linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <linux/atomic.h>
  30#include <linux/compiler.h>
  31#include <linux/llist.h>
  32#include <linux/bitops.h>
  33
  34#include <asm/uaccess.h>
  35#include <asm/tlbflush.h>
  36#include <asm/shmparam.h>
  37
  38#include "internal.h"
  39
  40struct vfree_deferred {
  41        struct llist_head list;
  42        struct work_struct wq;
  43};
  44static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  45
  46static void __vunmap(const void *, int);
  47
  48static void free_work(struct work_struct *w)
  49{
  50        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  51        struct llist_node *llnode = llist_del_all(&p->list);
  52        while (llnode) {
  53                void *p = llnode;
  54                llnode = llist_next(llnode);
  55                __vunmap(p, 1);
  56        }
  57}
  58
  59/*** Page table manipulation functions ***/
  60
  61static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  62{
  63        pte_t *pte;
  64
  65        pte = pte_offset_kernel(pmd, addr);
  66        do {
  67                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  68                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  69        } while (pte++, addr += PAGE_SIZE, addr != end);
  70}
  71
  72static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  73{
  74        pmd_t *pmd;
  75        unsigned long next;
  76
  77        pmd = pmd_offset(pud, addr);
  78        do {
  79                next = pmd_addr_end(addr, end);
  80                if (pmd_clear_huge(pmd))
  81                        continue;
  82                if (pmd_none_or_clear_bad(pmd))
  83                        continue;
  84                vunmap_pte_range(pmd, addr, next);
  85        } while (pmd++, addr = next, addr != end);
  86}
  87
  88static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  89{
  90        pud_t *pud;
  91        unsigned long next;
  92
  93        pud = pud_offset(pgd, addr);
  94        do {
  95                next = pud_addr_end(addr, end);
  96                if (pud_clear_huge(pud))
  97                        continue;
  98                if (pud_none_or_clear_bad(pud))
  99                        continue;
 100                vunmap_pmd_range(pud, addr, next);
 101        } while (pud++, addr = next, addr != end);
 102}
 103
 104static void vunmap_page_range(unsigned long addr, unsigned long end)
 105{
 106        pgd_t *pgd;
 107        unsigned long next;
 108
 109        BUG_ON(addr >= end);
 110        pgd = pgd_offset_k(addr);
 111        do {
 112                next = pgd_addr_end(addr, end);
 113                if (pgd_none_or_clear_bad(pgd))
 114                        continue;
 115                vunmap_pud_range(pgd, addr, next);
 116        } while (pgd++, addr = next, addr != end);
 117}
 118
 119static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 120                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 121{
 122        pte_t *pte;
 123
 124        /*
 125         * nr is a running index into the array which helps higher level
 126         * callers keep track of where we're up to.
 127         */
 128
 129        pte = pte_alloc_kernel(pmd, addr);
 130        if (!pte)
 131                return -ENOMEM;
 132        do {
 133                struct page *page = pages[*nr];
 134
 135                if (WARN_ON(!pte_none(*pte)))
 136                        return -EBUSY;
 137                if (WARN_ON(!page))
 138                        return -ENOMEM;
 139                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 140                (*nr)++;
 141        } while (pte++, addr += PAGE_SIZE, addr != end);
 142        return 0;
 143}
 144
 145static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 146                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 147{
 148        pmd_t *pmd;
 149        unsigned long next;
 150
 151        pmd = pmd_alloc(&init_mm, pud, addr);
 152        if (!pmd)
 153                return -ENOMEM;
 154        do {
 155                next = pmd_addr_end(addr, end);
 156                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 157                        return -ENOMEM;
 158        } while (pmd++, addr = next, addr != end);
 159        return 0;
 160}
 161
 162static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 163                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 164{
 165        pud_t *pud;
 166        unsigned long next;
 167
 168        pud = pud_alloc(&init_mm, pgd, addr);
 169        if (!pud)
 170                return -ENOMEM;
 171        do {
 172                next = pud_addr_end(addr, end);
 173                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 174                        return -ENOMEM;
 175        } while (pud++, addr = next, addr != end);
 176        return 0;
 177}
 178
 179/*
 180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 181 * will have pfns corresponding to the "pages" array.
 182 *
 183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 184 */
 185static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 186                                   pgprot_t prot, struct page **pages)
 187{
 188        pgd_t *pgd;
 189        unsigned long next;
 190        unsigned long addr = start;
 191        int err = 0;
 192        int nr = 0;
 193
 194        BUG_ON(addr >= end);
 195        pgd = pgd_offset_k(addr);
 196        do {
 197                next = pgd_addr_end(addr, end);
 198                err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 199                if (err)
 200                        return err;
 201        } while (pgd++, addr = next, addr != end);
 202
 203        return nr;
 204}
 205
 206static int vmap_page_range(unsigned long start, unsigned long end,
 207                           pgprot_t prot, struct page **pages)
 208{
 209        int ret;
 210
 211        ret = vmap_page_range_noflush(start, end, prot, pages);
 212        flush_cache_vmap(start, end);
 213        return ret;
 214}
 215
 216int is_vmalloc_or_module_addr(const void *x)
 217{
 218        /*
 219         * ARM, x86-64 and sparc64 put modules in a special place,
 220         * and fall back on vmalloc() if that fails. Others
 221         * just put it in the vmalloc space.
 222         */
 223#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 224        unsigned long addr = (unsigned long)x;
 225        if (addr >= MODULES_VADDR && addr < MODULES_END)
 226                return 1;
 227#endif
 228        return is_vmalloc_addr(x);
 229}
 230
 231/*
 232 * Walk a vmap address to the struct page it maps.
 233 */
 234struct page *vmalloc_to_page(const void *vmalloc_addr)
 235{
 236        unsigned long addr = (unsigned long) vmalloc_addr;
 237        struct page *page = NULL;
 238        pgd_t *pgd = pgd_offset_k(addr);
 239
 240        /*
 241         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 242         * architectures that do not vmalloc module space
 243         */
 244        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 245
 246        if (!pgd_none(*pgd)) {
 247                pud_t *pud = pud_offset(pgd, addr);
 248                if (!pud_none(*pud)) {
 249                        pmd_t *pmd = pmd_offset(pud, addr);
 250                        if (!pmd_none(*pmd)) {
 251                                pte_t *ptep, pte;
 252
 253                                ptep = pte_offset_map(pmd, addr);
 254                                pte = *ptep;
 255                                if (pte_present(pte))
 256                                        page = pte_page(pte);
 257                                pte_unmap(ptep);
 258                        }
 259                }
 260        }
 261        return page;
 262}
 263EXPORT_SYMBOL(vmalloc_to_page);
 264
 265/*
 266 * Map a vmalloc()-space virtual address to the physical page frame number.
 267 */
 268unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 269{
 270        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 271}
 272EXPORT_SYMBOL(vmalloc_to_pfn);
 273
 274
 275/*** Global kva allocator ***/
 276
 277#define VM_LAZY_FREE    0x01
 278#define VM_LAZY_FREEING 0x02
 279#define VM_VM_AREA      0x04
 280
 281static DEFINE_SPINLOCK(vmap_area_lock);
 282/* Export for kexec only */
 283LIST_HEAD(vmap_area_list);
 284static struct rb_root vmap_area_root = RB_ROOT;
 285
 286/* The vmap cache globals are protected by vmap_area_lock */
 287static struct rb_node *free_vmap_cache;
 288static unsigned long cached_hole_size;
 289static unsigned long cached_vstart;
 290static unsigned long cached_align;
 291
 292static unsigned long vmap_area_pcpu_hole;
 293
 294static struct vmap_area *__find_vmap_area(unsigned long addr)
 295{
 296        struct rb_node *n = vmap_area_root.rb_node;
 297
 298        while (n) {
 299                struct vmap_area *va;
 300
 301                va = rb_entry(n, struct vmap_area, rb_node);
 302                if (addr < va->va_start)
 303                        n = n->rb_left;
 304                else if (addr >= va->va_end)
 305                        n = n->rb_right;
 306                else
 307                        return va;
 308        }
 309
 310        return NULL;
 311}
 312
 313static void __insert_vmap_area(struct vmap_area *va)
 314{
 315        struct rb_node **p = &vmap_area_root.rb_node;
 316        struct rb_node *parent = NULL;
 317        struct rb_node *tmp;
 318
 319        while (*p) {
 320                struct vmap_area *tmp_va;
 321
 322                parent = *p;
 323                tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 324                if (va->va_start < tmp_va->va_end)
 325                        p = &(*p)->rb_left;
 326                else if (va->va_end > tmp_va->va_start)
 327                        p = &(*p)->rb_right;
 328                else
 329                        BUG();
 330        }
 331
 332        rb_link_node(&va->rb_node, parent, p);
 333        rb_insert_color(&va->rb_node, &vmap_area_root);
 334
 335        /* address-sort this list */
 336        tmp = rb_prev(&va->rb_node);
 337        if (tmp) {
 338                struct vmap_area *prev;
 339                prev = rb_entry(tmp, struct vmap_area, rb_node);
 340                list_add_rcu(&va->list, &prev->list);
 341        } else
 342                list_add_rcu(&va->list, &vmap_area_list);
 343}
 344
 345static void purge_vmap_area_lazy(void);
 346
 347/*
 348 * Allocate a region of KVA of the specified size and alignment, within the
 349 * vstart and vend.
 350 */
 351static struct vmap_area *alloc_vmap_area(unsigned long size,
 352                                unsigned long align,
 353                                unsigned long vstart, unsigned long vend,
 354                                int node, gfp_t gfp_mask)
 355{
 356        struct vmap_area *va;
 357        struct rb_node *n;
 358        unsigned long addr;
 359        int purged = 0;
 360        struct vmap_area *first;
 361
 362        BUG_ON(!size);
 363        BUG_ON(offset_in_page(size));
 364        BUG_ON(!is_power_of_2(align));
 365
 366        va = kmalloc_node(sizeof(struct vmap_area),
 367                        gfp_mask & GFP_RECLAIM_MASK, node);
 368        if (unlikely(!va))
 369                return ERR_PTR(-ENOMEM);
 370
 371        /*
 372         * Only scan the relevant parts containing pointers to other objects
 373         * to avoid false negatives.
