linux/net/openvswitch/actions.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/skbuff.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/openvswitch.h>
  25#include <linux/netfilter_ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/in6.h>
  30#include <linux/if_arp.h>
  31#include <linux/if_vlan.h>
  32
  33#include <net/dst.h>
  34#include <net/ip.h>
  35#include <net/ipv6.h>
  36#include <net/ip6_fib.h>
  37#include <net/checksum.h>
  38#include <net/dsfield.h>
  39#include <net/mpls.h>
  40#include <net/sctp/checksum.h>
  41
  42#include "datapath.h"
  43#include "flow.h"
  44#include "conntrack.h"
  45#include "vport.h"
  46
  47static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  48                              struct sw_flow_key *key,
  49                              const struct nlattr *attr, int len);
  50
  51struct deferred_action {
  52        struct sk_buff *skb;
  53        const struct nlattr *actions;
  54
  55        /* Store pkt_key clone when creating deferred action. */
  56        struct sw_flow_key pkt_key;
  57};
  58
  59#define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  60struct ovs_frag_data {
  61        unsigned long dst;
  62        struct vport *vport;
  63        struct ovs_skb_cb cb;
  64        __be16 inner_protocol;
  65        __u16 vlan_tci;
  66        __be16 vlan_proto;
  67        unsigned int l2_len;
  68        u8 l2_data[MAX_L2_LEN];
  69};
  70
  71static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  72
  73#define DEFERRED_ACTION_FIFO_SIZE 10
  74struct action_fifo {
  75        int head;
  76        int tail;
  77        /* Deferred action fifo queue storage. */
  78        struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  79};
  80
  81static struct action_fifo __percpu *action_fifos;
  82static DEFINE_PER_CPU(int, exec_actions_level);
  83
  84static void action_fifo_init(struct action_fifo *fifo)
  85{
  86        fifo->head = 0;
  87        fifo->tail = 0;
  88}
  89
  90static bool action_fifo_is_empty(const struct action_fifo *fifo)
  91{
  92        return (fifo->head == fifo->tail);
  93}
  94
  95static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
  96{
  97        if (action_fifo_is_empty(fifo))
  98                return NULL;
  99
 100        return &fifo->fifo[fifo->tail++];
 101}
 102
 103static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 104{
 105        if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 106                return NULL;
 107
 108        return &fifo->fifo[fifo->head++];
 109}
 110
 111/* Return true if fifo is not full */
 112static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 113                                                    const struct sw_flow_key *key,
 114                                                    const struct nlattr *attr)
 115{
 116        struct action_fifo *fifo;
 117        struct deferred_action *da;
 118
 119        fifo = this_cpu_ptr(action_fifos);
 120        da = action_fifo_put(fifo);
 121        if (da) {
 122                da->skb = skb;
 123                da->actions = attr;
 124                da->pkt_key = *key;
 125        }
 126
 127        return da;
 128}
 129
 130static void invalidate_flow_key(struct sw_flow_key *key)
 131{
 132        key->eth.type = htons(0);
 133}
 134
 135static bool is_flow_key_valid(const struct sw_flow_key *key)
 136{
 137        return !!key->eth.type;
 138}
 139
 140static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 141                     const struct ovs_action_push_mpls *mpls)
 142{
 143        __be32 *new_mpls_lse;
 144        struct ethhdr *hdr;
 145
 146        /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
 147        if (skb->encapsulation)
 148                return -ENOTSUPP;
 149
 150        if (skb_cow_head(skb, MPLS_HLEN) < 0)
 151                return -ENOMEM;
 152
 153        skb_push(skb, MPLS_HLEN);
 154        memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
 155                skb->mac_len);
 156        skb_reset_mac_header(skb);
 157
 158        new_mpls_lse = (__be32 *)skb_mpls_header(skb);
 159        *new_mpls_lse = mpls->mpls_lse;
 160
 161        if (skb->ip_summed == CHECKSUM_COMPLETE)
 162                skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
 163                                                             MPLS_HLEN, 0));
 164
 165        hdr = eth_hdr(skb);
 166        hdr->h_proto = mpls->mpls_ethertype;
 167
 168        if (!skb->inner_protocol)
 169                skb_set_inner_protocol(skb, skb->protocol);
 170        skb->protocol = mpls->mpls_ethertype;
 171
 172        invalidate_flow_key(key);
 173        return 0;
 174}
 175
 176static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 177                    const __be16 ethertype)
 178{
 179        struct ethhdr *hdr;
 180        int err;
 181
 182        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 183        if (unlikely(err))
 184                return err;
 185
 186        skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
 187
 188        memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
 189                skb->mac_len);
 190
 191        __skb_pull(skb, MPLS_HLEN);
 192        skb_reset_mac_header(skb);
 193
 194        /* skb_mpls_header() is used to locate the ethertype
 195         * field correctly in the presence of VLAN tags.
