linux/mm/zsmalloc.c
<<
>>
Prefs
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *      page->private: points to the first component (0-order) page
  20 *      page->index (union with page->freelist): offset of the first object
  21 *              starting in this page. For the first page, this is
  22 *              always 0, so we use this field (aka freelist) to point
  23 *              to the first free object in zspage.
  24 *      page->lru: links together all component pages (except the first page)
  25 *              of a zspage
  26 *
  27 *      For _first_ page only:
  28 *
  29 *      page->private: refers to the component page after the first page
  30 *              If the page is first_page for huge object, it stores handle.
  31 *              Look at size_class->huge.
  32 *      page->freelist: points to the first free object in zspage.
  33 *              Free objects are linked together using in-place
  34 *              metadata.
  35 *      page->objects: maximum number of objects we can store in this
  36 *              zspage (class->zspage_order * PAGE_SIZE / class->size)
  37 *      page->lru: links together first pages of various zspages.
  38 *              Basically forming list of zspages in a fullness group.
  39 *      page->mapping: class index and fullness group of the zspage
  40 *      page->inuse: the number of objects that are used in this zspage
  41 *
  42 * Usage of struct page flags:
  43 *      PG_private: identifies the first component page
  44 *      PG_private2: identifies the last component page
  45 *
  46 */
  47
  48#include <linux/module.h>
  49#include <linux/kernel.h>
  50#include <linux/sched.h>
  51#include <linux/bitops.h>
  52#include <linux/errno.h>
  53#include <linux/highmem.h>
  54#include <linux/string.h>
  55#include <linux/slab.h>
  56#include <asm/tlbflush.h>
  57#include <asm/pgtable.h>
  58#include <linux/cpumask.h>
  59#include <linux/cpu.h>
  60#include <linux/vmalloc.h>
  61#include <linux/preempt.h>
  62#include <linux/spinlock.h>
  63#include <linux/types.h>
  64#include <linux/debugfs.h>
  65#include <linux/zsmalloc.h>
  66#include <linux/zpool.h>
  67
  68/*
  69 * This must be power of 2 and greater than of equal to sizeof(link_free).
  70 * These two conditions ensure that any 'struct link_free' itself doesn't
  71 * span more than 1 page which avoids complex case of mapping 2 pages simply
  72 * to restore link_free pointer values.
  73 */
  74#define ZS_ALIGN                8
  75
  76/*
  77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  79 */
  80#define ZS_MAX_ZSPAGE_ORDER 2
  81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  82
  83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  84
  85/*
  86 * Object location (<PFN>, <obj_idx>) is encoded as
  87 * as single (unsigned long) handle value.
  88 *
  89 * Note that object index <obj_idx> is relative to system
  90 * page <PFN> it is stored in, so for each sub-page belonging
  91 * to a zspage, obj_idx starts with 0.
  92 *
  93 * This is made more complicated by various memory models and PAE.
  94 */
  95
  96#ifndef MAX_PHYSMEM_BITS
  97#ifdef CONFIG_HIGHMEM64G
  98#define MAX_PHYSMEM_BITS 36
  99#else /* !CONFIG_HIGHMEM64G */
 100/*
 101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 102 * be PAGE_SHIFT
 103 */
 104#define MAX_PHYSMEM_BITS BITS_PER_LONG
 105#endif
 106#endif
 107#define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
 108
 109/*
 110 * Memory for allocating for handle keeps object position by
 111 * encoding <page, obj_idx> and the encoded value has a room
 112 * in least bit(ie, look at obj_to_location).
 113 * We use the bit to synchronize between object access by
 114 * user and migration.
 115 */
 116#define HANDLE_PIN_BIT  0
 117
 118/*
 119 * Head in allocated object should have OBJ_ALLOCATED_TAG
 120 * to identify the object was allocated or not.
 121 * It's okay to add the status bit in the least bit because
 122 * header keeps handle which is 4byte-aligned address so we
 123 * have room for two bit at least.
 124 */
 125#define OBJ_ALLOCATED_TAG 1
 126#define OBJ_TAG_BITS 1
 127#define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 128#define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 129
 130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 132#define ZS_MIN_ALLOC_SIZE \
 133        MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 134/* each chunk includes extra space to keep handle */
 135#define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
 136
 137/*
 138 * On systems with 4K page size, this gives 255 size classes! There is a
 139 * trader-off here:
 140 *  - Large number of size classes is potentially wasteful as free page are
 141 *    spread across these classes
 142 *  - Small number of size classes causes large internal fragmentation
 143 *  - Probably its better to use specific size classes (empirically
 144 *    determined). NOTE: all those class sizes must be set as multiple of
 145 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 146 *
 147 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 148 *  (reason above)
 149 */
 150#define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> 8)
 151
 152/*
 153 * We do not maintain any list for completely empty or full pages
 154 */
 155enum fullness_group {
 156        ZS_ALMOST_FULL,
 157        ZS_ALMOST_EMPTY,
 158        _ZS_NR_FULLNESS_GROUPS,
 159
 160        ZS_EMPTY,
 161        ZS_FULL
 162};
 163
 164enum zs_stat_type {
 165        OBJ_ALLOCATED,
 166        OBJ_USED,
 167        CLASS_ALMOST_FULL,
 168        CLASS_ALMOST_EMPTY,
 169};
 170
 171#ifdef CONFIG_ZSMALLOC_STAT
 172#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
 173#else
 174#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
 175#endif
 176
 177struct zs_size_stat {
 178        unsigned long objs[NR_ZS_STAT_TYPE];
 179};
 180
 181#ifdef CONFIG_ZSMALLOC_STAT
 182static struct dentry *zs_stat_root;
 183#endif
 184
 185/*
 186 * number of size_classes
 187 */
 188static int zs_size_classes;
 189
 190/*
 191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 192 *      n <= N / f, where
 193 * n = number of allocated objects
 194 * N = total number of objects zspage can store
 195 * f = fullness_threshold_frac
 196 *
 197 * Similarly, we assign zspage to:
 198 *      ZS_ALMOST_FULL  when n > N / f
 199 *      ZS_EMPTY        when n == 0
 200 *      ZS_FULL         when n == N
 201 *
 202 * (see: fix_fullness_group())
 203 */
 204static const int fullness_threshold_frac = 4;
 205
 206struct size_class {
 207        spinlock_t lock;
 208        struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
 209        /*
 210         * Size of objects stored in this class. Must be multiple
 211         * of ZS_ALIGN.
 212         */
 213        int size;
 214        unsigned int index;
 215
 216        /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 217        int pages_per_zspage;
 218        struct zs_size_stat stats;
 219
 220        /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 221        bool huge;
 222};
 223
 224/*
 225 * Placed within free objects to form a singly linked list.
 226 * For every zspage, first_page->freelist gives head of this list.
 227 *
 228 * This must be power of 2 and less than or equal to ZS_ALIGN
 229 */
 230struct link_free {
 231        union {
 232                /*
 233                 * Position of next free chunk (encodes <PFN, obj_idx>)
 234                 * It's valid for non-allocated object
 235                 */
 236                void *next;
 237                /*
 238                 * Handle of allocated object.
 239                 */
 240                unsigned long handle;
 241        };
 242};
 243
 244struct zs_pool {
 245        const char *name;
 246
 247        struct size_class **size_class;
 248        struct kmem_cache *handle_cachep;
 249
 250        gfp_t flags;    /* allocation flags used when growing pool */
 251        atomic_long_t pages_allocated;
 252
 253        struct zs_pool_stats stats;
 254
 255        /* Compact classes */
 256        struct shrinker shrinker;
 257        /*
 258         * To signify that register_shrinker() was successful
 259         * and unregister_shrinker() will not Oops.
