struct inode *inode = mapping->host;
1823        struct backing_dev_info *bdi = inode_to_bdi(inode);
1824        struct bdi_writeback *wb = NULL;
1825        int ratelimit;
1826        int *p;
1827
1828        if (!bdi_cap_account_dirty(bdi))
1829                return;
1830
1831        if (inode_cgwb_enabled(inode))
1832                wb = wb_get_create_current(bdi, GFP_KERNEL);
1833        if (!wb)
1834                wb = &bdi->wb;
1835
1836        ratelimit = current->nr_dirtied_pause;
1837        if (wb->dirty_exceeded)
1838                ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1839
1840        preempt_disable();
1841        /*
1842         * This prevents one CPU to accumulate too many dirtied pages without
1843         * calling into balance_dirty_pages(), which can happen when there are
1844         * 1000+ tasks, all of them start dirtying pages at exactly the same
1845         * time, hence all honoured too large initial task->nr_dirtied_pause.
1846         */
1847        p =  this_cpu_ptr(&bdp_ratelimits);
1848        if (unlikely(current->nr_dirtied >= ratelimit))
1849                *p = 0;
1850        else if (unlikely(*p >= ratelimit_pages)) {
1851                *p = 0;
1852                ratelimit = 0;
1853        }
1854        /*
1855         * Pick up the dirtied pages by the exited tasks. This avoids lots of
1856         * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1857         * the dirty throttling and livelock other long-run dirtiers.
1858         */
1859        p = this_cpu_ptr(&dirty_throttle_leaks);
1860        if (*p > 0 && current->nr_dirtied < ratelimit) {
1861                unsigned long nr_pages_dirtied;
1862                nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1863                *p -= nr_pages_dirtied;
1864                current->nr_dirtied += nr_pages_dirtied;
1865        }
1866        preempt_enable();
1867
1868        if (unlikely(current->nr_dirtied >= ratelimit))
1869                balance_dirty_pages(mapping, wb, current->nr_dirtied);
1870
1871        wb_put(wb);
1872}
1873EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1874
1875/**
1876 * wb_over_bg_thresh - does @wb need to be written back?
1877 * @wb: bdi_writeback of interest
1878 *
1879 * Determines whether background writeback should keep writing @wb or it's
1880 * clean enough.  Returns %true if writeback should continue.
1881 */
1882bool wb_over_bg_thresh(struct bdi_writeback *wb)
1883{
1884        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1885        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1886        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1887        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1888                                                     &mdtc_stor : NULL;
1889
1890        /*
1891         * Similar to balance_dirty_pages() but ignores pages being written
1892         * as we're trying to decide whether to put more under writeback.
1893         */
1894        gdtc->avail = global_dirtyable_memory();
1895        gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1896                      global_page_state(NR_UNSTABLE_NFS);
1897        domain_dirty_limits(gdtc);
1898
1899        if (gdtc->dirty > gdtc->bg_thresh)
1900                return true;
1901
1902        if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1903                return true;
1904
1905        if (mdtc) {
1906                unsigned long filepages, headroom, writeback;
1907
1908                mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1909                                    &writeback);
1910                mdtc_calc_avail(mdtc, filepages, headroom);
1911                domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1912
1913                if (mdtc->dirty > mdtc->bg_thresh)
1914                        return true;
1915
1916                if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
1917                        return true;
1918        }
1919
1920        return false;
1921}
1922
1923void throttle_vm_writeout(gfp_t gfp_mask)
1924{
1925        unsigned long background_thresh;
1926        unsigned long dirty_thresh;
1927
1928        for ( ; ; ) {
1929                global_dirty_limits(&background_thresh, &dirty_thresh);
1930                dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1931
1932                /*
1933                 * Boost the allowable dirty threshold a bit for page
1934                 * allocators so they don't get DoS'ed by heavy writers
1935                 */
1936                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1937
1938                if (global_page_state(NR_UNSTABLE_NFS) +
1939                        global_page_state(NR_WRITEBACK) <= dirty_thresh)
1940                                break;
1941                congestion_wait(BLK_RW_ASYNC, HZ/10);
1942
1943                /*
1944                 * The caller might hold locks which can prevent IO completion
1945                 * or progress in the filesystem.  So we cannot just sit here
1946                 * waiting for IO to complete.