 196         */
 197        hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
 198        hdr->h_proto = ethertype;
 199        if (eth_p_mpls(skb->protocol))
 200                skb->protocol = ethertype;
 201
 202        invalidate_flow_key(key);
 203        return 0;
 204}
 205
 206static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 207                    const __be32 *mpls_lse, const __be32 *mask)
 208{
 209        __be32 *stack;
 210        __be32 lse;
 211        int err;
 212
 213        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 214        if (unlikely(err))
 215                return err;
 216
 217        stack = (__be32 *)skb_mpls_header(skb);
 218        lse = OVS_MASKED(*stack, *mpls_lse, *mask);
 219        if (skb->ip_summed == CHECKSUM_COMPLETE) {
 220                __be32 diff[] = { ~(*stack), lse };
 221
 222                skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 223                                          ~skb->csum);
 224        }
 225
 226        *stack = lse;
 227        flow_key->mpls.top_lse = lse;
 228        return 0;
 229}
 230
 231static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 232{
 233        int err;
 234
 235        err = skb_vlan_pop(skb);
 236        if (skb_vlan_tag_present(skb))
 237                invalidate_flow_key(key);
 238        else
 239                key->eth.tci = 0;
 240        return err;
 241}
 242
 243static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 244                     const struct ovs_action_push_vlan *vlan)
 245{
 246        if (skb_vlan_tag_present(skb))
 247                invalidate_flow_key(key);
 248        else
 249                key->eth.tci = vlan->vlan_tci;
 250        return skb_vlan_push(skb, vlan->vlan_tpid,
 251                             ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
 252}
 253
 254/* 'src' is already properly masked. */
 255static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 256{
 257        u16 *dst = (u16 *)dst_;
 258        const u16 *src = (const u16 *)src_;
 259        const u16 *mask = (const u16 *)mask_;
 260
 261        OVS_SET_MASKED(dst[0], src[0], mask[0]);
 262        OVS_SET_MASKED(dst[1], src[1], mask[1]);
 263        OVS_SET_MASKED(dst[2], src[2], mask[2]);
 264}
 265
 266static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 267                        const struct ovs_key_ethernet *key,
 268                        const struct ovs_key_ethernet *mask)
 269{
 270        int err;
 271
 272        err = skb_ensure_writable(skb, ETH_HLEN);
 273        if (unlikely(err))
 274                return err;
 275
 276        skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 277
 278        ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 279                               mask->eth_src);
 280        ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 281                               mask->eth_dst);
 282
 283        ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 284
 285        ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 286        ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 287        return 0;
 288}
 289
 290static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 291                                  __be32 addr, __be32 new_addr)
 292{
 293        int transport_len = skb->len - skb_transport_offset(skb);
 294
 295        if (nh->frag_off & htons(IP_OFFSET))
 296                return;
 297
 298        if (nh->protocol == IPPROTO_TCP) {
 299                if (likely(transport_len >= sizeof(struct tcphdr)))
 300                        inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 301                                                 addr, new_addr, true);
 302        } else if (nh->protocol == IPPROTO_UDP) {
 303                if (likely(transport_len >= sizeof(struct udphdr))) {
 304                        struct udphdr *uh = udp_hdr(skb);
 305
 306                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 307                                inet_proto_csum_replace4(&uh->check, skb,
 308                                                         addr, new_addr, true);
 309                                if (!uh->check)
 310                                        uh->check = CSUM_MANGLED_0;
 311                        }
 312                }
 313        }
 314}
 315
 316static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 317                        __be32 *addr, __be32 new_addr)
 318{
 319        update_ip_l4_checksum(skb, nh, *addr, new_addr);
 320        csum_replace4(&nh->check, *addr, new_addr);
 321        skb_clear_hash(skb);
 322        *addr = new_addr;
 323}
 324
 325static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 326                                 __be32 addr[4], const __be32 new_addr[4])
 327{
 328        int transport_len = skb->len - skb_transport_offset(skb);
 329
 330        if (l4_proto == NEXTHDR_TCP) {
 331                if (likely(transport_len >= sizeof(struct tcphdr)))
 332                        inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 333                                                  addr, new_addr, true);