 260         */
 261        bool shrinker_enabled;
 262#ifdef CONFIG_ZSMALLOC_STAT
 263        struct dentry *stat_dentry;
 264#endif
 265};
 266
 267/*
 268 * A zspage's class index and fullness group
 269 * are encoded in its (first)page->mapping
 270 */
 271#define CLASS_IDX_BITS  28
 272#define FULLNESS_BITS   4
 273#define CLASS_IDX_MASK  ((1 << CLASS_IDX_BITS) - 1)
 274#define FULLNESS_MASK   ((1 << FULLNESS_BITS) - 1)
 275
 276struct mapping_area {
 277#ifdef CONFIG_PGTABLE_MAPPING
 278        struct vm_struct *vm; /* vm area for mapping object that span pages */
 279#else
 280        char *vm_buf; /* copy buffer for objects that span pages */
 281#endif
 282        char *vm_addr; /* address of kmap_atomic()'ed pages */
 283        enum zs_mapmode vm_mm; /* mapping mode */
 284        bool huge;
 285};
 286
 287static int create_handle_cache(struct zs_pool *pool)
 288{
 289        pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 290                                        0, 0, NULL);
 291        return pool->handle_cachep ? 0 : 1;
 292}
 293
 294static void destroy_handle_cache(struct zs_pool *pool)
 295{
 296        kmem_cache_destroy(pool->handle_cachep);
 297}
 298
 299static unsigned long alloc_handle(struct zs_pool *pool)
 300{
 301        return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 302                pool->flags & ~__GFP_HIGHMEM);
 303}
 304
 305static void free_handle(struct zs_pool *pool, unsigned long handle)
 306{
 307        kmem_cache_free(pool->handle_cachep, (void *)handle);
 308}
 309
 310static void record_obj(unsigned long handle, unsigned long obj)
 311{
 312        *(unsigned long *)handle = obj;
 313}
 314
 315/* zpool driver */
 316
 317#ifdef CONFIG_ZPOOL
 318
 319static void *zs_zpool_create(const char *name, gfp_t gfp,
 320                             const struct zpool_ops *zpool_ops,
 321                             struct zpool *zpool)
 322{
 323        return zs_create_pool(name, gfp);
 324}
 325
 326static void zs_zpool_destroy(void *pool)
 327{
 328        zs_destroy_pool(pool);
 329}
 330
 331static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 332                        unsigned long *handle)
 333{
 334        *handle = zs_malloc(pool, size);
 335        return *handle ? 0 : -1;
 336}
 337static void zs_zpool_free(void *pool, unsigned long handle)
 338{
 339        zs_free(pool, handle);
 340}
 341
 342static int zs_zpool_shrink(void *pool, unsigned int pages,
 343                        unsigned int *reclaimed)
 344{
 345        return -EINVAL;
 346}
 347
 348static void *zs_zpool_map(void *pool, unsigned long handle,
 349                        enum zpool_mapmode mm)
 350{
 351        enum zs_mapmode zs_mm;
 352
 353        switch (mm) {
 354        case ZPOOL_MM_RO:
 355                zs_mm = ZS_MM_RO;
 356                break;
 357        case ZPOOL_MM_WO:
 358                zs_mm = ZS_MM_WO;
 359                break;
 360        case ZPOOL_MM_RW: /* fallthru */
 361        default:
 362                zs_mm = ZS_MM_RW;
 363                break;
 364        }
 365
 366        return zs_map_object(pool, handle, zs_mm);
 367}
 368static void zs_zpool_unmap(void *pool, unsigned long handle)
 369{
 370        zs_unmap_object(pool, handle);
 371}
 372
 373static u64 zs_zpool_total_size(void *pool)
 374{
 375        return zs_get_total_pages(pool) << PAGE_SHIFT;
 376}
 377
 378static struct zpool_driver zs_zpool_driver = {
 379        .type =         "zsmalloc",
 380        .owner =        THIS_MODULE,
 381        .create =       zs_zpool_create,
 382        .destroy =      zs_zpool_destroy,
 383        .malloc =       zs_zpool_malloc,
 384        .free =         zs_zpool_free,
 385        .shrink =       zs_zpool_shrink,
 386        .map =          zs_zpool_map,
 387        .unmap =        zs_zpool_unmap,
 388        .total_size =   zs_zpool_total_size,
 389};
 390
 391MODULE_ALIAS("zpool-zsmalloc");
 392#endif /* CONFIG_ZPOOL */
 393
 394static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
 395{
 396        return pages_per_zspage * PAGE_SIZE / size;
 397}
 398
 399/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 400static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 401
 402static int is_first_page(struct page *page)
 403{
 404        return PagePrivate(page);
 405}
 406
 407static int is_last_page(struct page *page)
 408{
 409        return PagePrivate2(page);
 410}
 411
 412static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
 413                                enum fullness_group *fullness)
 414{
 415        unsigned long m;
 416        BUG_ON(!is_first_page(page));
 417
 418        m = (unsigned long)page->mapping;
 419        *fullness = m & FULLNESS_MASK;
 420        *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
 421}
 422
 423static void set_zspage_mapping(struct page *page, unsigned int class_idx,
 424                                enum fullness_group fullness)
 425{
 426        unsigned long m;
 427        BUG_ON(!is_first_page(page));
 428
 429        m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
 430                        (fullness & FULLNESS_MASK);
 431        page->mapping = (struct address_space *)m;
 432}
 433
 434/*
 435 * zsmalloc divides the pool into various size classes where each
 436 * class maintains a list of zspages where each zspage is divided
 437 * into equal sized chunks. Each allocation falls into one of these
 438 * classes depending on its size. This function returns index of the
 439 * size class which has chunk size big enough to hold the give size.
