linux/sound/soc/atmel/atmel_ssc_dai.c
<<
>>
Prefs
   1/*
   2 * atmel_ssc_dai.c  --  ALSA SoC ATMEL SSC Audio Layer Platform driver
   3 *
   4 * Copyright (C) 2005 SAN People
   5 * Copyright (C) 2008 Atmel
   6 *
   7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
   8 *         ATMEL CORP.
   9 *
  10 * Based on at91-ssc.c by
  11 * Frank Mandarino <fmandarino@endrelia.com>
  12 * Based on pxa2xx Platform drivers by
  13 * Liam Girdwood <lrg@slimlogic.co.uk>
  14 *
  15 * This program is free software; you can redistribute it and/or modify
  16 * it under the terms of the GNU General Public License as published by
  17 * the Free Software Foundation; either version 2 of the License, or
  18 * (at your option) any later version.
  19 *
  20 * This program is distributed in the hope that it will be useful,
  21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  23 * GNU General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU General Public License
  26 * along with this program; if not, write to the Free Software
  27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  28 */
  29
  30#include <linux/init.h>
  31#include <linux/module.h>
  32#include <linux/interrupt.h>
  33#include <linux/device.h>
  34#include <linux/delay.h>
  35#include <linux/clk.h>
  36#include <linux/atmel_pdc.h>
  37
  38#include <linux/atmel-ssc.h>
  39#include <sound/core.h>
  40#include <sound/pcm.h>
  41#include <sound/pcm_params.h>
  42#include <sound/initval.h>
  43#include <sound/soc.h>
  44
  45#include "atmel-pcm.h"
  46#include "atmel_ssc_dai.h"
  47
  48
  49#define NUM_SSC_DEVICES         3
  50
  51/*
  52 * SSC PDC registers required by the PCM DMA engine.
  53 */
  54static struct atmel_pdc_regs pdc_tx_reg = {
  55        .xpr            = ATMEL_PDC_TPR,
  56        .xcr            = ATMEL_PDC_TCR,
  57        .xnpr           = ATMEL_PDC_TNPR,
  58        .xncr           = ATMEL_PDC_TNCR,
  59};
  60
  61static struct atmel_pdc_regs pdc_rx_reg = {
  62        .xpr            = ATMEL_PDC_RPR,
  63        .xcr            = ATMEL_PDC_RCR,
  64        .xnpr           = ATMEL_PDC_RNPR,
  65        .xncr           = ATMEL_PDC_RNCR,
  66};
  67
  68/*
  69 * SSC & PDC status bits for transmit and receive.
  70 */
  71static struct atmel_ssc_mask ssc_tx_mask = {
  72        .ssc_enable     = SSC_BIT(CR_TXEN),
  73        .ssc_disable    = SSC_BIT(CR_TXDIS),
  74        .ssc_endx       = SSC_BIT(SR_ENDTX),
  75        .ssc_endbuf     = SSC_BIT(SR_TXBUFE),
  76        .ssc_error      = SSC_BIT(SR_OVRUN),
  77        .pdc_enable     = ATMEL_PDC_TXTEN,
  78        .pdc_disable    = ATMEL_PDC_TXTDIS,
  79};
  80
  81static struct atmel_ssc_mask ssc_rx_mask = {
  82        .ssc_enable     = SSC_BIT(CR_RXEN),
  83        .ssc_disable    = SSC_BIT(CR_RXDIS),
  84        .ssc_endx       = SSC_BIT(SR_ENDRX),
  85        .ssc_endbuf     = SSC_BIT(SR_RXBUFF),
  86        .ssc_error      = SSC_BIT(SR_OVRUN),
  87        .pdc_enable     = ATMEL_PDC_RXTEN,
  88        .pdc_disable    = ATMEL_PDC_RXTDIS,
  89};
  90
  91
  92/*
  93 * DMA parameters.
