linux/arch/ia64/lib/copy_user.S
<<
>>
Prefs
   1/*
   2 *
   3 * Optimized version of the copy_user() routine.
   4 * It is used to copy date across the kernel/user boundary.
   5 *
   6 * The source and destination are always on opposite side of
   7 * the boundary. When reading from user space we must catch
   8 * faults on loads. When writing to user space we must catch
   9 * errors on stores. Note that because of the nature of the copy
  10 * we don't need to worry about overlapping regions.
  11 *
  12 *
  13 * Inputs:
  14 *      in0     address of source buffer
  15 *      in1     address of destination buffer
  16 *      in2     number of bytes to copy
  17 *
  18 * Outputs:
  19 *      ret0    0 in case of success. The number of bytes NOT copied in
  20 *              case of error.
  21 *
  22 * Copyright (C) 2000-2001 Hewlett-Packard Co
  23 *      Stephane Eranian <eranian@hpl.hp.com>
  24 *
  25 * Fixme:
  26 *      - handle the case where we have more than 16 bytes and the alignment
  27 *        are different.
  28 *      - more benchmarking
  29 *      - fix extraneous stop bit introduced by the EX() macro.
  30 */
  31
  32#include <asm/asmmacro.h>
  33
  34//
  35// Tuneable parameters
  36//
  37#define COPY_BREAK      16      // we do byte copy below (must be >=16)
  38#define PIPE_DEPTH      21      // pipe depth
  39
  40#define EPI             p[PIPE_DEPTH-1]
  41
  42//
  43// arguments
  44//
  45#define dst             in0
  46#define src             in1
  47#define len             in2
  48
  49//
  50// local registers
  51//
  52#define t1              r2      // rshift in bytes
  53#define t2              r3      // lshift in bytes
  54#define rshift          r14     // right shift in bits
  55#define lshift          r15     // left shift in bits
  56#define word1           r16
  57#define word2           r17
  58#define cnt             r18
  59#define len2            r19
  60#define saved_lc        r20
  61#define saved_pr        r21
  62#define tmp             r22
  63#define val             r23
  64#define src1            r24
  65#define dst1            r25
  66#define src2            r26
  67#define dst2            r27
  68#define len1            r28
  69#define enddst          r29
  70#define endsrc          r30
  71#define saved_pfs       r31
  72
  73GLOBAL_ENTRY(__copy_user)
  74        .prologue
  75        .save ar.pfs, saved_pfs
  76        alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)
  77
  78        .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
  79        .rotp p[PIPE_DEPTH]
  80
  81        adds len2=-1,len        // br.ctop is repeat/until
  82        mov ret0=r0
  83
  84        ;;                      // RAW of cfm when len=0
  85        cmp.eq p8,p0=r0,len     // check for zero length
  86        .save ar.lc, saved_lc
  87        mov saved_lc=ar.lc      // preserve ar.lc (slow)
  88(p8)    br.ret.spnt.many rp     // empty mempcy()
  89        ;;
  90        add enddst=dst,len      // first byte after end of source
  91        add endsrc=src,len      // first byte after end of destination
  92        .save pr, saved_pr
  93        mov saved_pr=pr         // preserve predicates
  94
  95        .body
  96
  97        mov dst1=dst            // copy because of rotation
  98        mov ar.ec=PIPE_DEPTH
  99        mov pr.rot=1<<16        // p16=true all others are false
 100
 101        mov src1=src            // copy because of rotation
 102        mov ar.lc=len2          // initialize lc for small count
 103        cmp.lt p10,p7=COPY_BREAK,len    // if len > COPY_BREAK then long copy
 104
 105        xor tmp=src,dst         // same alignment test prepare
 106(p10)   br.cond.dptk .long_copy_user
 107        ;;                      // RAW pr.rot/p16 ?
 108        //
 109        // Now we do the byte by byte loop with software pipeline
 110        //
 111        // p7 is necessarily false by now
 1121:
 113        EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
 114        EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
 115        br.ctop.dptk.few 1b
 116        ;;
 117        mov ar.lc=saved_lc
 118        mov pr=saved_pr,0xffffffffffff0000
 119        mov ar.pfs=saved_pfs            // restore ar.ec
 120        br.ret.sptk.many rp             // end of short memcpy
 121
 122        //
 123        // Not 8-byte aligned
 124        //
 125.diff_align_copy_user:
 126        // At this point we know we have more than 16 bytes to copy
 127        // and also that src and dest do _not_ have the same alignment.
