linux/arch/mips/kernel/traps.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 * Copyright (C) 2014, Imagination Technologies Ltd.
  14 */
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/compiler.h>
  18#include <linux/context_tracking.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/kexec.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/mm.h>
  25#include <linux/sched.h>
  26#include <linux/smp.h>
  27#include <linux/spinlock.h>
  28#include <linux/kallsyms.h>
  29#include <linux/bootmem.h>
  30#include <linux/interrupt.h>
  31#include <linux/ptrace.h>
  32#include <linux/kgdb.h>
  33#include <linux/kdebug.h>
  34#include <linux/kprobes.h>
  35#include <linux/notifier.h>
  36#include <linux/kdb.h>
  37#include <linux/irq.h>
  38#include <linux/perf_event.h>
  39
  40#include <asm/addrspace.h>
  41#include <asm/bootinfo.h>
  42#include <asm/branch.h>
  43#include <asm/break.h>
  44#include <asm/cop2.h>
  45#include <asm/cpu.h>
  46#include <asm/cpu-type.h>
  47#include <asm/dsp.h>
  48#include <asm/fpu.h>
  49#include <asm/fpu_emulator.h>
  50#include <asm/idle.h>
  51#include <asm/mips-r2-to-r6-emul.h>
  52#include <asm/mipsregs.h>
  53#include <asm/mipsmtregs.h>
  54#include <asm/module.h>
  55#include <asm/msa.h>
  56#include <asm/pgtable.h>
  57#include <asm/ptrace.h>
  58#include <asm/sections.h>
  59#include <asm/tlbdebug.h>
  60#include <asm/traps.h>
  61#include <asm/uaccess.h>
  62#include <asm/watch.h>
  63#include <asm/mmu_context.h>
  64#include <asm/types.h>
  65#include <asm/stacktrace.h>
  66#include <asm/uasm.h>
  67
  68extern void check_wait(void);
  69extern asmlinkage void rollback_handle_int(void);
  70extern asmlinkage void handle_int(void);
  71extern u32 handle_tlbl[];
  72extern u32 handle_tlbs[];
  73extern u32 handle_tlbm[];
  74extern asmlinkage void handle_adel(void);
  75extern asmlinkage void handle_ades(void);
  76extern asmlinkage void handle_ibe(void);
  77extern asmlinkage void handle_dbe(void);
  78extern asmlinkage void handle_sys(void);
  79extern asmlinkage void handle_bp(void);
  80extern asmlinkage void handle_ri(void);
  81extern asmlinkage void handle_ri_rdhwr_vivt(void);
  82extern asmlinkage void handle_ri_rdhwr(void);
  83extern asmlinkage void handle_cpu(void);
  84extern asmlinkage void handle_ov(void);
  85extern asmlinkage void handle_tr(void);
  86extern asmlinkage void handle_msa_fpe(void);
  87extern asmlinkage void handle_fpe(void);
  88extern asmlinkage void handle_ftlb(void);
  89extern asmlinkage void handle_msa(void);
  90extern asmlinkage void handle_mdmx(void);
  91extern asmlinkage void handle_watch(void);
  92extern asmlinkage void handle_mt(void);
  93extern asmlinkage void handle_dsp(void);
  94extern asmlinkage void handle_mcheck(void);
  95extern asmlinkage void handle_reserved(void);
  96extern void tlb_do_page_fault_0(void);
  97
  98void (*board_be_init)(void);
  99int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 100void (*board_nmi_handler_setup)(void);
 101void (*board_ejtag_handler_setup)(void);
 102void (*board_bind_eic_interrupt)(int irq, int regset);
 103void (*board_ebase_setup)(void);
 104void(*board_cache_error_setup)(void);
 105
 106static void show_raw_backtrace(unsigned long reg29)
 107{
 108        unsigned long *sp = (unsigned long *)(reg29 & ~3);
 109        unsigned long addr;
 110
 111        printk("Call Trace:");
 112#ifdef CONFIG_KALLSYMS
 113        printk("\n");
 114#endif
 115        while (!kstack_end(sp)) {
 116                unsigned long __user *p =
 117                        (unsigned long __user *)(unsigned long)sp++;
 118                if (__get_user(addr, p)) {
 119                        printk(" (Bad stack address)");
 120                        break;
 121                }
 122                if (__kernel_text_address(addr))
 123                        print_ip_sym(addr);
 124        }
 125        printk("\n");
 126}
 127
 128#ifdef CONFIG_KALLSYMS
 129int raw_show_trace;
 130static int __init set_raw_show_trace(char *str)
 131{
 132        raw_show_trace = 1;
 133        return 1;
 134}
 135__setup("raw_show_trace", set_raw_show_trace);
 136#endif
 137
 138static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 139{
 140        unsigned long sp = regs->regs[29];
 141        unsigned long ra = regs->regs[31];
 142        unsigned long pc = regs->cp0_epc;
 143
 144        if (!task)
 145                task = current;
 146
 147        if (raw_show_trace || !__kernel_text_address(pc)) {
 148                show_raw_backtrace(sp);
 149                return;
 150        }
 151        printk("Call Trace:\n");
 152        do {
 153                print_ip_sym(pc);
 154                pc = unwind_stack(task, &sp, pc, &ra);
 155        } while (pc);
 156        printk("\n");
 157}
 158
 159/*
 160 * This routine abuses get_user()/put_user() to reference pointers
 161 * with at least a bit of error checking ...
 162 */
 163static void show_stacktrace(struct task_struct *task,
 164        const struct pt_regs *regs)
 165{
 166        const int field = 2 * sizeof(unsigned long);
 167        long stackdata;
 168        int i;
 169        unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 170
 171        printk("Stack :");
 172        i = 0;
 173        while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 174                if (i && ((i % (64 / field)) == 0))
 175                        printk("\n       ");
 176                if (i > 39) {
 177                        printk(" ...");
 178                        break;
 179                }
 180
 181                if (__get_user(stackdata, sp++)) {
 182                        printk(" (Bad stack address)");
 183                        break;
 184                }
 185
 186                printk(" %0*lx", field, stackdata);
 187                i++;
 188        }
 189        printk("\n");
 190        show_backtrace(task, regs);
 191}
 192
 193void show_stack(struct task_struct *task, unsigned long *sp)
 194{
 195        struct pt_regs regs;
 196        mm_segment_t old_fs = get_fs();
 197        if (sp) {
 198                regs.regs[29] = (unsigned long)sp;
 199                regs.regs[31] = 0;
 200                regs.cp0_epc = 0;
 201        } else {
 202                if (task && task != current) {
 203                        regs.regs[29] = task->thread.reg29;
 204                        regs.regs[31] = 0;
 205                        regs.cp0_epc = task->thread.reg31;
 206#ifdef CONFIG_KGDB_KDB
 207                } else if (atomic_read(&kgdb_active) != -1 &&
 208                           kdb_current_regs) {
 209                        memcpy(&regs, kdb_current_regs, sizeof(regs));
 210#endif /* CONFIG_KGDB_KDB */
 211                } else {
 212                        prepare_frametrace(&regs);
 213                }
 214        }
 215        /*
 216         * show_stack() deals exclusively with kernel mode, so be sure to access
 217         * the stack in the kernel (not user) address space.
 218         */
 219        set_fs(KERNEL_DS);
 220        show_stacktrace(task, &regs);
 221        set_fs(old_fs);
 222}
 223
 224static void show_code(unsigned int __user *pc)
 225{
 226        long i;
 227        unsigned short __user *pc16 = NULL;
 228
 229        printk("\nCode:");
 230
 231        if ((unsigned long)pc & 1)
 232                pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 233        for(i = -3 ; i < 6 ; i++) {
 234                unsigned int insn;
 235                if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 236                        printk(" (Bad address in epc)\n");
 237                        break;
 238                }
 239                printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 240        }
 241}
 242
 243static void __show_regs(const struct pt_regs *regs)
 244{
 245        const int field = 2 * sizeof(unsigned long);
 246        unsigned int cause = regs->cp0_cause;
 247        unsigned int exccode;
 248        int i;
 249
 250        show_regs_print_info(KERN_DEFAULT);
 251
 252        /*
 253         * Saved main processor registers
 254         */
 255        for (i = 0; i < 32; ) {
 256                if ((i % 4) == 0)
 257                        printk("$%2d   :", i);
 258                if (i == 0)
 259                        printk(" %0*lx", field, 0UL);
 260                else if (i == 26 || i == 27)
 261                        printk(" %*s", field, "");
 262                else
 263                        printk(" %0*lx", field, regs->regs[i]);
 264
 265                i++;
 266                if ((i % 4) == 0)
 267                        printk("\n");
 268        }
 269
 270#ifdef CONFIG_CPU_HAS_SMARTMIPS
 271        printk("Acx    : %0*lx\n", field, regs->acx);
 272#endif
 273        printk("Hi    : %0*lx\n", field, regs->hi);
 274        printk("Lo    : %0*lx\n", field, regs->lo);
 275
 276        /*
 277         * Saved cp0 registers
 278         */
 279        printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 280               (void *) regs->cp0_epc);
 281        printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 282               (void *) regs->regs[31]);
 283
 284        printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 285
 286        if (cpu_has_3kex) {
 287                if (regs->cp0_status & ST0_KUO)
 288                        printk("KUo ");
 289                if (regs->cp0_status & ST0_IEO)
 290                        printk("IEo ");
 291                if (regs->cp0_status & ST0_KUP)
 292                        printk("KUp ");
 293                if (regs->cp0_status & ST0_IEP)
 294                        printk("IEp ");
 295                if (regs->cp0_status & ST0_KUC)
 296                        printk("KUc ");
 297                if (regs->cp0_status & ST0_IEC)
 298                        printk("IEc ");
 299        } else if (cpu_has_4kex) {
 300                if (regs->cp0_status & ST0_KX)
 301                        printk("KX ");
 302                if (regs->cp0_status & ST0_SX)
 303                        printk("SX ");
 304                if (regs->cp0_status & ST0_UX)
 305                        printk("UX ");
 306                switch (regs->cp0_status & ST0_KSU) {
 307                case KSU_USER:
 308                        printk("USER ");
 309                        break;
 310                case KSU_SUPERVISOR:
 311                        printk("SUPERVISOR ");
 312                        break;
 313                case KSU_KERNEL:
 314                        printk("KERNEL ");
 315                        break;
 316                default:
 317                        printk("BAD_MODE ");
 318                        break;
 319                }
 320                if (regs->cp0_status & ST0_ERL)
 321                        printk("ERL ");
 322                if (regs->cp0_status & ST0_EXL)
 323                        printk("EXL ");
 324                if (regs->cp0_status & ST0_IE)
 325                        printk("IE ");
 326        }
 327        printk("\n");
 328
 329        exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 330        printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
 331
 332        if (1 <= exccode && exccode <= 5)
 333                printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 334
 335        printk("PrId  : %08x (%s)\n", read_c0_prid(),
 336               cpu_name_string());
 337}
 338
 339/*
 340 * FIXME: really the generic show_regs should take a const pointer argument.