 374         */
 375        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 376
 377retry:
 378        spin_lock(&vmap_area_lock);
 379        /*
 380         * Invalidate cache if we have more permissive parameters.
 381         * cached_hole_size notes the largest hole noticed _below_
 382         * the vmap_area cached in free_vmap_cache: if size fits
 383         * into that hole, we want to scan from vstart to reuse
 384         * the hole instead of allocating above free_vmap_cache.
 385         * Note that __free_vmap_area may update free_vmap_cache
 386         * without updating cached_hole_size or cached_align.
 387         */
 388        if (!free_vmap_cache ||
 389                        size < cached_hole_size ||
 390                        vstart < cached_vstart ||
 391                        align < cached_align) {
 392nocache:
 393                cached_hole_size = 0;
 394                free_vmap_cache = NULL;
 395        }
 396        /* record if we encounter less permissive parameters */
 397        cached_vstart = vstart;
 398        cached_align = align;
 399
 400        /* find starting point for our search */
 401        if (free_vmap_cache) {
 402                first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 403                addr = ALIGN(first->va_end, align);
 404                if (addr < vstart)
 405                        goto nocache;
 406                if (addr + size < addr)
 407                        goto overflow;
 408
 409        } else {
 410                addr = ALIGN(vstart, align);
 411                if (addr + size < addr)
 412                        goto overflow;
 413
 414                n = vmap_area_root.rb_node;
 415                first = NULL;
 416
 417                while (n) {
 418                        struct vmap_area *tmp;
 419                        tmp = rb_entry(n, struct vmap_area, rb_node);
 420                        if (tmp->va_end >= addr) {
 421                                first = tmp;
 422                                if (tmp->va_start <= addr)
 423                                        break;
 424                                n = n->rb_left;
 425                        } else
 426                                n = n->rb_right;
 427                }
 428
 429                if (!first)
 430                        goto found;
 431        }
 432
 433        /* from the starting point, walk areas until a suitable hole is found */
 434        while (addr + size > first->va_start && addr + size <= vend) {
 435                if (addr + cached_hole_size < first->va_start)
 436                        cached_hole_size = first->va_start - addr;
 437                addr = ALIGN(first->va_end, align);
 438                if (addr + size < addr)
 439                        goto overflow;
 440
 441                if (list_is_last(&first->list, &vmap_area_list))
 442                        goto found;
 443
 444                first = list_entry(first->list.next,
 445                                struct vmap_area, list);
 446        }
 447
 448found:
 449        if (addr + size > vend)
 450                goto overflow;
 451
 452        va->va_start = addr;
 453        va->va_end = addr + size;
 454        va->flags = 0;
 455        __insert_vmap_area(va);
 456        free_vmap_cache = &va->rb_node;
 457        spin_unlock(&vmap_area_lock);
 458
 459        BUG_ON(va->va_start & (align-1));
 460        BUG_ON(va->va_start < vstart);
 461        BUG_ON(va->va_end > vend);
 462
 463        return va;
 464
 465overflow:
 466        spin_unlock(&vmap_area_lock);
 467        if (!purged) {
 468                purge_vmap_area_lazy();
 469                purged = 1;
 470                goto retry;
 471        }
 472        if (printk_ratelimit())
 473                pr_warn("vmap allocation for size %lu failed: "
 474                        "use vmalloc=<size> to increase size.\n", size);
 475        kfree(va);
 476        return ERR_PTR(-EBUSY);
 477}
 478
 479static void __free_vmap_area(struct vmap_area *va)
 480{
 481        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 482
 483        if (free_vmap_cache) {
 484                if (va->va_end < cached_vstart) {
 485                        free_vmap_cache = NULL;
 486                } else {
 487                        struct vmap_area *cache;
 488                        cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 489                        if (va->va_start <= cache->va_start) {
 490                                free_vmap_cache = rb_prev(&va->rb_node);
 491                                /*
 492                                 * We don't try to update cached_hole_size or
 493                                 * cached_align, but it won't go very wrong.
 494                                 */
 495                        }
 496                }
 497        }
 498        rb_erase(&va->rb_node, &vmap_area_root);
 499        RB_CLEAR_NODE(&va->rb_node);
 500        list_del_rcu(&va->list);
 501
 502        /*
 503         * Track the highest possible candidate for pcpu area
 504         * allocation.  Areas outside of vmalloc area can be returned
 505         * here too, consider only end addresses which fall inside
 506         * vmalloc area proper.
 507         */
 508        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 509                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 510
 511        kfree_rcu(va, rcu_head);
 512}
 513
 514/*
 515 * Free a region of KVA allocated by alloc_vmap_area
 516 */
 517static void free_vmap_area(struct vmap_area *va)
 518{
 519        spin_lock(&vmap_area_lock);
 520        __free_vmap_area(va);
 521        spin_unlock(&vmap_area_lock);
 522}
 523
 524/*
 525 * Clear the pagetable entries of a given vmap_area
 526 */
 527static void unmap_vmap_area(struct vmap_area *va)
 528{
 529        vunmap_page_range(va->va_start, va->va_end);
 530}
 531
 532static void vmap_debug_free_range(unsigned long start, unsigned long end)
 533{
 534        /*
 535         * Unmap page tables and force a TLB flush immediately if
 536         * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 537         * bugs similarly to those in linear kernel virtual address
 538         * space after a page has been freed.
 539         *
 540         * All the lazy freeing logic is still retained, in order to
 541         * minimise intrusiveness of this debugging feature.
 542         *
 543         * This is going to be *slow* (linear kernel virtual address
 544         * debugging doesn't do a broadcast TLB flush so it is a lot
 545         * faster).
 546         */
 547#ifdef CONFIG_DEBUG_PAGEALLOC
 548        vunmap_page_range(start, end);
 549        flush_tlb_kernel_range(start, end);
 550#endif
 551}
 552
 553/*
 554 * lazy_max_pages is the maximum amount of virtual address space we gather up
 555 * before attempting to purge with a TLB flush.
 556 *
 557 * There is a tradeoff here: a larger number will cover more kernel page tables
 558 * and take slightly longer to purge, but it will linearly reduce the number of
 559 * global TLB flushes that must be performed. It would seem natural to scale
 560 * this number up linearly with the number of CPUs (because vmapping activity
 561 * could also scale linearly with the number of CPUs), however it is likely
 562 * that in practice, workloads might be constrained in other ways that mean
 563 * vmap activity will not scale linearly with CPUs. Also, I want to be
 564 * conservative and not introduce a big latency on huge systems, so go with
 565 * a less aggressive log scale. It will still be an improvement over the old
 566 * code, and it will be simple to change the scale factor if we find that it
 567 * becomes a problem on bigger systems.
 568 */
 569static unsigned long lazy_max_pages(void)
 570{
 571        unsigned int log;
 572
 573        log = fls(num_online_cpus());
 574
 575        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 576}
 577
 578static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 579
 580/* for per-CPU blocks */
 581static void purge_fragmented_blocks_allcpus(void);
 582
 583/*
 584 * called before a call to iounmap() if the caller wants vm_area_struct's
 585 * immediately freed.
 586 */
 587void set_iounmap_nonlazy(void)
 588{
 589        atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 590}
 591
 592/*
 593 * Purges all lazily-freed vmap areas.
 594 *
 595 * If sync is 0 then don't purge if there is already a purge in progress.
 596 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 597 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 598 * their own TLB flushing).
 599 * Returns with *start = min(*start, lowest purged address)
 600 *              *end = max(*end, highest purged address)
 601 */
 602static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 603                                        int sync, int force_flush)
 604{
 605        static DEFINE_SPINLOCK(purge_lock);
 606        LIST_HEAD(valist);
 607        struct vmap_area *va;
 608        struct vmap_area *n_va;
 609        int nr = 0;
 610
 611        /*
 612         * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 613         * should not expect such behaviour. This just simplifies locking for
 614         * the case that isn't actually used at the moment anyway.
 615         */
 616        if (!sync && !force_flush) {
 617                if (!spin_trylock(&purge_lock))
 618                        return;
 619        } else
 620                spin_lock(&purge_lock);
 621
 622        if (sync)
 623                purge_fragmented_blocks_allcpus();
 624
 625        rcu_read_lock();
 626        list_for_each_entry_rcu(va, &vmap_area_list, list) {
 627                if (va->flags & VM_LAZY_FREE) {
 628                        if (va->va_start < *start)
 629                                *start = va->va_start;
 630                        if (va->va_end > *end)
 631                                *end = va->va_end;
 632                        nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 633                        list_add_tail(&va->purge_list, &valist);
 634                        va->flags |= VM_LAZY_FREEING;
 635                        va->flags &= ~VM_LAZY_FREE;
 636                }
 637        }
 638        rcu_read_unlock();
 639
 640        if (nr)
 641                atomic_sub(nr, &vmap_lazy_nr);
 642
 643        if (nr || force_flush)
 644                flush_tlb_kernel_range(*start, *end);
 645
 646        if (nr) {
 647                spin_lock(&vmap_area_lock);
 648                list_for_each_entry_safe(va, n_va, &valist, purge_list)
 649                        __free_vmap_area(va);
 650                spin_unlock(&vmap_area_lock);
 651        }
 652        spin_unlock(&purge_lock);
 653}
 654
 655/*
 656 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 657 * is already purging.
 658 */
 659static void try_purge_vmap_area_lazy(void)
 660{
 661        unsigned long start = ULONG_MAX, end = 0;
 662
 663        __purge_vmap_area_lazy(&start, &end, 0, 0);
 664}
 665
 666/*
 667 * Kick off a purge of the outstanding lazy areas.
 668 */
 669static void purge_vmap_area_lazy(void)
 670{
 671        unsigned long start = ULONG_MAX, end = 0;
 672
 673        __purge_vmap_area_lazy(&start, &end, 1, 0);
 674}
 675
 676/*
 677 * Free a vmap area, caller ensuring that the area has been unmapped
 678 * and flush_cache_vunmap had been called for the correct range
 679 * previously.