  94 */
  95static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
  96        {{
  97        .name           = "SSC0 PCM out",
  98        .pdc            = &pdc_tx_reg,
  99        .mask           = &ssc_tx_mask,
 100        },
 101        {
 102        .name           = "SSC0 PCM in",
 103        .pdc            = &pdc_rx_reg,
 104        .mask           = &ssc_rx_mask,
 105        } },
 106        {{
 107        .name           = "SSC1 PCM out",
 108        .pdc            = &pdc_tx_reg,
 109        .mask           = &ssc_tx_mask,
 110        },
 111        {
 112        .name           = "SSC1 PCM in",
 113        .pdc            = &pdc_rx_reg,
 114        .mask           = &ssc_rx_mask,
 115        } },
 116        {{
 117        .name           = "SSC2 PCM out",
 118        .pdc            = &pdc_tx_reg,
 119        .mask           = &ssc_tx_mask,
 120        },
 121        {
 122        .name           = "SSC2 PCM in",
 123        .pdc            = &pdc_rx_reg,
 124        .mask           = &ssc_rx_mask,
 125        } },
 126};
 127
 128
 129static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
 130        {
 131        .name           = "ssc0",
 132        .lock           = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
 133        .dir_mask       = SSC_DIR_MASK_UNUSED,
 134        .initialized    = 0,
 135        },
 136        {
 137        .name           = "ssc1",
 138        .lock           = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
 139        .dir_mask       = SSC_DIR_MASK_UNUSED,
 140        .initialized    = 0,
 141        },
 142        {
 143        .name           = "ssc2",
 144        .lock           = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
 145        .dir_mask       = SSC_DIR_MASK_UNUSED,
 146        .initialized    = 0,
 147        },
 148};
 149
 150
 151/*
 152 * SSC interrupt handler.  Passes PDC interrupts to the DMA
 153 * interrupt handler in the PCM driver.
 154 */
 155static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
 156{
 157        struct atmel_ssc_info *ssc_p = dev_id;
 158        struct atmel_pcm_dma_params *dma_params;
 159        u32 ssc_sr;
 160        u32 ssc_substream_mask;
 161        int i;
 162
 163        ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
 164                        & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
 165
 166        /*
 167         * Loop through the substreams attached to this SSC.  If
 168         * a DMA-related interrupt occurred on that substream, call
 169         * the DMA interrupt handler function, if one has been
 170         * registered in the dma_params structure by the PCM driver.
 171         */
 172        for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
 173                dma_params = ssc_p->dma_params[i];
 174
 175                if ((dma_params != NULL) &&
 176                        (dma_params->dma_intr_handler != NULL)) {
 177                        ssc_substream_mask = (dma_params->mask->ssc_endx |
 178                                        dma_params->mask->ssc_endbuf);
 179                        if (ssc_sr & ssc_substream_mask) {
 180                                dma_params->dma_intr_handler(ssc_sr,
 181                                                dma_params->
 182                                                substream);
 183                        }
 184                }
 185        }
 186
 187        return IRQ_HANDLED;
 188}
 189
 190/*
 191 * When the bit clock is input, limit the maximum rate according to the
 192 * Serial Clock Ratio Considerations section from the SSC documentation:
 193 *
 194 *   The Transmitter and the Receiver can be programmed to operate
 195 *   with the clock signals provided on either the TK or RK pins.
 196 *   This allows the SSC to support many slave-mode data transfers.
 197 *   In this case, the maximum clock speed allowed on the RK pin is:
 198 *   - Peripheral clock divided by 2 if Receiver Frame Synchro is input
 199 *   - Peripheral clock divided by 3 if Receiver Frame Synchro is output
 200 *   In addition, the maximum clock speed allowed on the TK pin is:
 201 *   - Peripheral clock divided by 6 if Transmit Frame Synchro is input
 202 *   - Peripheral clock divided by 2 if Transmit Frame Synchro is output
 203 *
 204 * When the bit clock is output, limit the rate according to the
 205 * SSC divider restrictions.
 206 */
 207static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
 208                                  struct snd_pcm_hw_rule *rule)
 209{
 210        struct atmel_ssc_info *ssc_p = rule->private;
 211        struct ssc_device *ssc = ssc_p->ssc;
 212        struct snd_interval *i = hw_param_interval(params, rule->var);
 213        struct snd_interval t;
 214        struct snd_ratnum r = {
 215                .den_min = 1,
 216                .den_max = 4095,
 217                .den_step = 1,
 218        };
 219        unsigned int num = 0, den = 0;
 220        int frame_size;
 221        int mck_div = 2;
 222        int ret;
 223
 224        frame_size = snd_soc_params_to_frame_size(params);
 225        if (frame_size < 0)
 226                return frame_size;
 227
 228        switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
 229        case SND_SOC_DAIFMT_CBM_CFS:
 230                if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
 231                    && ssc->clk_from_rk_pin)
 232                        /* Receiver Frame Synchro (i.e. capture)
 233                         * is output (format is _CFS) and the RK pin
 234                         * is used for input (format is _CBM_).