 341 */
 342void show_regs(struct pt_regs *regs)
 343{
 344        __show_regs((struct pt_regs *)regs);
 345}
 346
 347void show_registers(struct pt_regs *regs)
 348{
 349        const int field = 2 * sizeof(unsigned long);
 350        mm_segment_t old_fs = get_fs();
 351
 352        __show_regs(regs);
 353        print_modules();
 354        printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 355               current->comm, current->pid, current_thread_info(), current,
 356              field, current_thread_info()->tp_value);
 357        if (cpu_has_userlocal) {
 358                unsigned long tls;
 359
 360                tls = read_c0_userlocal();
 361                if (tls != current_thread_info()->tp_value)
 362                        printk("*HwTLS: %0*lx\n", field, tls);
 363        }
 364
 365        if (!user_mode(regs))
 366                /* Necessary for getting the correct stack content */
 367                set_fs(KERNEL_DS);
 368        show_stacktrace(current, regs);
 369        show_code((unsigned int __user *) regs->cp0_epc);
 370        printk("\n");
 371        set_fs(old_fs);
 372}
 373
 374static DEFINE_RAW_SPINLOCK(die_lock);
 375
 376void __noreturn die(const char *str, struct pt_regs *regs)
 377{
 378        static int die_counter;
 379        int sig = SIGSEGV;
 380
 381        oops_enter();
 382
 383        if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
 384                       SIGSEGV) == NOTIFY_STOP)
 385                sig = 0;
 386
 387        console_verbose();
 388        raw_spin_lock_irq(&die_lock);
 389        bust_spinlocks(1);
 390
 391        printk("%s[#%d]:\n", str, ++die_counter);
 392        show_registers(regs);
 393        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 394        raw_spin_unlock_irq(&die_lock);
 395
 396        oops_exit();
 397
 398        if (in_interrupt())
 399                panic("Fatal exception in interrupt");
 400
 401        if (panic_on_oops) {
 402                printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
 403                ssleep(5);
 404                panic("Fatal exception");
 405        }
 406
 407        if (regs && kexec_should_crash(current))
 408                crash_kexec(regs);
 409
 410        do_exit(sig);
 411}
 412
 413extern struct exception_table_entry __start___dbe_table[];
 414extern struct exception_table_entry __stop___dbe_table[];
 415
 416__asm__(
 417"       .section        __dbe_table, \"a\"\n"
 418"       .previous                       \n");
 419
 420/* Given an address, look for it in the exception tables. */
 421static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 422{
 423        const struct exception_table_entry *e;
 424
 425        e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 426        if (!e)
 427                e = search_module_dbetables(addr);
 428        return e;
 429}
 430
 431asmlinkage void do_be(struct pt_regs *regs)
 432{
 433        const int field = 2 * sizeof(unsigned long);
 434        const struct exception_table_entry *fixup = NULL;
 435        int data = regs->cp0_cause & 4;
 436        int action = MIPS_BE_FATAL;
 437        enum ctx_state prev_state;
 438
 439        prev_state = exception_enter();
 440        /* XXX For now.  Fixme, this searches the wrong table ...  */
 441        if (data && !user_mode(regs))
 442                fixup = search_dbe_tables(exception_epc(regs));
 443
 444        if (fixup)
 445                action = MIPS_BE_FIXUP;
 446
 447        if (board_be_handler)
 448                action = board_be_handler(regs, fixup != NULL);
 449
 450        switch (action) {
 451        case MIPS_BE_DISCARD:
 452                goto out;
 453        case MIPS_BE_FIXUP:
 454                if (fixup) {
 455                        regs->cp0_epc = fixup->nextinsn;
 456                        goto out;
 457                }
 458                break;
 459        default:
 460                break;
 461        }
 462
 463        /*
 464         * Assume it would be too dangerous to continue ...
 465         */
 466        printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 467               data ? "Data" : "Instruction",
 468               field, regs->cp0_epc, field, regs->regs[31]);
 469        if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
 470                       SIGBUS) == NOTIFY_STOP)
 471                goto out;
 472
 473        die_if_kernel("Oops", regs);
 474        force_sig(SIGBUS, current);
 475
 476out:
 477        exception_exit(prev_state);
 478}
 479
 480/*
 481 * ll/sc, rdhwr, sync emulation
 482 */
 483
 484#define OPCODE 0xfc000000
 485#define BASE   0x03e00000
 486#define RT     0x001f0000
 487#define OFFSET 0x0000ffff
 488#define LL     0xc0000000
 489#define SC     0xe0000000
 490#define SPEC0  0x00000000
 491#define SPEC3  0x7c000000
 492#define RD     0x0000f800
 493#define FUNC   0x0000003f
 494#define SYNC   0x0000000f
 495#define RDHWR  0x0000003b
 496
 497/*  microMIPS definitions   */
 498#define MM_POOL32A_FUNC 0xfc00ffff
 499#define MM_RDHWR        0x00006b3c
 500#define MM_RS           0x001f0000
 501#define MM_RT           0x03e00000
 502
 503/*
 504 * The ll_bit is cleared by r*_switch.S
 505 */
 506
 507unsigned int ll_bit;
 508struct task_struct *ll_task;
 509
 510static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 511{
 512        unsigned long value, __user *vaddr;
 513        long offset;
 514
 515        /*
 516         * analyse the ll instruction that just caused a ri exception
 517         * and put the referenced address to addr.
 518         */
 519
 520        /* sign extend offset */
 521        offset = opcode & OFFSET;
 522        offset <<= 16;
 523        offset >>= 16;
 524
 525        vaddr = (unsigned long __user *)
 526                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 527
 528        if ((unsigned long)vaddr & 3)
 529                return SIGBUS;
 530        if (get_user(value, vaddr))
 531                return SIGSEGV;
 532
 533        preempt_disable();
 534
 535        if (ll_task == NULL || ll_task == current) {
 536                ll_bit = 1;
 537        } else {
 538                ll_bit = 0;
 539        }
 540        ll_task = current;
 541
 542        preempt_enable();
 543
 544        regs->regs[(opcode & RT) >> 16] = value;
 545
 546        return 0;
 547}
 548
 549static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 550{
 551        unsigned long __user *vaddr;
 552        unsigned long reg;
 553        long offset;
 554
 555        /*
 556         * analyse the sc instruction that just caused a ri exception
 557         * and put the referenced address to addr.
 558         */
 559
 560        /* sign extend offset */
 561        offset = opcode & OFFSET;
 562        offset <<= 16;
 563        offset >>= 16;
 564
 565        vaddr = (unsigned long __user *)
 566                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 567        reg = (opcode & RT) >> 16;
 568
 569        if ((unsigned long)vaddr & 3)
 570                return SIGBUS;
 571
 572        preempt_disable();
 573
 574        if (ll_bit == 0 || ll_task != current) {
 575                regs->regs[reg] = 0;
 576                preempt_enable();
 577                return 0;
 578        }
 579
 580        preempt_enable();
 581
 582        if (put_user(regs->regs[reg], vaddr))
 583                return SIGSEGV;
 584
 585        regs->regs[reg] = 1;
 586
 587        return 0;
 588}
 589
 590/*
 591 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 592 * opcodes are supposed to result in coprocessor unusable exceptions if
 593 * executed on ll/sc-less processors.  That's the theory.  In practice a
 594 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 595 * instead, so we're doing the emulation thing in both exception handlers.