 680 */
 681static void free_vmap_area_noflush(struct vmap_area *va)
 682{
 683        va->flags |= VM_LAZY_FREE;
 684        atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 685        if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 686                try_purge_vmap_area_lazy();
 687}
 688
 689/*
 690 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 691 * called for the correct range previously.
 692 */
 693static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 694{
 695        unmap_vmap_area(va);
 696        free_vmap_area_noflush(va);
 697}
 698
 699/*
 700 * Free and unmap a vmap area
 701 */
 702static void free_unmap_vmap_area(struct vmap_area *va)
 703{
 704        flush_cache_vunmap(va->va_start, va->va_end);
 705        free_unmap_vmap_area_noflush(va);
 706}
 707
 708static struct vmap_area *find_vmap_area(unsigned long addr)
 709{
 710        struct vmap_area *va;
 711
 712        spin_lock(&vmap_area_lock);
 713        va = __find_vmap_area(addr);
 714        spin_unlock(&vmap_area_lock);
 715
 716        return va;
 717}
 718
 719static void free_unmap_vmap_area_addr(unsigned long addr)
 720{
 721        struct vmap_area *va;
 722
 723        va = find_vmap_area(addr);
 724        BUG_ON(!va);
 725        free_unmap_vmap_area(va);
 726}
 727
 728
 729/*** Per cpu kva allocator ***/
 730
 731/*
 732 * vmap space is limited especially on 32 bit architectures. Ensure there is
 733 * room for at least 16 percpu vmap blocks per CPU.
 734 */
 735/*
 736 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 737 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 738 * instead (we just need a rough idea)
 739 */
 740#if BITS_PER_LONG == 32
 741#define VMALLOC_SPACE           (128UL*1024*1024)
 742#else
 743#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 744#endif
 745
 746#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 747#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 748#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 749#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 750#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 751#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 752#define VMAP_BBMAP_BITS         \
 753                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
 754                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 755                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 756
 757#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 758
 759static bool vmap_initialized __read_mostly = false;
 760
 761struct vmap_block_queue {
 762        spinlock_t lock;
 763        struct list_head free;
 764};
 765
 766struct vmap_block {
 767        spinlock_t lock;
 768        struct vmap_area *va;
 769        unsigned long free, dirty;
 770        unsigned long dirty_min, dirty_max; /*< dirty range */
 771        struct list_head free_list;
 772        struct rcu_head rcu_head;
 773        struct list_head purge;
 774};
 775
 776/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 777static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 778
 779/*
 780 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 781 * in the free path. Could get rid of this if we change the API to return a
 782 * "cookie" from alloc, to be passed to free. But no big deal yet.
 783 */
 784static DEFINE_SPINLOCK(vmap_block_tree_lock);
 785static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 786
 787/*
 788 * We should probably have a fallback mechanism to allocate virtual memory
 789 * out of partially filled vmap blocks. However vmap block sizing should be
 790 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 791 * big problem.
 792 */
 793
 794static unsigned long addr_to_vb_idx(unsigned long addr)
 795{
 796        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 797        addr /= VMAP_BLOCK_SIZE;
 798        return addr;
 799}
 800
 801static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 802{
 803        unsigned long addr;
 804
 805        addr = va_start + (pages_off << PAGE_SHIFT);
 806        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 807        return (void *)addr;
 808}
 809
 810/**
 811 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 812 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 813 * @order:    how many 2^order pages should be occupied in newly allocated block
 814 * @gfp_mask: flags for the page level allocator
 815 *
 816 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 817 */
 818static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 819{
 820        struct vmap_block_queue *vbq;
 821        struct vmap_block *vb;
 822        struct vmap_area *va;
 823        unsigned long vb_idx;
 824        int node, err;
 825        void *vaddr;
 826
 827        node = numa_node_id();
 828
 829        vb = kmalloc_node(sizeof(struct vmap_block),
 830                        gfp_mask & GFP_RECLAIM_MASK, node);
 831        if (unlikely(!vb))
 832                return ERR_PTR(-ENOMEM);
 833
 834        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 835                                        VMALLOC_START, VMALLOC_END,
 836                                        node, gfp_mask);
 837        if (IS_ERR(va)) {
 838                kfree(vb);
 839                return ERR_CAST(va);
 840        }
 841
 842        err = radix_tree_preload(gfp_mask);
 843        if (unlikely(err)) {
 844                kfree(vb);
 845                free_vmap_area(va);
 846                return ERR_PTR(err);
 847        }
 848
 849        vaddr = vmap_block_vaddr(va->va_start, 0);
 850        spin_lock_init(&vb->lock);
 851        vb->va = va;
 852        /* At least something should be left free */
 853        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 854        vb->free = VMAP_BBMAP_BITS - (1UL << order);
 855        vb->dirty = 0;
 856        vb->dirty_min = VMAP_BBMAP_BITS;
 857        vb->dirty_max = 0;
 858        INIT_LIST_HEAD(&vb->free_list);
 859
 860        vb_idx = addr_to_vb_idx(va->va_start);
 861        spin_lock(&vmap_block_tree_lock);
 862        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 863        spin_unlock(&vmap_block_tree_lock);
 864        BUG_ON(err);
 865        radix_tree_preload_end();
 866
 867        vbq = &get_cpu_var(vmap_block_queue);
 868        spin_lock(&vbq->lock);
 869        list_add_tail_rcu(&vb->free_list, &vbq->free);
 870        spin_unlock(&vbq->lock);
 871        put_cpu_var(vmap_block_queue);
 872
 873        return vaddr;
 874}
 875
 876static void free_vmap_block(struct vmap_block *vb)
 877{
 878        struct vmap_block *tmp;
 879        unsigned long vb_idx;
 880
 881        vb_idx = addr_to_vb_idx(vb->va->va_start);
 882        spin_lock(&vmap_block_tree_lock);
 883        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 884        spin_unlock(&vmap_block_tree_lock);
 885        BUG_ON(tmp != vb);
 886
 887        free_vmap_area_noflush(vb->va);
 888        kfree_rcu(vb, rcu_head);
 889}
 890
 891static void purge_fragmented_blocks(int cpu)
 892{
 893        LIST_HEAD(purge);
 894        struct vmap_block *vb;
 895        struct vmap_block *n_vb;
 896        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 897
 898        rcu_read_lock();
 899        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 900
 901                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 902                        continue;
 903
 904                spin_lock(&vb->lock);
 905                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 906                        vb->free = 0; /* prevent further allocs after releasing lock */
 907                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 908                        vb->dirty_min = 0;
 909                        vb->dirty_max = VMAP_BBMAP_BITS;
 910                        spin_lock(&vbq->lock);
 911                        list_del_rcu(&vb->free_list);
 912                        spin_unlock(&vbq->lock);
 913                        spin_unlock(&vb->lock);
 914                        list_add_tail(&vb->purge, &purge);
 915                } else
 916                        spin_unlock(&vb->lock);
 917        }
 918        rcu_read_unlock();
 919
 920        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 921                list_del(&vb->purge);
 922                free_vmap_block(vb);
 923        }
 924}
 925
 926static void purge_fragmented_blocks_allcpus(void)
 927{
 928        int cpu;
 929
 930        for_each_possible_cpu(cpu)
 931                purge_fragmented_blocks(cpu);
 932}
 933
 934static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 935{
 936        struct vmap_block_queue *vbq;
 937        struct vmap_block *vb;
 938        void *vaddr = NULL;
 939        unsigned int order;
 940
 941        BUG_ON(offset_in_page(size));
 942        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 943        if (WARN_ON(size == 0)) {
 944                /*
 945                 * Allocating 0 bytes isn't what caller wants since
 946                 * get_order(0) returns funny result. Just warn and terminate
 947                 * early.
 948                 */
 949                return NULL;
 950        }
 951        order = get_order(size);
 952
 953        rcu_read_lock();
 954        vbq = &get_cpu_var(vmap_block_queue);
 955        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 956                unsigned long pages_off;
 957
 958                spin_lock(&vb->lock);
 959                if (vb->free < (1UL << order)) {
 960                        spin_unlock(&vb->lock);
 961                        continue;
 962                }
 963
 964                pages_off = VMAP_BBMAP_BITS - vb->free;
 965                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
 966                vb->free -= 1UL << order;
 967                if (vb->free == 0) {
 968                        spin_lock(&vbq->lock);
 969                        list_del_rcu(&vb->free_list);
 970                        spin_unlock(&vbq->lock);
 971                }
 972
 973                spin_unlock(&vb->lock);
 974                break;
 975        }
 976
 977        put_cpu_var(vmap_block_queue);
 978        rcu_read_unlock();
 979
 980        /* Allocate new block if nothing was found */
 981        if (!vaddr)
 982                vaddr = new_vmap_block(order, gfp_mask);
 983
 984        return vaddr;
 985}
 986
 987static void vb_free(const void *addr, unsigned long size)
 988{
 989        unsigned long offset;
 990        unsigned long vb_idx;
 991        unsigned int order;
 992        struct vmap_block *vb;
 993
 994        BUG_ON(offset_in_page(size));
 995        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 996
 997        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 998
 999        order = get_order(size);
1000
1001        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1002        offset >>= PAGE_SHIFT;
1003
1004        vb_idx = addr_to_vb_idx((unsigned long)addr);
1005        rcu_read_lock();
1006        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1007        rcu_read_unlock();
1008        BUG_ON(!vb);
1009
1010        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1011
1012        spin_lock(&vb->lock);
1013
1014        /* Expand dirty range */
1015        vb->dirty_min = min(vb->dirty_min, offset);
1016        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1017
1018        vb->dirty += 1UL << order;
1019        if (vb->dirty == VMAP_BBMAP_BITS) {
1020                BUG_ON(vb->free);
1021                spin_unlock(&vb->lock);
1022                free_vmap_block(vb);
1023        } else
1024                spin_unlock(&vb->lock);
1025}
1026
1027/**
1028 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1029 *
1030 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1031 * to amortize TLB flushing overheads. What this means is that any page you
1032 * have now, may, in a former life, have been mapped into kernel virtual
1033 * address by the vmap layer and so there might be some CPUs with TLB entries
1034 * still referencing that page (additional to the regular 1:1 kernel mapping).