1947                 */
1948                if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1949                        break;
1950        }
1951}
1952
1953/*
1954 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1955 */
1956int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1957        void __user *buffer, size_t *length, loff_t *ppos)
1958{
1959        proc_dointvec(table, write, buffer, length, ppos);
1960        return 0;
1961}
1962
1963#ifdef CONFIG_BLOCK
1964void laptop_mode_timer_fn(unsigned long data)
1965{
1966        struct request_queue *q = (struct request_queue *)data;
1967        int nr_pages = global_page_state(NR_FILE_DIRTY) +
1968                global_page_state(NR_UNSTABLE_NFS);
1969        struct bdi_writeback *wb;
1970
1971        /*
1972         * We want to write everything out, not just down to the dirty
1973         * threshold
1974         */
1975        if (!bdi_has_dirty_io(&q->backing_dev_info))
1976                return;
1977
1978        rcu_read_lock();
1979        list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1980                if (wb_has_dirty_io(wb))
1981                        wb_start_writeback(wb, nr_pages, true,
1982                                           WB_REASON_LAPTOP_TIMER);
1983        rcu_read_unlock();
1984}
1985
1986/*
1987 * We've spun up the disk and we're in laptop mode: schedule writeback
1988 * of all dirty data a few seconds from now.  If the flush is already scheduled
1989 * then push it back - the user is still using the disk.
1990 */
1991void laptop_io_completion(struct backing_dev_info *info)
1992{
1993        mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1994}
1995
1996/*
1997 * We're in laptop mode and we've just synced. The sync's writes will have
1998 * caused another writeback to be scheduled by laptop_io_completion.
1999 * Nothing needs to be written back anymore, so we unschedule the writeback.
2000 */
2001void laptop_sync_completion(void)
2002{
2003        struct backing_dev_info *bdi;
2004
2005        rcu_read_lock();
2006
2007        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2008                del_timer(&bdi->laptop_mode_wb_timer);
2009
2010        rcu_read_unlock();
2011}
2012#endif
2013
2014/*
2015 * If ratelimit_pages is too high then we can get into dirty-data overload
2016 * if a large number of processes all perform writes at the same time.
2017 * If it is too low then SMP machines will call the (expensive)
2018 * get_writeback_state too often.
2019 *
2020 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2021 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2022 * thresholds.
2023 */
2024
2025void writeback_set_ratelimit(void)
2026{
2027        struct wb_domain *dom = &global_wb_domain;
2028        unsigned long background_thresh;
2029        unsigned long dirty_thresh;
2030
2031        global_dirty_limits(&background_thresh, &dirty_thresh);
2032        dom->dirty_limit = dirty_thresh;
2033        ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2034        if (ratelimit_pages < 16)
2035                ratelimit_pages = 16;
2036}
2037
2038static int
2039ratelimit_handler(struct notifier_block *self, unsigned long action,
2040                  void *hcpu)
2041{
2042
2043        switch (action & ~CPU_TASKS_FROZEN) {
2044        case CPU_ONLINE:
2045        case CPU_DEAD:
2046                writeback_set_ratelimit();
2047                return NOTIFY_OK;
2048        default:
2049                return NOTIFY_DONE;
2050        }
2051}
2052
2053static struct notifier_block ratelimit_nb = {
2054        .notifier_call  = ratelimit_handler,
2055        .next           = NULL,
2056};
2057
2058/*
2059 * Called early on to tune the page writeback dirty limits.
2060 *
2061 * We used to scale dirty pages according to how total memory
2062 * related to pages that could be allocated for buffers (by
2063 * comparing nr_free_buffer_pages() to vm_total_pages.
2064 *
2065 * However, that was when we used "dirty_ratio" to scale with
2066 * all memory, and we don't do that any more. "dirty_ratio"
2067 * is now applied to total non-HIGHPAGE memory (by subtracting
2068 * totalhigh_pages from vm_total_pages), and as such we can't
2069 * get into the old insane situation any more where we had
2070 * large amounts of dirty pages compared to a small amount of
2071 * non-HIGHMEM memory.
2072 *
2073 * But we might still want to scale the dirty_ratio by how
2074 * much memory the box has..