 334        } else if (l4_proto == NEXTHDR_UDP) {
 335                if (likely(transport_len >= sizeof(struct udphdr))) {
 336                        struct udphdr *uh = udp_hdr(skb);
 337
 338                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 339                                inet_proto_csum_replace16(&uh->check, skb,
 340                                                          addr, new_addr, true);
 341                                if (!uh->check)
 342                                        uh->check = CSUM_MANGLED_0;
 343                        }
 344                }
 345        } else if (l4_proto == NEXTHDR_ICMP) {
 346                if (likely(transport_len >= sizeof(struct icmp6hdr)))
 347                        inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 348                                                  skb, addr, new_addr, true);
 349        }
 350}
 351
 352static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 353                           const __be32 mask[4], __be32 masked[4])
 354{
 355        masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 356        masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 357        masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 358        masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 359}
 360
 361static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 362                          __be32 addr[4], const __be32 new_addr[4],
 363                          bool recalculate_csum)
 364{
 365        if (recalculate_csum)
 366                update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 367
 368        skb_clear_hash(skb);
 369        memcpy(addr, new_addr, sizeof(__be32[4]));
 370}
 371
 372static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
 373{
 374        /* Bits 21-24 are always unmasked, so this retains their values. */
 375        OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
 376        OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
 377        OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
 378}
 379
 380static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 381                       u8 mask)
 382{
 383        new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 384
 385        csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 386        nh->ttl = new_ttl;
 387}
 388
 389static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 390                    const struct ovs_key_ipv4 *key,
 391                    const struct ovs_key_ipv4 *mask)
 392{
 393        struct iphdr *nh;
 394        __be32 new_addr;
 395        int err;
 396
 397        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 398                                  sizeof(struct iphdr));
 399        if (unlikely(err))
 400                return err;
 401
 402        nh = ip_hdr(skb);
 403
 404        /* Setting an IP addresses is typically only a side effect of
 405         * matching on them in the current userspace implementation, so it
 406         * makes sense to check if the value actually changed.
 407         */
 408        if (mask->ipv4_src) {
 409                new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 410
 411                if (unlikely(new_addr != nh->saddr)) {
 412                        set_ip_addr(skb, nh, &nh->saddr, new_addr);
 413                        flow_key->ipv4.addr.src = new_addr;
 414                }
 415        }
 416        if (mask->ipv4_dst) {
 417                new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 418
 419                if (unlikely(new_addr != nh->daddr)) {
 420                        set_ip_addr(skb, nh, &nh->daddr, new_addr);
 421                        flow_key->ipv4.addr.dst = new_addr;
 422                }
 423        }
 424        if (mask->ipv4_tos) {
 425                ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 426                flow_key->ip.tos = nh->tos;
 427        }
 428        if (mask->ipv4_ttl) {
 429                set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 430                flow_key->ip.ttl = nh->ttl;
 431        }
 432
 433        return 0;
 434}
 435
 436static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 437{
 438        return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 439}
 440
 441static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 442                    const struct ovs_key_ipv6 *key,
 443                    const struct ovs_key_ipv6 *mask)
 444{
 445        struct ipv6hdr *nh;
 446        int err;
 447
 448        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 449                                  sizeof(struct ipv6hdr));
 450        if (unlikely(err))
 451                return err;
 452
 453        nh = ipv6_hdr(skb);
 454
 455        /* Setting an IP addresses is typically only a side effect of
 456         * matching on them in the current userspace implementation, so it
 457         * makes sense to check if the value actually changed.