 128        and src2=0x7,src1                               // src offset
 129        and dst2=0x7,dst1                               // dst offset
 130        ;;
 131        // The basic idea is that we copy byte-by-byte at the head so
 132        // that we can reach 8-byte alignment for both src1 and dst1.
 133        // Then copy the body using software pipelined 8-byte copy,
 134        // shifting the two back-to-back words right and left, then copy
 135        // the tail by copying byte-by-byte.
 136        //
 137        // Fault handling. If the byte-by-byte at the head fails on the
 138        // load, then restart and finish the pipleline by copying zeros
 139        // to the dst1. Then copy zeros for the rest of dst1.
 140        // If 8-byte software pipeline fails on the load, do the same as
 141        // failure_in3 does. If the byte-by-byte at the tail fails, it is
 142        // handled simply by failure_in_pipe1.
 143        //
 144        // The case p14 represents the source has more bytes in the
 145        // the first word (by the shifted part), whereas the p15 needs to
 146        // copy some bytes from the 2nd word of the source that has the
 147        // tail of the 1st of the destination.
 148        //
 149
 150        //
 151        // Optimization. If dst1 is 8-byte aligned (quite common), we don't need
 152        // to copy the head to dst1, to start 8-byte copy software pipeline.
 153        // We know src1 is not 8-byte aligned in this case.
 154        //
 155        cmp.eq p14,p15=r0,dst2
 156(p15)   br.cond.spnt 1f
 157        ;;
 158        sub t1=8,src2
 159        mov t2=src2
 160        ;;
 161        shl rshift=t2,3
 162        sub len1=len,t1                                 // set len1
 163        ;;
 164        sub lshift=64,rshift
 165        ;;
 166        br.cond.spnt .word_copy_user
 167        ;;
 1681:
 169        cmp.leu p14,p15=src2,dst2
 170        sub t1=dst2,src2
 171        ;;
 172        .pred.rel "mutex", p14, p15
 173(p14)   sub word1=8,src2                                // (8 - src offset)
 174(p15)   sub t1=r0,t1                                    // absolute value
 175(p15)   sub word1=8,dst2                                // (8 - dst offset)
 176        ;;
 177        // For the case p14, we don't need to copy the shifted part to
 178        // the 1st word of destination.
 179        sub t2=8,t1
 180(p14)   sub word1=word1,t1
 181        ;;
 182        sub len1=len,word1                              // resulting len
 183(p15)   shl rshift=t1,3                                 // in bits
 184(p14)   shl rshift=t2,3
 185        ;;
 186(p14)   sub len1=len1,t1
 187        adds cnt=-1,word1
 188        ;;
 189        sub lshift=64,rshift
 190        mov ar.ec=PIPE_DEPTH
 191        mov pr.rot=1<<16        // p16=true all others are false
 192        mov ar.lc=cnt
 193        ;;
 1942:
 195        EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1)
 196        EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
 197        br.ctop.dptk.few 2b
 198        ;;
 199        clrrrb
 200        ;;
 201.word_copy_user:
 202        cmp.gtu p9,p0=16,len1
 203(p9)    br.cond.spnt 4f                 // if (16 > len1) skip 8-byte copy
 204        ;;
 205        shr.u cnt=len1,3                // number of 64-bit words
 206        ;;
 207        adds cnt=-1,cnt
 208        ;;
 209        .pred.rel "mutex", p14, p15
 210(p14)   sub src1=src1,t2
 211(p15)   sub src1=src1,t1
 212        //
 213        // Now both src1 and dst1 point to an 8-byte aligned address. And
 214        // we have more than 8 bytes to copy.