2075 */
2076void __init page_writeback_init(void)
2077{
2078        BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2079
2080        writeback_set_ratelimit();
2081        register_cpu_notifier(&ratelimit_nb);
2082}
2083
2084/**
2085 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2086 * @mapping: address space structure to write
2087 * @start: starting page index
2088 * @end: ending page index (inclusive)
2089 *
2090 * This function scans the page range from @start to @end (inclusive) and tags
2091 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2092 * that write_cache_pages (or whoever calls this function) will then use
2093 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2094 * used to avoid livelocking of writeback by a process steadily creating new
2095 * dirty pages in the file (thus it is important for this function to be quick
2096 * so that it can tag pages faster than a dirtying process can create them).
2097 */
2098/*
2099 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2100 */
2101void tag_pages_for_writeback(struct address_space *mapping,
2102                             pgoff_t start, pgoff_t end)
2103{
2104#define WRITEBACK_TAG_BATCH 4096
2105        unsigned long tagged;
2106
2107        do {
2108                spin_lock_irq(&mapping->tree_lock);
2109                tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2110                                &start, end, WRITEBACK_TAG_BATCH,
2111                                PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2112                spin_unlock_irq(&mapping->tree_lock);
2113                WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2114                cond_resched();
2115                /* We check 'start' to handle wrapping when end == ~0UL */
2116        } while (tagged >= WRITEBACK_TAG_BATCH && start);
2117}
2118EXPORT_SYMBOL(tag_pages_for_writeback);
2119
2120/**
2121 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2122 * @mapping: address space structure to write
2123 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2124 * @writepage: function called for each page
2125 * @data: data passed to writepage function
2126 *
2127 * If a page is already under I/O, write_cache_pages() skips it, even
2128 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2129 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2130 * and msync() need to guarantee that all the data which was dirty at the time
2131 * the call was made get new I/O started against them.  If wbc->sync_mode is
2132 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2133 * existing IO to complete.
2134 *
2135 * To avoid livelocks (when other process dirties new pages), we first tag
2136 * pages which should be written back with TOWRITE tag and only then start
2137 * writing them. For data-integrity sync we have to be careful so that we do
2138 * not miss some pages (e.g., because some other process has cleared TOWRITE
2139 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2140 * by the process clearing the DIRTY tag (and submitting the page for IO).
2141 */
2142int write_cache_pages(struct address_space *mapping,
2143                      struct writeback_control *wbc, writepage_t writepage,
2144                      void *data)
2145{
2146        int ret = 0;
2147        int done = 0;
2148        struct pagevec pvec;
2149        int nr_pages;
2150        pgoff_t uninitialized_var(writeback_index);
2151        pgoff_t index;
2152        pgoff_t end;            /* Inclusive */
2153        pgoff_t done_index;
2154        int cycled;
2155        int range_whole = 0;
2156        int tag;
2157
2158        pagevec_init(&pvec, 0);
2159        if (wbc->range_cyclic) {
2160                writeback_index = mapping->writeback_index; /* prev offset */
2161                index = writeback_index;
2162                if (index == 0)
2163                        cycled = 1;
2164                else
2165                        cycled = 0;
2166                end = -1;
2167        } else {
2168                index = wbc->range_start >> PAGE_CACHE_SHIFT;
2169                end = wbc->range_end >> PAGE_CACHE_SHIFT;
2170                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2171                        range_whole = 1;
2172                cycled = 1; /* ignore range_cyclic tests */
2173        }
2174        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2175                tag = PAGECACHE_TAG_TOWRITE;
2176        else
2177                tag = PAGECACHE_TAG_DIRTY;
2178retry:
2179        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2180                tag_pages_for_writeback(mapping, index, end);
2181        done_index = index;
2182        while (!done && (index <= end)) {
2183                int i;
2184
2185                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2186                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2187                if (nr_pages == 0)
2188                        break;
2189
2190                for (i = 0; i < nr_pages; i++) {
2191                        struct page *page = pvec.pages[i];
2192
2193                        /*
2194                         * At this point, the page may be truncated or
2195                         * invalidated (changing page->mapping to NULL), or
2196                         * even swizzled back from swapper_space to tmpfs file
2197                         * mapping. However, page->index will not change
2198                         * because we have a reference on the page.