 458         */
 459        if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 460                __be32 *saddr = (__be32 *)&nh->saddr;
 461                __be32 masked[4];
 462
 463                mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 464
 465                if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 466                        set_ipv6_addr(skb, key->ipv6_proto, saddr, masked,
 467                                      true);
 468                        memcpy(&flow_key->ipv6.addr.src, masked,
 469                               sizeof(flow_key->ipv6.addr.src));
 470                }
 471        }
 472        if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 473                unsigned int offset = 0;
 474                int flags = IP6_FH_F_SKIP_RH;
 475                bool recalc_csum = true;
 476                __be32 *daddr = (__be32 *)&nh->daddr;
 477                __be32 masked[4];
 478
 479                mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 480
 481                if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 482                        if (ipv6_ext_hdr(nh->nexthdr))
 483                                recalc_csum = (ipv6_find_hdr(skb, &offset,
 484                                                             NEXTHDR_ROUTING,
 485                                                             NULL, &flags)
 486                                               != NEXTHDR_ROUTING);
 487
 488                        set_ipv6_addr(skb, key->ipv6_proto, daddr, masked,
 489                                      recalc_csum);
 490                        memcpy(&flow_key->ipv6.addr.dst, masked,
 491                               sizeof(flow_key->ipv6.addr.dst));
 492                }
 493        }
 494        if (mask->ipv6_tclass) {
 495                ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
 496                flow_key->ip.tos = ipv6_get_dsfield(nh);
 497        }
 498        if (mask->ipv6_label) {
 499                set_ipv6_fl(nh, ntohl(key->ipv6_label),
 500                            ntohl(mask->ipv6_label));
 501                flow_key->ipv6.label =
 502                    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 503        }
 504        if (mask->ipv6_hlimit) {
 505                OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
 506                               mask->ipv6_hlimit);
 507                flow_key->ip.ttl = nh->hop_limit;
 508        }
 509        return 0;
 510}
 511
 512/* Must follow skb_ensure_writable() since that can move the skb data. */
 513static void set_tp_port(struct sk_buff *skb, __be16 *port,
 514                        __be16 new_port, __sum16 *check)
 515{
 516        inet_proto_csum_replace2(check, skb, *port, new_port, false);
 517        *port = new_port;
 518}
 519
 520static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 521                   const struct ovs_key_udp *key,
 522                   const struct ovs_key_udp *mask)
 523{
 524        struct udphdr *uh;
 525        __be16 src, dst;
 526        int err;
 527
 528        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 529                                  sizeof(struct udphdr));
 530        if (unlikely(err))
 531                return err;
 532
 533        uh = udp_hdr(skb);
 534        /* Either of the masks is non-zero, so do not bother checking them. */
 535        src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 536        dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 537
 538        if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 539                if (likely(src != uh->source)) {
 540                        set_tp_port(skb, &uh->source, src, &uh->check);
 541                        flow_key->tp.src = src;
 542                }
 543                if (likely(dst != uh->dest)) {
 544                        set_tp_port(skb, &uh->dest, dst, &uh->check);
 545                        flow_key->tp.dst = dst;
 546                }
 547
 548                if (unlikely(!uh->check))
 549                        uh->check = CSUM_MANGLED_0;
 550        } else {
 551                uh->source = src;
 552                uh->dest = dst;
 553                flow_key->tp.src = src;
 554                flow_key->tp.dst = dst;
 555        }
 556
 557        skb_clear_hash(skb);
 558
 559        return 0;
 560}
 561
 562static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 563                   const struct ovs_key_tcp *key,
 564                   const struct ovs_key_tcp *mask)
 565{
 566        struct tcphdr *th;
 567        __be16 src, dst;
 568        int err;
 569
 570        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 571                                  sizeof(struct tcphdr));
 572        if (unlikely(err))
 573                return err;
 574
 575        th = tcp_hdr(skb);
 576        src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 577        if (likely(src != th->source)) {
 578                set_tp_port(skb, &th->source, src, &th->check);
 579                flow_key->tp.src = src;
 580        }
 581        dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 582        if (likely(dst != th->dest)) {
 583                set_tp_port(skb, &th->dest, dst, &th->check);
 584                flow_key->tp.dst = dst;
 585        }
 586        skb_clear_hash(skb);
 587
 588        return 0;
 589}
 590
 591static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 592                    const struct ovs_key_sctp *key,
 593                    const struct ovs_key_sctp *mask)
 594{
 595        unsigned int sctphoff = skb_transport_offset(skb);
 596        struct sctphdr *sh;
 597        __le32 old_correct_csum, new_csum, old_csum;
 598        int err;
 599
 600        err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 601        if (unlikely(err))
 602                return err;
 603
 604        sh = sctp_hdr(skb);
 605        old_csum = sh->checksum;
 606        old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 607
 608        sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 609        sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 610
 611        new_csum = sctp_compute_cksum(skb, sctphoff);
 612
 613        /* Carry any checksum errors through. */
 614        sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 615
 616        skb_clear_hash(skb);
 617        flow_key->tp.src = sh->source;
 618        flow_key->tp.dst = sh->dest;
 619
 620        return 0;
 621}
 622
 623static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 624{
 625        struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 626        struct vport *vport = data->vport;
 627
 628        if (skb_cow_head(skb, data->l2_len) < 0) {
 629                kfree_skb(skb);
 630                return -ENOMEM;
 631        }
 632
 633        __skb_dst_copy(skb, data->dst);
 634        *OVS_CB(skb) = data->cb;
 635        skb->inner_protocol = data->inner_protocol;
 636        skb->vlan_tci = data->vlan_tci;
 637        skb->vlan_proto = data->vlan_proto;
 638
 639        /* Reconstruct the MAC header.  */
 640        skb_push(skb, data->l2_len);
 641        memcpy(skb->data, &data->l2_data, data->l2_len);
 642        ovs_skb_postpush_rcsum(skb, skb->data, data->l2_len);
 643        skb_reset_mac_header(skb);
 644
 645        ovs_vport_send(vport, skb);
 646        return 0;
 647}
 648
 649static unsigned int
 650ovs_dst_get_mtu(const struct dst_entry *dst)
 651{
 652        return dst->dev->mtu;
 653}
 654
 655static struct dst_ops ovs_dst_ops = {
 656        .family = AF_UNSPEC,
 657        .mtu = ovs_dst_get_mtu,
 658};
 659
 660/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 661 * ovs_vport_output(), which is called once per fragmented packet.