 235                         */
 236                        mck_div = 3;
 237                break;
 238
 239        case SND_SOC_DAIFMT_CBM_CFM:
 240                if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
 241                    && !ssc->clk_from_rk_pin)
 242                        /* Transmit Frame Synchro (i.e. playback)
 243                         * is input (format is _CFM) and the TK pin
 244                         * is used for input (format _CBM_ but not
 245                         * using the RK pin).
 246                         */
 247                        mck_div = 6;
 248                break;
 249        }
 250
 251        switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
 252        case SND_SOC_DAIFMT_CBS_CFS:
 253                r.num = ssc_p->mck_rate / mck_div / frame_size;
 254
 255                ret = snd_interval_ratnum(i, 1, &r, &num, &den);
 256                if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
 257                        params->rate_num = num;
 258                        params->rate_den = den;
 259                }
 260                break;
 261
 262        case SND_SOC_DAIFMT_CBM_CFS:
 263        case SND_SOC_DAIFMT_CBM_CFM:
 264                t.min = 8000;
 265                t.max = ssc_p->mck_rate / mck_div / frame_size;
 266                t.openmin = t.openmax = 0;
 267                t.integer = 0;
 268                ret = snd_interval_refine(i, &t);
 269                break;
 270
 271        default:
 272                ret = -EINVAL;
 273                break;
 274        }
 275
 276        return ret;
 277}
 278
 279/*-------------------------------------------------------------------------*\
 280 * DAI functions
 281\*-------------------------------------------------------------------------*/
 282/*
 283 * Startup.  Only that one substream allowed in each direction.
 284 */
 285static int atmel_ssc_startup(struct snd_pcm_substream *substream,
 286                             struct snd_soc_dai *dai)
 287{
 288        struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
 289        struct atmel_pcm_dma_params *dma_params;
 290        int dir, dir_mask;
 291        int ret;
 292
 293        pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
 294                ssc_readl(ssc_p->ssc->regs, SR));
 295
 296        /* Enable PMC peripheral clock for this SSC */
 297        pr_debug("atmel_ssc_dai: Starting clock\n");
 298        clk_enable(ssc_p->ssc->clk);
 299        ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
 300
 301        /* Reset the SSC to keep it at a clean status */
 302        ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
 303
 304        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 305                dir = 0;
 306                dir_mask = SSC_DIR_MASK_PLAYBACK;
 307        } else {
 308                dir = 1;
 309                dir_mask = SSC_DIR_MASK_CAPTURE;
 310        }
 311
 312        ret = snd_pcm_hw_rule_add(substream->runtime, 0,
 313                                  SNDRV_PCM_HW_PARAM_RATE,
 314                                  atmel_ssc_hw_rule_rate,
 315                                  ssc_p,
 316                                  SNDRV_PCM_HW_PARAM_FRAME_BITS,
 317                                  SNDRV_PCM_HW_PARAM_CHANNELS, -1);
 318        if (ret < 0) {
 319                dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
 320                return ret;
 321        }
 322
 323        dma_params = &ssc_dma_params[dai->id][dir];
 324        dma_params->ssc = ssc_p->ssc;
 325        dma_params->substream = substream;
 326
 327        ssc_p->dma_params[dir] = dma_params;
 328
 329        snd_soc_dai_set_dma_data(dai, substream, dma_params);
 330
 331        spin_lock_irq(&ssc_p->lock);
 332        if (ssc_p->dir_mask & dir_mask) {
 333                spin_unlock_irq(&ssc_p->lock);
 334                return -EBUSY;
 335        }
 336        ssc_p->dir_mask |= dir_mask;
 337        spin_unlock_irq(&ssc_p->lock);
 338
 339        return 0;
 340}
 341
 342/*
 343 * Shutdown.  Clear DMA parameters and shutdown the SSC if there
 344 * are no other substreams open.