 215        //
 216        mov ar.lc=cnt
 217        mov ar.ec=PIPE_DEPTH
 218        mov pr.rot=1<<16        // p16=true all others are false
 219        ;;
 2203:
 221        //
 222        // The pipleline consists of 3 stages:
 223        // 1 (p16):     Load a word from src1
 224        // 2 (EPI_1):   Shift right pair, saving to tmp
 225        // 3 (EPI):     Store tmp to dst1
 226        //
 227        // To make it simple, use at least 2 (p16) loops to set up val1[n]
 228        // because we need 2 back-to-back val1[] to get tmp.
 229        // Note that this implies EPI_2 must be p18 or greater.
 230        //
 231
 232#define EPI_1           p[PIPE_DEPTH-2]
 233#define SWITCH(pred, shift)     cmp.eq pred,p0=shift,rshift
 234#define CASE(pred, shift)       \
 235        (pred)  br.cond.spnt .copy_user_bit##shift
 236#define BODY(rshift)                                            \
 237.copy_user_bit##rshift:                                         \
 2381:                                                              \
 239        EX(.failure_out,(EPI) st8 [dst1]=tmp,8);                \
 240(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;  \
 241        EX(3f,(p16) ld8 val1[1]=[src1],8);                      \
 242(p16)   mov val1[0]=r0;                                         \
 243        br.ctop.dptk 1b;                                        \
 244        ;;                                                      \
 245        br.cond.sptk.many .diff_align_do_tail;                  \
 2462:                                                              \
 247(EPI)   st8 [dst1]=tmp,8;                                       \
 248(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;  \
 2493:                                                              \
 250(p16)   mov val1[1]=r0;                                         \
 251(p16)   mov val1[0]=r0;                                         \
 252        br.ctop.dptk 2b;                                        \
 253        ;;                                                      \
 254        br.cond.sptk.many .failure_in2
 255
 256        //
 257        // Since the instruction 'shrp' requires a fixed 128-bit value
 258        // specifying the bits to shift, we need to provide 7 cases
 259        // below.
 260        //
 261        SWITCH(p6, 8)
 262        SWITCH(p7, 16)
 263        SWITCH(p8, 24)
 264        SWITCH(p9, 32)
 265        SWITCH(p10, 40)
 266        SWITCH(p11, 48)
 267        SWITCH(p12, 56)
 268        ;;
 269        CASE(p6, 8)
 270        CASE(p7, 16)
 271        CASE(p8, 24)
 272        CASE(p9, 32)
 273        CASE(p10, 40)
 274        CASE(p11, 48)
 275        CASE(p12, 56)
 276        ;;
 277        BODY(8)
 278        BODY(16)
 279        BODY(24)
 280        BODY(32)
 281        BODY(40)
 282        BODY(48)
 283        BODY(56)
 284        ;;
 285.diff_align_do_tail:
 286        .pred.rel "mutex", p14, p15
 287(p14)   sub src1=src1,t1
 288(p14)   adds dst1=-8,dst1
 289(p15)   sub dst1=dst1,t1
 290        ;;
 2914:
 292        // Tail correction.
 293        //
 294        // The problem with this piplelined loop is that the last word is not
 295        // loaded and thus parf of the last word written is not correct.
 296        // To fix that, we simply copy the tail byte by byte.
 297
 298        sub len1=endsrc,src1,1
 299        clrrrb
 300        ;;
 301        mov ar.ec=PIPE_DEPTH
 302        mov pr.rot=1<<16        // p16=true all others are false
 303        mov ar.lc=len1
 304        ;;
 3055:
 306        EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
 307        EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
 308        br.ctop.dptk.few 5b
 309        ;;
 310        mov ar.lc=saved_lc
 311        mov pr=saved_pr,0xffffffffffff0000
 312        mov ar.pfs=saved_pfs
 313        br.ret.sptk.many rp
 314
 315        //
 316        // Beginning of long mempcy (i.e. > 16 bytes)
 317        //
 318.long_copy_user:
 319        tbit.nz p6,p7=src1,0    // odd alignment
 320        and tmp=7,tmp
 321        ;;
 322        cmp.eq p10,p8=r0,tmp
 323        mov len1=len            // copy because of rotation
 324(p8)    br.cond.dpnt .diff_align_copy_user
 325        ;;
 326        // At this point we know we have more than 16 bytes to copy
 327        // and also that both src and dest have the same alignment
 328        // which may not be the one we want. So for now we must move
 329        // forward slowly until we reach 16byte alignment: no need to
 330        // worry about reaching the end of buffer.