 662 */
 663static void prepare_frag(struct vport *vport, struct sk_buff *skb)
 664{
 665        unsigned int hlen = skb_network_offset(skb);
 666        struct ovs_frag_data *data;
 667
 668        data = this_cpu_ptr(&ovs_frag_data_storage);
 669        data->dst = skb->_skb_refdst;
 670        data->vport = vport;
 671        data->cb = *OVS_CB(skb);
 672        data->inner_protocol = skb->inner_protocol;
 673        data->vlan_tci = skb->vlan_tci;
 674        data->vlan_proto = skb->vlan_proto;
 675        data->l2_len = hlen;
 676        memcpy(&data->l2_data, skb->data, hlen);
 677
 678        memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 679        skb_pull(skb, hlen);
 680}
 681
 682static void ovs_fragment(struct net *net, struct vport *vport,
 683                         struct sk_buff *skb, u16 mru, __be16 ethertype)
 684{
 685        if (skb_network_offset(skb) > MAX_L2_LEN) {
 686                OVS_NLERR(1, "L2 header too long to fragment");
 687                goto err;
 688        }
 689
 690        if (ethertype == htons(ETH_P_IP)) {
 691                struct dst_entry ovs_dst;
 692                unsigned long orig_dst;
 693
 694                prepare_frag(vport, skb);
 695                dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
 696                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 697                ovs_dst.dev = vport->dev;
 698
 699                orig_dst = skb->_skb_refdst;
 700                skb_dst_set_noref(skb, &ovs_dst);
 701                IPCB(skb)->frag_max_size = mru;
 702
 703                ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 704                refdst_drop(orig_dst);
 705        } else if (ethertype == htons(ETH_P_IPV6)) {
 706                const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
 707                unsigned long orig_dst;
 708                struct rt6_info ovs_rt;
 709
 710                if (!v6ops) {
 711                        goto err;
 712                }
 713
 714                prepare_frag(vport, skb);
 715                memset(&ovs_rt, 0, sizeof(ovs_rt));
 716                dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
 717                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 718                ovs_rt.dst.dev = vport->dev;
 719
 720                orig_dst = skb->_skb_refdst;
 721                skb_dst_set_noref(skb, &ovs_rt.dst);
 722                IP6CB(skb)->frag_max_size = mru;
 723
 724                v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
 725                refdst_drop(orig_dst);
 726        } else {
 727                WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 728                          ovs_vport_name(vport), ntohs(ethertype), mru,
 729                          vport->dev->mtu);
 730                goto err;
 731        }
 732
 733        return;
 734err:
 735        kfree_skb(skb);
 736}
 737
 738static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 739                      struct sw_flow_key *key)
 740{
 741        struct vport *vport = ovs_vport_rcu(dp, out_port);
 742
 743        if (likely(vport)) {
 744                u16 mru = OVS_CB(skb)->mru;
 745
 746                if (likely(!mru || (skb->len <= mru + ETH_HLEN))) {
 747                        ovs_vport_send(vport, skb);
 748                } else if (mru <= vport->dev->mtu) {
 749                        struct net *net = read_pnet(&dp->net);
 750                        __be16 ethertype = key->eth.type;
 751
 752                        if (!is_flow_key_valid(key)) {
 753                                if (eth_p_mpls(skb->protocol))
 754                                        ethertype = skb->inner_protocol;
 755                                else
 756                                        ethertype = vlan_get_protocol(skb);
 757                        }
 758
 759                        ovs_fragment(net, vport, skb, mru, ethertype);
 760                } else {
 761                        kfree_skb(skb);
 762                }
 763        } else {
 764                kfree_skb(skb);
 765        }
 766}
 767
 768static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 769                            struct sw_flow_key *key, const struct nlattr *attr,
 770                            const struct nlattr *actions, int actions_len)
 771{
 772        struct dp_upcall_info upcall;
 773        const struct nlattr *a;
 774        int rem;
 775
 776        memset(&upcall, 0, sizeof(upcall));
 777        upcall.cmd = OVS_PACKET_CMD_ACTION;
 778        upcall.mru = OVS_CB(skb)->mru;
 779
 780        for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 781                 a = nla_next(a, &rem)) {