 440 */
 441static int get_size_class_index(int size)
 442{
 443        int idx = 0;
 444
 445        if (likely(size > ZS_MIN_ALLOC_SIZE))
 446                idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 447                                ZS_SIZE_CLASS_DELTA);
 448
 449        return min(zs_size_classes - 1, idx);
 450}
 451
 452static inline void zs_stat_inc(struct size_class *class,
 453                                enum zs_stat_type type, unsigned long cnt)
 454{
 455        if (type < NR_ZS_STAT_TYPE)
 456                class->stats.objs[type] += cnt;
 457}
 458
 459static inline void zs_stat_dec(struct size_class *class,
 460                                enum zs_stat_type type, unsigned long cnt)
 461{
 462        if (type < NR_ZS_STAT_TYPE)
 463                class->stats.objs[type] -= cnt;
 464}
 465
 466static inline unsigned long zs_stat_get(struct size_class *class,
 467                                enum zs_stat_type type)
 468{
 469        if (type < NR_ZS_STAT_TYPE)
 470                return class->stats.objs[type];
 471        return 0;
 472}
 473
 474#ifdef CONFIG_ZSMALLOC_STAT
 475
 476static int __init zs_stat_init(void)
 477{
 478        if (!debugfs_initialized())
 479                return -ENODEV;
 480
 481        zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 482        if (!zs_stat_root)
 483                return -ENOMEM;
 484
 485        return 0;
 486}
 487
 488static void __exit zs_stat_exit(void)
 489{
 490        debugfs_remove_recursive(zs_stat_root);
 491}
 492
 493static int zs_stats_size_show(struct seq_file *s, void *v)
 494{
 495        int i;
 496        struct zs_pool *pool = s->private;
 497        struct size_class *class;
 498        int objs_per_zspage;
 499        unsigned long class_almost_full, class_almost_empty;
 500        unsigned long obj_allocated, obj_used, pages_used;
 501        unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 502        unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 503
 504        seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
 505                        "class", "size", "almost_full", "almost_empty",
 506                        "obj_allocated", "obj_used", "pages_used",
 507                        "pages_per_zspage");
 508
 509        for (i = 0; i < zs_size_classes; i++) {
 510                class = pool->size_class[i];
 511
 512                if (class->index != i)
 513                        continue;
 514
 515                spin_lock(&class->lock);
 516                class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 517                class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 518                obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 519                obj_used = zs_stat_get(class, OBJ_USED);
 520                spin_unlock(&class->lock);
 521
 522                objs_per_zspage = get_maxobj_per_zspage(class->size,
 523                                class->pages_per_zspage);
 524                pages_used = obj_allocated / objs_per_zspage *
 525                                class->pages_per_zspage;
 526
 527                seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
 528                        i, class->size, class_almost_full, class_almost_empty,
 529                        obj_allocated, obj_used, pages_used,
 530                        class->pages_per_zspage);
 531
 532                total_class_almost_full += class_almost_full;
 533                total_class_almost_empty += class_almost_empty;
 534                total_objs += obj_allocated;
 535                total_used_objs += obj_used;
 536                total_pages += pages_used;
 537        }
 538
 539        seq_puts(s, "\n");
 540        seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
 541                        "Total", "", total_class_almost_full,
 542                        total_class_almost_empty, total_objs,
 543                        total_used_objs, total_pages);
 544
 545        return 0;
 546}
 547
 548static int zs_stats_size_open(struct inode *inode, struct file *file)
 549{
 550        return single_open(file, zs_stats_size_show, inode->i_private);
 551}
 552
 553static const struct file_operations zs_stat_size_ops = {
 554        .open           = zs_stats_size_open,
 555        .read           = seq_read,
 556        .llseek         = seq_lseek,
 557        .release        = single_release,
 558};
 559
 560static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
 561{
 562        struct dentry *entry;
 563
 564        if (!zs_stat_root)
 565                return -ENODEV;
 566
 567        entry = debugfs_create_dir(name, zs_stat_root);
 568        if (!entry) {
 569                pr_warn("debugfs dir <%s> creation failed\n", name);
 570                return -ENOMEM;
 571        }
 572        pool->stat_dentry = entry;
 573
 574        entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
 575                        pool->stat_dentry, pool, &zs_stat_size_ops);
 576        if (!entry) {
 577                pr_warn("%s: debugfs file entry <%s> creation failed\n",
 578                                name, "classes");
 579                return -ENOMEM;
 580        }
 581
 582        return 0;
 583}
 584
 585static void zs_pool_stat_destroy(struct zs_pool *pool)
 586{
 587        debugfs_remove_recursive(pool->stat_dentry);
 588}
 589
 590#else /* CONFIG_ZSMALLOC_STAT */
 591static int __init zs_stat_init(void)
 592{
 593        return 0;
 594}
 595
 596static void __exit zs_stat_exit(void)
 597{
 598}
 599
 600static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
 601{
 602        return 0;
 603}
 604
 605static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 606{
 607}
 608#endif
 609
 610
 611/*
 612 * For each size class, zspages are divided into different groups
 613 * depending on how "full" they are. This was done so that we could
 614 * easily find empty or nearly empty zspages when we try to shrink
 615 * the pool (not yet implemented). This function returns fullness
 616 * status of the given page.
 617 */
 618static enum fullness_group get_fullness_group(struct page *page)
 619{
 620        int inuse, max_objects;
 621        enum fullness_group fg;
 622        BUG_ON(!is_first_page(page));
 623
 624        inuse = page->inuse;
 625        max_objects = page->objects;
 626
 627        if (inuse == 0)
 628                fg = ZS_EMPTY;
 629        else if (inuse == max_objects)
 630                fg = ZS_FULL;
 631        else if (inuse <= 3 * max_objects / fullness_threshold_frac)
 632                fg = ZS_ALMOST_EMPTY;
 633        else
 634                fg = ZS_ALMOST_FULL;
 635
 636        return fg;
 637}
 638
 639/*
 640 * Each size class maintains various freelists and zspages are assigned
 641 * to one of these freelists based on the number of live objects they
 642 * have. This functions inserts the given zspage into the freelist
 643 * identified by <class, fullness_group>.
 644 */
 645static void insert_zspage(struct page *page, struct size_class *class,
 646                                enum fullness_group fullness)
 647{
 648        struct page **head;
 649
 650        BUG_ON(!is_first_page(page));
 651
 652        if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 653                return;
 654
 655        zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
 656                        CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
 657
 658        head = &class->fullness_list[fullness];
 659        if (!*head) {
 660                *head = page;
 661                return;
 662        }
 663
 664        /*
 665         * We want to see more ZS_FULL pages and less almost
 666         * empty/full. Put pages with higher ->inuse first.
 667         */
 668        list_add_tail(&page->lru, &(*head)->lru);
 669        if (page->inuse >= (*head)->inuse)
 670                *head = page;
 671}
 672
 673/*
 674 * This function removes the given zspage from the freelist identified
 675 * by <class, fullness_group>.
 676 */
 677static void remove_zspage(struct page *page, struct size_class *class,
 678                                enum fullness_group fullness)
 679{
 680        struct page **head;
 681
 682        BUG_ON(!is_first_page(page));
 683
 684        if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 685                return;
 686
 687        head = &class->fullness_list[fullness];
 688        BUG_ON(!*head);
 689        if (list_empty(&(*head)->lru))
 690                *head = NULL;
 691        else if (*head == page)
 692                *head = (struct page *)list_entry((*head)->lru.next,
 693                                        struct page, lru);
 694
 695        list_del_init(&page->lru);
 696        zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
 697                        CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
 698}
 699
 700/*
 701 * Each size class maintains zspages in different fullness groups depending
 702 * on the number of live objects they contain. When allocating or freeing
 703 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 704 * to ALMOST_EMPTY when freeing an object. This function checks if such
 705 * a status change has occurred for the given page and accordingly moves the
 706 * page from the freelist of the old fullness group to that of the new
 707 * fullness group.
 708 */
 709static enum fullness_group fix_fullness_group(struct size_class *class,
 710                                                struct page *page)
 711{
 712        int class_idx;
 713        enum fullness_group currfg, newfg;
 714
 715        BUG_ON(!is_first_page(page));
 716
 717        get_zspage_mapping(page, &class_idx, &currfg);
 718        newfg = get_fullness_group(page);
 719        if (newfg == currfg)
 720                goto out;
 721
 722        remove_zspage(page, class, currfg);
 723        insert_zspage(page, class, newfg);
 724        set_zspage_mapping(page, class_idx, newfg);
 725
 726out:
 727        return newfg;
 728}
 729
 730/*
 731 * We have to decide on how many pages to link together
 732 * to form a zspage for each size class. This is important
 733 * to reduce wastage due to unusable space left at end of
 734 * each zspage which is given as:
 735 *     wastage = Zp % class_size
 736 *     usage = Zp - wastage
 737 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 738 *
 739 * For example, for size class of 3/8 * PAGE_SIZE, we should
 740 * link together 3 PAGE_SIZE sized pages to form a zspage
 741 * since then we can perfectly fit in 8 such objects.
 742 */
 743static int get_pages_per_zspage(int class_size)
 744{
 745        int i, max_usedpc = 0;
 746        /* zspage order which gives maximum used size per KB */
 747        int max_usedpc_order = 1;
 748
 749        for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 750                int zspage_size;
 751                int waste, usedpc;
 752
 753                zspage_size = i * PAGE_SIZE;
 754                waste = zspage_size % class_size;
 755                usedpc = (zspage_size - waste) * 100 / zspage_size;
 756
 757                if (usedpc > max_usedpc) {
 758                        max_usedpc = usedpc;
 759                        max_usedpc_order = i;
 760                }
 761        }
 762
 763        return max_usedpc_order;
 764}
 765
 766/*
 767 * A single 'zspage' is composed of many system pages which are
 768 * linked together using fields in struct page. This function finds
 769 * the first/head page, given any component page of a zspage.
