linux/mm/truncate.c
<<
>>
Prefs
   1/*
   2 * mm/truncate.c - code for taking down pages from address_spaces
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 10Sep2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/backing-dev.h>
  12#include <linux/gfp.h>
  13#include <linux/mm.h>
  14#include <linux/swap.h>
  15#include <linux/export.h>
  16#include <linux/pagemap.h>
  17#include <linux/highmem.h>
  18#include <linux/pagevec.h>
  19#include <linux/task_io_accounting_ops.h>
  20#include <linux/buffer_head.h>  /* grr. try_to_release_page,
  21                                   do_invalidatepage */
  22#include <linux/cleancache.h>
  23#include <linux/rmap.h>
  24#include "internal.h"
  25
  26static void clear_exceptional_entry(struct address_space *mapping,
  27                                    pgoff_t index, void *entry)
  28{
  29        struct radix_tree_node *node;
  30        void **slot;
  31
  32        /* Handled by shmem itself */
  33        if (shmem_mapping(mapping))
  34                return;
  35
  36        spin_lock_irq(&mapping->tree_lock);
  37        /*
  38         * Regular page slots are stabilized by the page lock even
  39         * without the tree itself locked.  These unlocked entries
  40         * need verification under the tree lock.
  41         */
  42        if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
  43                goto unlock;
  44        if (*slot != entry)
  45                goto unlock;
  46        radix_tree_replace_slot(slot, NULL);
  47        mapping->nrshadows--;
  48        if (!node)
  49                goto unlock;
  50        workingset_node_shadows_dec(node);
  51        /*
  52         * Don't track node without shadow entries.
  53         *
  54         * Avoid acquiring the list_lru lock if already untracked.
  55         * The list_empty() test is safe as node->private_list is
  56         * protected by mapping->tree_lock.
  57         */
  58        if (!workingset_node_shadows(node) &&
  59            !list_empty(&node->private_list))
  60                list_lru_del(&workingset_shadow_nodes, &node->private_list);
  61        __radix_tree_delete_node(&mapping->page_tree, node);
  62unlock:
  63        spin_unlock_irq(&mapping->tree_lock);
  64}
  65
  66/**
  67 * do_invalidatepage - invalidate part or all of a page
  68 * @page: the page which is affected
  69 * @offset: start of the range to invalidate
  70 * @length: length of the range to invalidate
  71 *
  72 * do_invalidatepage() is called when all or part of the page has become
  73 * invalidated by a truncate operation.
  74 *
  75 * do_invalidatepage() does not have to release all buffers, but it must
  76 * ensure that no dirty buffer is left outside @offset and that no I/O
  77 * is underway against any of the blocks which are outside the truncation
  78 * point.  Because the caller is about to free (and possibly reuse) those
  79 * blocks on-disk.
  80 */
  81void do_invalidatepage(struct page *page, unsigned int offset,
  82                       unsigned int length)
  83{
  84        void (*invalidatepage)(struct page *, unsigned int, unsigned int);
  85
  86        invalidatepage = page->mapping->a_ops->invalidatepage;
  87#ifdef CONFIG_BLOCK
  88        if (!invalidatepage)
  89                invalidatepage = block_invalidatepage;
  90#endif
  91        if (invalidatepage)
  92                (*invalidatepage)(page, offset, length);
  93}
  94
  95/*
  96 * If truncate cannot remove the fs-private metadata from the page, the page
  97 * becomes orphaned.  It will be left on the LRU and may even be mapped into
  98 * user pagetables if we're racing with filemap_fault().
  99 *
 100 * We need to bale out if page->mapping is no longer equal to the original
 101 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 102 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 103 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 104 */
 105static int
 106truncate_complete_page(struct address_space *mapping, struct page *page)
 107{
 108        if (page->mapping != mapping)
 109                return -EIO;
 110
 111        if (page_has_private(page))
 112                do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
 113
 114        /*
 115         * Some filesystems seem to re-dirty the page even after
 116         * the VM has canceled the dirty bit (eg ext3 journaling).
 117         * Hence dirty accounting check is placed after invalidation.