2199                         */
2200                        if (page->index > end) {
2201                                /*
2202                                 * can't be range_cyclic (1st pass) because
2203                                 * end == -1 in that case.
2204                                 */
2205                                done = 1;
2206                                break;
2207                        }
2208
2209                        done_index = page->index;
2210
2211                        lock_page(page);
2212
2213                        /*
2214                         * Page truncated or invalidated. We can freely skip it
2215                         * then, even for data integrity operations: the page
2216                         * has disappeared concurrently, so there could be no
2217                         * real expectation of this data interity operation
2218                         * even if there is now a new, dirty page at the same
2219                         * pagecache address.
2220                         */
2221                        if (unlikely(page->mapping != mapping)) {
2222continue_unlock:
2223                                unlock_page(page);
2224                                continue;
2225                        }
2226
2227                        if (!PageDirty(page)) {
2228                                /* someone wrote it for us */
2229                                goto continue_unlock;
2230                        }
2231
2232                        if (PageWriteback(page)) {
2233                                if (wbc->sync_mode != WB_SYNC_NONE)
2234                                        wait_on_page_writeback(page);
2235                                else
2236                                        goto continue_unlock;
2237                        }
2238
2239                        BUG_ON(PageWriteback(page));
2240                        if (!clear_page_dirty_for_io(page))
2241                                goto continue_unlock;
2242
2243                        trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2244                        ret = (*writepage)(page, wbc, data);
2245                        if (unlikely(ret)) {
2246                                if (ret == AOP_WRITEPAGE_ACTIVATE) {
2247                                        unlock_page(page);
2248                                        ret = 0;
2249                                } else {
2250                                        /*
2251                                         * done_index is set past this page,
2252                                         * so media errors will not choke
2253                                         * background writeout for the entire
2254                                         * file. This has consequences for
2255                                         * range_cyclic semantics (ie. it may
2256                                         * not be suitable for data integrity
2257                                         * writeout).
2258                                         */
2259                                        done_index = page->index + 1;
2260                                        done = 1;
2261                                        break;
2262                                }
2263                        }
2264
2265                        /*
2266                         * We stop writing back only if we are not doing
2267                         * integrity sync. In case of integrity sync we have to
2268                         * keep going until we have written all the pages
2269                         * we tagged for writeback prior to entering this loop.
2270                         */
2271                        if (--wbc->nr_to_write <= 0 &&
2272                            wbc->sync_mode == WB_SYNC_NONE) {
2273                                done = 1;
2274                                break;
2275                        }
2276                }
2277                pagevec_release(&pvec);
2278                cond_resched();
2279        }
2280        if (!cycled && !done) {
2281                /*
2282                 * range_cyclic:
2283                 * We hit the last page and there is more work to be done: wrap
2284                 * back to the start of the file
2285                 */
2286                cycled = 1;
2287                index = 0;
2288                end = writeback_index - 1;
2289                goto retry;
2290        }
2291        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2292                mapping->writeback_index = done_index;
2293
2294        return ret;
2295}
2296EXPORT_SYMBOL(write_cache_pages);
2297
2298/*
2299 * Function used by generic_writepages to call the real writepage
2300 * function and set the mapping flags on error
2301 */
2302static int __writepage(struct page *page, struct writeback_control *wbc,
2303                       void *data)
2304{
2305        struct address_space *mapping = data;
2306        int ret = mapping->a_ops->writepage(page, wbc);
2307        mapping_set_error(mapping, ret);
2308        return ret;
2309}
2310
2311/**
2312 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2313 * @mapping: address space structure to write
2314 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2315 *
2316 * This is a library function, which implements the writepages()
2317 * address_space_operation.
2318 */
2319int generic_writepages(struct address_space *mapping,
2320                       struct writeback_control *wbc)
2321{
2322        struct blk_plug plug;
2323        int ret;
2324
2325        /* deal with chardevs and other special file */
2326        if (!mapping->a_ops->writepage)
2327                return 0;
2328
2329        blk_start_plug(&plug);
2330        ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2331        blk_finish_plug(&plug);
2332        return ret;
2333}
2334
2335EXPORT_SYMBOL(generic_writepages);
2336
2337int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2338{
2339        int ret;
2340
2341        if (wbc->nr_to_write <= 0)
2342                return 0;
2343        if (mapping->a_ops->writepages)
2344                ret = mapping->a_ops->writepages(mapping, wbc);
2345        else
2346                ret = generic_writepages(mapping, wbc);
2347        return ret;
2348}
2349
2350/**
2351 * write_one_page - write out a single page and optionally wait on I/O
2352 * @page: the page to write
2353 * @wait: if true, wait on writeout
2354 *
2355 * The page must be locked by the caller and will be unlocked upon return.