 770 */
 771static struct page *get_first_page(struct page *page)
 772{
 773        if (is_first_page(page))
 774                return page;
 775        else
 776                return (struct page *)page_private(page);
 777}
 778
 779static struct page *get_next_page(struct page *page)
 780{
 781        struct page *next;
 782
 783        if (is_last_page(page))
 784                next = NULL;
 785        else if (is_first_page(page))
 786                next = (struct page *)page_private(page);
 787        else
 788                next = list_entry(page->lru.next, struct page, lru);
 789
 790        return next;
 791}
 792
 793/*
 794 * Encode <page, obj_idx> as a single handle value.
 795 * We use the least bit of handle for tagging.
 796 */
 797static void *location_to_obj(struct page *page, unsigned long obj_idx)
 798{
 799        unsigned long obj;
 800
 801        if (!page) {
 802                BUG_ON(obj_idx);
 803                return NULL;
 804        }
 805
 806        obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 807        obj |= ((obj_idx) & OBJ_INDEX_MASK);
 808        obj <<= OBJ_TAG_BITS;
 809
 810        return (void *)obj;
 811}
 812
 813/*
 814 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 815 * decoded obj_idx back to its original value since it was adjusted in
 816 * location_to_obj().
 817 */
 818static void obj_to_location(unsigned long obj, struct page **page,
 819                                unsigned long *obj_idx)
 820{
 821        obj >>= OBJ_TAG_BITS;
 822        *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 823        *obj_idx = (obj & OBJ_INDEX_MASK);
 824}
 825
 826static unsigned long handle_to_obj(unsigned long handle)
 827{
 828        return *(unsigned long *)handle;
 829}
 830
 831static unsigned long obj_to_head(struct size_class *class, struct page *page,
 832                        void *obj)
 833{
 834        if (class->huge) {
 835                VM_BUG_ON(!is_first_page(page));
 836                return page_private(page);
 837        } else
 838                return *(unsigned long *)obj;
 839}
 840
 841static unsigned long obj_idx_to_offset(struct page *page,
 842                                unsigned long obj_idx, int class_size)
 843{
 844        unsigned long off = 0;
 845
 846        if (!is_first_page(page))
 847                off = page->index;
 848
 849        return off + obj_idx * class_size;
 850}
 851
 852static inline int trypin_tag(unsigned long handle)
 853{
 854        unsigned long *ptr = (unsigned long *)handle;
 855
 856        return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
 857}
 858
 859static void pin_tag(unsigned long handle)
 860{
 861        while (!trypin_tag(handle));
 862}
 863
 864static void unpin_tag(unsigned long handle)
 865{
 866        unsigned long *ptr = (unsigned long *)handle;
 867
 868        clear_bit_unlock(HANDLE_PIN_BIT, ptr);
 869}
 870
 871static void reset_page(struct page *page)
 872{
 873        clear_bit(PG_private, &page->flags);
 874        clear_bit(PG_private_2, &page->flags);
 875        set_page_private(page, 0);
 876        page->mapping = NULL;
 877        page->freelist = NULL;
 878        page_mapcount_reset(page);
 879}
 880
 881static void free_zspage(struct page *first_page)
 882{
 883        struct page *nextp, *tmp, *head_extra;
 884
 885        BUG_ON(!is_first_page(first_page));
 886        BUG_ON(first_page->inuse);
 887
 888        head_extra = (struct page *)page_private(first_page);
 889
 890        reset_page(first_page);
 891        __free_page(first_page);
 892
 893        /* zspage with only 1 system page */
 894        if (!head_extra)
 895                return;
 896
 897        list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
 898                list_del(&nextp->lru);
 899                reset_page(nextp);
 900                __free_page(nextp);
 901        }
 902        reset_page(head_extra);
 903        __free_page(head_extra);
 904}
 905
 906/* Initialize a newly allocated zspage */
 907static void init_zspage(struct page *first_page, struct size_class *class)
 908{
 909        unsigned long off = 0;
 910        struct page *page = first_page;
 911
 912        BUG_ON(!is_first_page(first_page));
 913        while (page) {
 914                struct page *next_page;
 915                struct link_free *link;
 916                unsigned int i = 1;
 917                void *vaddr;
 918
 919                /*
 920                 * page->index stores offset of first object starting
 921                 * in the page. For the first page, this is always 0,
 922                 * so we use first_page->index (aka ->freelist) to store
 923                 * head of corresponding zspage's freelist.
 924                 */
 925                if (page != first_page)
 926                        page->index = off;
 927
 928                vaddr = kmap_atomic(page);
 929                link = (struct link_free *)vaddr + off / sizeof(*link);
 930
 931                while ((off += class->size) < PAGE_SIZE) {
 932                        link->next = location_to_obj(page, i++);
 933                        link += class->size / sizeof(*link);
 934                }
 935
 936                /*
 937                 * We now come to the last (full or partial) object on this
 938                 * page, which must point to the first object on the next
 939                 * page (if present)
 940                 */
 941                next_page = get_next_page(page);
 942                link->next = location_to_obj(next_page, 0);
 943                kunmap_atomic(vaddr);
 944                page = next_page;
 945                off %= PAGE_SIZE;
 946        }
 947}
 948
 949/*
 950 * Allocate a zspage for the given size class
 951 */
 952static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
 953{
 954        int i, error;
 955        struct page *first_page = NULL, *uninitialized_var(prev_page);
 956
 957        /*
 958         * Allocate individual pages and link them together as:
 959         * 1. first page->private = first sub-page
 960         * 2. all sub-pages are linked together using page->lru
 961         * 3. each sub-page is linked to the first page using page->private
 962         *
 963         * For each size class, First/Head pages are linked together using
 964         * page->lru. Also, we set PG_private to identify the first page
 965         * (i.e. no other sub-page has this flag set) and PG_private_2 to
 966         * identify the last page.