 345 */
 346static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
 347                               struct snd_soc_dai *dai)
 348{
 349        struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
 350        struct atmel_pcm_dma_params *dma_params;
 351        int dir, dir_mask;
 352
 353        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 354                dir = 0;
 355        else
 356                dir = 1;
 357
 358        dma_params = ssc_p->dma_params[dir];
 359
 360        if (dma_params != NULL) {
 361                dma_params->ssc = NULL;
 362                dma_params->substream = NULL;
 363                ssc_p->dma_params[dir] = NULL;
 364        }
 365
 366        dir_mask = 1 << dir;
 367
 368        spin_lock_irq(&ssc_p->lock);
 369        ssc_p->dir_mask &= ~dir_mask;
 370        if (!ssc_p->dir_mask) {
 371                if (ssc_p->initialized) {
 372                        free_irq(ssc_p->ssc->irq, ssc_p);
 373                        ssc_p->initialized = 0;
 374                }
 375
 376                /* Reset the SSC */
 377                ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
 378                /* Clear the SSC dividers */
 379                ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
 380        }
 381        spin_unlock_irq(&ssc_p->lock);
 382
 383        /* Shutdown the SSC clock. */
 384        pr_debug("atmel_ssc_dai: Stopping clock\n");
 385        clk_disable(ssc_p->ssc->clk);
 386}
 387
 388
 389/*
 390 * Record the DAI format for use in hw_params().
 391 */
 392static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
 393                unsigned int fmt)
 394{
 395        struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
 396
 397        ssc_p->daifmt = fmt;
 398        return 0;
 399}
 400
 401/*
 402 * Record SSC clock dividers for use in hw_params().
 403 */
 404static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
 405        int div_id, int div)
 406{
 407        struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
 408
 409        switch (div_id) {
 410        case ATMEL_SSC_CMR_DIV:
 411                /*
 412                 * The same master clock divider is used for both
 413                 * transmit and receive, so if a value has already
 414                 * been set, it must match this value.
 415                 */
 416                if (ssc_p->dir_mask !=
 417                        (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
 418                        ssc_p->cmr_div = div;
 419                else if (ssc_p->cmr_div == 0)
 420                        ssc_p->cmr_div = div;
 421                else
 422                        if (div != ssc_p->cmr_div)
 423                                return -EBUSY;
 424                break;
 425
 426        case ATMEL_SSC_TCMR_PERIOD:
 427                ssc_p->tcmr_period = div;
 428                break;
 429
 430        case ATMEL_SSC_RCMR_PERIOD:
 431                ssc_p->rcmr_period = div;
 432                break;
 433
 434        default:
 435                return -EINVAL;
 436        }
 437
 438        return 0;
 439}
 440
 441/*
 442 * Configure the SSC.
 443 */
 444static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
 445        struct snd_pcm_hw_params *params,
 446        struct snd_soc_dai *dai)
 447{
 448        int id = dai->id;
 449        struct atmel_ssc_info *ssc_p = &ssc_info[id];
 450        struct ssc_device *ssc = ssc_p->ssc;
 451        struct atmel_pcm_dma_params *dma_params;
 452        int dir, channels, bits;
 453        u32 tfmr, rfmr, tcmr, rcmr;
 454        int ret;
 455        int fslen, fslen_ext;
 456
 457        /*
 458         * Currently, there is only one set of dma params for
 459         * each direction.  If more are added, this code will
 460         * have to be changed to select the proper set.
 461         */
 462        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 463                dir = 0;
 464        else
 465                dir = 1;
 466
 467        dma_params = ssc_p->dma_params[dir];
 468
 469        channels = params_channels(params);
 470
 471        /*
 472         * Determine sample size in bits and the PDC increment.
 473         */
 474        switch (params_format(params)) {
 475        case SNDRV_PCM_FORMAT_S8:
 476                bits = 8;
 477                dma_params->pdc_xfer_size = 1;
 478                break;
 479        case SNDRV_PCM_FORMAT_S16_LE:
 480                bits = 16;
 481                dma_params->pdc_xfer_size = 2;
 482                break;
 483        case SNDRV_PCM_FORMAT_S24_LE:
 484                bits = 24;
 485                dma_params->pdc_xfer_size = 4;
 486                break;
 487        case SNDRV_PCM_FORMAT_S32_LE:
 488                bits = 32;
 489                dma_params->pdc_xfer_size = 4;
 490                break;
 491        default:
 492                printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
 493                return -EINVAL;
 494        }
 495
 496        /*
 497         * Compute SSC register settings.