 118         */
 119        cancel_dirty_page(page);
 120        ClearPageMappedToDisk(page);
 121        delete_from_page_cache(page);
 122        return 0;
 123}
 124
 125/*
 126 * This is for invalidate_mapping_pages().  That function can be called at
 127 * any time, and is not supposed to throw away dirty pages.  But pages can
 128 * be marked dirty at any time too, so use remove_mapping which safely
 129 * discards clean, unused pages.
 130 *
 131 * Returns non-zero if the page was successfully invalidated.
 132 */
 133static int
 134invalidate_complete_page(struct address_space *mapping, struct page *page)
 135{
 136        int ret;
 137
 138        if (page->mapping != mapping)
 139                return 0;
 140
 141        if (page_has_private(page) && !try_to_release_page(page, 0))
 142                return 0;
 143
 144        ret = remove_mapping(mapping, page);
 145
 146        return ret;
 147}
 148
 149int truncate_inode_page(struct address_space *mapping, struct page *page)
 150{
 151        if (page_mapped(page)) {
 152                unmap_mapping_range(mapping,
 153                                   (loff_t)page->index << PAGE_CACHE_SHIFT,
 154                                   PAGE_CACHE_SIZE, 0);
 155        }
 156        return truncate_complete_page(mapping, page);
 157}
 158
 159/*
 160 * Used to get rid of pages on hardware memory corruption.
 161 */
 162int generic_error_remove_page(struct address_space *mapping, struct page *page)
 163{
 164        if (!mapping)
 165                return -EINVAL;
 166        /*
 167         * Only punch for normal data pages for now.
 168         * Handling other types like directories would need more auditing.
 169         */
 170        if (!S_ISREG(mapping->host->i_mode))
 171                return -EIO;
 172        return truncate_inode_page(mapping, page);
 173}
 174EXPORT_SYMBOL(generic_error_remove_page);
 175
 176/*
 177 * Safely invalidate one page from its pagecache mapping.
 178 * It only drops clean, unused pages. The page must be locked.
 179 *
 180 * Returns 1 if the page is successfully invalidated, otherwise 0.
 181 */
 182int invalidate_inode_page(struct page *page)
 183{
 184        struct address_space *mapping = page_mapping(page);
 185        if (!mapping)
 186                return 0;
 187        if (PageDirty(page) || PageWriteback(page))
 188                return 0;
 189        if (page_mapped(page))
 190                return 0;
 191        return invalidate_complete_page(mapping, page);
 192}
 193
 194/**
 195 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
 196 * @mapping: mapping to truncate
 197 * @lstart: offset from which to truncate
 198 * @lend: offset to which to truncate (inclusive)
 199 *
 200 * Truncate the page cache, removing the pages that are between
 201 * specified offsets (and zeroing out partial pages
 202 * if lstart or lend + 1 is not page aligned).
 203 *
 204 * Truncate takes two passes - the first pass is nonblocking.  It will not
 205 * block on page locks and it will not block on writeback.  The second pass
 206 * will wait.  This is to prevent as much IO as possible in the affected region.
 207 * The first pass will remove most pages, so the search cost of the second pass
 208 * is low.
 209 *
 210 * We pass down the cache-hot hint to the page freeing code.  Even if the
 211 * mapping is large, it is probably the case that the final pages are the most
 212 * recently touched, and freeing happens in ascending file offset order.
 213 *
 214 * Note that since ->invalidatepage() accepts range to invalidate
 215 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
 216 * page aligned properly.
 217 */
 218void truncate_inode_pages_range(struct address_space *mapping,
 219                                loff_t lstart, loff_t lend)
 220{
 221        pgoff_t         start;          /* inclusive */
 222        pgoff_t         end;            /* exclusive */
 223        unsigned int    partial_start;  /* inclusive */
 224        unsigned int    partial_end;    /* exclusive */
 225        struct pagevec  pvec;
 226        pgoff_t         indices[PAGEVEC_SIZE];
 227        pgoff_t         index;
 228        int             i;
 229
 230        cleancache_invalidate_inode(mapping);
 231        if (mapping->nrpages == 0 && mapping->nrshadows == 0)
 232                return;
 233
 234        /* Offsets within partial pages */
 235        partial_start = lstart & (PAGE_CACHE_SIZE - 1);
 236        partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
 237
 238        /*
 239         * 'start' and 'end' always covers the range of pages to be fully
 240         * truncated. Partial pages are covered with 'partial_start' at the
 241         * start of the range and 'partial_end' at the end of the range.