 596 */
 597static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 598{
 599        if ((opcode & OPCODE) == LL) {
 600                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 601                                1, regs, 0);
 602                return simulate_ll(regs, opcode);
 603        }
 604        if ((opcode & OPCODE) == SC) {
 605                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 606                                1, regs, 0);
 607                return simulate_sc(regs, opcode);
 608        }
 609
 610        return -1;                      /* Must be something else ... */
 611}
 612
 613/*
 614 * Simulate trapping 'rdhwr' instructions to provide user accessible
 615 * registers not implemented in hardware.
 616 */
 617static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 618{
 619        struct thread_info *ti = task_thread_info(current);
 620
 621        perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 622                        1, regs, 0);
 623        switch (rd) {
 624        case 0:         /* CPU number */
 625                regs->regs[rt] = smp_processor_id();
 626                return 0;
 627        case 1:         /* SYNCI length */
 628                regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 629                                     current_cpu_data.icache.linesz);
 630                return 0;
 631        case 2:         /* Read count register */
 632                regs->regs[rt] = read_c0_count();
 633                return 0;
 634        case 3:         /* Count register resolution */
 635                switch (current_cpu_type()) {
 636                case CPU_20KC:
 637                case CPU_25KF:
 638                        regs->regs[rt] = 1;
 639                        break;
 640                default:
 641                        regs->regs[rt] = 2;
 642                }
 643                return 0;
 644        case 29:
 645                regs->regs[rt] = ti->tp_value;
 646                return 0;
 647        default:
 648                return -1;
 649        }
 650}
 651
 652static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 653{
 654        if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 655                int rd = (opcode & RD) >> 11;
 656                int rt = (opcode & RT) >> 16;
 657
 658                simulate_rdhwr(regs, rd, rt);
 659                return 0;
 660        }
 661
 662        /* Not ours.  */
 663        return -1;
 664}
 665
 666static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
 667{
 668        if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 669                int rd = (opcode & MM_RS) >> 16;
 670                int rt = (opcode & MM_RT) >> 21;
 671                simulate_rdhwr(regs, rd, rt);
 672                return 0;
 673        }
 674
 675        /* Not ours.  */
 676        return -1;
 677}
 678
 679static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 680{
 681        if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 682                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 683                                1, regs, 0);
 684                return 0;
 685        }
 686
 687        return -1;                      /* Must be something else ... */
 688}
 689
 690asmlinkage void do_ov(struct pt_regs *regs)
 691{
 692        enum ctx_state prev_state;
 693        siginfo_t info = {
 694                .si_signo = SIGFPE,
 695                .si_code = FPE_INTOVF,
 696                .si_addr = (void __user *)regs->cp0_epc,
 697        };
 698
 699        prev_state = exception_enter();
 700        die_if_kernel("Integer overflow", regs);
 701
 702        force_sig_info(SIGFPE, &info, current);
 703        exception_exit(prev_state);
 704}
 705
 706int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
 707{
 708        struct siginfo si = { 0 };
 709
 710        switch (sig) {
 711        case 0:
 712                return 0;
 713
 714        case SIGFPE:
 715                si.si_addr = fault_addr;
 716                si.si_signo = sig;
 717                /*
 718                 * Inexact can happen together with Overflow or Underflow.
 719                 * Respect the mask to deliver the correct exception.
 720                 */
 721                fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
 722                         (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
 723                if (fcr31 & FPU_CSR_INV_X)
 724                        si.si_code = FPE_FLTINV;
 725                else if (fcr31 & FPU_CSR_DIV_X)
 726                        si.si_code = FPE_FLTDIV;
 727                else if (fcr31 & FPU_CSR_OVF_X)
 728                        si.si_code = FPE_FLTOVF;
 729                else if (fcr31 & FPU_CSR_UDF_X)
 730                        si.si_code = FPE_FLTUND;
 731                else if (fcr31 & FPU_CSR_INE_X)
 732                        si.si_code = FPE_FLTRES;
 733                else
 734                        si.si_code = __SI_FAULT;
 735                force_sig_info(sig, &si, current);
 736                return 1;
 737
 738        case SIGBUS:
 739                si.si_addr = fault_addr;
 740                si.si_signo = sig;
 741                si.si_code = BUS_ADRERR;
 742                force_sig_info(sig, &si, current);
 743                return 1;
 744
 745        case SIGSEGV:
 746                si.si_addr = fault_addr;
 747                si.si_signo = sig;
 748                down_read(&current->mm->mmap_sem);
 749                if (find_vma(current->mm, (unsigned long)fault_addr))
 750                        si.si_code = SEGV_ACCERR;
 751                else
 752                        si.si_code = SEGV_MAPERR;
 753                up_read(&current->mm->mmap_sem);
 754                force_sig_info(sig, &si, current);
 755                return 1;
 756
 757        default:
 758                force_sig(sig, current);
 759                return 1;
 760        }
 761}
 762
 763static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 764                       unsigned long old_epc, unsigned long old_ra)
 765{
 766        union mips_instruction inst = { .word = opcode };
 767        void __user *fault_addr;
 768        unsigned long fcr31;
 769        int sig;
 770
 771        /* If it's obviously not an FP instruction, skip it */
 772        switch (inst.i_format.opcode) {
 773        case cop1_op:
 774        case cop1x_op:
 775        case lwc1_op:
 776        case ldc1_op:
 777        case swc1_op:
 778        case sdc1_op:
 779                break;
 780
 781        default:
 782                return -1;
 783        }
 784
 785        /*
 786         * do_ri skipped over the instruction via compute_return_epc, undo
 787         * that for the FPU emulator.
 788         */
 789        regs->cp0_epc = old_epc;
 790        regs->regs[31] = old_ra;
 791
 792        /* Save the FP context to struct thread_struct */
 793        lose_fpu(1);
 794
 795        /* Run the emulator */
 796        sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 797                                       &fault_addr);
 798        fcr31 = current->thread.fpu.fcr31;
 799
 800        /*
 801         * We can't allow the emulated instruction to leave any of
 802         * the cause bits set in $fcr31.
 803         */
 804        current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 805
 806        /* Restore the hardware register state */
 807        own_fpu(1);
 808
 809        /* Send a signal if required.  */
 810        process_fpemu_return(sig, fault_addr, fcr31);
 811
 812        return 0;
 813}
 814
 815/*
 816 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 817 */
 818asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 819{
 820        enum ctx_state prev_state;
 821        void __user *fault_addr;
 822        int sig;
 823
 824        prev_state = exception_enter();
 825        if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
 826                       SIGFPE) == NOTIFY_STOP)
 827                goto out;
 828
 829        /* Clear FCSR.Cause before enabling interrupts */
 830        write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
 831        local_irq_enable();
 832
 833        die_if_kernel("FP exception in kernel code", regs);
 834
 835        if (fcr31 & FPU_CSR_UNI_X) {
 836                /*
 837                 * Unimplemented operation exception.  If we've got the full
 838                 * software emulator on-board, let's use it...
 839                 *
 840                 * Force FPU to dump state into task/thread context.  We're
 841                 * moving a lot of data here for what is probably a single
 842                 * instruction, but the alternative is to pre-decode the FP
 843                 * register operands before invoking the emulator, which seems
 844                 * a bit extreme for what should be an infrequent event.
 845                 */
 846                /* Ensure 'resume' not overwrite saved fp context again. */
 847                lose_fpu(1);
 848
 849                /* Run the emulator */
 850                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 851                                               &fault_addr);
 852                fcr31 = current->thread.fpu.fcr31;
 853
 854                /*
 855                 * We can't allow the emulated instruction to leave any of
 856                 * the cause bits set in $fcr31.
 857                 */
 858                current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 859
 860                /* Restore the hardware register state */
 861                own_fpu(1);     /* Using the FPU again.  */
 862        } else {
 863                sig = SIGFPE;
 864                fault_addr = (void __user *) regs->cp0_epc;
 865        }
 866
 867        /* Send a signal if required.  */
 868        process_fpemu_return(sig, fault_addr, fcr31);
 869
 870out:
 871        exception_exit(prev_state);
 872}
 873
 874void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 875        const char *str)
 876{
 877        siginfo_t info = { 0 };
 878        char b[40];
 879
 880#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 881        if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 882                         SIGTRAP) == NOTIFY_STOP)
 883                return;
 884#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 885
 886        if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 887                       SIGTRAP) == NOTIFY_STOP)
 888                return;
 889
 890        /*
 891         * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 892         * insns, even for trap and break codes that indicate arithmetic
 893         * failures.  Weird ...
 894         * But should we continue the brokenness???  --macro
 895         */
 896        switch (code) {
 897        case BRK_OVERFLOW:
 898        case BRK_DIVZERO:
 899                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 900                die_if_kernel(b, regs);
 901                if (code == BRK_DIVZERO)
 902                        info.si_code = FPE_INTDIV;
 903                else
 904                        info.si_code = FPE_INTOVF;
 905                info.si_signo = SIGFPE;
 906                info.si_addr = (void __user *) regs->cp0_epc;
 907                force_sig_info(SIGFPE, &info, current);
 908                break;
 909        case BRK_BUG:
 910                die_if_kernel("Kernel bug detected", regs);
 911                force_sig(SIGTRAP, current);
 912                break;
 913        case BRK_MEMU:
 914                /*
 915                 * This breakpoint code is used by the FPU emulator to retake
 916                 * control of the CPU after executing the instruction from the
 917                 * delay slot of an emulated branch.