 967         */
 968        error = -ENOMEM;
 969        for (i = 0; i < class->pages_per_zspage; i++) {
 970                struct page *page;
 971
 972                page = alloc_page(flags);
 973                if (!page)
 974                        goto cleanup;
 975
 976                INIT_LIST_HEAD(&page->lru);
 977                if (i == 0) {   /* first page */
 978                        SetPagePrivate(page);
 979                        set_page_private(page, 0);
 980                        first_page = page;
 981                        first_page->inuse = 0;
 982                }
 983                if (i == 1)
 984                        set_page_private(first_page, (unsigned long)page);
 985                if (i >= 1)
 986                        set_page_private(page, (unsigned long)first_page);
 987                if (i >= 2)
 988                        list_add(&page->lru, &prev_page->lru);
 989                if (i == class->pages_per_zspage - 1)   /* last page */
 990                        SetPagePrivate2(page);
 991                prev_page = page;
 992        }
 993
 994        init_zspage(first_page, class);
 995
 996        first_page->freelist = location_to_obj(first_page, 0);
 997        /* Maximum number of objects we can store in this zspage */
 998        first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
 999
1000        error = 0; /* Success */
1001
1002cleanup:
1003        if (unlikely(error) && first_page) {
1004                free_zspage(first_page);
1005                first_page = NULL;
1006        }
1007
1008        return first_page;
1009}
1010
1011static struct page *find_get_zspage(struct size_class *class)
1012{
1013        int i;
1014        struct page *page;
1015
1016        for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1017                page = class->fullness_list[i];
1018                if (page)
1019                        break;
1020        }
1021
1022        return page;
1023}
1024
1025#ifdef CONFIG_PGTABLE_MAPPING
1026static inline int __zs_cpu_up(struct mapping_area *area)
1027{
1028        /*
1029         * Make sure we don't leak memory if a cpu UP notification
1030         * and zs_init() race and both call zs_cpu_up() on the same cpu
1031         */
1032        if (area->vm)
1033                return 0;
1034        area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1035        if (!area->vm)
1036                return -ENOMEM;
1037        return 0;
1038}
1039
1040static inline void __zs_cpu_down(struct mapping_area *area)
1041{
1042        if (area->vm)
1043                free_vm_area(area->vm);
1044        area->vm = NULL;
1045}
1046
1047static inline void *__zs_map_object(struct mapping_area *area,
1048                                struct page *pages[2], int off, int size)
1049{
1050        BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1051        area->vm_addr = area->vm->addr;
1052        return area->vm_addr + off;
1053}
1054
1055static inline void __zs_unmap_object(struct mapping_area *area,
1056                                struct page *pages[2], int off, int size)
1057{
1058        unsigned long addr = (unsigned long)area->vm_addr;
1059
1060        unmap_kernel_range(addr, PAGE_SIZE * 2);
1061}
1062
1063#else /* CONFIG_PGTABLE_MAPPING */
1064
1065static inline int __zs_cpu_up(struct mapping_area *area)
1066{
1067        /*
1068         * Make sure we don't leak memory if a cpu UP notification
1069         * and zs_init() race and both call zs_cpu_up() on the same cpu
1070         */
1071        if (area->vm_buf)
1072                return 0;
1073        area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1074        if (!area->vm_buf)
1075                return -ENOMEM;
1076        return 0;
1077}
1078
1079static inline void __zs_cpu_down(struct mapping_area *area)
1080{
1081        kfree(area->vm_buf);
1082        area->vm_buf = NULL;
1083}
1084
1085static void *__zs_map_object(struct mapping_area *area,
1086                        struct page *pages[2], int off, int size)
1087{
1088        int sizes[2];
1089        void *addr;
1090        char *buf = area->vm_buf;
1091
1092        /* disable page faults to match kmap_atomic() return conditions */
1093        pagefault_disable();
1094
1095        /* no read fastpath */
1096        if (area->vm_mm == ZS_MM_WO)
1097                goto out;
1098
1099        sizes[0] = PAGE_SIZE - off;
1100        sizes[1] = size - sizes[0];
1101
1102        /* copy object to per-cpu buffer */
1103        addr = kmap_atomic(pages[0]);
1104        memcpy(buf, addr + off, sizes[0]);
1105        kunmap_atomic(addr);
1106        addr = kmap_atomic(pages[1]);
1107        memcpy(buf + sizes[0], addr, sizes[1]);
1108        kunmap_atomic(addr);
1109out:
1110        return area->vm_buf;
1111}
1112
1113static void __zs_unmap_object(struct mapping_area *area,
1114                        struct page *pages[2], int off, int size)
1115{
1116        int sizes[2];
1117        void *addr;
1118        char *buf;
1119
1120        /* no write fastpath */
1121        if (area->vm_mm == ZS_MM_RO)
1122                goto out;
1123
1124        buf = area->vm_buf;
1125        if (!area->huge) {
1126                buf = buf + ZS_HANDLE_SIZE;
1127                size -= ZS_HANDLE_SIZE;
1128                off += ZS_HANDLE_SIZE;
1129        }
1130
1131        sizes[0] = PAGE_SIZE - off;
1132        sizes[1] = size - sizes[0];
1133
1134        /* copy per-cpu buffer to object */
1135        addr = kmap_atomic(pages[0]);
1136        memcpy(addr + off, buf, sizes[0]);
1137        kunmap_atomic(addr);
1138        addr = kmap_atomic(pages[1]);
1139        memcpy(addr, buf + sizes[0], sizes[1]);
1140        kunmap_atomic(addr);
1141
1142out:
1143        /* enable page faults to match kunmap_atomic() return conditions */
1144        pagefault_enable();
1145}
1146
1147#endif /* CONFIG_PGTABLE_MAPPING */
1148
1149static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1150                                void *pcpu)
1151{
1152        int ret, cpu = (long)pcpu;
1153        struct mapping_area *area;
1154
1155        switch (action) {
1156        case CPU_UP_PREPARE:
1157                area = &per_cpu(zs_map_area, cpu);
1158                ret = __zs_cpu_up(area);
1159                if (ret)
1160                        return notifier_from_errno(ret);
1161                break;
1162        case CPU_DEAD:
1163        case CPU_UP_CANCELED:
1164                area = &per_cpu(zs_map_area, cpu);
1165                __zs_cpu_down(area);
1166                break;
1167        }
1168
1169        return NOTIFY_OK;
1170}
1171
1172static struct notifier_block zs_cpu_nb = {
1173        .notifier_call = zs_cpu_notifier
1174};
1175
1176static int zs_register_cpu_notifier(void)
1177{
1178        int cpu, uninitialized_var(ret);
1179
1180        cpu_notifier_register_begin();
1181
1182        __register_cpu_notifier(&zs_cpu_nb);
1183        for_each_online_cpu(cpu) {
1184                ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1185                if (notifier_to_errno(ret))
1186                        break;
1187        }
1188
1189        cpu_notifier_register_done();
1190        return notifier_to_errno(ret);
1191}
1192
1193static void zs_unregister_cpu_notifier(void)
1194{
1195        int cpu;
1196
1197        cpu_notifier_register_begin();
1198
1199        for_each_online_cpu(cpu)
1200                zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1201        __unregister_cpu_notifier(&zs_cpu_nb);
1202
1203        cpu_notifier_register_done();
1204}
1205
1206static void init_zs_size_classes(void)
1207{
1208        int nr;
1209
1210        nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1211        if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1212                nr += 1;
1213
1214        zs_size_classes = nr;
1215}
1216
1217static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1218{
1219        if (prev->pages_per_zspage != pages_per_zspage)
1220                return false;
1221
1222        if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1223                != get_maxobj_per_zspage(size, pages_per_zspage))
1224                return false;
1225
1226        return true;
1227}
1228
1229static bool zspage_full(struct page *page)
1230{
1231        BUG_ON(!is_first_page(page));
1232
1233        return page->inuse == page->objects;
1234}
1235
1236unsigned long zs_get_total_pages(struct zs_pool *pool)
1237{
1238        return atomic_long_read(&pool->pages_allocated);
1239}
1240EXPORT_SYMBOL_GPL(zs_get_total_pages);
1241
1242/**
1243 * zs_map_object - get address of allocated object from handle.
1244 * @pool: pool from which the object was allocated
1245 * @handle: handle returned from zs_malloc
1246 *
1247 * Before using an object allocated from zs_malloc, it must be mapped using
1248 * this function. When done with the object, it must be unmapped using
1249 * zs_unmap_object.
1250 *
1251 * Only one object can be mapped per cpu at a time. There is no protection
1252 * against nested mappings.
1253 *
1254 * This function returns with preemption and page faults disabled.
1255 */
1256void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1257                        enum zs_mapmode mm)
1258{
1259        struct page *page;
1260        unsigned long obj, obj_idx, off;
1261
1262        unsigned int class_idx;
1263        enum fullness_group fg;
1264        struct size_class *class;
1265        struct mapping_area *area;
1266        struct page *pages[2];
1267        void *ret;
1268
1269        BUG_ON(!handle);
1270
1271        /*
1272         * Because we use per-cpu mapping areas shared among the
1273         * pools/users, we can't allow mapping in interrupt context
1274         * because it can corrupt another users mappings.