 242         * Note that 'end' is exclusive while 'lend' is inclusive.
 243         */
 244        start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 245        if (lend == -1)
 246                /*
 247                 * lend == -1 indicates end-of-file so we have to set 'end'
 248                 * to the highest possible pgoff_t and since the type is
 249                 * unsigned we're using -1.
 250                 */
 251                end = -1;
 252        else
 253                end = (lend + 1) >> PAGE_CACHE_SHIFT;
 254
 255        pagevec_init(&pvec, 0);
 256        index = start;
 257        while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
 258                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 259                        indices)) {
 260                for (i = 0; i < pagevec_count(&pvec); i++) {
 261                        struct page *page = pvec.pages[i];
 262
 263                        /* We rely upon deletion not changing page->index */
 264                        index = indices[i];
 265                        if (index >= end)
 266                                break;
 267
 268                        if (radix_tree_exceptional_entry(page)) {
 269                                clear_exceptional_entry(mapping, index, page);
 270                                continue;
 271                        }
 272
 273                        if (!trylock_page(page))
 274                                continue;
 275                        WARN_ON(page->index != index);
 276                        if (PageWriteback(page)) {
 277                                unlock_page(page);
 278                                continue;
 279                        }
 280                        truncate_inode_page(mapping, page);
 281                        unlock_page(page);
 282                }
 283                pagevec_remove_exceptionals(&pvec);
 284                pagevec_release(&pvec);
 285                cond_resched();
 286                index++;
 287        }
 288
 289        if (partial_start) {
 290                struct page *page = find_lock_page(mapping, start - 1);
 291                if (page) {
 292                        unsigned int top = PAGE_CACHE_SIZE;
 293                        if (start > end) {
 294                                /* Truncation within a single page */
 295                                top = partial_end;
 296                                partial_end = 0;
 297                        }
 298                        wait_on_page_writeback(page);
 299                        zero_user_segment(page, partial_start, top);
 300                        cleancache_invalidate_page(mapping, page);
 301                        if (page_has_private(page))
 302                                do_invalidatepage(page, partial_start,
 303                                                  top - partial_start);
 304                        unlock_page(page);
 305                        page_cache_release(page);
 306                }
 307        }
 308        if (partial_end) {
 309                struct page *page = find_lock_page(mapping, end);
 310                if (page) {
 311                        wait_on_page_writeback(page);
 312                        zero_user_segment(page, 0, partial_end);
 313                        cleancache_invalidate_page(mapping, page);
 314                        if (page_has_private(page))
 315                                do_invalidatepage(page, 0,
 316                                                  partial_end);
 317                        unlock_page(page);
 318                        page_cache_release(page);
 319                }
 320        }
 321        /*
 322         * If the truncation happened within a single page no pages
 323         * will be released, just zeroed, so we can bail out now.