 498         */
 499        switch (ssc_p->daifmt
 500                & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
 501
 502        case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
 503                /*
 504                 * I2S format, SSC provides BCLK and LRC clocks.
 505                 *
 506                 * The SSC transmit and receive clocks are generated
 507                 * from the MCK divider, and the BCLK signal
 508                 * is output on the SSC TK line.
 509                 */
 510
 511                if (bits > 16 && !ssc->pdata->has_fslen_ext) {
 512                        dev_err(dai->dev,
 513                                "sample size %d is too large for SSC device\n",
 514                                bits);
 515                        return -EINVAL;
 516                }
 517
 518                fslen_ext = (bits - 1) / 16;
 519                fslen = (bits - 1) % 16;
 520
 521                rcmr =    SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
 522                        | SSC_BF(RCMR_STTDLY, START_DELAY)
 523                        | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
 524                        | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
 525                        | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
 526                        | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
 527
 528                rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
 529                        | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
 530                        | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
 531                        | SSC_BF(RFMR_FSLEN, fslen)
 532                        | SSC_BF(RFMR_DATNB, (channels - 1))
 533                        | SSC_BIT(RFMR_MSBF)
 534                        | SSC_BF(RFMR_LOOP, 0)
 535                        | SSC_BF(RFMR_DATLEN, (bits - 1));
 536
 537                tcmr =    SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
 538                        | SSC_BF(TCMR_STTDLY, START_DELAY)
 539                        | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
 540                        | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
 541                        | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
 542                        | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
 543
 544                tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
 545                        | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
 546                        | SSC_BF(TFMR_FSDEN, 0)
 547                        | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
 548                        | SSC_BF(TFMR_FSLEN, fslen)
 549                        | SSC_BF(TFMR_DATNB, (channels - 1))
 550                        | SSC_BIT(TFMR_MSBF)
 551                        | SSC_BF(TFMR_DATDEF, 0)
 552                        | SSC_BF(TFMR_DATLEN, (bits - 1));
 553                break;
 554
 555        case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
 556                /* I2S format, CODEC supplies BCLK and LRC clocks. */
 557                rcmr =    SSC_BF(RCMR_PERIOD, 0)
 558                        | SSC_BF(RCMR_STTDLY, START_DELAY)
 559                        | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
 560                        | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
 561                        | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
 562                        | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
 563                                           SSC_CKS_PIN : SSC_CKS_CLOCK);
 564
 565                rfmr =    SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
 566                        | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
 567                        | SSC_BF(RFMR_FSLEN, 0)
 568                        | SSC_BF(RFMR_DATNB, (channels - 1))
 569                        | SSC_BIT(RFMR_MSBF)
 570                        | SSC_BF(RFMR_LOOP, 0)
 571                        | SSC_BF(RFMR_DATLEN, (bits - 1));
 572
 573                tcmr =    SSC_BF(TCMR_PERIOD, 0)
 574                        | SSC_BF(TCMR_STTDLY, START_DELAY)
 575                        | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
 576                        | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
 577                        | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
 578                        | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
 579                                           SSC_CKS_CLOCK : SSC_CKS_PIN);
 580
 581                tfmr =    SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
 582                        | SSC_BF(TFMR_FSDEN, 0)
 583                        | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
 584                        | SSC_BF(TFMR_FSLEN, 0)
 585                        | SSC_BF(TFMR_DATNB, (channels - 1))
 586                        | SSC_BIT(TFMR_MSBF)
 587                        | SSC_BF(TFMR_DATDEF, 0)
 588                        | SSC_BF(TFMR_DATLEN, (bits - 1));
 589                break;
 590
 591        case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS:
 592                /* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */
 593                if (bits > 16 && !ssc->pdata->has_fslen_ext) {
 594                        dev_err(dai->dev,
 595                                "sample size %d is too large for SSC device\n",
 596                                bits);
 597                        return -EINVAL;
 598                }
 599
 600                fslen_ext = (bits - 1) / 16;
 601                fslen = (bits - 1) % 16;
 602
 603                rcmr =    SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
 604                        | SSC_BF(RCMR_STTDLY, START_DELAY)
 605                        | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
 606                        | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
 607                        | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
 608                        | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
 609                                           SSC_CKS_PIN : SSC_CKS_CLOCK);
 610
 611                rfmr =    SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
 612                        | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
 613                        | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
 614                        | SSC_BF(RFMR_FSLEN, fslen)
 615                        | SSC_BF(RFMR_DATNB, (channels - 1))
 616                        | SSC_BIT(RFMR_MSBF)
 617                        | SSC_BF(RFMR_LOOP, 0)
 618                        | SSC_BF(RFMR_DATLEN, (bits - 1));
 619
 620                tcmr =    SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
 621                        | SSC_BF(TCMR_STTDLY, START_DELAY)
 622                        | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
 623                        | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
 624                        | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
 625                        | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
 626                                           SSC_CKS_CLOCK : SSC_CKS_PIN);
 627
 628                tfmr =    SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
 629                        | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE)
 630                        | SSC_BF(TFMR_FSDEN, 0)
 631                        | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
 632                        | SSC_BF(TFMR_FSLEN, fslen)
 633                        | SSC_BF(TFMR_DATNB, (channels - 1))
 634                        | SSC_BIT(TFMR_MSBF)
 635                        | SSC_BF(TFMR_DATDEF, 0)
 636                        | SSC_BF(TFMR_DATLEN, (bits - 1));
 637                break;
 638
 639        case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
 640                /*
 641                 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
 642                 *
 643                 * The SSC transmit and receive clocks are generated from the
 644                 * MCK divider, and the BCLK signal is output
 645                 * on the SSC TK line.
 646                 */
 647                rcmr =    SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
 648                        | SSC_BF(RCMR_STTDLY, 1)
 649                        | SSC_BF(RCMR_START, SSC_START_RISING_RF)
 650                        | SSC_BF(RCMR_CKI, SSC_CKI_FALLING)
 651                        | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
 652                        | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
 653
 654                rfmr =    SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
 655                        | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
 656                        | SSC_BF(RFMR_FSLEN, 0)
 657                        | SSC_BF(RFMR_DATNB, (channels - 1))
 658                        | SSC_BIT(RFMR_MSBF)
 659                        | SSC_BF(RFMR_LOOP, 0)
 660                        | SSC_BF(RFMR_DATLEN, (bits - 1));
 661
 662                tcmr =    SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
 663                        | SSC_BF(TCMR_STTDLY, 1)
 664                        | SSC_BF(TCMR_START, SSC_START_RISING_RF)
 665                        | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
 666                        | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
 667                        | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
 668
 669                tfmr =    SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
 670                        | SSC_BF(TFMR_FSDEN, 0)
 671                        | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
 672                        | SSC_BF(TFMR_FSLEN, 0)
 673                        | SSC_BF(TFMR_DATNB, (channels - 1))
 674                        | SSC_BIT(TFMR_MSBF)
 675                        | SSC_BF(TFMR_DATDEF, 0)
 676                        | SSC_BF(TFMR_DATLEN, (bits - 1));
 677                break;
 678
 679        case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
 680                /*
 681                 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
 682                 *
 683                 * Data is transferred on first BCLK after LRC pulse rising
 684                 * edge.If stereo, the right channel data is contiguous with
 685                 * the left channel data.