1275         */
1276        BUG_ON(in_interrupt());
1277
1278        /* From now on, migration cannot move the object */
1279        pin_tag(handle);
1280
1281        obj = handle_to_obj(handle);
1282        obj_to_location(obj, &page, &obj_idx);
1283        get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1284        class = pool->size_class[class_idx];
1285        off = obj_idx_to_offset(page, obj_idx, class->size);
1286
1287        area = &get_cpu_var(zs_map_area);
1288        area->vm_mm = mm;
1289        if (off + class->size <= PAGE_SIZE) {
1290                /* this object is contained entirely within a page */
1291                area->vm_addr = kmap_atomic(page);
1292                ret = area->vm_addr + off;
1293                goto out;
1294        }
1295
1296        /* this object spans two pages */
1297        pages[0] = page;
1298        pages[1] = get_next_page(page);
1299        BUG_ON(!pages[1]);
1300
1301        ret = __zs_map_object(area, pages, off, class->size);
1302out:
1303        if (!class->huge)
1304                ret += ZS_HANDLE_SIZE;
1305
1306        return ret;
1307}
1308EXPORT_SYMBOL_GPL(zs_map_object);
1309
1310void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1311{
1312        struct page *page;
1313        unsigned long obj, obj_idx, off;
1314
1315        unsigned int class_idx;
1316        enum fullness_group fg;
1317        struct size_class *class;
1318        struct mapping_area *area;
1319
1320        BUG_ON(!handle);
1321
1322        obj = handle_to_obj(handle);
1323        obj_to_location(obj, &page, &obj_idx);
1324        get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1325        class = pool->size_class[class_idx];
1326        off = obj_idx_to_offset(page, obj_idx, class->size);
1327
1328        area = this_cpu_ptr(&zs_map_area);
1329        if (off + class->size <= PAGE_SIZE)
1330                kunmap_atomic(area->vm_addr);
1331        else {
1332                struct page *pages[2];
1333
1334                pages[0] = page;
1335                pages[1] = get_next_page(page);
1336                BUG_ON(!pages[1]);
1337
1338                __zs_unmap_object(area, pages, off, class->size);
1339        }
1340        put_cpu_var(zs_map_area);
1341        unpin_tag(handle);
1342}
1343EXPORT_SYMBOL_GPL(zs_unmap_object);
1344
1345static unsigned long obj_malloc(struct page *first_page,
1346                struct size_class *class, unsigned long handle)
1347{
1348        unsigned long obj;
1349        struct link_free *link;
1350
1351        struct page *m_page;
1352        unsigned long m_objidx, m_offset;
1353        void *vaddr;
1354
1355        handle |= OBJ_ALLOCATED_TAG;
1356        obj = (unsigned long)first_page->freelist;
1357        obj_to_location(obj, &m_page, &m_objidx);
1358        m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1359
1360        vaddr = kmap_atomic(m_page);
1361        link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1362        first_page->freelist = link->next;
1363        if (!class->huge)
1364                /* record handle in the header of allocated chunk */
1365                link->handle = handle;
1366        else
1367                /* record handle in first_page->private */
1368                set_page_private(first_page, handle);
1369        kunmap_atomic(vaddr);
1370        first_page->inuse++;
1371        zs_stat_inc(class, OBJ_USED, 1);
1372
1373        return obj;
1374}
1375
1376
1377/**
1378 * zs_malloc - Allocate block of given size from pool.
1379 * @pool: pool to allocate from
1380 * @size: size of block to allocate
1381 *
1382 * On success, handle to the allocated object is returned,
1383 * otherwise 0.
1384 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1385 */
1386unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1387{
1388        unsigned long handle, obj;
1389        struct size_class *class;
1390        struct page *first_page;
1391
1392        if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1393                return 0;
1394
1395        handle = alloc_handle(pool);
1396        if (!handle)
1397                return 0;
1398
1399        /* extra space in chunk to keep the handle */
1400        size += ZS_HANDLE_SIZE;
1401        class = pool->size_class[get_size_class_index(size)];
1402
1403        spin_lock(&class->lock);
1404        first_page = find_get_zspage(class);
1405
1406        if (!first_page) {
1407                spin_unlock(&class->lock);
1408                first_page = alloc_zspage(class, pool->flags);
1409                if (unlikely(!first_page)) {
1410                        free_handle(pool, handle);
1411                        return 0;
1412                }
1413
1414                set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1415                atomic_long_add(class->pages_per_zspage,
1416                                        &pool->pages_allocated);
1417
1418                spin_lock(&class->lock);
1419                zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1420                                class->size, class->pages_per_zspage));
1421        }
1422
1423        obj = obj_malloc(first_page, class, handle);
1424        /* Now move the zspage to another fullness group, if required */
1425        fix_fullness_group(class, first_page);
1426        record_obj(handle, obj);
1427        spin_unlock(&class->lock);
1428
1429        return handle;
1430}
1431EXPORT_SYMBOL_GPL(zs_malloc);
1432
1433static void obj_free(struct zs_pool *pool, struct size_class *class,
1434                        unsigned long obj)
1435{
1436        struct link_free *link;
1437        struct page *first_page, *f_page;
1438        unsigned long f_objidx, f_offset;
1439        void *vaddr;
1440
1441        BUG_ON(!obj);
1442
1443        obj &= ~OBJ_ALLOCATED_TAG;
1444        obj_to_location(obj, &f_page, &f_objidx);
1445        first_page = get_first_page(f_page);
1446
1447        f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1448
1449        vaddr = kmap_atomic(f_page);
1450
1451        /* Insert this object in containing zspage's freelist */
1452        link = (struct link_free *)(vaddr + f_offset);
1453        link->next = first_page->freelist;
1454        if (class->huge)
1455                set_page_private(first_page, 0);
1456        kunmap_atomic(vaddr);
1457        first_page->freelist = (void *)obj;
1458        first_page->inuse--;
1459        zs_stat_dec(class, OBJ_USED, 1);
1460}
1461
1462void zs_free(struct zs_pool *pool, unsigned long handle)
1463{
1464        struct page *first_page, *f_page;
1465        unsigned long obj, f_objidx;
1466        int class_idx;
1467        struct size_class *class;
1468        enum fullness_group fullness;
1469
1470        if (unlikely(!handle))
1471                return;
1472
1473        pin_tag(handle);
1474        obj = handle_to_obj(handle);
1475        obj_to_location(obj, &f_page, &f_objidx);
1476        first_page = get_first_page(f_page);
1477
1478        get_zspage_mapping(first_page, &class_idx, &fullness);
1479        class = pool->size_class[class_idx];
1480
1481        spin_lock(&class->lock);
1482        obj_free(pool, class, obj);
1483        fullness = fix_fullness_group(class, first_page);
1484        if (fullness == ZS_EMPTY) {
1485                zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1486                                class->size, class->pages_per_zspage));
1487                atomic_long_sub(class->pages_per_zspage,
1488                                &pool->pages_allocated);
1489                free_zspage(first_page);
1490        }
1491        spin_unlock(&class->lock);
1492        unpin_tag(handle);
1493
1494        free_handle(pool, handle);
1495}
1496EXPORT_SYMBOL_GPL(zs_free);
1497
1498static void zs_object_copy(unsigned long dst, unsigned long src,
1499                                struct size_class *class)
1500{
1501        struct page *s_page, *d_page;
1502        unsigned long s_objidx, d_objidx;
1503        unsigned long s_off, d_off;
1504        void *s_addr, *d_addr;
1505        int s_size, d_size, size;
1506        int written = 0;
1507
1508        s_size = d_size = class->size;
1509
1510        obj_to_location(src, &s_page, &s_objidx);
1511        obj_to_location(dst, &d_page, &d_objidx);
1512
1513        s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1514        d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1515
1516        if (s_off + class->size > PAGE_SIZE)
1517                s_size = PAGE_SIZE - s_off;
1518
1519        if (d_off + class->size > PAGE_SIZE)
1520                d_size = PAGE_SIZE - d_off;
1521
1522        s_addr = kmap_atomic(s_page);
1523        d_addr = kmap_atomic(d_page);
1524
1525        while (1) {
1526                size = min(s_size, d_size);
1527                memcpy(d_addr + d_off, s_addr + s_off, size);
1528                written += size;
1529
1530                if (written == class->size)
1531                        break;
1532
1533                s_off += size;
1534                s_size -= size;
1535                d_off += size;
1536                d_size -= size;
1537
1538                if (s_off >= PAGE_SIZE) {
1539                        kunmap_atomic(d_addr);
1540                        kunmap_atomic(s_addr);
1541                        s_page = get_next_page(s_page);
1542                        BUG_ON(!s_page);
1543                        s_addr = kmap_atomic(s_page);
1544                        d_addr = kmap_atomic(d_page);
1545                        s_size = class->size - written;
1546                        s_off = 0;
1547                }
1548
1549                if (d_off >= PAGE_SIZE) {
1550                        kunmap_atomic(d_addr);
1551                        d_page = get_next_page(d_page);
1552                        BUG_ON(!d_page);
1553                        d_addr = kmap_atomic(d_page);
1554                        d_size = class->size - written;
1555                        d_off = 0;
1556                }
1557        }
1558
1559        kunmap_atomic(d_addr);
1560        kunmap_atomic(s_addr);
1561}
1562
1563/*
1564 * Find alloced object in zspage from index object and
1565 * return handle.