 324         */
 325        if (start >= end)
 326                return;
 327
 328        index = start;
 329        for ( ; ; ) {
 330                cond_resched();
 331                if (!pagevec_lookup_entries(&pvec, mapping, index,
 332                        min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
 333                        /* If all gone from start onwards, we're done */
 334                        if (index == start)
 335                                break;
 336                        /* Otherwise restart to make sure all gone */
 337                        index = start;
 338                        continue;
 339                }
 340                if (index == start && indices[0] >= end) {
 341                        /* All gone out of hole to be punched, we're done */
 342                        pagevec_remove_exceptionals(&pvec);
 343                        pagevec_release(&pvec);
 344                        break;
 345                }
 346                for (i = 0; i < pagevec_count(&pvec); i++) {
 347                        struct page *page = pvec.pages[i];
 348
 349                        /* We rely upon deletion not changing page->index */
 350                        index = indices[i];
 351                        if (index >= end) {
 352                                /* Restart punch to make sure all gone */
 353                                index = start - 1;
 354                                break;
 355                        }
 356
 357                        if (radix_tree_exceptional_entry(page)) {
 358                                clear_exceptional_entry(mapping, index, page);
 359                                continue;
 360                        }
 361
 362                        lock_page(page);
 363                        WARN_ON(page->index != index);
 364                        wait_on_page_writeback(page);
 365                        truncate_inode_page(mapping, page);
 366                        unlock_page(page);
 367                }
 368                pagevec_remove_exceptionals(&pvec);
 369                pagevec_release(&pvec);
 370                index++;
 371        }
 372        cleancache_invalidate_inode(mapping);
 373}
 374EXPORT_SYMBOL(truncate_inode_pages_range);
 375
 376/**
 377 * truncate_inode_pages - truncate *all* the pages from an offset
 378 * @mapping: mapping to truncate
 379 * @lstart: offset from which to truncate
 380 *
 381 * Called under (and serialised by) inode->i_mutex.
 382 *
 383 * Note: When this function returns, there can be a page in the process of
 384 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
 385 * mapping->nrpages can be non-zero when this function returns even after
 386 * truncation of the whole mapping.
 387 */
 388void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 389{
 390        truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 391}
 392EXPORT_SYMBOL(truncate_inode_pages);
 393
 394/**
 395 * truncate_inode_pages_final - truncate *all* pages before inode dies
 396 * @mapping: mapping to truncate
 397 *
 398 * Called under (and serialized by) inode->i_mutex.
 399 *
 400 * Filesystems have to use this in the .evict_inode path to inform the
 401 * VM that this is the final truncate and the inode is going away.
 402 */
 403void truncate_inode_pages_final(struct address_space *mapping)
 404{
 405        unsigned long nrshadows;
 406        unsigned long nrpages;
 407
 408        /*
 409         * Page reclaim can not participate in regular inode lifetime
 410         * management (can't call iput()) and thus can race with the
 411         * inode teardown.  Tell it when the address space is exiting,
 412         * so that it does not install eviction information after the
 413         * final truncate has begun.
 414         */
 415        mapping_set_exiting(mapping);
 416
 417        /*
 418         * When reclaim installs eviction entries, it increases
 419         * nrshadows first, then decreases nrpages.  Make sure we see
 420         * this in the right order or we might miss an entry.
 421         */
 422        nrpages = mapping->nrpages;
 423        smp_rmb();
 424        nrshadows = mapping->nrshadows;
 425
 426        if (nrpages || nrshadows) {
 427                /*
 428                 * As truncation uses a lockless tree lookup, cycle
 429                 * the tree lock to make sure any ongoing tree
 430                 * modification that does not see AS_EXITING is
 431                 * completed before starting the final truncate.
 432                 */
 433                spin_lock_irq(&mapping->tree_lock);
 434                spin_unlock_irq(&mapping->tree_lock);
 435
 436                truncate_inode_pages(mapping, 0);
 437        }
 438}
 439EXPORT_SYMBOL(truncate_inode_pages_final);
 440
 441/**
 442 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 443 * @mapping: the address_space which holds the pages to invalidate
 444 * @start: the offset 'from' which to invalidate
 445 * @end: the offset 'to' which to invalidate (inclusive)
 446 *
 447 * This function only removes the unlocked pages, if you want to
 448 * remove all the pages of one inode, you must call truncate_inode_pages.
 449 *
 450 * invalidate_mapping_pages() will not block on IO activity. It will not
 451 * invalidate pages which are dirty, locked, under writeback or mapped into
 452 * pagetables.