 918                 *
 919                 * Terminate if exception was recognized as a delay slot return
 920                 * otherwise handle as normal.
 921                 */
 922                if (do_dsemulret(regs))
 923                        return;
 924
 925                die_if_kernel("Math emu break/trap", regs);
 926                force_sig(SIGTRAP, current);
 927                break;
 928        default:
 929                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 930                die_if_kernel(b, regs);
 931                force_sig(SIGTRAP, current);
 932        }
 933}
 934
 935asmlinkage void do_bp(struct pt_regs *regs)
 936{
 937        unsigned long epc = msk_isa16_mode(exception_epc(regs));
 938        unsigned int opcode, bcode;
 939        enum ctx_state prev_state;
 940        mm_segment_t seg;
 941
 942        seg = get_fs();
 943        if (!user_mode(regs))
 944                set_fs(KERNEL_DS);
 945
 946        prev_state = exception_enter();
 947        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
 948        if (get_isa16_mode(regs->cp0_epc)) {
 949                u16 instr[2];
 950
 951                if (__get_user(instr[0], (u16 __user *)epc))
 952                        goto out_sigsegv;
 953
 954                if (!cpu_has_mmips) {
 955                        /* MIPS16e mode */
 956                        bcode = (instr[0] >> 5) & 0x3f;
 957                } else if (mm_insn_16bit(instr[0])) {
 958                        /* 16-bit microMIPS BREAK */
 959                        bcode = instr[0] & 0xf;
 960                } else {
 961                        /* 32-bit microMIPS BREAK */
 962                        if (__get_user(instr[1], (u16 __user *)(epc + 2)))
 963                                goto out_sigsegv;
 964                        opcode = (instr[0] << 16) | instr[1];
 965                        bcode = (opcode >> 6) & ((1 << 20) - 1);
 966                }
 967        } else {
 968                if (__get_user(opcode, (unsigned int __user *)epc))
 969                        goto out_sigsegv;
 970                bcode = (opcode >> 6) & ((1 << 20) - 1);
 971        }
 972
 973        /*
 974         * There is the ancient bug in the MIPS assemblers that the break
 975         * code starts left to bit 16 instead to bit 6 in the opcode.
 976         * Gas is bug-compatible, but not always, grrr...
 977         * We handle both cases with a simple heuristics.  --macro
 978         */
 979        if (bcode >= (1 << 10))
 980                bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
 981
 982        /*
 983         * notify the kprobe handlers, if instruction is likely to
 984         * pertain to them.
 985         */
 986        switch (bcode) {
 987        case BRK_UPROBE:
 988                if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
 989                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
 990                        goto out;
 991                else
 992                        break;
 993        case BRK_UPROBE_XOL:
 994                if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
 995                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
 996                        goto out;
 997                else
 998                        break;
 999        case BRK_KPROBE_BP:
1000                if (notify_die(DIE_BREAK, "debug", regs, bcode,
1001                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1002                        goto out;
1003                else
1004                        break;
1005        case BRK_KPROBE_SSTEPBP:
1006                if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1007                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1008                        goto out;
1009                else
1010                        break;
1011        default:
1012                break;
1013        }
1014
1015        do_trap_or_bp(regs, bcode, "Break");
1016
1017out:
1018        set_fs(seg);
1019        exception_exit(prev_state);
1020        return;
1021
1022out_sigsegv:
1023        force_sig(SIGSEGV, current);
1024        goto out;
1025}
1026
1027asmlinkage void do_tr(struct pt_regs *regs)
1028{
1029        u32 opcode, tcode = 0;
1030        enum ctx_state prev_state;
1031        u16 instr[2];
1032        mm_segment_t seg;
1033        unsigned long epc = msk_isa16_mode(exception_epc(regs));
1034
1035        seg = get_fs();
1036        if (!user_mode(regs))
1037                set_fs(get_ds());
1038
1039        prev_state = exception_enter();
1040        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1041        if (get_isa16_mode(regs->cp0_epc)) {
1042                if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1043                    __get_user(instr[1], (u16 __user *)(epc + 2)))
1044                        goto out_sigsegv;
1045                opcode = (instr[0] << 16) | instr[1];
1046                /* Immediate versions don't provide a code.  */
1047                if (!(opcode & OPCODE))
1048                        tcode = (opcode >> 12) & ((1 << 4) - 1);
1049        } else {
1050                if (__get_user(opcode, (u32 __user *)epc))
1051                        goto out_sigsegv;
1052                /* Immediate versions don't provide a code.  */
1053                if (!(opcode & OPCODE))
1054                        tcode = (opcode >> 6) & ((1 << 10) - 1);
1055        }
1056
1057        do_trap_or_bp(regs, tcode, "Trap");
1058
1059out:
1060        set_fs(seg);
1061        exception_exit(prev_state);
1062        return;
1063
1064out_sigsegv:
1065        force_sig(SIGSEGV, current);
1066        goto out;
1067}
1068
1069asmlinkage void do_ri(struct pt_regs *regs)
1070{
1071        unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1072        unsigned long old_epc = regs->cp0_epc;
1073        unsigned long old31 = regs->regs[31];
1074        enum ctx_state prev_state;
1075        unsigned int opcode = 0;
1076        int status = -1;
1077
1078        /*
1079         * Avoid any kernel code. Just emulate the R2 instruction
1080         * as quickly as possible.
1081         */
1082        if (mipsr2_emulation && cpu_has_mips_r6 &&
1083            likely(user_mode(regs)) &&
1084            likely(get_user(opcode, epc) >= 0)) {
1085                unsigned long fcr31 = 0;
1086
1087                status = mipsr2_decoder(regs, opcode, &fcr31);
1088                switch (status) {
1089                case 0:
1090                case SIGEMT:
1091                        task_thread_info(current)->r2_emul_return = 1;
1092                        return;
1093                case SIGILL:
1094                        goto no_r2_instr;
1095                default:
1096                        process_fpemu_return(status,
1097                                             &current->thread.cp0_baduaddr,
1098                                             fcr31);
1099                        task_thread_info(current)->r2_emul_return = 1;
1100                        return;
1101                }
1102        }
1103
1104no_r2_instr:
1105
1106        prev_state = exception_enter();
1107        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1108
1109        if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1110                       SIGILL) == NOTIFY_STOP)
1111                goto out;
1112
1113        die_if_kernel("Reserved instruction in kernel code", regs);
1114
1115        if (unlikely(compute_return_epc(regs) < 0))
1116                goto out;
1117
1118        if (get_isa16_mode(regs->cp0_epc)) {
1119                unsigned short mmop[2] = { 0 };
1120
1121                if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1122                        status = SIGSEGV;
1123                if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1124                        status = SIGSEGV;
1125                opcode = mmop[0];
1126                opcode = (opcode << 16) | mmop[1];
1127
1128                if (status < 0)
1129                        status = simulate_rdhwr_mm(regs, opcode);
1130        } else {
1131                if (unlikely(get_user(opcode, epc) < 0))
1132                        status = SIGSEGV;
1133
1134                if (!cpu_has_llsc && status < 0)
1135                        status = simulate_llsc(regs, opcode);
1136
1137                if (status < 0)
1138                        status = simulate_rdhwr_normal(regs, opcode);
1139
1140                if (status < 0)
1141                        status = simulate_sync(regs, opcode);
1142
1143                if (status < 0)
1144                        status = simulate_fp(regs, opcode, old_epc, old31);
1145        }
1146
1147        if (status < 0)
1148                status = SIGILL;
1149
1150        if (unlikely(status > 0)) {
1151                regs->cp0_epc = old_epc;                /* Undo skip-over.  */
1152                regs->regs[31] = old31;
1153                force_sig(status, current);
1154        }
1155
1156out:
1157        exception_exit(prev_state);
1158}
1159
1160/*
1161 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1162 * emulated more than some threshold number of instructions, force migration to
1163 * a "CPU" that has FP support.
1164 */
1165static void mt_ase_fp_affinity(void)
1166{
1167#ifdef CONFIG_MIPS_MT_FPAFF
1168        if (mt_fpemul_threshold > 0 &&
1169             ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1170                /*
1171                 * If there's no FPU present, or if the application has already
1172                 * restricted the allowed set to exclude any CPUs with FPUs,
1173                 * we'll skip the procedure.
1174                 */
1175                if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1176                        cpumask_t tmask;
1177
1178                        current->thread.user_cpus_allowed
1179                                = current->cpus_allowed;
1180                        cpumask_and(&tmask, &current->cpus_allowed,
1181                                    &mt_fpu_cpumask);
1182                        set_cpus_allowed_ptr(current, &tmask);
1183                        set_thread_flag(TIF_FPUBOUND);
1184                }
1185        }
1186#endif /* CONFIG_MIPS_MT_FPAFF */
1187}
1188
1189/*
1190 * No lock; only written during early bootup by CPU 0.