 686                 */
 687                rcmr =    SSC_BF(RCMR_PERIOD, 0)
 688                        | SSC_BF(RCMR_STTDLY, START_DELAY)
 689                        | SSC_BF(RCMR_START, SSC_START_RISING_RF)
 690                        | SSC_BF(RCMR_CKI, SSC_CKI_FALLING)
 691                        | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
 692                        | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
 693                                           SSC_CKS_PIN : SSC_CKS_CLOCK);
 694
 695                rfmr =    SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
 696                        | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
 697                        | SSC_BF(RFMR_FSLEN, 0)
 698                        | SSC_BF(RFMR_DATNB, (channels - 1))
 699                        | SSC_BIT(RFMR_MSBF)
 700                        | SSC_BF(RFMR_LOOP, 0)
 701                        | SSC_BF(RFMR_DATLEN, (bits - 1));
 702
 703                tcmr =    SSC_BF(TCMR_PERIOD, 0)
 704                        | SSC_BF(TCMR_STTDLY, START_DELAY)
 705                        | SSC_BF(TCMR_START, SSC_START_RISING_RF)
 706                        | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
 707                        | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
 708                        | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
 709                                           SSC_CKS_CLOCK : SSC_CKS_PIN);
 710
 711                tfmr =    SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
 712                        | SSC_BF(TFMR_FSDEN, 0)
 713                        | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
 714                        | SSC_BF(TFMR_FSLEN, 0)
 715                        | SSC_BF(TFMR_DATNB, (channels - 1))
 716                        | SSC_BIT(TFMR_MSBF)
 717                        | SSC_BF(TFMR_DATDEF, 0)
 718                        | SSC_BF(TFMR_DATLEN, (bits - 1));
 719                break;
 720
 721        default:
 722                printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
 723                        ssc_p->daifmt);
 724                return -EINVAL;
 725        }
 726        pr_debug("atmel_ssc_hw_params: "
 727                        "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
 728                        rcmr, rfmr, tcmr, tfmr);
 729
 730        if (!ssc_p->initialized) {
 731                if (!ssc_p->ssc->pdata->use_dma) {
 732                        ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
 733                        ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
 734                        ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
 735                        ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
 736
 737                        ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
 738                        ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
 739                        ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
 740                        ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
 741                }
 742
 743                ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
 744                                ssc_p->name, ssc_p);
 745                if (ret < 0) {
 746                        printk(KERN_WARNING
 747                                        "atmel_ssc_dai: request_irq failure\n");
 748                        pr_debug("Atmel_ssc_dai: Stoping clock\n");
 749                        clk_disable(ssc_p->ssc->clk);
 750                        return ret;
 751                }
 752
 753                ssc_p->initialized = 1;
 754        }
 755
 756        /* set SSC clock mode register */
 757        ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
 758
 759        /* set receive clock mode and format */
 760        ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
 761        ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
 762
 763        /* set transmit clock mode and format */
 764        ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
 765        ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
 766
 767        pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
 768        return 0;
 769}
 770
 771
 772static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
 773                             struct snd_soc_dai *dai)
 774{
 775        struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
 776        struct atmel_pcm_dma_params *dma_params;
 777        int dir;
 778
 779        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 780                dir = 0;
 781        else
 782                dir = 1;
 783
 784        dma_params = ssc_p->dma_params[dir];
 785
 786        ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
 787        ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
 788
 789        pr_debug("%s enabled SSC_SR=0x%08x\n",
 790                        dir ? "receive" : "transmit",
 791                        ssc_readl(ssc_p->ssc->regs, SR));
 792        return 0;
 793}
 794
 795static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
 796                             int cmd, struct snd_soc_dai *dai)
 797{
 798        struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
 799        struct atmel_pcm_dma_params *dma_params;
 800        int dir;
 801
 802        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 803                dir = 0;
 804        else
 805                dir = 1;
 806
 807        dma_params = ssc_p->dma_params[dir];
 808
 809        switch (cmd) {
 810        case SNDRV_PCM_TRIGGER_START:
 811        case SNDRV_PCM_TRIGGER_RESUME:
 812        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 813                ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
 814                break;
 815        default:
 816                ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
 817                break;
 818        }
 819
 820        return 0;
 821}
 822
 823#ifdef CONFIG_PM
 824static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
 825{
 826        struct atmel_ssc_info *ssc_p;
 827
 828        if (!cpu_dai->active)
 829                return 0;
 830