2356 *
2357 * write_one_page() returns a negative error code if I/O failed.
2358 */
2359int write_one_page(struct page *page, int wait)
2360{
2361        struct address_space *mapping = page->mapping;
2362        int ret = 0;
2363        struct writeback_control wbc = {
2364                .sync_mode = WB_SYNC_ALL,
2365                .nr_to_write = 1,
2366        };
2367
2368        BUG_ON(!PageLocked(page));
2369
2370        if (wait)
2371                wait_on_page_writeback(page);
2372
2373        if (clear_page_dirty_for_io(page)) {
2374                page_cache_get(page);
2375                ret = mapping->a_ops->writepage(page, &wbc);
2376                if (ret == 0 && wait) {
2377                        wait_on_page_writeback(page);
2378                        if (PageError(page))
2379                                ret = -EIO;
2380                }
2381                page_cache_release(page);
2382        } else {
2383                unlock_page(page);
2384        }
2385        return ret;
2386}
2387EXPORT_SYMBOL(write_one_page);
2388
2389/*
2390 * For address_spaces which do not use buffers nor write back.
2391 */
2392int __set_page_dirty_no_writeback(struct page *page)
2393{
2394        if (!PageDirty(page))
2395                return !TestSetPageDirty(page);
2396        return 0;
2397}
2398
2399/*
2400 * Helper function for set_page_dirty family.
2401 *
2402 * Caller must hold mem_cgroup_begin_page_stat().
2403 *
2404 * NOTE: This relies on being atomic wrt interrupts.
2405 */
2406void account_page_dirtied(struct page *page, struct address_space *mapping,
2407                          struct mem_cgroup *memcg)
2408{
2409        struct inode *inode = mapping->host;
2410
2411        trace_writeback_dirty_page(page, mapping);
2412
2413        if (mapping_cap_account_dirty(mapping)) {
2414                struct bdi_writeback *wb;
2415
2416                inode_attach_wb(inode, page);
2417                wb = inode_to_wb(inode);
2418
2419                mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2420                __inc_zone_page_state(page, NR_FILE_DIRTY);
2421                __inc_zone_page_state(page, NR_DIRTIED);
2422                __inc_wb_stat(wb, WB_RECLAIMABLE);
2423                __inc_wb_stat(wb, WB_DIRTIED);
2424                task_io_account_write(PAGE_CACHE_SIZE);
2425                current->nr_dirtied++;
2426                this_cpu_inc(bdp_ratelimits);
2427        }
2428}
2429EXPORT_SYMBOL(account_page_dirtied);
2430
2431/*
2432 * Helper function for deaccounting dirty page without writeback.
2433 *
2434 * Caller must hold mem_cgroup_begin_page_stat().
2435 */
2436void account_page_cleaned(struct page *page, struct address_space *mapping,
2437                          struct mem_cgroup *memcg, struct bdi_writeback *wb)
2438{
2439        if (mapping_cap_account_dirty(mapping)) {
2440                mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2441                dec_zone_page_state(page, NR_FILE_DIRTY);
2442                dec_wb_stat(wb, WB_RECLAIMABLE);
2443                task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2444        }
2445}
2446
2447/*
2448 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2449 * its radix tree.
2450 *
2451 * This is also used when a single buffer is being dirtied: we want to set the
2452 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2453 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2454 *
2455 * The caller must ensure this doesn't race with truncation.  Most will simply
2456 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2457 * the pte lock held, which also locks out truncation.