1035 *
1036 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1037 * be sure that none of the pages we have control over will have any aliases
1038 * from the vmap layer.
1039 */
1040void vm_unmap_aliases(void)
1041{
1042        unsigned long start = ULONG_MAX, end = 0;
1043        int cpu;
1044        int flush = 0;
1045
1046        if (unlikely(!vmap_initialized))
1047                return;
1048
1049        for_each_possible_cpu(cpu) {
1050                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1051                struct vmap_block *vb;
1052
1053                rcu_read_lock();
1054                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1055                        spin_lock(&vb->lock);
1056                        if (vb->dirty) {
1057                                unsigned long va_start = vb->va->va_start;
1058                                unsigned long s, e;
1059
1060                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
1061                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
1062
1063                                start = min(s, start);
1064                                end   = max(e, end);
1065
1066                                flush = 1;
1067                        }
1068                        spin_unlock(&vb->lock);
1069                }
1070                rcu_read_unlock();
1071        }
1072
1073        __purge_vmap_area_lazy(&start, &end, 1, flush);
1074}
1075EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1076
1077/**
1078 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1079 * @mem: the pointer returned by vm_map_ram
1080 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1081 */
1082void vm_unmap_ram(const void *mem, unsigned int count)
1083{
1084        unsigned long size = count << PAGE_SHIFT;
1085        unsigned long addr = (unsigned long)mem;
1086
1087        BUG_ON(!addr);
1088        BUG_ON(addr < VMALLOC_START);
1089        BUG_ON(addr > VMALLOC_END);
1090        BUG_ON(addr & (PAGE_SIZE-1));
1091
1092        debug_check_no_locks_freed(mem, size);
1093        vmap_debug_free_range(addr, addr+size);
1094
1095        if (likely(count <= VMAP_MAX_ALLOC))
1096                vb_free(mem, size);
1097        else
1098                free_unmap_vmap_area_addr(addr);
1099}
1100EXPORT_SYMBOL(vm_unmap_ram);
1101
1102/**
1103 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1104 * @pages: an array of pointers to the pages to be mapped
1105 * @count: number of pages
1106 * @node: prefer to allocate data structures on this node
1107 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1108 *
1109 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1110 * faster than vmap so it's good.  But if you mix long-life and short-life
1111 * objects with vm_map_ram(), it could consume lots of address space through
1112 * fragmentation (especially on a 32bit machine).  You could see failures in
1113 * the end.  Please use this function for short-lived objects.
1114 *
1115 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1116 */
1117void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1118{
1119        unsigned long size = count << PAGE_SHIFT;
1120        unsigned long addr;
1121        void *mem;
1122
1123        if (likely(count <= VMAP_MAX_ALLOC)) {
1124                mem = vb_alloc(size, GFP_KERNEL);
1125                if (IS_ERR(mem))
1126                        return NULL;
1127                addr = (unsigned long)mem;
1128        } else {
1129                struct vmap_area *va;
1130                va = alloc_vmap_area(size, PAGE_SIZE,
1131                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1132                if (IS_ERR(va))
1133                        return NULL;
1134
1135                addr = va->va_start;
1136                mem = (void *)addr;
1137        }
1138        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1139                vm_unmap_ram(mem, count);
1140                return NULL;
1141        }
1142        return mem;
1143}
1144EXPORT_SYMBOL(vm_map_ram);
1145
1146static struct vm_struct *vmlist __initdata;
1147/**
1148 * vm_area_add_early - add vmap area early during boot
1149 * @vm: vm_struct to add
1150 *
1151 * This function is used to add fixed kernel vm area to vmlist before
1152 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1153 * should contain proper values and the other fields should be zero.
1154 *
1155 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1156 */
1157void __init vm_area_add_early(struct vm_struct *vm)
1158{
1159        struct vm_struct *tmp, **p;
1160
1161        BUG_ON(vmap_initialized);
1162        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1163                if (tmp->addr >= vm->addr) {
1164                        BUG_ON(tmp->addr < vm->addr + vm->size);
1165                        break;
1166                } else
1167                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1168        }
1169        vm->next = *p;
1170        *p = vm;
1171}
1172
1173/**
1174 * vm_area_register_early - register vmap area early during boot
1175 * @vm: vm_struct to register
1176 * @align: requested alignment
1177 *
1178 * This function is used to register kernel vm area before
1179 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1180 * proper values on entry and other fields should be zero.  On return,
1181 * vm->addr contains the allocated address.
1182 *
1183 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1184 */
1185void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1186{
1187        static size_t vm_init_off __initdata;
1188        unsigned long addr;
1189
1190        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1191        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1192
1193        vm->addr = (void *)addr;
1194
1195        vm_area_add_early(vm);
1196}
1197
1198void __init vmalloc_init(void)
1199{
1200        struct vmap_area *va;
1201        struct vm_struct *tmp;
1202        int i;
1203
1204        for_each_possible_cpu(i) {
1205                struct vmap_block_queue *vbq;
1206                struct vfree_deferred *p;
1207
1208                vbq = &per_cpu(vmap_block_queue, i);
1209                spin_lock_init(&vbq->lock);
1210                INIT_LIST_HEAD(&vbq->free);
1211                p = &per_cpu(vfree_deferred, i);
1212                init_llist_head(&p->list);
1213                INIT_WORK(&p->wq, free_work);
1214        }
1215
1216        /* Import existing vmlist entries. */
1217        for (tmp = vmlist; tmp; tmp = tmp->next) {
1218                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1219                va->flags = VM_VM_AREA;
1220                va->va_start = (unsigned long)tmp->addr;
1221                va->va_end = va->va_start + tmp->size;
1222                va->vm = tmp;
1223                __insert_vmap_area(va);
1224        }
1225
1226        vmap_area_pcpu_hole = VMALLOC_END;
1227
1228        vmap_initialized = true;
1229}
1230
1231/**
1232 * map_kernel_range_noflush - map kernel VM area with the specified pages
1233 * @addr: start of the VM area to map
1234 * @size: size of the VM area to map
1235 * @prot: page protection flags to use
1236 * @pages: pages to map
1237 *
1238 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1239 * specify should have been allocated using get_vm_area() and its
1240 * friends.
1241 *
1242 * NOTE:
1243 * This function does NOT do any cache flushing.  The caller is
1244 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1245 * before calling this function.
1246 *
1247 * RETURNS:
1248 * The number of pages mapped on success, -errno on failure.
1249 */
1250int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1251                             pgprot_t prot, struct page **pages)
1252{
1253        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1254}
1255
1256/**
1257 * unmap_kernel_range_noflush - unmap kernel VM area
1258 * @addr: start of the VM area to unmap
1259 * @size: size of the VM area to unmap
1260 *
1261 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1262 * specify should have been allocated using get_vm_area() and its
1263 * friends.
1264 *
1265 * NOTE:
1266 * This function does NOT do any cache flushing.  The caller is
1267 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1268 * before calling this function and flush_tlb_kernel_range() after.
1269 */
1270void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1271{
1272        vunmap_page_range(addr, addr + size);
1273}
1274EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1275
1276/**
1277 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1278 * @addr: start of the VM area to unmap
1279 * @size: size of the VM area to unmap
1280 *
1281 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1282 * the unmapping and tlb after.
1283 */
1284void unmap_kernel_range(unsigned long addr, unsigned long size)
1285{
1286        unsigned long end = addr + size;
1287
1288        flush_cache_vunmap(addr, end);
1289        vunmap_page_range(addr, end);
1290        flush_tlb_kernel_range(addr, end);
1291}
1292EXPORT_SYMBOL_GPL(unmap_kernel_range);
1293
1294int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1295{
1296        unsigned long addr = (unsigned long)area->addr;
1297        unsigned long end = addr + get_vm_area_size(area);
1298        int err;
1299
1300        err = vmap_page_range(addr, end, prot, pages);
1301
1302        return err > 0 ? 0 : err;
1303}
1304EXPORT_SYMBOL_GPL(map_vm_area);
1305
1306static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1307                              unsigned long flags, const void *caller)
1308{
1309        spin_lock(&vmap_area_lock);
1310        vm->flags = flags;
1311        vm->addr = (void *)va->va_start;
1312        vm->size = va->va_end - va->va_start;
1313        vm->caller = caller;
1314        va->vm = vm;
1315        va->flags |= VM_VM_AREA;
1316        spin_unlock(&vmap_area_lock);
1317}
1318
1319static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1320{
1321        /*
1322         * Before removing VM_UNINITIALIZED,
1323         * we should make sure that vm has proper values.
1324         * Pair with smp_rmb() in show_numa_info().
1325         */
1326        smp_wmb();
1327        vm->flags &= ~VM_UNINITIALIZED;
1328}
1329
1330static struct vm_struct *__get_vm_area_node(unsigned long size,
1331                unsigned long align, unsigned long flags, unsigned long start,
1332                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1333{
1334        struct vmap_area *va;
1335        struct vm_struct *area;
1336
1337        BUG_ON(in_interrupt());
1338        if (flags & VM_IOREMAP)
1339                align = 1ul << clamp_t(int, fls_long(size),
1340                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1341
1342        size = PAGE_ALIGN(size);
1343        if (unlikely(!size))
1344                return NULL;
1345
1346        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1347        if (unlikely(!area))
1348                return NULL;
1349
1350        if (!(flags & VM_NO_GUARD))
1351                size += PAGE_SIZE;
1352
1353        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1354        if (IS_ERR(va)) {
1355                kfree(area);
1356                return NULL;
1357        }
1358
1359        setup_vmalloc_vm(area, va, flags, caller);
1360
1361        return area;
1362}
1363
1364struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1365                                unsigned long start, unsigned long end)
1366{
1367        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1368                                  GFP_KERNEL, __builtin_return_address(0));
1369}
1370EXPORT_SYMBOL_GPL(__get_vm_area);
1371
1372struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1373                                       unsigned long start, unsigned long end,
1374                                       const void *caller)
1375{
1376        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1377                                  GFP_KERNEL, caller);
1378}
1379
1380/**
1381 *      get_vm_area  -  reserve a contiguous kernel virtual area
1382 *      @size:          size of the area
1383 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1384 *
1385 *      Search an area of @size in the kernel virtual mapping area,
1386 *      and reserved it for out purposes.  Returns the area descriptor
1387 *      on success or %NULL on failure.