1191 */
1192static RAW_NOTIFIER_HEAD(cu2_chain);
1193
1194int __ref register_cu2_notifier(struct notifier_block *nb)
1195{
1196        return raw_notifier_chain_register(&cu2_chain, nb);
1197}
1198
1199int cu2_notifier_call_chain(unsigned long val, void *v)
1200{
1201        return raw_notifier_call_chain(&cu2_chain, val, v);
1202}
1203
1204static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1205        void *data)
1206{
1207        struct pt_regs *regs = data;
1208
1209        die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1210                              "instruction", regs);
1211        force_sig(SIGILL, current);
1212
1213        return NOTIFY_OK;
1214}
1215
1216static int wait_on_fp_mode_switch(atomic_t *p)
1217{
1218        /*
1219         * The FP mode for this task is currently being switched. That may
1220         * involve modifications to the format of this tasks FP context which
1221         * make it unsafe to proceed with execution for the moment. Instead,
1222         * schedule some other task.
1223         */
1224        schedule();
1225        return 0;
1226}
1227
1228static int enable_restore_fp_context(int msa)
1229{
1230        int err, was_fpu_owner, prior_msa;
1231
1232        /*
1233         * If an FP mode switch is currently underway, wait for it to
1234         * complete before proceeding.
1235         */
1236        wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1237                         wait_on_fp_mode_switch, TASK_KILLABLE);
1238
1239        if (!used_math()) {
1240                /* First time FP context user. */
1241                preempt_disable();
1242                err = init_fpu();
1243                if (msa && !err) {
1244                        enable_msa();
1245                        _init_msa_upper();
1246                        set_thread_flag(TIF_USEDMSA);
1247                        set_thread_flag(TIF_MSA_CTX_LIVE);
1248                }
1249                preempt_enable();
1250                if (!err)
1251                        set_used_math();
1252                return err;
1253        }
1254
1255        /*
1256         * This task has formerly used the FP context.
1257         *
1258         * If this thread has no live MSA vector context then we can simply
1259         * restore the scalar FP context. If it has live MSA vector context
1260         * (that is, it has or may have used MSA since last performing a
1261         * function call) then we'll need to restore the vector context. This
1262         * applies even if we're currently only executing a scalar FP
1263         * instruction. This is because if we were to later execute an MSA
1264         * instruction then we'd either have to:
1265         *
1266         *  - Restore the vector context & clobber any registers modified by
1267         *    scalar FP instructions between now & then.
1268         *
1269         * or
1270         *
1271         *  - Not restore the vector context & lose the most significant bits
1272         *    of all vector registers.
1273         *
1274         * Neither of those options is acceptable. We cannot restore the least
1275         * significant bits of the registers now & only restore the most
1276         * significant bits later because the most significant bits of any
1277         * vector registers whose aliased FP register is modified now will have
1278         * been zeroed. We'd have no way to know that when restoring the vector
1279         * context & thus may load an outdated value for the most significant
1280         * bits of a vector register.
1281         */
1282        if (!msa && !thread_msa_context_live())
1283                return own_fpu(1);
1284
1285        /*
1286         * This task is using or has previously used MSA. Thus we require
1287         * that Status.FR == 1.
1288         */
1289        preempt_disable();
1290        was_fpu_owner = is_fpu_owner();
1291        err = own_fpu_inatomic(0);
1292        if (err)
1293                goto out;
1294
1295        enable_msa();
1296        write_msa_csr(current->thread.fpu.msacsr);
1297        set_thread_flag(TIF_USEDMSA);
1298
1299        /*
1300         * If this is the first time that the task is using MSA and it has
1301         * previously used scalar FP in this time slice then we already nave
1302         * FP context which we shouldn't clobber. We do however need to clear
1303         * the upper 64b of each vector register so that this task has no
1304         * opportunity to see data left behind by another.
1305         */
1306        prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1307        if (!prior_msa && was_fpu_owner) {
1308                _init_msa_upper();
1309
1310                goto out;
1311        }
1312
1313        if (!prior_msa) {
1314                /*
1315                 * Restore the least significant 64b of each vector register
1316                 * from the existing scalar FP context.
1317                 */
1318                _restore_fp(current);
1319
1320                /*
1321                 * The task has not formerly used MSA, so clear the upper 64b
1322                 * of each vector register such that it cannot see data left
1323                 * behind by another task.
1324                 */
1325                _init_msa_upper();
1326        } else {
1327                /* We need to restore the vector context. */
1328                restore_msa(current);
1329
1330                /* Restore the scalar FP control & status register */
1331                if (!was_fpu_owner)
1332                        write_32bit_cp1_register(CP1_STATUS,
1333                                                 current->thread.fpu.fcr31);
1334        }
1335
1336out:
1337        preempt_enable();
1338
1339        return 0;
1340}
1341
1342asmlinkage void do_cpu(struct pt_regs *regs)
1343{
1344        enum ctx_state prev_state;
1345        unsigned int __user *epc;
1346        unsigned long old_epc, old31;
1347        void __user *fault_addr;
1348        unsigned int opcode;
1349        unsigned long fcr31;
1350        unsigned int cpid;
1351        int status, err;
1352        unsigned long __maybe_unused flags;
1353        int sig;
1354
1355        prev_state = exception_enter();
1356        cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1357
1358        if (cpid != 2)
1359                die_if_kernel("do_cpu invoked from kernel context!", regs);
1360
1361        switch (cpid) {
1362        case 0:
1363                epc = (unsigned int __user *)exception_epc(regs);
1364                old_epc = regs->cp0_epc;
1365                old31 = regs->regs[31];
1366                opcode = 0;
1367                status = -1;
1368
1369                if (unlikely(compute_return_epc(regs) < 0))
1370                        break;
1371
1372                if (!get_isa16_mode(regs->cp0_epc)) {
1373                        if (unlikely(get_user(opcode, epc) < 0))
1374                                status = SIGSEGV;
1375
1376                        if (!cpu_has_llsc && status < 0)
1377                                status = simulate_llsc(regs, opcode);
1378                }
1379
1380                if (status < 0)
1381                        status = SIGILL;
1382
1383                if (unlikely(status > 0)) {
1384                        regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1385                        regs->regs[31] = old31;
1386                        force_sig(status, current);
1387                }
1388
1389                break;
1390
1391        case 3:
1392                /*
1393                 * The COP3 opcode space and consequently the CP0.Status.CU3
1394                 * bit and the CP0.Cause.CE=3 encoding have been removed as
1395                 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1396                 * up the space has been reused for COP1X instructions, that
1397                 * are enabled by the CP0.Status.CU1 bit and consequently
1398                 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1399                 * exceptions.  Some FPU-less processors that implement one
1400                 * of these ISAs however use this code erroneously for COP1X
1401                 * instructions.  Therefore we redirect this trap to the FP
1402                 * emulator too.
1403                 */
1404                if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1405                        force_sig(SIGILL, current);
1406                        break;
1407                }
1408                /* Fall through.  */
1409
1410        case 1:
1411                err = enable_restore_fp_context(0);
1412
1413                if (raw_cpu_has_fpu && !err)
1414                        break;
1415
1416                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1417                                               &fault_addr);
1418                fcr31 = current->thread.fpu.fcr31;
1419
1420                /*
1421                 * We can't allow the emulated instruction to leave
1422                 * any of the cause bits set in $fcr31.
1423                 */
1424                current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1425
1426                /* Send a signal if required.  */
1427                if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1428                        mt_ase_fp_affinity();
1429
1430                break;
1431
1432        case 2:
1433                raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1434                break;
1435        }
1436
1437        exception_exit(prev_state);
1438}
1439
1440asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1441{
1442        enum ctx_state prev_state;
1443
1444        prev_state = exception_enter();
1445        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1446        if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1447                       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1448                goto out;
1449
1450        /* Clear MSACSR.Cause before enabling interrupts */
1451        write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1452        local_irq_enable();
1453
1454        die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1455        force_sig(SIGFPE, current);
1456out:
1457        exception_exit(prev_state);
1458}
1459
1460asmlinkage void do_msa(struct pt_regs *regs)
1461{
1462        enum ctx_state prev_state;
1463        int err;
1464
1465        prev_state = exception_enter();
1466
1467        if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1468                force_sig(SIGILL, current);
1469                goto out;
1470        }
1471
1472        die_if_kernel("do_msa invoked from kernel context!", regs);
1473
1474        err = enable_restore_fp_context(1);
1475        if (err)
1476                force_sig(SIGILL, current);
1477out:
1478        exception_exit(prev_state);
1479}
1480
1481asmlinkage void do_mdmx(struct pt_regs *regs)
1482{
1483        enum ctx_state prev_state;
1484
1485        prev_state = exception_enter();
1486        force_sig(SIGILL, current);
1487        exception_exit(prev_state);
1488}
1489
1490/*
1491 * Called with interrupts disabled.
1492 */
1493asmlinkage void do_watch(struct pt_regs *regs)
1494{
1495        enum ctx_state prev_state;
1496        u32 cause;
1497
1498        prev_state = exception_enter();
1499        /*
1500         * Clear WP (bit 22) bit of cause register so we don't loop
1501         * forever.
1502         */
1503        cause = read_c0_cause();
1504        cause &= ~(1 << 22);
1505        write_c0_cause(cause);
1506
1507        /*
1508         * If the current thread has the watch registers loaded, save
1509         * their values and send SIGTRAP.  Otherwise another thread
1510         * left the registers set, clear them and continue.