 453 */
 454unsigned long invalidate_mapping_pages(struct address_space *mapping,
 455                pgoff_t start, pgoff_t end)
 456{
 457        pgoff_t indices[PAGEVEC_SIZE];
 458        struct pagevec pvec;
 459        pgoff_t index = start;
 460        unsigned long ret;
 461        unsigned long count = 0;
 462        int i;
 463
 464        pagevec_init(&pvec, 0);
 465        while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 466                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 467                        indices)) {
 468                for (i = 0; i < pagevec_count(&pvec); i++) {
 469                        struct page *page = pvec.pages[i];
 470
 471                        /* We rely upon deletion not changing page->index */
 472                        index = indices[i];
 473                        if (index > end)
 474                                break;
 475
 476                        if (radix_tree_exceptional_entry(page)) {
 477                                clear_exceptional_entry(mapping, index, page);
 478                                continue;
 479                        }
 480
 481                        if (!trylock_page(page))
 482                                continue;
 483                        WARN_ON(page->index != index);
 484                        ret = invalidate_inode_page(page);
 485                        unlock_page(page);
 486                        /*
 487                         * Invalidation is a hint that the page is no longer
 488                         * of interest and try to speed up its reclaim.
 489                         */
 490                        if (!ret)
 491                                deactivate_file_page(page);
 492                        count += ret;
 493                }
 494                pagevec_remove_exceptionals(&pvec);
 495                pagevec_release(&pvec);
 496                cond_resched();
 497                index++;
 498        }
 499        return count;
 500}
 501EXPORT_SYMBOL(invalidate_mapping_pages);
 502
 503/*
 504 * This is like invalidate_complete_page(), except it ignores the page's
 505 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 506 * invalidation guarantees, and cannot afford to leave pages behind because
 507 * shrink_page_list() has a temp ref on them, or because they're transiently
 508 * sitting in the lru_cache_add() pagevecs.
 509 */
 510static int
 511invalidate_complete_page2(struct address_space *mapping, struct page *page)
 512{
 513        struct mem_cgroup *memcg;
 514        unsigned long flags;
 515
 516        if (page->mapping != mapping)
 517                return 0;
 518
 519        if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 520                return 0;
 521
 522        memcg = mem_cgroup_begin_page_stat(page);
 523        spin_lock_irqsave(&mapping->tree_lock, flags);
 524        if (PageDirty(page))
 525                goto failed;
 526
 527        BUG_ON(page_has_private(page));
 528        __delete_from_page_cache(page, NULL, memcg);
 529        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 530        mem_cgroup_end_page_stat(memcg);
 531
 532        if (mapping->a_ops->freepage)
 533                mapping->a_ops->freepage(page);
 534
 535        page_cache_release(page);       /* pagecache ref */
 536        return 1;
 537failed:
 538        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 539        mem_cgroup_end_page_stat(memcg);
 540        return 0;
 541}
 542
 543static int do_launder_page(struct address_space *mapping, struct page *page)
 544{
 545        if (!PageDirty(page))
 546                return 0;
 547        if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 548                return 0;
 549        return mapping->a_ops->launder_page(page);
 550}
 551
 552/**
 553 * invalidate_inode_pages2_range - remove range of pages from an address_space
 554 * @mapping: the address_space
 555 * @start: the page offset 'from' which to invalidate
 556 * @end: the page offset 'to' which to invalidate (inclusive)
 557 *
 558 * Any pages which are found to be mapped into pagetables are unmapped prior to
 559 * invalidation.
 560 *
 561 * Returns -EBUSY if any pages could not be invalidated.
 562 */
 563int invalidate_inode_pages2_range(struct address_space *mapping,
 564                                  pgoff_t start, pgoff_t end)
 565{
 566        pgoff_t indices[PAGEVEC_SIZE];
 567        struct pagevec pvec;
 568        pgoff_t index;
 569        int i;
 570        int ret = 0;
 571        int ret2 = 0;
 572        int did_range_unmap = 0;
 573
 574        cleancache_invalidate_inode(mapping);
 575        pagevec_init(&pvec, 0);
 576        index = start;
 577        while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 578                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 579                        indices)) {
 580                for (i = 0; i < pagevec_count(&pvec); i++) {
 581                        struct page *page = pvec.pages[i];
 582
 583                        /* We rely upon deletion not changing page->index */
 584                        index = indices[i];
 585                        if (index > end)
 586                                break;
 587
 588                        if (radix_tree_exceptional_entry(page)) {
 589                                clear_exceptional_entry(mapping, index, page);
 590                                continue;
 591                        }
 592
 593                        lock_page(page);
 594                        WARN_ON(page->index != index);
 595                        if (page->mapping != mapping) {
 596                                unlock_page(page);
 597                                continue;
 598                        }
 599                        wait_on_page_writeback(page);
 600                        if (page_mapped(page)) {
 601                                if (!did_range_unmap) {
 602                                        /*
 603                                         * Zap the rest of the file in one hit.