1388 */
1389struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1390{
1391        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1392                                  NUMA_NO_NODE, GFP_KERNEL,
1393                                  __builtin_return_address(0));
1394}
1395
1396struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1397                                const void *caller)
1398{
1399        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1400                                  NUMA_NO_NODE, GFP_KERNEL, caller);
1401}
1402
1403/**
1404 *      find_vm_area  -  find a continuous kernel virtual area
1405 *      @addr:          base address
1406 *
1407 *      Search for the kernel VM area starting at @addr, and return it.
1408 *      It is up to the caller to do all required locking to keep the returned
1409 *      pointer valid.
1410 */
1411struct vm_struct *find_vm_area(const void *addr)
1412{
1413        struct vmap_area *va;
1414
1415        va = find_vmap_area((unsigned long)addr);
1416        if (va && va->flags & VM_VM_AREA)
1417                return va->vm;
1418
1419        return NULL;
1420}
1421
1422/**
1423 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1424 *      @addr:          base address
1425 *
1426 *      Search for the kernel VM area starting at @addr, and remove it.
1427 *      This function returns the found VM area, but using it is NOT safe
1428 *      on SMP machines, except for its size or flags.
1429 */
1430struct vm_struct *remove_vm_area(const void *addr)
1431{
1432        struct vmap_area *va;
1433
1434        va = find_vmap_area((unsigned long)addr);
1435        if (va && va->flags & VM_VM_AREA) {
1436                struct vm_struct *vm = va->vm;
1437
1438                spin_lock(&vmap_area_lock);
1439                va->vm = NULL;
1440                va->flags &= ~VM_VM_AREA;
1441                spin_unlock(&vmap_area_lock);
1442
1443                vmap_debug_free_range(va->va_start, va->va_end);
1444                kasan_free_shadow(vm);
1445                free_unmap_vmap_area(va);
1446
1447                return vm;
1448        }
1449        return NULL;
1450}
1451
1452static void __vunmap(const void *addr, int deallocate_pages)
1453{
1454        struct vm_struct *area;
1455
1456        if (!addr)
1457                return;
1458
1459        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1460                        addr))
1461                return;
1462
1463        area = remove_vm_area(addr);
1464        if (unlikely(!area)) {
1465                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1466                                addr);
1467                return;
1468        }
1469
1470        debug_check_no_locks_freed(addr, get_vm_area_size(area));
1471        debug_check_no_obj_freed(addr, get_vm_area_size(area));
1472
1473        if (deallocate_pages) {
1474                int i;
1475
1476                for (i = 0; i < area->nr_pages; i++) {
1477                        struct page *page = area->pages[i];
1478
1479                        BUG_ON(!page);
1480                        __free_page(page);
1481                }
1482
1483                if (area->flags & VM_VPAGES)
1484                        vfree(area->pages);
1485                else
1486                        kfree(area->pages);
1487        }
1488
1489        kfree(area);
1490        return;
1491}
1492 
1493/**
1494 *      vfree  -  release memory allocated by vmalloc()
1495 *      @addr:          memory base address
1496 *
1497 *      Free the virtually continuous memory area starting at @addr, as
1498 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1499 *      NULL, no operation is performed.
1500 *
1501 *      Must not be called in NMI context (strictly speaking, only if we don't
1502 *      have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1503 *      conventions for vfree() arch-depenedent would be a really bad idea)
1504 *
1505 *      NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1506 */
1507void vfree(const void *addr)
1508{
1509        BUG_ON(in_nmi());
1510
1511        kmemleak_free(addr);
1512
1513        if (!addr)
1514                return;
1515        if (unlikely(in_interrupt())) {
1516                struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1517                if (llist_add((struct llist_node *)addr, &p->list))
1518                        schedule_work(&p->wq);
1519        } else
1520                __vunmap(addr, 1);
1521}
1522EXPORT_SYMBOL(vfree);
1523
1524/**
1525 *      vunmap  -  release virtual mapping obtained by vmap()
1526 *      @addr:          memory base address
1527 *
1528 *      Free the virtually contiguous memory area starting at @addr,
1529 *      which was created from the page array passed to vmap().
1530 *
1531 *      Must not be called in interrupt context.
1532 */
1533void vunmap(const void *addr)
1534{
1535        BUG_ON(in_interrupt());
1536        might_sleep();
1537        if (addr)
1538                __vunmap(addr, 0);
1539}
1540EXPORT_SYMBOL(vunmap);
1541
1542/**
1543 *      vmap  -  map an array of pages into virtually contiguous space
1544 *      @pages:         array of page pointers
1545 *      @count:         number of pages to map
1546 *      @flags:         vm_area->flags
1547 *      @prot:          page protection for the mapping
1548 *
1549 *      Maps @count pages from @pages into contiguous kernel virtual
1550 *      space.
1551 */
1552void *vmap(struct page **pages, unsigned int count,
1553                unsigned long flags, pgprot_t prot)
1554{
1555        struct vm_struct *area;
1556
1557        might_sleep();
1558
1559        if (count > totalram_pages)
1560                return NULL;
1561
1562        area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1563                                        __builtin_return_address(0));
1564        if (!area)
1565                return NULL;
1566
1567        if (map_vm_area(area, prot, pages)) {
1568                vunmap(area->addr);
1569                return NULL;
1570        }
1571
1572        return area->addr;
1573}
1574EXPORT_SYMBOL(vmap);
1575
1576static void *__vmalloc_node(unsigned long size, unsigned long align,
1577                            gfp_t gfp_mask, pgprot_t prot,
1578                            int node, const void *caller);
1579static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1580                                 pgprot_t prot, int node)
1581{
1582        const int order = 0;
1583        struct page **pages;
1584        unsigned int nr_pages, array_size, i;
1585        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1586        const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1587
1588        nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1589        array_size = (nr_pages * sizeof(struct page *));
1590
1591        area->nr_pages = nr_pages;
1592        /* Please note that the recursion is strictly bounded. */
1593        if (array_size > PAGE_SIZE) {
1594                pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1595                                PAGE_KERNEL, node, area->caller);
1596                area->flags |= VM_VPAGES;
1597        } else {
1598                pages = kmalloc_node(array_size, nested_gfp, node);
1599        }
1600        area->pages = pages;
1601        if (!area->pages) {
1602                remove_vm_area(area->addr);
1603                kfree(area);
1604                return NULL;
1605        }
1606
1607        for (i = 0; i < area->nr_pages; i++) {
1608                struct page *page;
1609
1610                if (node == NUMA_NO_NODE)
1611                        page = alloc_page(alloc_mask);
1612                else
1613                        page = alloc_pages_node(node, alloc_mask, order);
1614
1615                if (unlikely(!page)) {
1616                        /* Successfully allocated i pages, free them in __vunmap() */
1617                        area->nr_pages = i;
1618                        goto fail;
1619                }
1620                area->pages[i] = page;
1621                if (gfpflags_allow_blocking(gfp_mask))
1622                        cond_resched();
1623        }
1624
1625        if (map_vm_area(area, prot, pages))
1626                goto fail;
1627        return area->addr;
1628
1629fail:
1630        warn_alloc_failed(gfp_mask, order,
1631                          "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1632                          (area->nr_pages*PAGE_SIZE), area->size);
1633        vfree(area->addr);
1634        return NULL;
1635}
1636
1637/**
1638 *      __vmalloc_node_range  -  allocate virtually contiguous memory
1639 *      @size:          allocation size
1640 *      @align:         desired alignment
1641 *      @start:         vm area range start
1642 *      @end:           vm area range end
1643 *      @gfp_mask:      flags for the page level allocator
1644 *      @prot:          protection mask for the allocated pages
1645 *      @vm_flags:      additional vm area flags (e.g. %VM_NO_GUARD)
1646 *      @node:          node to use for allocation or NUMA_NO_NODE
1647 *      @caller:        caller's return address
1648 *
1649 *      Allocate enough pages to cover @size from the page level
1650 *      allocator with @gfp_mask flags.  Map them into contiguous
1651 *      kernel virtual space, using a pagetable protection of @prot.
1652 */
1653void *__vmalloc_node_range(unsigned long size, unsigned long align,
1654                        unsigned long start, unsigned long end, gfp_t gfp_mask,
1655                        pgprot_t prot, unsigned long vm_flags, int node,
1656                        const void *caller)
1657{
1658        struct vm_struct *area;
1659        void *addr;
1660        unsigned long real_size = size;
1661
1662        size = PAGE_ALIGN(size);
1663        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1664                goto fail;
1665
1666        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1667                                vm_flags, start, end, node, gfp_mask, caller);
1668        if (!area)
1669                goto fail;
1670
1671        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1672        if (!addr)
1673                return NULL;
1674
1675        /*
1676         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1677         * flag. It means that vm_struct is not fully initialized.
1678         * Now, it is fully initialized, so remove this flag here.
1679         */
1680        clear_vm_uninitialized_flag(area);
1681
1682        /*
1683         * A ref_count = 2 is needed because vm_struct allocated in
1684         * __get_vm_area_node() contains a reference to the virtual address of
1685         * the vmalloc'ed block.
1686         */
1687        kmemleak_alloc(addr, real_size, 2, gfp_mask);
1688
1689        return addr;
1690
1691fail:
1692        warn_alloc_failed(gfp_mask, 0,
1693                          "vmalloc: allocation failure: %lu bytes\n",
1694                          real_size);
1695        return NULL;
1696}
1697
1698/**
1699 *      __vmalloc_node  -  allocate virtually contiguous memory
1700 *      @size:          allocation size
1701 *      @align:         desired alignment
1702 *      @gfp_mask:      flags for the page level allocator
1703 *      @prot:          protection mask for the allocated pages
1704 *      @node:          node to use for allocation or NUMA_NO_NODE
1705 *      @caller:        caller's return address
1706 *
1707 *      Allocate enough pages to cover @size from the page level
1708 *      allocator with @gfp_mask flags.  Map them into contiguous
1709 *      kernel virtual space, using a pagetable protection of @prot.