1566 */
1567static unsigned long find_alloced_obj(struct page *page, int index,
1568                                        struct size_class *class)
1569{
1570        unsigned long head;
1571        int offset = 0;
1572        unsigned long handle = 0;
1573        void *addr = kmap_atomic(page);
1574
1575        if (!is_first_page(page))
1576                offset = page->index;
1577        offset += class->size * index;
1578
1579        while (offset < PAGE_SIZE) {
1580                head = obj_to_head(class, page, addr + offset);
1581                if (head & OBJ_ALLOCATED_TAG) {
1582                        handle = head & ~OBJ_ALLOCATED_TAG;
1583                        if (trypin_tag(handle))
1584                                break;
1585                        handle = 0;
1586                }
1587
1588                offset += class->size;
1589                index++;
1590        }
1591
1592        kunmap_atomic(addr);
1593        return handle;
1594}
1595
1596struct zs_compact_control {
1597        /* Source page for migration which could be a subpage of zspage. */
1598        struct page *s_page;
1599        /* Destination page for migration which should be a first page
1600         * of zspage. */
1601        struct page *d_page;
1602         /* Starting object index within @s_page which used for live object
1603          * in the subpage. */
1604        int index;
1605};
1606
1607static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1608                                struct zs_compact_control *cc)
1609{
1610        unsigned long used_obj, free_obj;
1611        unsigned long handle;
1612        struct page *s_page = cc->s_page;
1613        struct page *d_page = cc->d_page;
1614        unsigned long index = cc->index;
1615        int ret = 0;
1616
1617        while (1) {
1618                handle = find_alloced_obj(s_page, index, class);
1619                if (!handle) {
1620                        s_page = get_next_page(s_page);
1621                        if (!s_page)
1622                                break;
1623                        index = 0;
1624                        continue;
1625                }
1626
1627                /* Stop if there is no more space */
1628                if (zspage_full(d_page)) {
1629                        unpin_tag(handle);
1630                        ret = -ENOMEM;
1631                        break;
1632                }
1633
1634                used_obj = handle_to_obj(handle);
1635                free_obj = obj_malloc(d_page, class, handle);
1636                zs_object_copy(free_obj, used_obj, class);
1637                index++;
1638                record_obj(handle, free_obj);
1639                unpin_tag(handle);
1640                obj_free(pool, class, used_obj);
1641        }
1642
1643        /* Remember last position in this iteration */
1644        cc->s_page = s_page;
1645        cc->index = index;
1646
1647        return ret;
1648}
1649
1650static struct page *isolate_target_page(struct size_class *class)
1651{
1652        int i;
1653        struct page *page;
1654
1655        for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1656                page = class->fullness_list[i];
1657                if (page) {
1658                        remove_zspage(page, class, i);
1659                        break;
1660                }
1661        }
1662
1663        return page;
1664}
1665
1666/*
1667 * putback_zspage - add @first_page into right class's fullness list
1668 * @pool: target pool
1669 * @class: destination class
1670 * @first_page: target page
1671 *
1672 * Return @fist_page's fullness_group
1673 */
1674static enum fullness_group putback_zspage(struct zs_pool *pool,
1675                        struct size_class *class,
1676                        struct page *first_page)
1677{
1678        enum fullness_group fullness;
1679
1680        BUG_ON(!is_first_page(first_page));
1681
1682        fullness = get_fullness_group(first_page);
1683        insert_zspage(first_page, class, fullness);
1684        set_zspage_mapping(first_page, class->index, fullness);
1685
1686        if (fullness == ZS_EMPTY) {
1687                zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1688                        class->size, class->pages_per_zspage));
1689                atomic_long_sub(class->pages_per_zspage,
1690                                &pool->pages_allocated);
1691
1692                free_zspage(first_page);
1693        }
1694
1695        return fullness;
1696}
1697
1698static struct page *isolate_source_page(struct size_class *class)
1699{
1700        int i;
1701        struct page *page = NULL;
1702
1703        for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1704                page = class->fullness_list[i];
1705                if (!page)
1706                        continue;
1707
1708                remove_zspage(page, class, i);
1709                break;
1710        }
1711
1712        return page;
1713}
1714
1715/*
1716 *
1717 * Based on the number of unused allocated objects calculate
1718 * and return the number of pages that we can free.
1719 */
1720static unsigned long zs_can_compact(struct size_class *class)
1721{
1722        unsigned long obj_wasted;
1723
1724        obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
1725                zs_stat_get(class, OBJ_USED);
1726
1727        obj_wasted /= get_maxobj_per_zspage(class->size,
1728                        class->pages_per_zspage);
1729
1730        return obj_wasted * class->pages_per_zspage;
1731}
1732
1733static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1734{
1735        struct zs_compact_control cc;
1736        struct page *src_page;
1737        struct page *dst_page = NULL;
1738
1739        spin_lock(&class->lock);
1740        while ((src_page = isolate_source_page(class))) {
1741
1742                BUG_ON(!is_first_page(src_page));
1743
1744                if (!zs_can_compact(class))
1745                        break;
1746
1747                cc.index = 0;
1748                cc.s_page = src_page;
1749
1750                while ((dst_page = isolate_target_page(class))) {
1751                        cc.d_page = dst_page;
1752                        /*
1753                         * If there is no more space in dst_page, resched
1754                         * and see if anyone had allocated another zspage.