 331        //
 332        EX(.failure_in1,(p6) ld1 val1[0]=[src1],1)      // 1-byte aligned
 333(p6)    adds len1=-1,len1;;
 334        tbit.nz p7,p0=src1,1
 335        ;;
 336        EX(.failure_in1,(p7) ld2 val1[1]=[src1],2)      // 2-byte aligned
 337(p7)    adds len1=-2,len1;;
 338        tbit.nz p8,p0=src1,2
 339        ;;
 340        //
 341        // Stop bit not required after ld4 because if we fail on ld4
 342        // we have never executed the ld1, therefore st1 is not executed.
 343        //
 344        EX(.failure_in1,(p8) ld4 val2[0]=[src1],4)      // 4-byte aligned
 345        ;;
 346        EX(.failure_out,(p6) st1 [dst1]=val1[0],1)
 347        tbit.nz p9,p0=src1,3
 348        ;;
 349        //
 350        // Stop bit not required after ld8 because if we fail on ld8
 351        // we have never executed the ld2, therefore st2 is not executed.
 352        //
 353        EX(.failure_in1,(p9) ld8 val2[1]=[src1],8)      // 8-byte aligned
 354        EX(.failure_out,(p7) st2 [dst1]=val1[1],2)
 355(p8)    adds len1=-4,len1
 356        ;;
 357        EX(.failure_out, (p8) st4 [dst1]=val2[0],4)
 358(p9)    adds len1=-8,len1;;
 359        shr.u cnt=len1,4                // number of 128-bit (2x64bit) words
 360        ;;
 361        EX(.failure_out, (p9) st8 [dst1]=val2[1],8)
 362        tbit.nz p6,p0=len1,3
 363        cmp.eq p7,p0=r0,cnt
 364        adds tmp=-1,cnt                 // br.ctop is repeat/until
 365(p7)    br.cond.dpnt .dotail            // we have less than 16 bytes left
 366        ;;
 367        adds src2=8,src1
 368        adds dst2=8,dst1
 369        mov ar.lc=tmp
 370        ;;
 371        //
 372        // 16bytes/iteration
 373        //
 3742:
 375        EX(.failure_in3,(p16) ld8 val1[0]=[src1],16)
 376(p16)   ld8 val2[0]=[src2],16
 377
 378        EX(.failure_out, (EPI)  st8 [dst1]=val1[PIPE_DEPTH-1],16)
 379(EPI)   st8 [dst2]=val2[PIPE_DEPTH-1],16
 380        br.ctop.dptk 2b
 381        ;;                      // RAW on src1 when fall through from loop
 382        //
 383        // Tail correction based on len only
 384        //
 385        // No matter where we come from (loop or test) the src1 pointer
 386        // is 16 byte aligned AND we have less than 16 bytes to copy.
 387        //
 388.dotail:
 389        EX(.failure_in1,(p6) ld8 val1[0]=[src1],8)      // at least 8 bytes
 390        tbit.nz p7,p0=len1,2
 391        ;;
 392        EX(.failure_in1,(p7) ld4 val1[1]=[src1],4)      // at least 4 bytes
 393        tbit.nz p8,p0=len1,1
 394        ;;
 395        EX(.failure_in1,(p8) ld2 val2[0]=[src1],2)      // at least 2 bytes
 396        tbit.nz p9,p0=len1,0
 397        ;;
 398        EX(.failure_out, (p6) st8 [dst1]=val1[0],8)
 399        ;;
 400        EX(.failure_in1,(p9) ld1 val2[1]=[src1])        // only 1 byte left
 401        mov ar.lc=saved_lc
 402        ;;
 403        EX(.failure_out,(p7) st4 [dst1]=val1[1],4)
 404        mov pr=saved_pr,0xffffffffffff0000
 405        ;;
 406        EX(.failure_out, (p8)   st2 [dst1]=val2[0],2)
 407        mov ar.pfs=saved_pfs
 408        ;;
 409        EX(.failure_out, (p9)   st1 [dst1]=val2[1])
 410        br.ret.sptk.many rp
 411
 412
 413        //
 414        // Here we handle the case where the byte by byte copy fails
 415        // on the load.