1710 */
1711static void *__vmalloc_node(unsigned long size, unsigned long align,
1712                            gfp_t gfp_mask, pgprot_t prot,
1713                            int node, const void *caller)
1714{
1715        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1716                                gfp_mask, prot, 0, node, caller);
1717}
1718
1719void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1720{
1721        return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1722                                __builtin_return_address(0));
1723}
1724EXPORT_SYMBOL(__vmalloc);
1725
1726static inline void *__vmalloc_node_flags(unsigned long size,
1727                                        int node, gfp_t flags)
1728{
1729        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1730                                        node, __builtin_return_address(0));
1731}
1732
1733/**
1734 *      vmalloc  -  allocate virtually contiguous memory
1735 *      @size:          allocation size
1736 *      Allocate enough pages to cover @size from the page level
1737 *      allocator and map them into contiguous kernel virtual space.
1738 *
1739 *      For tight control over page level allocator and protection flags
1740 *      use __vmalloc() instead.
1741 */
1742void *vmalloc(unsigned long size)
1743{
1744        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1745                                    GFP_KERNEL | __GFP_HIGHMEM);
1746}
1747EXPORT_SYMBOL(vmalloc);
1748
1749/**
1750 *      vzalloc - allocate virtually contiguous memory with zero fill
1751 *      @size:  allocation size
1752 *      Allocate enough pages to cover @size from the page level
1753 *      allocator and map them into contiguous kernel virtual space.
1754 *      The memory allocated is set to zero.
1755 *
1756 *      For tight control over page level allocator and protection flags
1757 *      use __vmalloc() instead.
1758 */
1759void *vzalloc(unsigned long size)
1760{
1761        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1762                                GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1763}
1764EXPORT_SYMBOL(vzalloc);
1765
1766/**
1767 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1768 * @size: allocation size
1769 *
1770 * The resulting memory area is zeroed so it can be mapped to userspace
1771 * without leaking data.
1772 */
1773void *vmalloc_user(unsigned long size)
1774{
1775        struct vm_struct *area;
1776        void *ret;
1777
1778        ret = __vmalloc_node(size, SHMLBA,
1779                             GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1780                             PAGE_KERNEL, NUMA_NO_NODE,
1781                             __builtin_return_address(0));
1782        if (ret) {
1783                area = find_vm_area(ret);
1784                area->flags |= VM_USERMAP;
1785        }
1786        return ret;
1787}
1788EXPORT_SYMBOL(vmalloc_user);
1789
1790/**
1791 *      vmalloc_node  -  allocate memory on a specific node
1792 *      @size:          allocation size
1793 *      @node:          numa node
1794 *
1795 *      Allocate enough pages to cover @size from the page level
1796 *      allocator and map them into contiguous kernel virtual space.
1797 *
1798 *      For tight control over page level allocator and protection flags
1799 *      use __vmalloc() instead.
1800 */
1801void *vmalloc_node(unsigned long size, int node)
1802{
1803        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1804                                        node, __builtin_return_address(0));
1805}
1806EXPORT_SYMBOL(vmalloc_node);
1807
1808/**
1809 * vzalloc_node - allocate memory on a specific node with zero fill
1810 * @size:       allocation size
1811 * @node:       numa node
1812 *
1813 * Allocate enough pages to cover @size from the page level
1814 * allocator and map them into contiguous kernel virtual space.
1815 * The memory allocated is set to zero.
1816 *
1817 * For tight control over page level allocator and protection flags
1818 * use __vmalloc_node() instead.
1819 */
1820void *vzalloc_node(unsigned long size, int node)
1821{
1822        return __vmalloc_node_flags(size, node,
1823                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1824}
1825EXPORT_SYMBOL(vzalloc_node);
1826
1827#ifndef PAGE_KERNEL_EXEC
1828# define PAGE_KERNEL_EXEC PAGE_KERNEL
1829#endif
1830
1831/**
1832 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1833 *      @size:          allocation size
1834 *
1835 *      Kernel-internal function to allocate enough pages to cover @size
1836 *      the page level allocator and map them into contiguous and
1837 *      executable kernel virtual space.
1838 *
1839 *      For tight control over page level allocator and protection flags
1840 *      use __vmalloc() instead.
1841 */
1842
1843void *vmalloc_exec(unsigned long size)
1844{
1845        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1846                              NUMA_NO_NODE, __builtin_return_address(0));
1847}
1848
1849#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1850#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1851#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1852#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1853#else
1854#define GFP_VMALLOC32 GFP_KERNEL
1855#endif
1856
1857/**
1858 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1859 *      @size:          allocation size
1860 *
1861 *      Allocate enough 32bit PA addressable pages to cover @size from the
1862 *      page level allocator and map them into contiguous kernel virtual space.
1863 */
1864void *vmalloc_32(unsigned long size)
1865{
1866        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1867                              NUMA_NO_NODE, __builtin_return_address(0));
1868}
1869EXPORT_SYMBOL(vmalloc_32);
1870
1871/**
1872 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1873 *      @size:          allocation size
1874 *
1875 * The resulting memory area is 32bit addressable and zeroed so it can be
1876 * mapped to userspace without leaking data.
1877 */
1878void *vmalloc_32_user(unsigned long size)
1879{
1880        struct vm_struct *area;
1881        void *ret;
1882
1883        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1884                             NUMA_NO_NODE, __builtin_return_address(0));
1885        if (ret) {
1886                area = find_vm_area(ret);
1887                area->flags |= VM_USERMAP;
1888        }
1889        return ret;
1890}
1891EXPORT_SYMBOL(vmalloc_32_user);
1892
1893/*
1894 * small helper routine , copy contents to buf from addr.
1895 * If the page is not present, fill zero.
1896 */
1897
1898static int aligned_vread(char *buf, char *addr, unsigned long count)
1899{
1900        struct page *p;
1901        int copied = 0;
1902
1903        while (count) {
1904                unsigned long offset, length;
1905
1906                offset = offset_in_page(addr);
1907                length = PAGE_SIZE - offset;
1908                if (length > count)
1909                        length = count;
1910                p = vmalloc_to_page(addr);
1911                /*
1912                 * To do safe access to this _mapped_ area, we need
1913                 * lock. But adding lock here means that we need to add
1914                 * overhead of vmalloc()/vfree() calles for this _debug_
1915                 * interface, rarely used. Instead of that, we'll use
1916                 * kmap() and get small overhead in this access function.
1917                 */
1918                if (p) {
1919                        /*
1920                         * we can expect USER0 is not used (see vread/vwrite's
1921                         * function description)
1922                         */
1923                        void *map = kmap_atomic(p);
1924                        memcpy(buf, map + offset, length);
1925                        kunmap_atomic(map);
1926                } else
1927                        memset(buf, 0, length);
1928
1929                addr += length;
1930                buf += length;
1931                copied += length;
1932                count -= length;
1933        }
1934        return copied;
1935}
1936
1937static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1938{
1939        struct page *p;
1940        int copied = 0;
1941
1942        while (count) {
1943                unsigned long offset, length;
1944
1945                offset = offset_in_page(addr);
1946                length = PAGE_SIZE - offset;
1947                if (length > count)
1948                        length = count;
1949                p = vmalloc_to_page(addr);
1950                /*
1951                 * To do safe access to this _mapped_ area, we need
1952                 * lock. But adding lock here means that we need to add
1953                 * overhead of vmalloc()/vfree() calles for this _debug_
1954                 * interface, rarely used. Instead of that, we'll use
1955                 * kmap() and get small overhead in this access function.
1956                 */
1957                if (p) {
1958                        /*
1959                         * we can expect USER0 is not used (see vread/vwrite's
1960                         * function description)
1961                         */
1962                        void *map = kmap_atomic(p);
1963                        memcpy(map + offset, buf, length);
1964                        kunmap_atomic(map);
1965                }
1966                addr += length;
1967                buf += length;
1968                copied += length;
1969                count -= length;
1970        }
1971        return copied;
1972}
1973
1974/**
1975 *      vread() -  read vmalloc area in a safe way.
1976 *      @buf:           buffer for reading data
1977 *      @addr:          vm address.
1978 *      @count:         number of bytes to be read.
1979 *
1980 *      Returns # of bytes which addr and buf should be increased.
1981 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
1982 *      includes any intersect with alive vmalloc area.
1983 *
1984 *      This function checks that addr is a valid vmalloc'ed area, and
1985 *      copy data from that area to a given buffer. If the given memory range
1986 *      of [addr...addr+count) includes some valid address, data is copied to
1987 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
1988 *      IOREMAP area is treated as memory hole and no copy is done.
1989 *
1990 *      If [addr...addr+count) doesn't includes any intersects with alive
1991 *      vm_struct area, returns 0. @buf should be kernel's buffer.
1992 *
1993 *      Note: In usual ops, vread() is never necessary because the caller
1994 *      should know vmalloc() area is valid and can use memcpy().
1995 *      This is for routines which have to access vmalloc area without
1996 *      any informaion, as /dev/kmem.