1511         */
1512        if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1513                mips_read_watch_registers();
1514                local_irq_enable();
1515                force_sig(SIGTRAP, current);
1516        } else {
1517                mips_clear_watch_registers();
1518                local_irq_enable();
1519        }
1520        exception_exit(prev_state);
1521}
1522
1523asmlinkage void do_mcheck(struct pt_regs *regs)
1524{
1525        int multi_match = regs->cp0_status & ST0_TS;
1526        enum ctx_state prev_state;
1527        mm_segment_t old_fs = get_fs();
1528
1529        prev_state = exception_enter();
1530        show_regs(regs);
1531
1532        if (multi_match) {
1533                dump_tlb_regs();
1534                pr_info("\n");
1535                dump_tlb_all();
1536        }
1537
1538        if (!user_mode(regs))
1539                set_fs(KERNEL_DS);
1540
1541        show_code((unsigned int __user *) regs->cp0_epc);
1542
1543        set_fs(old_fs);
1544
1545        /*
1546         * Some chips may have other causes of machine check (e.g. SB1
1547         * graduation timer)
1548         */
1549        panic("Caught Machine Check exception - %scaused by multiple "
1550              "matching entries in the TLB.",
1551              (multi_match) ? "" : "not ");
1552}
1553
1554asmlinkage void do_mt(struct pt_regs *regs)
1555{
1556        int subcode;
1557
1558        subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1559                        >> VPECONTROL_EXCPT_SHIFT;
1560        switch (subcode) {
1561        case 0:
1562                printk(KERN_DEBUG "Thread Underflow\n");
1563                break;
1564        case 1:
1565                printk(KERN_DEBUG "Thread Overflow\n");
1566                break;
1567        case 2:
1568                printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1569                break;
1570        case 3:
1571                printk(KERN_DEBUG "Gating Storage Exception\n");
1572                break;
1573        case 4:
1574                printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1575                break;
1576        case 5:
1577                printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1578                break;
1579        default:
1580                printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1581                        subcode);
1582                break;
1583        }
1584        die_if_kernel("MIPS MT Thread exception in kernel", regs);
1585
1586        force_sig(SIGILL, current);
1587}
1588
1589
1590asmlinkage void do_dsp(struct pt_regs *regs)
1591{
1592        if (cpu_has_dsp)
1593                panic("Unexpected DSP exception");
1594
1595        force_sig(SIGILL, current);
1596}
1597
1598asmlinkage void do_reserved(struct pt_regs *regs)
1599{
1600        /*
1601         * Game over - no way to handle this if it ever occurs.  Most probably
1602         * caused by a new unknown cpu type or after another deadly
1603         * hard/software error.
1604         */
1605        show_regs(regs);
1606        panic("Caught reserved exception %ld - should not happen.",
1607              (regs->cp0_cause & 0x7f) >> 2);
1608}
1609
1610static int __initdata l1parity = 1;
1611static int __init nol1parity(char *s)
1612{
1613        l1parity = 0;
1614        return 1;
1615}
1616__setup("nol1par", nol1parity);
1617static int __initdata l2parity = 1;
1618static int __init nol2parity(char *s)
1619{
1620        l2parity = 0;
1621        return 1;
1622}
1623__setup("nol2par", nol2parity);
1624
1625/*
1626 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1627 * it different ways.
1628 */
1629static inline void parity_protection_init(void)
1630{
1631        switch (current_cpu_type()) {
1632        case CPU_24K:
1633        case CPU_34K:
1634        case CPU_74K:
1635        case CPU_1004K:
1636        case CPU_1074K:
1637        case CPU_INTERAPTIV:
1638        case CPU_PROAPTIV:
1639        case CPU_P5600:
1640        case CPU_QEMU_GENERIC:
1641        case CPU_I6400:
1642                {
1643#define ERRCTL_PE       0x80000000
1644#define ERRCTL_L2P      0x00800000
1645                        unsigned long errctl;
1646                        unsigned int l1parity_present, l2parity_present;
1647
1648                        errctl = read_c0_ecc();
1649                        errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1650
1651                        /* probe L1 parity support */
1652                        write_c0_ecc(errctl | ERRCTL_PE);
1653                        back_to_back_c0_hazard();
1654                        l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1655
1656                        /* probe L2 parity support */
1657                        write_c0_ecc(errctl|ERRCTL_L2P);
1658                        back_to_back_c0_hazard();
1659                        l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1660
1661                        if (l1parity_present && l2parity_present) {
1662                                if (l1parity)
1663                                        errctl |= ERRCTL_PE;
1664                                if (l1parity ^ l2parity)
1665                                        errctl |= ERRCTL_L2P;
1666                        } else if (l1parity_present) {
1667                                if (l1parity)
1668                                        errctl |= ERRCTL_PE;
1669                        } else if (l2parity_present) {
1670                                if (l2parity)
1671                                        errctl |= ERRCTL_L2P;
1672                        } else {
1673                                /* No parity available */
1674                        }
1675
1676                        printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1677
1678                        write_c0_ecc(errctl);
1679                        back_to_back_c0_hazard();
1680                        errctl = read_c0_ecc();
1681                        printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1682
1683                        if (l1parity_present)
1684                                printk(KERN_INFO "Cache parity protection %sabled\n",
1685                                       (errctl & ERRCTL_PE) ? "en" : "dis");
1686
1687                        if (l2parity_present) {
1688                                if (l1parity_present && l1parity)
1689                                        errctl ^= ERRCTL_L2P;
1690                                printk(KERN_INFO "L2 cache parity protection %sabled\n",
1691                                       (errctl & ERRCTL_L2P) ? "en" : "dis");
1692                        }
1693                }
1694                break;
1695
1696        case CPU_5KC:
1697        case CPU_5KE:
1698        case CPU_LOONGSON1:
1699                write_c0_ecc(0x80000000);
1700                back_to_back_c0_hazard();
1701                /* Set the PE bit (bit 31) in the c0_errctl register. */
1702                printk(KERN_INFO "Cache parity protection %sabled\n",
1703                       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1704                break;
1705        case CPU_20KC:
1706        case CPU_25KF:
1707                /* Clear the DE bit (bit 16) in the c0_status register. */
1708                printk(KERN_INFO "Enable cache parity protection for "
1709                       "MIPS 20KC/25KF CPUs.\n");
1710                clear_c0_status(ST0_DE);
1711                break;
1712        default:
1713                break;
1714        }
1715}
1716
1717asmlinkage void cache_parity_error(void)
1718{
1719        const int field = 2 * sizeof(unsigned long);
1720        unsigned int reg_val;
1721
1722        /* For the moment, report the problem and hang. */
1723        printk("Cache error exception:\n");
1724        printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1725        reg_val = read_c0_cacheerr();
1726        printk("c0_cacheerr == %08x\n", reg_val);
1727
1728        printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1729               reg_val & (1<<30) ? "secondary" : "primary",
1730               reg_val & (1<<31) ? "data" : "insn");
1731        if ((cpu_has_mips_r2_r6) &&
1732            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1733                pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1734                        reg_val & (1<<29) ? "ED " : "",
1735                        reg_val & (1<<28) ? "ET " : "",
1736                        reg_val & (1<<27) ? "ES " : "",
1737                        reg_val & (1<<26) ? "EE " : "",
1738                        reg_val & (1<<25) ? "EB " : "",
1739                        reg_val & (1<<24) ? "EI " : "",
1740                        reg_val & (1<<23) ? "E1 " : "",
1741                        reg_val & (1<<22) ? "E0 " : "");
1742        } else {
1743                pr_err("Error bits: %s%s%s%s%s%s%s\n",
1744                        reg_val & (1<<29) ? "ED " : "",
1745                        reg_val & (1<<28) ? "ET " : "",
1746                        reg_val & (1<<26) ? "EE " : "",
1747                        reg_val & (1<<25) ? "EB " : "",
1748                        reg_val & (1<<24) ? "EI " : "",
1749                        reg_val & (1<<23) ? "E1 " : "",
1750                        reg_val & (1<<22) ? "E0 " : "");
1751        }
1752        printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1753
1754#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1755        if (reg_val & (1<<22))
1756                printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1757
1758        if (reg_val & (1<<23))
1759                printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1760#endif
1761
1762        panic("Can't handle the cache error!");
1763}
1764
1765asmlinkage void do_ftlb(void)
1766{
1767        const int field = 2 * sizeof(unsigned long);
1768        unsigned int reg_val;
1769
1770        /* For the moment, report the problem and hang. */
1771        if ((cpu_has_mips_r2_r6) &&
1772            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1773                pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1774                       read_c0_ecc());
1775                pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1776                reg_val = read_c0_cacheerr();
1777                pr_err("c0_cacheerr == %08x\n", reg_val);
1778
1779                if ((reg_val & 0xc0000000) == 0xc0000000) {
1780                        pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1781                } else {
1782                        pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1783                               reg_val & (1<<30) ? "secondary" : "primary",
1784                               reg_val & (1<<31) ? "data" : "insn");
1785                }
1786        } else {
1787                pr_err("FTLB error exception\n");
1788        }
1789        /* Just print the cacheerr bits for now */
1790        cache_parity_error();
1791}
1792
1793/*
1794 * SDBBP EJTAG debug exception handler.
1795 * We skip the instruction and return to the next instruction.