2458 */
2459int __set_page_dirty_nobuffers(struct page *page)
2460{
2461        struct mem_cgroup *memcg;
2462
2463        memcg = mem_cgroup_begin_page_stat(page);
2464        if (!TestSetPageDirty(page)) {
2465                struct address_space *mapping = page_mapping(page);
2466                unsigned long flags;
2467
2468                if (!mapping) {
2469                        mem_cgroup_end_page_stat(memcg);
2470                        return 1;
2471                }
2472
2473                spin_lock_irqsave(&mapping->tree_lock, flags);
2474                BUG_ON(page_mapping(page) != mapping);
2475                WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2476                account_page_dirtied(page, mapping, memcg);
2477                radix_tree_tag_set(&mapping->page_tree, page_index(page),
2478                                   PAGECACHE_TAG_DIRTY);
2479                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2480                mem_cgroup_end_page_stat(memcg);
2481
2482                if (mapping->host) {
2483                        /* !PageAnon && !swapper_space */
2484                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2485                }
2486                return 1;
2487        }
2488        mem_cgroup_end_page_stat(memcg);
2489        return 0;
2490}
2491EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2492
2493/*
2494 * Call this whenever redirtying a page, to de-account the dirty counters
2495 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2496 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2497 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2498 * control.
2499 */
2500void account_page_redirty(struct page *page)
2501{
2502        struct address_space *mapping = page->mapping;
2503
2504        if (mapping && mapping_cap_account_dirty(mapping)) {
2505                struct inode *inode = mapping->host;
2506                struct bdi_writeback *wb;
2507                bool locked;
2508
2509                wb = unlocked_inode_to_wb_begin(inode, &locked);
2510                current->nr_dirtied--;
2511                dec_zone_page_state(page, NR_DIRTIED);
2512                dec_wb_stat(wb, WB_DIRTIED);
2513                unlocked_inode_to_wb_end(inode, locked);
2514        }
2515}
2516EXPORT_SYMBOL(account_page_redirty);
2517
2518/*
2519 * When a writepage implementation decides that it doesn't want to write this
2520 * page for some reason, it should redirty the locked page via
2521 * redirty_page_for_writepage() and it should then unlock the page and return 0
2522 */
2523int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2524{
2525        int ret;
2526
2527        wbc->pages_skipped++;
2528        ret = __set_page_dirty_nobuffers(page);
2529        account_page_redirty(page);
2530        return ret;
2531}
2532EXPORT_SYMBOL(redirty_page_for_writepage);
2533
2534/*
2535 * Dirty a page.
2536 *
2537 * For pages with a mapping this should be done under the page lock
2538 * for the benefit of asynchronous memory errors who prefer a consistent
2539 * dirty state. This rule can be broken in some special cases,
2540 * but should be better not to.
2541 *
2542 * If the mapping doesn't provide a set_page_dirty a_op, then
2543 * just fall through and assume that it wants buffer_heads.
2544 */
2545int set_page_dirty(struct page *page)
2546{
2547        struct address_space *mapping = page_mapping(page);
2548
2549        if (likely(mapping)) {
2550                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2551                /*
2552                 * readahead/lru_deactivate_page could remain
2553                 * PG_readahead/PG_reclaim due to race with end_page_writeback
2554                 * About readahead, if the page is written, the flags would be
2555                 * reset. So no problem.
2556                 * About lru_deactivate_page, if the page is redirty, the flag
2557                 * will be reset. So no problem. but if the page is used by readahead
2558                 * it will confuse readahead and make it restart the size rampup
2559                 * process. But it's a trivial problem.
2560                 */
2561                if (PageReclaim(page))
2562                        ClearPageReclaim(page);
2563#ifdef CONFIG_BLOCK
2564                if (!spd)
2565                        spd = __set_page_dirty_buffers;
2566#endif
2567                return (*spd)(page);
2568        }
2569        if (!PageDirty(page)) {
2570                if (!TestSetPageDirty(page))
2571                        return 1;
2572        }
2573        return 0;
2574}
2575EXPORT_SYMBOL(set_page_dirty);
2576
2577/*
2578 * set_page_dirty() is racy if the caller has no reference against
2579 * page->mapping->host, and if the page is unlocked.  This is because another
2580 * CPU could truncate the page off the mapping and then free the mapping.
2581 *
2582 * Usually, the page _is_ locked, or the caller is a user-space process which
2583 * holds a reference on the inode by having an open file.
2584 *
2585 * In other cases, the page should be locked before running set_page_dirty().