1997 *
1998 */
1999
2000long vread(char *buf, char *addr, unsigned long count)
2001{
2002        struct vmap_area *va;
2003        struct vm_struct *vm;
2004        char *vaddr, *buf_start = buf;
2005        unsigned long buflen = count;
2006        unsigned long n;
2007
2008        /* Don't allow overflow */
2009        if ((unsigned long) addr + count < count)
2010                count = -(unsigned long) addr;
2011
2012        spin_lock(&vmap_area_lock);
2013        list_for_each_entry(va, &vmap_area_list, list) {
2014                if (!count)
2015                        break;
2016
2017                if (!(va->flags & VM_VM_AREA))
2018                        continue;
2019
2020                vm = va->vm;
2021                vaddr = (char *) vm->addr;
2022                if (addr >= vaddr + get_vm_area_size(vm))
2023                        continue;
2024                while (addr < vaddr) {
2025                        if (count == 0)
2026                                goto finished;
2027                        *buf = '\0';
2028                        buf++;
2029                        addr++;
2030                        count--;
2031                }
2032                n = vaddr + get_vm_area_size(vm) - addr;
2033                if (n > count)
2034                        n = count;
2035                if (!(vm->flags & VM_IOREMAP))
2036                        aligned_vread(buf, addr, n);
2037                else /* IOREMAP area is treated as memory hole */
2038                        memset(buf, 0, n);
2039                buf += n;
2040                addr += n;
2041                count -= n;
2042        }
2043finished:
2044        spin_unlock(&vmap_area_lock);
2045
2046        if (buf == buf_start)
2047                return 0;
2048        /* zero-fill memory holes */
2049        if (buf != buf_start + buflen)
2050                memset(buf, 0, buflen - (buf - buf_start));
2051
2052        return buflen;
2053}
2054
2055/**
2056 *      vwrite() -  write vmalloc area in a safe way.
2057 *      @buf:           buffer for source data
2058 *      @addr:          vm address.
2059 *      @count:         number of bytes to be read.
2060 *
2061 *      Returns # of bytes which addr and buf should be incresed.
2062 *      (same number to @count).
2063 *      If [addr...addr+count) doesn't includes any intersect with valid
2064 *      vmalloc area, returns 0.
2065 *
2066 *      This function checks that addr is a valid vmalloc'ed area, and
2067 *      copy data from a buffer to the given addr. If specified range of
2068 *      [addr...addr+count) includes some valid address, data is copied from
2069 *      proper area of @buf. If there are memory holes, no copy to hole.
2070 *      IOREMAP area is treated as memory hole and no copy is done.
2071 *
2072 *      If [addr...addr+count) doesn't includes any intersects with alive
2073 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2074 *
2075 *      Note: In usual ops, vwrite() is never necessary because the caller
2076 *      should know vmalloc() area is valid and can use memcpy().
2077 *      This is for routines which have to access vmalloc area without
2078 *      any informaion, as /dev/kmem.
2079 */
2080
2081long vwrite(char *buf, char *addr, unsigned long count)
2082{
2083        struct vmap_area *va;
2084        struct vm_struct *vm;
2085        char *vaddr;
2086        unsigned long n, buflen;
2087        int copied = 0;
2088
2089        /* Don't allow overflow */
2090        if ((unsigned long) addr + count < count)
2091                count = -(unsigned long) addr;
2092        buflen = count;
2093
2094        spin_lock(&vmap_area_lock);
2095        list_for_each_entry(va, &vmap_area_list, list) {
2096                if (!count)
2097                        break;
2098
2099                if (!(va->flags & VM_VM_AREA))
2100                        continue;
2101
2102                vm = va->vm;
2103                vaddr = (char *) vm->addr;
2104                if (addr >= vaddr + get_vm_area_size(vm))
2105                        continue;
2106                while (addr < vaddr) {
2107                        if (count == 0)
2108                                goto finished;
2109                        buf++;
2110                        addr++;
2111                        count--;
2112                }
2113                n = vaddr + get_vm_area_size(vm) - addr;
2114                if (n > count)
2115                        n = count;
2116                if (!(vm->flags & VM_IOREMAP)) {
2117                        aligned_vwrite(buf, addr, n);
2118                        copied++;
2119                }
2120                buf += n;
2121                addr += n;
2122                count -= n;
2123        }
2124finished:
2125        spin_unlock(&vmap_area_lock);
2126        if (!copied)
2127                return 0;
2128        return buflen;
2129}
2130
2131/**
2132 *      remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2133 *      @vma:           vma to cover
2134 *      @uaddr:         target user address to start at
2135 *      @kaddr:         virtual address of vmalloc kernel memory
2136 *      @size:          size of map area
2137 *
2138 *      Returns:        0 for success, -Exxx on failure
2139 *
2140 *      This function checks that @kaddr is a valid vmalloc'ed area,
2141 *      and that it is big enough to cover the range starting at
2142 *      @uaddr in @vma. Will return failure if that criteria isn't
2143 *      met.
2144 *
2145 *      Similar to remap_pfn_range() (see mm/memory.c)
2146 */
2147int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2148                                void *kaddr, unsigned long size)
2149{
2150        struct vm_struct *area;
2151
2152        size = PAGE_ALIGN(size);
2153
2154        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2155                return -EINVAL;
2156
2157        area = find_vm_area(kaddr);
2158        if (!area)
2159                return -EINVAL;
2160
2161        if (!(area->flags & VM_USERMAP))
2162                return -EINVAL;
2163
2164        if (kaddr + size > area->addr + area->size)
2165                return -EINVAL;
2166
2167        do {
2168                struct page *page = vmalloc_to_page(kaddr);
2169                int ret;
2170
2171                ret = vm_insert_page(vma, uaddr, page);
2172                if (ret)
2173                        return ret;
2174
2175                uaddr += PAGE_SIZE;
2176                kaddr += PAGE_SIZE;
2177                size -= PAGE_SIZE;
2178        } while (size > 0);
2179
2180        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2181
2182        return 0;
2183}
2184EXPORT_SYMBOL(remap_vmalloc_range_partial);
2185
2186/**
2187 *      remap_vmalloc_range  -  map vmalloc pages to userspace
2188 *      @vma:           vma to cover (map full range of vma)
2189 *      @addr:          vmalloc memory
2190 *      @pgoff:         number of pages into addr before first page to map
2191 *
2192 *      Returns:        0 for success, -Exxx on failure
2193 *
2194 *      This function checks that addr is a valid vmalloc'ed area, and
2195 *      that it is big enough to cover the vma. Will return failure if
2196 *      that criteria isn't met.
2197 *
2198 *      Similar to remap_pfn_range() (see mm/memory.c)
2199 */
2200int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2201                                                unsigned long pgoff)
2202{
2203        return remap_vmalloc_range_partial(vma, vma->vm_start,
2204                                           addr + (pgoff << PAGE_SHIFT),
2205                                           vma->vm_end - vma->vm_start);
2206}
2207EXPORT_SYMBOL(remap_vmalloc_range);
2208
2209/*
2210 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2211 * have one.
2212 */
2213void __weak vmalloc_sync_all(void)
2214{
2215}
2216
2217
2218static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2219{
2220        pte_t ***p = data;
2221
2222        if (p) {
2223                *(*p) = pte;
2224                (*p)++;
2225        }
2226        return 0;
2227}
2228
2229/**
2230 *      alloc_vm_area - allocate a range of kernel address space
2231 *      @size:          size of the area
2232 *      @ptes:          returns the PTEs for the address space
2233 *
2234 *      Returns:        NULL on failure, vm_struct on success
2235 *
2236 *      This function reserves a range of kernel address space, and
2237 *      allocates pagetables to map that range.  No actual mappings
2238 *      are created.
2239 *
2240 *      If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2241 *      allocated for the VM area are returned.
2242 */
2243struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2244{
2245        struct vm_struct *area;
2246
2247        area = get_vm_area_caller(size, VM_IOREMAP,
2248                                __builtin_return_address(0));
2249        if (area == NULL)
2250                return NULL;
2251
2252        /*
2253         * This ensures that page tables are constructed for this region
2254         * of kernel virtual address space and mapped into init_mm.
2255         */
2256        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2257                                size, f, ptes ? &ptes : NULL)) {
2258                free_vm_area(area);
2259                return NULL;
2260        }
2261
2262        return area;
2263}
2264EXPORT_SYMBOL_GPL(alloc_vm_area);
2265
2266void free_vm_area(struct vm_struct *area)
2267{
2268        struct vm_struct *ret;
2269        ret = remove_vm_area(area->addr);
2270        BUG_ON(ret != area);
2271        kfree(area);
2272}
2273EXPORT_SYMBOL_GPL(free_vm_area);
2274
2275#ifdef CONFIG_SMP
2276static struct vmap_area *node_to_va(struct rb_node *n)
2277{
2278        return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2279}
2280
2281/**
2282 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2283 * @end: target address
2284 * @pnext: out arg for the next vmap_area
2285 * @pprev: out arg for the previous vmap_area
2286 *
2287 * Returns: %true if either or both of next and prev are found,
2288 *          %false if no vmap_area exists
2289 *
2290 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2291 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2292 */
2293static bool pvm_find_next_prev(unsigned long end,
2294                               struct vmap_area **pnext,
2295                               struct vmap_area **pprev)
2296{
2297        struct rb_node *n = vmap_area_root.rb_node;
2298        struct vmap_area *va = NULL;
2299
2300        while (n) {
2301                va = rb_entry(n, struct vmap_area, rb_node);
2302                if (end < va->va_end)
2303                        n = n->rb_left;
2304                else if (end > va->va_end)
2305                        n = n->rb_right;
2306                else
2307                        break;
2308        }
2309
2310        if (!va)
2311                return false;
2312
2313        if (va->va_end > end) {
2314                *pnext = va;
2315                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2316        } else {
2317                *pprev = va;
2318                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2319        }
2320        return true;
2321}
2322
2323/**
2324 * pvm_determine_end - find the highest aligned address between two vmap_areas
2325 * @pnext: in/out arg for the next vmap_area
2326 * @pprev: in/out arg for the previous vmap_area
2327 * @align: alignment
2328 *
2329 * Returns: determined end address
2330 *
2331 * Find the highest aligned address between *@pnext and *@pprev below
2332 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2333 * down address is between the end addresses of the two vmap_areas.
2334 *
2335 * Please note that the address returned by this function may fall
2336 * inside *@pnext vmap_area.  The caller is responsible for checking
2337 * that.