 604                                         */
 605                                        unmap_mapping_range(mapping,
 606                                           (loff_t)index << PAGE_CACHE_SHIFT,
 607                                           (loff_t)(1 + end - index)
 608                                                         << PAGE_CACHE_SHIFT,
 609                                            0);
 610                                        did_range_unmap = 1;
 611                                } else {
 612                                        /*
 613                                         * Just zap this page
 614                                         */
 615                                        unmap_mapping_range(mapping,
 616                                           (loff_t)index << PAGE_CACHE_SHIFT,
 617                                           PAGE_CACHE_SIZE, 0);
 618                                }
 619                        }
 620                        BUG_ON(page_mapped(page));
 621                        ret2 = do_launder_page(mapping, page);
 622                        if (ret2 == 0) {
 623                                if (!invalidate_complete_page2(mapping, page))
 624                                        ret2 = -EBUSY;
 625                        }
 626                        if (ret2 < 0)
 627                                ret = ret2;
 628                        unlock_page(page);
 629                }
 630                pagevec_remove_exceptionals(&pvec);
 631                pagevec_release(&pvec);
 632                cond_resched();
 633                index++;
 634        }
 635        cleancache_invalidate_inode(mapping);
 636        return ret;
 637}
 638EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 639
 640/**
 641 * invalidate_inode_pages2 - remove all pages from an address_space
 642 * @mapping: the address_space
 643 *
 644 * Any pages which are found to be mapped into pagetables are unmapped prior to
 645 * invalidation.
 646 *
 647 * Returns -EBUSY if any pages could not be invalidated.
 648 */
 649int invalidate_inode_pages2(struct address_space *mapping)
 650{
 651        return invalidate_inode_pages2_range(mapping, 0, -1);
 652}
 653EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 654
 655/**
 656 * truncate_pagecache - unmap and remove pagecache that has been truncated
 657 * @inode: inode
 658 * @newsize: new file size
 659 *
 660 * inode's new i_size must already be written before truncate_pagecache
 661 * is called.
 662 *
 663 * This function should typically be called before the filesystem
 664 * releases resources associated with the freed range (eg. deallocates
 665 * blocks). This way, pagecache will always stay logically coherent
 666 * with on-disk format, and the filesystem would not have to deal with
 667 * situations such as writepage being called for a page that has already
 668 * had its underlying blocks deallocated.
 669 */
 670void truncate_pagecache(struct inode *inode, loff_t newsize)
 671{
 672        struct address_space *mapping = inode->i_mapping;
 673        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 674
 675        /*
 676         * unmap_mapping_range is called twice, first simply for
 677         * efficiency so that truncate_inode_pages does fewer
 678         * single-page unmaps.  However after this first call, and
 679         * before truncate_inode_pages finishes, it is possible for
 680         * private pages to be COWed, which remain after
 681         * truncate_inode_pages finishes, hence the second
 682         * unmap_mapping_range call must be made for correctness.
 683         */
 684        unmap_mapping_range(mapping, holebegin, 0, 1);
 685        truncate_inode_pages(mapping, newsize);
 686        unmap_mapping_range(mapping, holebegin, 0, 1);
 687}
 688EXPORT_SYMBOL(truncate_pagecache);
 689
 690/**
 691 * truncate_setsize - update inode and pagecache for a new file size
 692 * @inode: inode
 693 * @newsize: new file size
 694 *
 695 * truncate_setsize updates i_size and performs pagecache truncation (if
 696 * necessary) to @newsize. It will be typically be called from the filesystem's
 697 * setattr function when ATTR_SIZE is passed in.