 416        // Several factors make the zeroing of the rest of the buffer kind of
 417        // tricky:
 418        //      - the pipeline: loads/stores are not in sync (pipeline)
 419        //
 420        //        In the same loop iteration, the dst1 pointer does not directly
 421        //        reflect where the faulty load was.
 422        //
 423        //      - pipeline effect
 424        //        When you get a fault on load, you may have valid data from
 425        //        previous loads not yet store in transit. Such data must be
 426        //        store normally before moving onto zeroing the rest.
 427        //
 428        //      - single/multi dispersal independence.
 429        //
 430        // solution:
 431        //      - we don't disrupt the pipeline, i.e. data in transit in
 432        //        the software pipeline will be eventually move to memory.
 433        //        We simply replace the load with a simple mov and keep the
 434        //        pipeline going. We can't really do this inline because
 435        //        p16 is always reset to 1 when lc > 0.
 436        //
 437.failure_in_pipe1:
 438        sub ret0=endsrc,src1    // number of bytes to zero, i.e. not copied
 4391:
 440(p16)   mov val1[0]=r0
 441(EPI)   st1 [dst1]=val1[PIPE_DEPTH-1],1
 442        br.ctop.dptk 1b
 443        ;;
 444        mov pr=saved_pr,0xffffffffffff0000
 445        mov ar.lc=saved_lc
 446        mov ar.pfs=saved_pfs
 447        br.ret.sptk.many rp
 448
 449        //
 450        // This is the case where the byte by byte copy fails on the load
 451        // when we copy the head. We need to finish the pipeline and copy
 452        // zeros for the rest of the destination. Since this happens
 453        // at the top we still need to fill the body and tail.
 454.failure_in_pipe2:
 455        sub ret0=endsrc,src1    // number of bytes to zero, i.e. not copied
 4562:
 457(p16)   mov val1[0]=r0
 458(EPI)   st1 [dst1]=val1[PIPE_DEPTH-1],1
 459        br.ctop.dptk 2b
 460        ;;
 461        sub len=enddst,dst1,1           // precompute len
 462        br.cond.dptk.many .failure_in1bis
 463        ;;
 464
 465        //
 466        // Here we handle the head & tail part when we check for alignment.
 467        // The following code handles only the load failures. The
 468        // main diffculty comes from the fact that loads/stores are
 469        // scheduled. So when you fail on a load, the stores corresponding
 470        // to previous successful loads must be executed.
 471        //
 472        // However some simplifications are possible given the way
 473        // things work.
 474        //
 475        // 1) HEAD
 476        // Theory of operation:
 477        //
 478        //  Page A   | Page B
 479        //  ---------|-----
 480        //          1|8 x
 481        //        1 2|8 x
 482        //          4|8 x
 483        //        1 4|8 x
 484        //        2 4|8 x
 485        //      1 2 4|8 x
 486        //           |1
 487        //           |2 x
 488        //           |4 x
 489        //
 490        // page_size >= 4k (2^12).  (x means 4, 2, 1)
 491        // Here we suppose Page A exists and Page B does not.
 492        //
 493        // As we move towards eight byte alignment we may encounter faults.
 494        // The numbers on each page show the size of the load (current alignment).
 495        //
 496        // Key point:
 497        //      - if you fail on 1, 2, 4 then you have never executed any smaller
 498        //        size loads, e.g. failing ld4 means no ld1 nor ld2 executed
 499        //        before.
 500        //
 501        // This allows us to simplify the cleanup code, because basically you
 502        // only have to worry about "pending" stores in the case of a failing
 503        // ld8(). Given the way the code is written today, this means only
 504        // worry about st2, st4. There we can use the information encapsulated
 505        // into the predicates.
 506        //
 507        // Other key point:
 508        //      - if you fail on the ld8 in the head, it means you went straight
 509        //        to it, i.e. 8byte alignment within an unexisting page.