2338 */
2339static unsigned long pvm_determine_end(struct vmap_area **pnext,
2340                                       struct vmap_area **pprev,
2341                                       unsigned long align)
2342{
2343        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2344        unsigned long addr;
2345
2346        if (*pnext)
2347                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2348        else
2349                addr = vmalloc_end;
2350
2351        while (*pprev && (*pprev)->va_end > addr) {
2352                *pnext = *pprev;
2353                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2354        }
2355
2356        return addr;
2357}
2358
2359/**
2360 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2361 * @offsets: array containing offset of each area
2362 * @sizes: array containing size of each area
2363 * @nr_vms: the number of areas to allocate
2364 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2365 *
2366 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2367 *          vm_structs on success, %NULL on failure
2368 *
2369 * Percpu allocator wants to use congruent vm areas so that it can
2370 * maintain the offsets among percpu areas.  This function allocates
2371 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2372 * be scattered pretty far, distance between two areas easily going up
2373 * to gigabytes.  To avoid interacting with regular vmallocs, these
2374 * areas are allocated from top.
2375 *
2376 * Despite its complicated look, this allocator is rather simple.  It
2377 * does everything top-down and scans areas from the end looking for
2378 * matching slot.  While scanning, if any of the areas overlaps with
2379 * existing vmap_area, the base address is pulled down to fit the
2380 * area.  Scanning is repeated till all the areas fit and then all
2381 * necessary data structres are inserted and the result is returned.
2382 */
2383struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2384                                     const size_t *sizes, int nr_vms,
2385                                     size_t align)
2386{
2387        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2388        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2389        struct vmap_area **vas, *prev, *next;
2390        struct vm_struct **vms;
2391        int area, area2, last_area, term_area;
2392        unsigned long base, start, end, last_end;
2393        bool purged = false;
2394
2395        /* verify parameters and allocate data structures */
2396        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2397        for (last_area = 0, area = 0; area < nr_vms; area++) {
2398                start = offsets[area];
2399                end = start + sizes[area];
2400
2401                /* is everything aligned properly? */
2402                BUG_ON(!IS_ALIGNED(offsets[area], align));
2403                BUG_ON(!IS_ALIGNED(sizes[area], align));
2404
2405                /* detect the area with the highest address */
2406                if (start > offsets[last_area])
2407                        last_area = area;
2408
2409                for (area2 = 0; area2 < nr_vms; area2++) {
2410                        unsigned long start2 = offsets[area2];
2411                        unsigned long end2 = start2 + sizes[area2];
2412
2413                        if (area2 == area)
2414                                continue;
2415
2416                        BUG_ON(start2 >= start && start2 < end);
2417                        BUG_ON(end2 <= end && end2 > start);
2418                }
2419        }
2420        last_end = offsets[last_area] + sizes[last_area];
2421
2422        if (vmalloc_end - vmalloc_start < last_end) {
2423                WARN_ON(true);
2424                return NULL;
2425        }
2426
2427        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2428        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2429        if (!vas || !vms)
2430                goto err_free2;
2431
2432        for (area = 0; area < nr_vms; area++) {
2433                vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2434                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2435                if (!vas[area] || !vms[area])
2436                        goto err_free;
2437        }
2438retry:
2439        spin_lock(&vmap_area_lock);
2440
2441        /* start scanning - we scan from the top, begin with the last area */
2442        area = term_area = last_area;
2443        start = offsets[area];
2444        end = start + sizes[area];
2445
2446        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2447                base = vmalloc_end - last_end;
2448                goto found;
2449        }
2450        base = pvm_determine_end(&next, &prev, align) - end;
2451
2452        while (true) {
2453                BUG_ON(next && next->va_end <= base + end);
2454                BUG_ON(prev && prev->va_end > base + end);
2455
2456                /*
2457                 * base might have underflowed, add last_end before
2458                 * comparing.
2459                 */
2460                if (base + last_end < vmalloc_start + last_end) {
2461                        spin_unlock(&vmap_area_lock);
2462                        if (!purged) {
2463                                purge_vmap_area_lazy();
2464                                purged = true;
2465                                goto retry;
2466                        }
2467                        goto err_free;
2468                }
2469
2470                /*
2471                 * If next overlaps, move base downwards so that it's
2472                 * right below next and then recheck.
2473                 */
2474                if (next && next->va_start < base + end) {
2475                        base = pvm_determine_end(&next, &prev, align) - end;
2476                        term_area = area;
2477                        continue;
2478                }
2479
2480                /*
2481                 * If prev overlaps, shift down next and prev and move
2482                 * base so that it's right below new next and then
2483                 * recheck.
2484                 */
2485                if (prev && prev->va_end > base + start)  {
2486                        next = prev;
2487                        prev = node_to_va(rb_prev(&next->rb_node));
2488                        base = pvm_determine_end(&next, &prev, align) - end;
2489                        term_area = area;
2490                        continue;
2491                }
2492
2493                /*
2494                 * This area fits, move on to the previous one.  If
2495                 * the previous one is the terminal one, we're done.
2496                 */
2497                area = (area + nr_vms - 1) % nr_vms;
2498                if (area == term_area)
2499                        break;
2500                start = offsets[area];
2501                end = start + sizes[area];
2502                pvm_find_next_prev(base + end, &next, &prev);
2503        }
2504found:
2505        /* we've found a fitting base, insert all va's */
2506        for (area = 0; area < nr_vms; area++) {
2507                struct vmap_area *va = vas[area];
2508
2509                va->va_start = base + offsets[area];
2510                va->va_end = va->va_start + sizes[area];
2511                __insert_vmap_area(va);
2512        }
2513
2514        vmap_area_pcpu_hole = base + offsets[last_area];
2515
2516        spin_unlock(&vmap_area_lock);
2517
2518        /* insert all vm's */
2519        for (area = 0; area < nr_vms; area++)
2520                setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2521                                 pcpu_get_vm_areas);
2522
2523        kfree(vas);
2524        return vms;
2525
2526err_free:
2527        for (area = 0; area < nr_vms; area++) {
2528                kfree(vas[area]);
2529                kfree(vms[area]);
2530        }
2531err_free2:
2532        kfree(vas);
2533        kfree(vms);
2534        return NULL;
2535}
2536
2537/**
2538 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2539 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2540 * @nr_vms: the number of allocated areas
2541 *
2542 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2543 */
2544void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2545{
2546        int i;
2547
2548        for (i = 0; i < nr_vms; i++)
2549                free_vm_area(vms[i]);
2550        kfree(vms);
2551}
2552#endif  /* CONFIG_SMP */
2553
2554#ifdef CONFIG_PROC_FS
2555static void *s_start(struct seq_file *m, loff_t *pos)
2556        __acquires(&vmap_area_lock)
2557{
2558        loff_t n = *pos;
2559        struct vmap_area *va;
2560
2561        spin_lock(&vmap_area_lock);
2562        va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2563        while (n > 0 && &va->list != &vmap_area_list) {
2564                n--;
2565                va = list_entry(va->list.next, typeof(*va), list);
2566        }
2567        if (!n && &va->list != &vmap_area_list)
2568                return va;
2569
2570        return NULL;
2571
2572}
2573
2574static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2575{
2576        struct vmap_area *va = p, *next;
2577
2578        ++*pos;
2579        next = list_entry(va->list.next, typeof(*va), list);
2580        if (&next->list != &vmap_area_list)
2581                return next;
2582
2583        return NULL;
2584}
2585
2586static void s_stop(struct seq_file *m, void *p)
2587        __releases(&vmap_area_lock)
2588{
2589        spin_unlock(&vmap_area_lock);
2590}
2591
2592static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2593{
2594        if (IS_ENABLED(CONFIG_NUMA)) {
2595                unsigned int nr, *counters = m->private;
2596
2597                if (!counters)
2598                        return;
2599
2600                if (v->flags & VM_UNINITIALIZED)
2601                        return;
2602                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2603                smp_rmb();
2604
2605                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2606
2607                for (nr = 0; nr < v->nr_pages; nr++)
2608                        counters[page_to_nid(v->pages[nr])]++;
2609
2610                for_each_node_state(nr, N_HIGH_MEMORY)
2611                        if (counters[nr])
2612                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2613        }
2614}
2615
2616static int s_show(struct seq_file *m, void *p)
2617{
2618        struct vmap_area *va = p;
2619        struct vm_struct *v;
2620
2621        /*
2622         * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2623         * behalf of vmap area is being tear down or vm_map_ram allocation.
2624         */
2625        if (!(va->flags & VM_VM_AREA))
2626                return 0;
2627
2628        v = va->vm;
2629
2630        seq_printf(m, "0x%pK-0x%pK %7ld",
2631                v->addr, v->addr + v->size, v->size);
2632
2633        if (v->caller)
2634                seq_printf(m, " %pS", v->caller);
2635
2636        if (v->nr_pages)
2637                seq_printf(m, " pages=%d", v->nr_pages);
2638
2639        if (v->phys_addr)
2640                seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2641
2642        if (v->flags & VM_IOREMAP)
2643                seq_puts(m, " ioremap");
2644
2645        if (v->flags & VM_ALLOC)
2646                seq_puts(m, " vmalloc");
2647
2648        if (v->flags & VM_MAP)
2649                seq_puts(m, " vmap");
2650
2651        if (v->flags & VM_USERMAP)
2652                seq_puts(m, " user");
2653
2654        if (v->flags & VM_VPAGES)
2655                seq_puts(m, " vpages");
2656
2657        show_numa_info(m, v);
2658        seq_putc(m, '\n');
2659        return 0;
2660}
2661
2662static const struct seq_operations vmalloc_op = {
2663        .start = s_start,
2664        .next = s_next,
2665        .stop = s_stop,
2666        .show = s_show,
2667};
2668
2669static int vmalloc_open(struct inode *inode, struct file *file)
2670{
2671        if (IS_ENABLED(CONFIG_NUMA))
2672                return seq_open_private(file, &vmalloc_op,
2673                                        nr_node_ids * sizeof(unsigned int));
2674        else
2675                return seq_open(file, &vmalloc_op);
2676}
2677
2678static const struct file_operations proc_vmalloc_operations = {
2679        .open           = vmalloc_open,
2680        .read           = seq_read,
2681        .llseek         = seq_lseek,
2682        .release        = seq_release_private,
2683};
2684
2685static int __init proc_vmalloc_init(void)
2686{
2687        proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2688        return 0;
2689}
2690module_init(proc_vmalloc_init);
2691
2692#endif
2693
2694