1796 */
1797void ejtag_exception_handler(struct pt_regs *regs)
1798{
1799        const int field = 2 * sizeof(unsigned long);
1800        unsigned long depc, old_epc, old_ra;
1801        unsigned int debug;
1802
1803        printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1804        depc = read_c0_depc();
1805        debug = read_c0_debug();
1806        printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1807        if (debug & 0x80000000) {
1808                /*
1809                 * In branch delay slot.
1810                 * We cheat a little bit here and use EPC to calculate the
1811                 * debug return address (DEPC). EPC is restored after the
1812                 * calculation.
1813                 */
1814                old_epc = regs->cp0_epc;
1815                old_ra = regs->regs[31];
1816                regs->cp0_epc = depc;
1817                compute_return_epc(regs);
1818                depc = regs->cp0_epc;
1819                regs->cp0_epc = old_epc;
1820                regs->regs[31] = old_ra;
1821        } else
1822                depc += 4;
1823        write_c0_depc(depc);
1824
1825#if 0
1826        printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1827        write_c0_debug(debug | 0x100);
1828#endif
1829}
1830
1831/*
1832 * NMI exception handler.
1833 * No lock; only written during early bootup by CPU 0.
1834 */
1835static RAW_NOTIFIER_HEAD(nmi_chain);
1836
1837int register_nmi_notifier(struct notifier_block *nb)
1838{
1839        return raw_notifier_chain_register(&nmi_chain, nb);
1840}
1841
1842void __noreturn nmi_exception_handler(struct pt_regs *regs)
1843{
1844        char str[100];
1845
1846        nmi_enter();
1847        raw_notifier_call_chain(&nmi_chain, 0, regs);
1848        bust_spinlocks(1);
1849        snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1850                 smp_processor_id(), regs->cp0_epc);
1851        regs->cp0_epc = read_c0_errorepc();
1852        die(str, regs);
1853        nmi_exit();
1854}
1855
1856#define VECTORSPACING 0x100     /* for EI/VI mode */
1857
1858unsigned long ebase;
1859unsigned long exception_handlers[32];
1860unsigned long vi_handlers[64];
1861
1862void __init *set_except_vector(int n, void *addr)
1863{
1864        unsigned long handler = (unsigned long) addr;
1865        unsigned long old_handler;
1866
1867#ifdef CONFIG_CPU_MICROMIPS
1868        /*
1869         * Only the TLB handlers are cache aligned with an even
1870         * address. All other handlers are on an odd address and
1871         * require no modification. Otherwise, MIPS32 mode will
1872         * be entered when handling any TLB exceptions. That
1873         * would be bad...since we must stay in microMIPS mode.
1874         */
1875        if (!(handler & 0x1))
1876                handler |= 1;
1877#endif
1878        old_handler = xchg(&exception_handlers[n], handler);
1879
1880        if (n == 0 && cpu_has_divec) {
1881#ifdef CONFIG_CPU_MICROMIPS
1882                unsigned long jump_mask = ~((1 << 27) - 1);
1883#else
1884                unsigned long jump_mask = ~((1 << 28) - 1);
1885#endif
1886                u32 *buf = (u32 *)(ebase + 0x200);
1887                unsigned int k0 = 26;
1888                if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1889                        uasm_i_j(&buf, handler & ~jump_mask);
1890                        uasm_i_nop(&buf);
1891                } else {
1892                        UASM_i_LA(&buf, k0, handler);
1893                        uasm_i_jr(&buf, k0);
1894                        uasm_i_nop(&buf);
1895                }
1896                local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1897        }
1898        return (void *)old_handler;
1899}
1900
1901static void do_default_vi(void)
1902{
1903        show_regs(get_irq_regs());
1904        panic("Caught unexpected vectored interrupt.");
1905}
1906
1907static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1908{
1909        unsigned long handler;
1910        unsigned long old_handler = vi_handlers[n];
1911        int srssets = current_cpu_data.srsets;
1912        u16 *h;
1913        unsigned char *b;
1914
1915        BUG_ON(!cpu_has_veic && !cpu_has_vint);
1916
1917        if (addr == NULL) {
1918                handler = (unsigned long) do_default_vi;
1919                srs = 0;
1920        } else
1921                handler = (unsigned long) addr;
1922        vi_handlers[n] = handler;
1923
1924        b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1925
1926        if (srs >= srssets)
1927                panic("Shadow register set %d not supported", srs);
1928
1929        if (cpu_has_veic) {
1930                if (board_bind_eic_interrupt)
1931                        board_bind_eic_interrupt(n, srs);
1932        } else if (cpu_has_vint) {
1933                /* SRSMap is only defined if shadow sets are implemented */
1934                if (srssets > 1)
1935                        change_c0_srsmap(0xf << n*4, srs << n*4);
1936        }
1937
1938        if (srs == 0) {
1939                /*
1940                 * If no shadow set is selected then use the default handler
1941                 * that does normal register saving and standard interrupt exit
1942                 */
1943                extern char except_vec_vi, except_vec_vi_lui;
1944                extern char except_vec_vi_ori, except_vec_vi_end;
1945                extern char rollback_except_vec_vi;
1946                char *vec_start = using_rollback_handler() ?
1947                        &rollback_except_vec_vi : &except_vec_vi;
1948#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1949                const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1950                const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1951#else
1952                const int lui_offset = &except_vec_vi_lui - vec_start;
1953                const int ori_offset = &except_vec_vi_ori - vec_start;
1954#endif
1955                const int handler_len = &except_vec_vi_end - vec_start;
1956
1957                if (handler_len > VECTORSPACING) {
1958                        /*
1959                         * Sigh... panicing won't help as the console
1960                         * is probably not configured :(
1961                         */
1962                        panic("VECTORSPACING too small");
1963                }
1964
1965                set_handler(((unsigned long)b - ebase), vec_start,
1966#ifdef CONFIG_CPU_MICROMIPS
1967                                (handler_len - 1));
1968#else
1969                                handler_len);
1970#endif
1971                h = (u16 *)(b + lui_offset);
1972                *h = (handler >> 16) & 0xffff;
1973                h = (u16 *)(b + ori_offset);
1974                *h = (handler & 0xffff);
1975                local_flush_icache_range((unsigned long)b,
1976                                         (unsigned long)(b+handler_len));
1977        }
1978        else {
1979                /*
1980                 * In other cases jump directly to the interrupt handler. It
1981                 * is the handler's responsibility to save registers if required
1982                 * (eg hi/lo) and return from the exception using "eret".
1983                 */
1984                u32 insn;
1985
1986                h = (u16 *)b;
1987                /* j handler */
1988#ifdef CONFIG_CPU_MICROMIPS
1989                insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1990#else
1991                insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1992#endif
1993                h[0] = (insn >> 16) & 0xffff;
1994                h[1] = insn & 0xffff;
1995                h[2] = 0;
1996                h[3] = 0;
1997                local_flush_icache_range((unsigned long)b,
1998                                         (unsigned long)(b+8));
1999        }
2000
2001        return (void *)old_handler;
2002}
2003
2004void *set_vi_handler(int n, vi_handler_t addr)
2005{
2006        return set_vi_srs_handler(n, addr, 0);
2007}
2008
2009extern void tlb_init(void);
2010
2011/*
2012 * Timer interrupt
2013 */
2014int cp0_compare_irq;
2015EXPORT_SYMBOL_GPL(cp0_compare_irq);
2016int cp0_compare_irq_shift;
2017
2018/*
2019 * Performance counter IRQ or -1 if shared with timer
2020 */
2021int cp0_perfcount_irq;
2022EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2023
2024/*
2025 * Fast debug channel IRQ or -1 if not present
2026 */
2027int cp0_fdc_irq;
2028EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2029
2030static int noulri;
2031
2032static int __init ulri_disable(char *s)
2033{
2034        pr_info("Disabling ulri\n");
2035        noulri = 1;
2036
2037        return 1;
2038}
2039__setup("noulri", ulri_disable);
2040
2041/* configure STATUS register */
2042static void configure_status(void)
2043{
2044        /*
2045         * Disable coprocessors and select 32-bit or 64-bit addressing
2046         * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2047         * flag that some firmware may have left set and the TS bit (for
2048         * IP27).  Set XX for ISA IV code to work.