 782                switch (nla_type(a)) {
 783                case OVS_USERSPACE_ATTR_USERDATA:
 784                        upcall.userdata = a;
 785                        break;
 786
 787                case OVS_USERSPACE_ATTR_PID:
 788                        upcall.portid = nla_get_u32(a);
 789                        break;
 790
 791                case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 792                        /* Get out tunnel info. */
 793                        struct vport *vport;
 794
 795                        vport = ovs_vport_rcu(dp, nla_get_u32(a));
 796                        if (vport) {
 797                                int err;
 798
 799                                err = dev_fill_metadata_dst(vport->dev, skb);
 800                                if (!err)
 801                                        upcall.egress_tun_info = skb_tunnel_info(skb);
 802                        }
 803
 804                        break;
 805                }
 806
 807                case OVS_USERSPACE_ATTR_ACTIONS: {
 808                        /* Include actions. */
 809                        upcall.actions = actions;
 810                        upcall.actions_len = actions_len;
 811                        break;
 812                }
 813
 814                } /* End of switch. */
 815        }
 816
 817        return ovs_dp_upcall(dp, skb, key, &upcall);
 818}
 819
 820static int sample(struct datapath *dp, struct sk_buff *skb,
 821                  struct sw_flow_key *key, const struct nlattr *attr,
 822                  const struct nlattr *actions, int actions_len)
 823{
 824        const struct nlattr *acts_list = NULL;
 825        const struct nlattr *a;
 826        int rem;
 827
 828        for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 829                 a = nla_next(a, &rem)) {
 830                u32 probability;
 831
 832                switch (nla_type(a)) {
 833                case OVS_SAMPLE_ATTR_PROBABILITY:
 834                        probability = nla_get_u32(a);
 835                        if (!probability || prandom_u32() > probability)
 836                                return 0;
 837                        break;
 838
 839                case OVS_SAMPLE_ATTR_ACTIONS:
 840                        acts_list = a;
 841                        break;
 842                }
 843        }
 844
 845        rem = nla_len(acts_list);
 846        a = nla_data(acts_list);
 847
 848        /* Actions list is empty, do nothing */
 849        if (unlikely(!rem))
 850                return 0;
 851
 852        /* The only known usage of sample action is having a single user-space
 853         * action. Treat this usage as a special case.
 854         * The output_userspace() should clone the skb to be sent to the
 855         * user space. This skb will be consumed by its caller.
 856         */
 857        if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
 858                   nla_is_last(a, rem)))
 859                return output_userspace(dp, skb, key, a, actions, actions_len);
 860
 861        skb = skb_clone(skb, GFP_ATOMIC);
 862        if (!skb)
 863                /* Skip the sample action when out of memory. */
 864                return 0;
 865
 866        if (!add_deferred_actions(skb, key, a)) {
 867                if (net_ratelimit())
 868                        pr_warn("%s: deferred actions limit reached, dropping sample action\n",
 869                                ovs_dp_name(dp));
 870
 871                kfree_skb(skb);
 872        }
 873        return 0;
 874}
 875
 876static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
 877                         const struct nlattr *attr)
 878{
 879        struct ovs_action_hash *hash_act = nla_data(attr);
 880        u32 hash = 0;
 881
 882        /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
 883        hash = skb_get_hash(skb);
 884        hash = jhash_1word(hash, hash_act->hash_basis);
 885        if (!hash)
 886                hash = 0x1;
 887
 888        key->ovs_flow_hash = hash;
 889}
 890
 891static int execute_set_action(struct sk_buff *skb,
 892                              struct sw_flow_key *flow_key,
 893                              const struct nlattr *a)
 894{
 895        /* Only tunnel set execution is supported without a mask. */
 896        if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
 897                struct ovs_tunnel_info *tun = nla_data(a);
 898
 899                skb_dst_drop(skb);
 900                dst_hold((struct dst_entry *)tun->tun_dst);
 901                skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
 902                return 0;
 903        }
 904
 905        return -EINVAL;
 906}