 831        ssc_p = &ssc_info[cpu_dai->id];
 832
 833        /* Save the status register before disabling transmit and receive */
 834        ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
 835        ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
 836
 837        /* Save the current interrupt mask, then disable unmasked interrupts */
 838        ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
 839        ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
 840
 841        ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
 842        ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
 843        ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
 844        ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
 845        ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
 846
 847        return 0;
 848}
 849
 850
 851
 852static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
 853{
 854        struct atmel_ssc_info *ssc_p;
 855        u32 cr;
 856
 857        if (!cpu_dai->active)
 858                return 0;
 859
 860        ssc_p = &ssc_info[cpu_dai->id];
 861
 862        /* restore SSC register settings */
 863        ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
 864        ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
 865        ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
 866        ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
 867        ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
 868
 869        /* re-enable interrupts */
 870        ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
 871
 872        /* Re-enable receive and transmit as appropriate */
 873        cr = 0;
 874        cr |=
 875            (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
 876        cr |=
 877            (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
 878        ssc_writel(ssc_p->ssc->regs, CR, cr);
 879
 880        return 0;
 881}
 882#else /* CONFIG_PM */
 883#  define atmel_ssc_suspend     NULL
 884#  define atmel_ssc_resume      NULL
 885#endif /* CONFIG_PM */
 886
 887#define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8     | SNDRV_PCM_FMTBIT_S16_LE |\
 888                          SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
 889
 890static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
 891        .startup        = atmel_ssc_startup,
 892        .shutdown       = atmel_ssc_shutdown,
 893        .prepare        = atmel_ssc_prepare,
 894        .trigger        = atmel_ssc_trigger,
 895        .hw_params      = atmel_ssc_hw_params,
 896        .set_fmt        = atmel_ssc_set_dai_fmt,
 897        .set_clkdiv     = atmel_ssc_set_dai_clkdiv,
 898};
 899
 900static struct snd_soc_dai_driver atmel_ssc_dai = {
 901                .suspend = atmel_ssc_suspend,
 902                .resume = atmel_ssc_resume,
 903                .playback = {
 904                        .channels_min = 1,
 905                        .channels_max = 2,
 906                        .rates = SNDRV_PCM_RATE_CONTINUOUS,
 907                        .rate_min = 8000,
 908                        .rate_max = 384000,
 909                        .formats = ATMEL_SSC_FORMATS,},
 910                .capture = {
 911                        .channels_min = 1,
 912                        .channels_max = 2,
 913                        .rates = SNDRV_PCM_RATE_CONTINUOUS,
 914                        .rate_min = 8000,
 915                        .rate_max = 384000,
 916                        .formats = ATMEL_SSC_FORMATS,},
 917                .ops = &atmel_ssc_dai_ops,
 918};
 919
 920static const struct snd_soc_component_driver atmel_ssc_component = {
 921        .name           = "atmel-ssc",
 922};
 923
 924static int asoc_ssc_init(struct device *dev)
 925{
 926        struct platform_device *pdev = to_platform_device(dev);
 927        struct ssc_device *ssc = platform_get_drvdata(pdev);
 928        int ret;
 929
 930        ret = snd_soc_register_component(dev, &atmel_ssc_component,
 931                                         &atmel_ssc_dai, 1);
 932        if (ret) {
 933                dev_err(dev, "Could not register DAI: %d\n", ret);
 934                goto err;
 935        }
 936
 937        if (ssc->pdata->use_dma)
 938                ret = atmel_pcm_dma_platform_register(dev);
 939        else
 940                ret = atmel_pcm_pdc_platform_register(dev);
 941
 942        if (ret) {
 943                dev_err(dev, "Could not register PCM: %d\n", ret);
 944                goto err_unregister_dai;
 945        }
 946
 947        return 0;
 948
 949err_unregister_dai:
 950        snd_soc_unregister_component(dev);
 951err:
 952        return ret;
 953}
 954
 955static void asoc_ssc_exit(struct device *dev)
 956{
 957        struct platform_device *pdev = to_platform_device(dev);
 958        struct ssc_device *ssc = platform_get_drvdata(pdev);
 959
 960        if (ssc->pdata->use_dma)
 961                atmel_pcm_dma_platform_unregister(dev);
 962        else
 963                atmel_pcm_pdc_platform_unregister(dev);
 964
 965        snd_soc_unregister_component(dev);
 966}
 967
 968/**
 969 * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
 970 */
 971int atmel_ssc_set_audio(int ssc_id)
 972{
 973        struct ssc_device *ssc;
 974        int ret;
 975
 976        /* If we can grab the SSC briefly to parent the DAI device off it */
 977        ssc = ssc_request(ssc_id);
 978        if (IS_ERR(ssc)) {
 979                pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
 980                        PTR_ERR(ssc));
 981                return PTR_ERR(ssc);
 982        } else {
 983                ssc_info[ssc_id].ssc = ssc;
 984        }
 985
 986        ret = asoc_ssc_init(&ssc->pdev->dev);
 987
 988        return ret;
 989}
 990EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
 991
 992void atmel_ssc_put_audio(int ssc_id)
 993{
 994        struct ssc_device *ssc = ssc_info[ssc_id].ssc;
 995
 996        asoc_ssc_exit(&ssc->pdev->dev);
 997        ssc_free(ssc);
 998}
 999EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
1000
1001/* Module information */
1002MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
1003MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
1004MODULE_LICENSE("GPL");
1005