2586 */
2587int set_page_dirty_lock(struct page *page)
2588{
2589        int ret;
2590
2591        lock_page(page);
2592        ret = set_page_dirty(page);
2593        unlock_page(page);
2594        return ret;
2595}
2596EXPORT_SYMBOL(set_page_dirty_lock);
2597
2598/*
2599 * This cancels just the dirty bit on the kernel page itself, it does NOT
2600 * actually remove dirty bits on any mmap's that may be around. It also
2601 * leaves the page tagged dirty, so any sync activity will still find it on
2602 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2603 * look at the dirty bits in the VM.
2604 *
2605 * Doing this should *normally* only ever be done when a page is truncated,
2606 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2607 * this when it notices that somebody has cleaned out all the buffers on a
2608 * page without actually doing it through the VM. Can you say "ext3 is
2609 * horribly ugly"? Thought you could.
2610 */
2611void cancel_dirty_page(struct page *page)
2612{
2613        struct address_space *mapping = page_mapping(page);
2614
2615        if (mapping_cap_account_dirty(mapping)) {
2616                struct inode *inode = mapping->host;
2617                struct bdi_writeback *wb;
2618                struct mem_cgroup *memcg;
2619                bool locked;
2620
2621                memcg = mem_cgroup_begin_page_stat(page);
2622                wb = unlocked_inode_to_wb_begin(inode, &locked);
2623
2624                if (TestClearPageDirty(page))
2625                        account_page_cleaned(page, mapping, memcg, wb);
2626
2627                unlocked_inode_to_wb_end(inode, locked);
2628                mem_cgroup_end_page_stat(memcg);
2629        } else {
2630                ClearPageDirty(page);
2631        }
2632}
2633EXPORT_SYMBOL(cancel_dirty_page);
2634
2635/*
2636 * Clear a page's dirty flag, while caring for dirty memory accounting.
2637 * Returns true if the page was previously dirty.
2638 *
2639 * This is for preparing to put the page under writeout.  We leave the page
2640 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2641 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2642 * implementation will run either set_page_writeback() or set_page_dirty(),
2643 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2644 * back into sync.
2645 *
2646 * This incoherency between the page's dirty flag and radix-tree tag is
2647 * unfortunate, but it only exists while the page is locked.
2648 */
2649int clear_page_dirty_for_io(struct page *page)
2650{
2651        struct address_space *mapping = page_mapping(page);
2652        int ret = 0;
2653
2654        BUG_ON(!PageLocked(page));
2655
2656        if (mapping && mapping_cap_account_dirty(mapping)) {
2657                struct inode *inode = mapping->host;
2658                struct bdi_writeback *wb;
2659                struct mem_cgroup *memcg;
2660                bool locked;
2661
2662                /*
2663                 * Yes, Virginia, this is indeed insane.
2664                 *
2665                 * We use this sequence to make sure that
2666                 *  (a) we account for dirty stats properly
2667                 *  (b) we tell the low-level filesystem to
2668                 *      mark the whole page dirty if it was
2669                 *      dirty in a pagetable. Only to then
2670                 *  (c) clean the page again and return 1 to
2671                 *      cause the writeback.
2672                 *
2673                 * This way we avoid all nasty races with the
2674                 * dirty bit in multiple places and clearing
2675                 * them concurrently from different threads.
2676                 *
2677                 * Note! Normally the "set_page_dirty(page)"
2678                 * has no effect on the actual dirty bit - since
2679                 * that will already usually be set. But we
2680                 * need the side effects, and it can help us
2681                 * avoid races.
2682                 *
2683                 * We basically use the page "master dirty bit"
2684                 * as a serialization point for all the different
2685                 * threads doing their things.
2686                 */
2687                if (page_mkclean(page))
2688                        set_page_dirty(page);
2689                /*
2690                 * We carefully synchronise fault handlers against
2691                 * installing a dirty pte and marking the page dirty
2692                 * at this point.  We do this by having them hold the
2693                 * page lock while dirtying the page, and pages are
2694                 * always locked coming in here, so we get the desired
2695                 * exclusion.