 698 *
 699 * Must be called with a lock serializing truncates and writes (generally
 700 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
 701 * specific block truncation has been performed.
 702 */
 703void truncate_setsize(struct inode *inode, loff_t newsize)
 704{
 705        loff_t oldsize = inode->i_size;
 706
 707        i_size_write(inode, newsize);
 708        if (newsize > oldsize)
 709                pagecache_isize_extended(inode, oldsize, newsize);
 710        truncate_pagecache(inode, newsize);
 711}
 712EXPORT_SYMBOL(truncate_setsize);
 713
 714/**
 715 * pagecache_isize_extended - update pagecache after extension of i_size
 716 * @inode:      inode for which i_size was extended
 717 * @from:       original inode size
 718 * @to:         new inode size
 719 *
 720 * Handle extension of inode size either caused by extending truncate or by
 721 * write starting after current i_size. We mark the page straddling current
 722 * i_size RO so that page_mkwrite() is called on the nearest write access to
 723 * the page.  This way filesystem can be sure that page_mkwrite() is called on
 724 * the page before user writes to the page via mmap after the i_size has been
 725 * changed.
 726 *
 727 * The function must be called after i_size is updated so that page fault
 728 * coming after we unlock the page will already see the new i_size.
 729 * The function must be called while we still hold i_mutex - this not only
 730 * makes sure i_size is stable but also that userspace cannot observe new
 731 * i_size value before we are prepared to store mmap writes at new inode size.
 732 */
 733void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
 734{
 735        int bsize = 1 << inode->i_blkbits;
 736        loff_t rounded_from;
 737        struct page *page;
 738        pgoff_t index;
 739
 740        WARN_ON(to > inode->i_size);
 741
 742        if (from >= to || bsize == PAGE_CACHE_SIZE)
 743                return;
 744        /* Page straddling @from will not have any hole block created? */
 745        rounded_from = round_up(from, bsize);
 746        if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1)))
 747                return;
 748
 749        index = from >> PAGE_CACHE_SHIFT;
 750        page = find_lock_page(inode->i_mapping, index);
 751        /* Page not cached? Nothing to do */
 752        if (!page)
 753                return;
 754        /*
 755         * See clear_page_dirty_for_io() for details why set_page_dirty()
 756         * is needed.
 757         */
 758        if (page_mkclean(page))
 759                set_page_dirty(page);
 760        unlock_page(page);
 761        page_cache_release(page);
 762}
 763EXPORT_SYMBOL(pagecache_isize_extended);
 764
 765/**
 766 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
 767 * @inode: inode
 768 * @lstart: offset of beginning of hole
 769 * @lend: offset of last byte of hole
 770 *
 771 * This function should typically be called before the filesystem
 772 * releases resources associated with the freed range (eg. deallocates
 773 * blocks). This way, pagecache will always stay logically coherent
 774 * with on-disk format, and the filesystem would not have to deal with
 775 * situations such as writepage being called for a page that has already
 776 * had its underlying blocks deallocated.
 777 */
 778void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
 779{
 780        struct address_space *mapping = inode->i_mapping;
 781        loff_t unmap_start = round_up(lstart, PAGE_SIZE);
 782        loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 783        /*
 784         * This rounding is currently just for example: unmap_mapping_range
 785         * expands its hole outwards, whereas we want it to contract the hole
 786         * inwards.  However, existing callers of truncate_pagecache_range are
 787         * doing their own page rounding first.  Note that unmap_mapping_range
 788         * allows holelen 0 for all, and we allow lend -1 for end of file.
 789         */
 790
 791        /*
 792         * Unlike in truncate_pagecache, unmap_mapping_range is called only
 793         * once (before truncating pagecache), and without "even_cows" flag:
 794         * hole-punching should not remove private COWed pages from the hole.
 795         */
 796        if ((u64)unmap_end > (u64)unmap_start)
 797                unmap_mapping_range(mapping, unmap_start,
 798                                    1 + unmap_end - unmap_start, 0);
 799        truncate_inode_pages_range(mapping, lstart, lend);
 800}
 801EXPORT_SYMBOL(truncate_pagecache_range);
 802