1755                         */
1756                        if (!migrate_zspage(pool, class, &cc))
1757                                break;
1758
1759                        putback_zspage(pool, class, dst_page);
1760                }
1761
1762                /* Stop if we couldn't find slot */
1763                if (dst_page == NULL)
1764                        break;
1765
1766                putback_zspage(pool, class, dst_page);
1767                if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1768                        pool->stats.pages_compacted += class->pages_per_zspage;
1769                spin_unlock(&class->lock);
1770                cond_resched();
1771                spin_lock(&class->lock);
1772        }
1773
1774        if (src_page)
1775                putback_zspage(pool, class, src_page);
1776
1777        spin_unlock(&class->lock);
1778}
1779
1780unsigned long zs_compact(struct zs_pool *pool)
1781{
1782        int i;
1783        struct size_class *class;
1784
1785        for (i = zs_size_classes - 1; i >= 0; i--) {
1786                class = pool->size_class[i];
1787                if (!class)
1788                        continue;
1789                if (class->index != i)
1790                        continue;
1791                __zs_compact(pool, class);
1792        }
1793
1794        return pool->stats.pages_compacted;
1795}
1796EXPORT_SYMBOL_GPL(zs_compact);
1797
1798void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1799{
1800        memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1801}
1802EXPORT_SYMBOL_GPL(zs_pool_stats);
1803
1804static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1805                struct shrink_control *sc)
1806{
1807        unsigned long pages_freed;
1808        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1809                        shrinker);
1810
1811        pages_freed = pool->stats.pages_compacted;
1812        /*
1813         * Compact classes and calculate compaction delta.
1814         * Can run concurrently with a manually triggered
1815         * (by user) compaction.
1816         */
1817        pages_freed = zs_compact(pool) - pages_freed;
1818
1819        return pages_freed ? pages_freed : SHRINK_STOP;
1820}
1821
1822static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1823                struct shrink_control *sc)
1824{
1825        int i;
1826        struct size_class *class;
1827        unsigned long pages_to_free = 0;
1828        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1829                        shrinker);
1830
1831        for (i = zs_size_classes - 1; i >= 0; i--) {
1832                class = pool->size_class[i];
1833                if (!class)
1834                        continue;
1835                if (class->index != i)
1836                        continue;
1837
1838                pages_to_free += zs_can_compact(class);
1839        }
1840
1841        return pages_to_free;
1842}
1843
1844static void zs_unregister_shrinker(struct zs_pool *pool)
1845{
1846        if (pool->shrinker_enabled) {
1847                unregister_shrinker(&pool->shrinker);
1848                pool->shrinker_enabled = false;
1849        }
1850}
1851
1852static int zs_register_shrinker(struct zs_pool *pool)
1853{
1854        pool->shrinker.scan_objects = zs_shrinker_scan;
1855        pool->shrinker.count_objects = zs_shrinker_count;
1856        pool->shrinker.batch = 0;
1857        pool->shrinker.seeks = DEFAULT_SEEKS;
1858
1859        return register_shrinker(&pool->shrinker);
1860}
1861
1862/**
1863 * zs_create_pool - Creates an allocation pool to work from.
1864 * @flags: allocation flags used to allocate pool metadata
1865 *
1866 * This function must be called before anything when using
1867 * the zsmalloc allocator.
1868 *
1869 * On success, a pointer to the newly created pool is returned,
1870 * otherwise NULL.
1871 */
1872struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1873{
1874        int i;
1875        struct zs_pool *pool;
1876        struct size_class *prev_class = NULL;
1877
1878        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1879        if (!pool)
1880                return NULL;
1881
1882        pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1883                        GFP_KERNEL);
1884        if (!pool->size_class) {
1885                kfree(pool);
1886                return NULL;
1887        }
1888
1889        pool->name = kstrdup(name, GFP_KERNEL);
1890        if (!pool->name)
1891                goto err;
1892
1893        if (create_handle_cache(pool))
1894                goto err;
1895
1896        /*
1897         * Iterate reversly, because, size of size_class that we want to use
1898         * for merging should be larger or equal to current size.
1899         */
1900        for (i = zs_size_classes - 1; i >= 0; i--) {
1901                int size;
1902                int pages_per_zspage;
1903                struct size_class *class;
1904
1905                size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1906                if (size > ZS_MAX_ALLOC_SIZE)
1907                        size = ZS_MAX_ALLOC_SIZE;
1908                pages_per_zspage = get_pages_per_zspage(size);
1909
1910                /*
1911                 * size_class is used for normal zsmalloc operation such
1912                 * as alloc/free for that size. Although it is natural that we
1913                 * have one size_class for each size, there is a chance that we
1914                 * can get more memory utilization if we use one size_class for
1915                 * many different sizes whose size_class have same
1916                 * characteristics. So, we makes size_class point to
1917                 * previous size_class if possible.
1918                 */
1919                if (prev_class) {
1920                        if (can_merge(prev_class, size, pages_per_zspage)) {
1921                                pool->size_class[i] = prev_class;
1922                                continue;
1923                        }
1924                }
1925
1926                class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1927                if (!class)
1928                        goto err;
1929
1930                class->size = size;
1931                class->index = i;
1932                class->pages_per_zspage = pages_per_zspage;
1933                if (pages_per_zspage == 1 &&
1934                        get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1935                        class->huge = true;
1936                spin_lock_init(&class->lock);
1937                pool->size_class[i] = class;
1938
1939                prev_class = class;
1940        }
1941
1942        pool->flags = flags;
1943
1944        if (zs_pool_stat_create(name, pool))
1945                goto err;
1946
1947        /*
1948         * Not critical, we still can use the pool
1949         * and user can trigger compaction manually.
1950         */
1951        if (zs_register_shrinker(pool) == 0)
1952                pool->shrinker_enabled = true;
1953        return pool;
1954
1955err:
1956        zs_destroy_pool(pool);
1957        return NULL;
1958}
1959EXPORT_SYMBOL_GPL(zs_create_pool);
1960
1961void zs_destroy_pool(struct zs_pool *pool)
1962{
1963        int i;
1964
1965        zs_unregister_shrinker(pool);
1966        zs_pool_stat_destroy(pool);
1967
1968        for (i = 0; i < zs_size_classes; i++) {
1969                int fg;
1970                struct size_class *class = pool->size_class[i];
1971
1972                if (!class)
1973                        continue;
1974
1975                if (class->index != i)
1976                        continue;
1977
1978                for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1979                        if (class->fullness_list[fg]) {
1980                                pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1981                                        class->size, fg);
1982                        }
1983                }
1984                kfree(class);
1985        }
1986
1987        destroy_handle_cache(pool);
1988        kfree(pool->size_class);
1989        kfree(pool->name);
1990        kfree(pool);
1991}
1992EXPORT_SYMBOL_GPL(zs_destroy_pool);
1993
1994static int __init zs_init(void)
1995{
1996        int ret = zs_register_cpu_notifier();
1997
1998        if (ret)
1999                goto notifier_fail;
2000
2001        init_zs_size_classes();
2002
2003#ifdef CONFIG_ZPOOL
2004        zpool_register_driver(&zs_zpool_driver);
2005#endif
2006
2007        ret = zs_stat_init();
2008        if (ret) {
2009                pr_err("zs stat initialization failed\n");
2010                goto stat_fail;
2011        }
2012        return 0;
2013
2014stat_fail:
2015#ifdef CONFIG_ZPOOL
2016        zpool_unregister_driver(&zs_zpool_driver);
2017#endif
2018notifier_fail:
2019        zs_unregister_cpu_notifier();
2020
2021        return ret;
2022}
2023
2024static void __exit zs_exit(void)
2025{
2026#ifdef CONFIG_ZPOOL
2027        zpool_unregister_driver(&zs_zpool_driver);
2028#endif
2029        zs_unregister_cpu_notifier();
2030
2031        zs_stat_exit();
2032}
2033
2034module_init(zs_init);
2035module_exit(zs_exit);
2036
2037MODULE_LICENSE("Dual BSD/GPL");
2038MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2039