 510        // Again this comes from the fact that if you crossed just for the ld8 then
 511        // you are 8byte aligned but also 16byte align, therefore you would
 512        // either go for the 16byte copy loop OR the ld8 in the tail part.
 513        // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
 514        // because it would mean you had 15bytes to copy in which case you
 515        // would have defaulted to the byte by byte copy.
 516        //
 517        //
 518        // 2) TAIL
 519        // Here we now we have less than 16 bytes AND we are either 8 or 16 byte
 520        // aligned.
 521        //
 522        // Key point:
 523        // This means that we either:
 524        //              - are right on a page boundary
 525        //      OR
 526        //              - are at more than 16 bytes from a page boundary with
 527        //                at most 15 bytes to copy: no chance of crossing.
 528        //
 529        // This allows us to assume that if we fail on a load we haven't possibly
 530        // executed any of the previous (tail) ones, so we don't need to do
 531        // any stores. For instance, if we fail on ld2, this means we had
 532        // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
 533        //
 534        // This means that we are in a situation similar the a fault in the
 535        // head part. That's nice!
 536        //
 537.failure_in1:
 538        sub ret0=endsrc,src1    // number of bytes to zero, i.e. not copied
 539        sub len=endsrc,src1,1
 540        //
 541        // we know that ret0 can never be zero at this point
 542        // because we failed why trying to do a load, i.e. there is still
 543        // some work to do.
 544        // The failure_in1bis and length problem is taken care of at the
 545        // calling side.
 546        //
 547        ;;
 548.failure_in1bis:                // from (.failure_in3)
 549        mov ar.lc=len           // Continue with a stupid byte store.
 550        ;;
 5515:
 552        st1 [dst1]=r0,1
 553        br.cloop.dptk 5b
 554        ;;
 555        mov pr=saved_pr,0xffffffffffff0000
 556        mov ar.lc=saved_lc
 557        mov ar.pfs=saved_pfs
 558        br.ret.sptk.many rp
 559
 560        //
 561        // Here we simply restart the loop but instead
 562        // of doing loads we fill the pipeline with zeroes
 563        // We can't simply store r0 because we may have valid
 564        // data in transit in the pipeline.
 565        // ar.lc and ar.ec are setup correctly at this point
 566        //
 567        // we MUST use src1/endsrc here and not dst1/enddst because
 568        // of the pipeline effect.
 569        //
 570.failure_in3:
 571        sub ret0=endsrc,src1    // number of bytes to zero, i.e. not copied
 572        ;;
 5732:
 574(p16)   mov val1[0]=r0
 575(p16)   mov val2[0]=r0
 576(EPI)   st8 [dst1]=val1[PIPE_DEPTH-1],16
 577(EPI)   st8 [dst2]=val2[PIPE_DEPTH-1],16
 578        br.ctop.dptk 2b
 579        ;;
 580        cmp.ne p6,p0=dst1,enddst        // Do we need to finish the tail ?
 581        sub len=enddst,dst1,1           // precompute len
 582(p6)    br.cond.dptk .failure_in1bis
 583        ;;
 584        mov pr=saved_pr,0xffffffffffff0000
 585        mov ar.lc=saved_lc
 586        mov ar.pfs=saved_pfs
 587        br.ret.sptk.many rp
 588
 589.failure_in2:
 590        sub ret0=endsrc,src1
 591        cmp.ne p6,p0=dst1,enddst        // Do we need to finish the tail ?
 592        sub len=enddst,dst1,1           // precompute len
 593(p6)    br.cond.dptk .failure_in1bis
 594        ;;
 595        mov pr=saved_pr,0xffffffffffff0000
 596        mov ar.lc=saved_lc
 597        mov ar.pfs=saved_pfs
 598        br.ret.sptk.many rp
 599
 600        //
 601        // handling of failures on stores: that's the easy part
 602        //
 603.failure_out:
 604        sub ret0=enddst,dst1
 605        mov pr=saved_pr,0xffffffffffff0000
 606        mov ar.lc=saved_lc
 607
 608        mov ar.pfs=saved_pfs
 609        br.ret.sptk.many rp
 610END(__copy_user)
 611