 907
 908/* Mask is at the midpoint of the data. */
 909#define get_mask(a, type) ((const type)nla_data(a) + 1)
 910
 911static int execute_masked_set_action(struct sk_buff *skb,
 912                                     struct sw_flow_key *flow_key,
 913                                     const struct nlattr *a)
 914{
 915        int err = 0;
 916
 917        switch (nla_type(a)) {
 918        case OVS_KEY_ATTR_PRIORITY:
 919                OVS_SET_MASKED(skb->priority, nla_get_u32(a),
 920                               *get_mask(a, u32 *));
 921                flow_key->phy.priority = skb->priority;
 922                break;
 923
 924        case OVS_KEY_ATTR_SKB_MARK:
 925                OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
 926                flow_key->phy.skb_mark = skb->mark;
 927                break;
 928
 929        case OVS_KEY_ATTR_TUNNEL_INFO:
 930                /* Masked data not supported for tunnel. */
 931                err = -EINVAL;
 932                break;
 933
 934        case OVS_KEY_ATTR_ETHERNET:
 935                err = set_eth_addr(skb, flow_key, nla_data(a),
 936                                   get_mask(a, struct ovs_key_ethernet *));
 937                break;
 938
 939        case OVS_KEY_ATTR_IPV4:
 940                err = set_ipv4(skb, flow_key, nla_data(a),
 941                               get_mask(a, struct ovs_key_ipv4 *));
 942                break;
 943
 944        case OVS_KEY_ATTR_IPV6:
 945                err = set_ipv6(skb, flow_key, nla_data(a),
 946                               get_mask(a, struct ovs_key_ipv6 *));
 947                break;
 948
 949        case OVS_KEY_ATTR_TCP:
 950                err = set_tcp(skb, flow_key, nla_data(a),
 951                              get_mask(a, struct ovs_key_tcp *));
 952                break;
 953
 954        case OVS_KEY_ATTR_UDP:
 955                err = set_udp(skb, flow_key, nla_data(a),
 956                              get_mask(a, struct ovs_key_udp *));
 957                break;
 958
 959        case OVS_KEY_ATTR_SCTP:
 960                err = set_sctp(skb, flow_key, nla_data(a),
 961                               get_mask(a, struct ovs_key_sctp *));
 962                break;
 963
 964        case OVS_KEY_ATTR_MPLS:
 965                err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
 966                                                                    __be32 *));
 967                break;
 968
 969        case OVS_KEY_ATTR_CT_STATE:
 970        case OVS_KEY_ATTR_CT_ZONE:
 971        case OVS_KEY_ATTR_CT_MARK:
 972        case OVS_KEY_ATTR_CT_LABELS:
 973                err = -EINVAL;
 974                break;
 975        }
 976
 977        return err;
 978}
 979
 980static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
 981                          struct sw_flow_key *key,
 982                          const struct nlattr *a, int rem)
 983{
 984        struct deferred_action *da;
 985
 986        if (!is_flow_key_valid(key)) {
 987                int err;
 988
 989                err = ovs_flow_key_update(skb, key);
 990                if (err)
 991                        return err;
 992        }
 993        BUG_ON(!is_flow_key_valid(key));
 994
 995        if (!nla_is_last(a, rem)) {
 996                /* Recirc action is the not the last action
 997                 * of the action list, need to clone the skb.
 998                 */
 999                skb = skb_clone(skb, GFP_ATOMIC);
1000
1001                /* Skip the recirc action when out of memory, but
1002                 * continue on with the rest of the action list.
1003                 */
1004                if (!skb)
1005                        return 0;
1006        }
1007
1008        da = add_deferred_actions(skb, key, NULL);
1009        if (da) {
1010                da->pkt_key.recirc_id = nla_get_u32(a);
1011        } else {
1012                kfree_skb(skb);
1013
1014                if (net_ratelimit())
1015                        pr_warn("%s: deferred action limit reached, drop recirc action\n",
1016                                ovs_dp_name(dp));
1017        }
1018
1019        return 0;
1020}
1021
1022/* Execute a list of actions against 'skb'. */
1023static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1024                              struct sw_flow_key *key,
1025                              const struct nlattr *attr, int len)
1026{
1027        /* Every output action needs a separate clone of 'skb', but the common
1028         * case is just a single output action, so that doing a clone and
1029         * then freeing the original skbuff is wasteful.  So the following code
1030         * is slightly obscure just to avoid that.