2696                 */
2697                memcg = mem_cgroup_begin_page_stat(page);
2698                wb = unlocked_inode_to_wb_begin(inode, &locked);
2699                if (TestClearPageDirty(page)) {
2700                        mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2701                        dec_zone_page_state(page, NR_FILE_DIRTY);
2702                        dec_wb_stat(wb, WB_RECLAIMABLE);
2703                        ret = 1;
2704                }
2705                unlocked_inode_to_wb_end(inode, locked);
2706                mem_cgroup_end_page_stat(memcg);
2707                return ret;
2708        }
2709        return TestClearPageDirty(page);
2710}
2711EXPORT_SYMBOL(clear_page_dirty_for_io);
2712
2713int test_clear_page_writeback(struct page *page)
2714{
2715        struct address_space *mapping = page_mapping(page);
2716        struct mem_cgroup *memcg;
2717        int ret;
2718
2719        memcg = mem_cgroup_begin_page_stat(page);
2720        if (mapping) {
2721                struct inode *inode = mapping->host;
2722                struct backing_dev_info *bdi = inode_to_bdi(inode);
2723                unsigned long flags;
2724
2725                spin_lock_irqsave(&mapping->tree_lock, flags);
2726                ret = TestClearPageWriteback(page);
2727                if (ret) {
2728                        radix_tree_tag_clear(&mapping->page_tree,
2729                                                page_index(page),
2730                                                PAGECACHE_TAG_WRITEBACK);
2731                        if (bdi_cap_account_writeback(bdi)) {
2732                                struct bdi_writeback *wb = inode_to_wb(inode);
2733
2734                                __dec_wb_stat(wb, WB_WRITEBACK);
2735                                __wb_writeout_inc(wb);
2736                        }
2737                }
2738                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2739        } else {
2740                ret = TestClearPageWriteback(page);
2741        }
2742        if (ret) {
2743                mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2744                dec_zone_page_state(page, NR_WRITEBACK);
2745                inc_zone_page_state(page, NR_WRITTEN);
2746        }
2747        mem_cgroup_end_page_stat(memcg);
2748        return ret;
2749}
2750
2751int __test_set_page_writeback(struct page *page, bool keep_write)
2752{
2753        struct address_space *mapping = page_mapping(page);
2754        struct mem_cgroup *memcg;
2755        int ret;
2756
2757        memcg = mem_cgroup_begin_page_stat(page);
2758        if (mapping) {
2759                struct inode *inode = mapping->host;
2760                struct backing_dev_info *bdi = inode_to_bdi(inode);
2761                unsigned long flags;
2762
2763                spin_lock_irqsave(&mapping->tree_lock, flags);
2764                ret = TestSetPageWriteback(page);
2765                if (!ret) {
2766                        radix_tree_tag_set(&mapping->page_tree,
2767                                                page_index(page),
2768                                                PAGECACHE_TAG_WRITEBACK);
2769                        if (bdi_cap_account_writeback(bdi))
2770                                __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2771                }
2772                if (!PageDirty(page))
2773                        radix_tree_tag_clear(&mapping->page_tree,
2774                                                page_index(page),
2775                                                PAGECACHE_TAG_DIRTY);
2776                if (!keep_write)
2777                        radix_tree_tag_clear(&mapping->page_tree,
2778                                                page_index(page),
2779                                                PAGECACHE_TAG_TOWRITE);
2780                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2781        } else {
2782                ret = TestSetPageWriteback(page);
2783        }
2784        if (!ret) {
2785                mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2786                inc_zone_page_state(page, NR_WRITEBACK);
2787        }
2788        mem_cgroup_end_page_stat(memcg);
2789        return ret;
2790
2791}
2792EXPORT_SYMBOL(__test_set_page_writeback);
2793
2794/*
2795 * Return true if any of the pages in the mapping are marked with the
2796 * passed tag.
2797 */
2798int mapping_tagged(struct address_space *mapping, int tag)
2799{
2800        return radix_tree_tagged(&mapping->page_tree, tag);
2801}
2802EXPORT_SYMBOL(mapping_tagged);
2803
2804/**
2805 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2806 * @page:       The page to wait on.
2807 *
2808 * This function determines if the given page is related to a backing device
2809 * that requires page contents to be held stable during writeback.  If so, then
2810 * it will wait for any pending writeback to complete.
2811 */
2812void wait_for_stable_page(struct page *page)
2813{
2814        if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2815                wait_on_page_writeback(page);
2816}
2817EXPORT_SYMBOL_GPL(wait_for_stable_page);
2818