2049         */
2050        unsigned int status_set = ST0_CU0;
2051#ifdef CONFIG_64BIT
2052        status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2053#endif
2054        if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2055                status_set |= ST0_XX;
2056        if (cpu_has_dsp)
2057                status_set |= ST0_MX;
2058
2059        change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2060                         status_set);
2061}
2062
2063/* configure HWRENA register */
2064static void configure_hwrena(void)
2065{
2066        unsigned int hwrena = cpu_hwrena_impl_bits;
2067
2068        if (cpu_has_mips_r2_r6)
2069                hwrena |= 0x0000000f;
2070
2071        if (!noulri && cpu_has_userlocal)
2072                hwrena |= (1 << 29);
2073
2074        if (hwrena)
2075                write_c0_hwrena(hwrena);
2076}
2077
2078static void configure_exception_vector(void)
2079{
2080        if (cpu_has_veic || cpu_has_vint) {
2081                unsigned long sr = set_c0_status(ST0_BEV);
2082                write_c0_ebase(ebase);
2083                write_c0_status(sr);
2084                /* Setting vector spacing enables EI/VI mode  */
2085                change_c0_intctl(0x3e0, VECTORSPACING);
2086        }
2087        if (cpu_has_divec) {
2088                if (cpu_has_mipsmt) {
2089                        unsigned int vpflags = dvpe();
2090                        set_c0_cause(CAUSEF_IV);
2091                        evpe(vpflags);
2092                } else
2093                        set_c0_cause(CAUSEF_IV);
2094        }
2095}
2096
2097void per_cpu_trap_init(bool is_boot_cpu)
2098{
2099        unsigned int cpu = smp_processor_id();
2100
2101        configure_status();
2102        configure_hwrena();
2103
2104        configure_exception_vector();
2105
2106        /*
2107         * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2108         *
2109         *  o read IntCtl.IPTI to determine the timer interrupt
2110         *  o read IntCtl.IPPCI to determine the performance counter interrupt
2111         *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2112         */
2113        if (cpu_has_mips_r2_r6) {
2114                cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2115                cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2116                cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2117                cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2118                if (!cp0_fdc_irq)
2119                        cp0_fdc_irq = -1;
2120
2121        } else {
2122                cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2123                cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2124                cp0_perfcount_irq = -1;
2125                cp0_fdc_irq = -1;
2126        }
2127
2128        if (!cpu_data[cpu].asid_cache)
2129                cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2130
2131        atomic_inc(&init_mm.mm_count);
2132        current->active_mm = &init_mm;
2133        BUG_ON(current->mm);
2134        enter_lazy_tlb(&init_mm, current);
2135
2136        /* Boot CPU's cache setup in setup_arch(). */
2137        if (!is_boot_cpu)
2138                cpu_cache_init();
2139        tlb_init();
2140        TLBMISS_HANDLER_SETUP();
2141}
2142
2143/* Install CPU exception handler */
2144void set_handler(unsigned long offset, void *addr, unsigned long size)
2145{
2146#ifdef CONFIG_CPU_MICROMIPS
2147        memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2148#else
2149        memcpy((void *)(ebase + offset), addr, size);
2150#endif
2151        local_flush_icache_range(ebase + offset, ebase + offset + size);
2152}
2153
2154static char panic_null_cerr[] =
2155        "Trying to set NULL cache error exception handler";
2156
2157/*
2158 * Install uncached CPU exception handler.
2159 * This is suitable only for the cache error exception which is the only
2160 * exception handler that is being run uncached.
2161 */
2162void set_uncached_handler(unsigned long offset, void *addr,
2163        unsigned long size)
2164{
2165        unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2166
2167        if (!addr)
2168                panic(panic_null_cerr);
2169
2170        memcpy((void *)(uncached_ebase + offset), addr, size);
2171}
2172
2173static int __initdata rdhwr_noopt;
2174static int __init set_rdhwr_noopt(char *str)
2175{
2176        rdhwr_noopt = 1;
2177        return 1;
2178}
2179
2180__setup("rdhwr_noopt", set_rdhwr_noopt);
2181
2182void __init trap_init(void)
2183{
2184        extern char except_vec3_generic;
2185        extern char except_vec4;
2186        extern char except_vec3_r4000;
2187        unsigned long i;
2188
2189        check_wait();
2190
2191        if (cpu_has_veic || cpu_has_vint) {
2192                unsigned long size = 0x200 + VECTORSPACING*64;
2193                ebase = (unsigned long)
2194                        __alloc_bootmem(size, 1 << fls(size), 0);
2195        } else {
2196                ebase = CAC_BASE;
2197
2198                if (cpu_has_mips_r2_r6)
2199                        ebase += (read_c0_ebase() & 0x3ffff000);
2200        }
2201
2202        if (cpu_has_mmips) {
2203                unsigned int config3 = read_c0_config3();
2204
2205                if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2206                        write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2207                else
2208                        write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2209        }
2210
2211        if (board_ebase_setup)
2212                board_ebase_setup();
2213        per_cpu_trap_init(true);
2214
2215        /*
2216         * Copy the generic exception handlers to their final destination.
2217         * This will be overriden later as suitable for a particular
2218         * configuration.
2219         */
2220        set_handler(0x180, &except_vec3_generic, 0x80);
2221
2222        /*
2223         * Setup default vectors
2224         */
2225        for (i = 0; i <= 31; i++)
2226                set_except_vector(i, handle_reserved);
2227
2228        /*
2229         * Copy the EJTAG debug exception vector handler code to it's final
2230         * destination.
2231         */
2232        if (cpu_has_ejtag && board_ejtag_handler_setup)
2233                board_ejtag_handler_setup();
2234
2235        /*
2236         * Only some CPUs have the watch exceptions.
2237         */
2238        if (cpu_has_watch)
2239                set_except_vector(EXCCODE_WATCH, handle_watch);
2240
2241        /*
2242         * Initialise interrupt handlers
2243         */
2244        if (cpu_has_veic || cpu_has_vint) {
2245                int nvec = cpu_has_veic ? 64 : 8;
2246                for (i = 0; i < nvec; i++)
2247                        set_vi_handler(i, NULL);
2248        }
2249        else if (cpu_has_divec)
2250                set_handler(0x200, &except_vec4, 0x8);
2251
2252        /*
2253         * Some CPUs can enable/disable for cache parity detection, but does
2254         * it different ways.
2255         */
2256        parity_protection_init();
2257
2258        /*
2259         * The Data Bus Errors / Instruction Bus Errors are signaled
2260         * by external hardware.  Therefore these two exceptions
2261         * may have board specific handlers.
2262         */
2263        if (board_be_init)
2264                board_be_init();
2265
2266        set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2267                                        rollback_handle_int : handle_int);
2268        set_except_vector(EXCCODE_MOD, handle_tlbm);
2269        set_except_vector(EXCCODE_TLBL, handle_tlbl);
2270        set_except_vector(EXCCODE_TLBS, handle_tlbs);
2271
2272        set_except_vector(EXCCODE_ADEL, handle_adel);
2273        set_except_vector(EXCCODE_ADES, handle_ades);
2274
2275        set_except_vector(EXCCODE_IBE, handle_ibe);
2276        set_except_vector(EXCCODE_DBE, handle_dbe);
2277
2278        set_except_vector(EXCCODE_SYS, handle_sys);
2279        set_except_vector(EXCCODE_BP, handle_bp);
2280        set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2281                          (cpu_has_vtag_icache ?
2282                           handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2283        set_except_vector(EXCCODE_CPU, handle_cpu);
2284        set_except_vector(EXCCODE_OV, handle_ov);
2285        set_except_vector(EXCCODE_TR, handle_tr);
2286        set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2287
2288        if (current_cpu_type() == CPU_R6000 ||
2289            current_cpu_type() == CPU_R6000A) {
2290                /*
2291                 * The R6000 is the only R-series CPU that features a machine
2292                 * check exception (similar to the R4000 cache error) and
2293                 * unaligned ldc1/sdc1 exception.  The handlers have not been
2294                 * written yet.  Well, anyway there is no R6000 machine on the
2295                 * current list of targets for Linux/MIPS.
2296                 * (Duh, crap, there is someone with a triple R6k machine)
2297                 */
2298                //set_except_vector(14, handle_mc);
2299                //set_except_vector(15, handle_ndc);
2300        }
2301
2302
2303        if (board_nmi_handler_setup)
2304                board_nmi_handler_setup();
2305
2306        if (cpu_has_fpu && !cpu_has_nofpuex)
2307                set_except_vector(EXCCODE_FPE, handle_fpe);
2308
2309        set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2310
2311        if (cpu_has_rixiex) {
2312                set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2313                set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2314        }
2315
2316        set_except_vector(EXCCODE_MSADIS, handle_msa);
2317        set_except_vector(EXCCODE_MDMX, handle_mdmx);
2318
2319        if (cpu_has_mcheck)
2320                set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2321
2322        if (cpu_has_mipsmt)
2323                set_except_vector(EXCCODE_THREAD, handle_mt);
2324
2325        set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2326
2327        if (board_cache_error_setup)
2328                board_cache_error_setup();
2329
2330        if (cpu_has_vce)
2331                /* Special exception: R4[04]00 uses also the divec space. */
2332                set_handler(0x180, &except_vec3_r4000, 0x100);
2333        else if (cpu_has_4kex)
2334                set_handler(0x180, &except_vec3_generic, 0x80);
2335        else
2336                set_handler(0x080, &except_vec3_generic, 0x80);
2337
2338        local_flush_icache_range(ebase, ebase + 0x400);
2339
2340        sort_extable(__start___dbe_table, __stop___dbe_table);
2341
2342        cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
2343}
2344
2345static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2346                            void *v)
2347{
2348        switch (cmd) {
2349        case CPU_PM_ENTER_FAILED:
2350        case CPU_PM_EXIT:
2351                configure_status();
2352                configure_hwrena();
2353                configure_exception_vector();
2354
2355                /* Restore register with CPU number for TLB handlers */
2356                TLBMISS_HANDLER_RESTORE();
2357
2358                break;
2359        }
2360
2361        return NOTIFY_OK;
2362}
2363
2364static struct notifier_block trap_pm_notifier_block = {
2365        .notifier_call = trap_pm_notifier,
2366};
2367
2368static int __init trap_pm_init(void)
2369{
2370        return cpu_pm_register_notifier(&trap_pm_notifier_block);
2371}
2372arch_initcall(trap_pm_init);
2373