1031         */
1032        int prev_port = -1;
1033        const struct nlattr *a;
1034        int rem;
1035
1036        for (a = attr, rem = len; rem > 0;
1037             a = nla_next(a, &rem)) {
1038                int err = 0;
1039
1040                if (unlikely(prev_port != -1)) {
1041                        struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1042
1043                        if (out_skb)
1044                                do_output(dp, out_skb, prev_port, key);
1045
1046                        prev_port = -1;
1047                }
1048
1049                switch (nla_type(a)) {
1050                case OVS_ACTION_ATTR_OUTPUT:
1051                        prev_port = nla_get_u32(a);
1052                        break;
1053
1054                case OVS_ACTION_ATTR_USERSPACE:
1055                        output_userspace(dp, skb, key, a, attr, len);
1056                        break;
1057
1058                case OVS_ACTION_ATTR_HASH:
1059                        execute_hash(skb, key, a);
1060                        break;
1061
1062                case OVS_ACTION_ATTR_PUSH_MPLS:
1063                        err = push_mpls(skb, key, nla_data(a));
1064                        break;
1065
1066                case OVS_ACTION_ATTR_POP_MPLS:
1067                        err = pop_mpls(skb, key, nla_get_be16(a));
1068                        break;
1069
1070                case OVS_ACTION_ATTR_PUSH_VLAN:
1071                        err = push_vlan(skb, key, nla_data(a));
1072                        break;
1073
1074                case OVS_ACTION_ATTR_POP_VLAN:
1075                        err = pop_vlan(skb, key);
1076                        break;
1077
1078                case OVS_ACTION_ATTR_RECIRC:
1079                        err = execute_recirc(dp, skb, key, a, rem);
1080                        if (nla_is_last(a, rem)) {
1081                                /* If this is the last action, the skb has
1082                                 * been consumed or freed.
1083                                 * Return immediately.
1084                                 */
1085                                return err;
1086                        }
1087                        break;
1088
1089                case OVS_ACTION_ATTR_SET:
1090                        err = execute_set_action(skb, key, nla_data(a));
1091                        break;
1092
1093                case OVS_ACTION_ATTR_SET_MASKED:
1094                case OVS_ACTION_ATTR_SET_TO_MASKED:
1095                        err = execute_masked_set_action(skb, key, nla_data(a));
1096                        break;
1097
1098                case OVS_ACTION_ATTR_SAMPLE:
1099                        err = sample(dp, skb, key, a, attr, len);
1100                        break;
1101
1102                case OVS_ACTION_ATTR_CT:
1103                        if (!is_flow_key_valid(key)) {
1104                                err = ovs_flow_key_update(skb, key);
1105                                if (err)
1106                                        return err;
1107                        }
1108
1109                        err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1110                                             nla_data(a));
1111
1112                        /* Hide stolen IP fragments from user space. */
1113                        if (err)
1114                                return err == -EINPROGRESS ? 0 : err;
1115                        break;
1116                }
1117
1118                if (unlikely(err)) {
1119                        kfree_skb(skb);
1120                        return err;
1121                }
1122        }
1123
1124        if (prev_port != -1)
1125                do_output(dp, skb, prev_port, key);
1126        else
1127                consume_skb(skb);
1128
1129        return 0;
1130}
1131
1132static void process_deferred_actions(struct datapath *dp)
1133{
1134        struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1135
1136        /* Do not touch the FIFO in case there is no deferred actions. */
1137        if (action_fifo_is_empty(fifo))
1138                return;
1139
1140        /* Finishing executing all deferred actions. */
1141        do {
1142                struct deferred_action *da = action_fifo_get(fifo);
1143                struct sk_buff *skb = da->skb;
1144                struct sw_flow_key *key = &da->pkt_key;
1145                const struct nlattr *actions = da->actions;
1146
1147                if (actions)
1148                        do_execute_actions(dp, skb, key, actions,
1149                                           nla_len(actions));
1150                else
1151                        ovs_dp_process_packet(skb, key);
1152        } while (!action_fifo_is_empty(fifo));
1153
1154        /* Reset FIFO for the next packet.  */
1155        action_fifo_init(fifo);
1156}
1157
1158/* Execute a list of actions against 'skb'. */
1159int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1160                        const struct sw_flow_actions *acts,
1161                        struct sw_flow_key *key)
1162{
1163        int level = this_cpu_read(exec_actions_level);
1164        int err;
1165
1166        this_cpu_inc(exec_actions_level);
1167        err = do_execute_actions(dp, skb, key,
1168                                 acts->actions, acts->actions_len);
1169
1170        if (!level)
1171                process_deferred_actions(dp);
1172
1173        this_cpu_dec(exec_actions_level);
1174        return err;
1175}
1176
1177int action_fifos_init(void)
1178{
1179        action_fifos = alloc_percpu(struct action_fifo);
1180        if (!action_fifos)
1181                return -ENOMEM;
1182
1183        return 0;
1184}
1185
1186void action_fifos_exit(void)
1187{
1188        free_percpu(action_fifos);
1189}
1190