linux/arch/powerpc/kernel/rtas-proc.c
<<
>>
Prefs
   1/*
   2 *   Copyright (C) 2000 Tilmann Bitterberg
   3 *   (tilmann@bitterberg.de)
   4 *
   5 *   RTAS (Runtime Abstraction Services) stuff
   6 *   Intention is to provide a clean user interface
   7 *   to use the RTAS.
   8 *
   9 *   TODO:
  10 *   Split off a header file and maybe move it to a different
  11 *   location. Write Documentation on what the /proc/rtas/ entries
  12 *   actually do.
  13 */
  14
  15#include <linux/errno.h>
  16#include <linux/sched.h>
  17#include <linux/proc_fs.h>
  18#include <linux/stat.h>
  19#include <linux/ctype.h>
  20#include <linux/time.h>
  21#include <linux/string.h>
  22#include <linux/init.h>
  23#include <linux/seq_file.h>
  24#include <linux/bitops.h>
  25#include <linux/rtc.h>
  26
  27#include <asm/uaccess.h>
  28#include <asm/processor.h>
  29#include <asm/io.h>
  30#include <asm/prom.h>
  31#include <asm/rtas.h>
  32#include <asm/machdep.h> /* for ppc_md */
  33#include <asm/time.h>
  34
  35/* Token for Sensors */
  36#define KEY_SWITCH              0x0001
  37#define ENCLOSURE_SWITCH        0x0002
  38#define THERMAL_SENSOR          0x0003
  39#define LID_STATUS              0x0004
  40#define POWER_SOURCE            0x0005
  41#define BATTERY_VOLTAGE         0x0006
  42#define BATTERY_REMAINING       0x0007
  43#define BATTERY_PERCENTAGE      0x0008
  44#define EPOW_SENSOR             0x0009
  45#define BATTERY_CYCLESTATE      0x000a
  46#define BATTERY_CHARGING        0x000b
  47
  48/* IBM specific sensors */
  49#define IBM_SURVEILLANCE        0x2328 /* 9000 */
  50#define IBM_FANRPM              0x2329 /* 9001 */
  51#define IBM_VOLTAGE             0x232a /* 9002 */
  52#define IBM_DRCONNECTOR         0x232b /* 9003 */
  53#define IBM_POWERSUPPLY         0x232c /* 9004 */
  54
  55/* Status return values */
  56#define SENSOR_CRITICAL_HIGH    13
  57#define SENSOR_WARNING_HIGH     12
  58#define SENSOR_NORMAL           11
  59#define SENSOR_WARNING_LOW      10
  60#define SENSOR_CRITICAL_LOW      9
  61#define SENSOR_SUCCESS           0
  62#define SENSOR_HW_ERROR         -1
  63#define SENSOR_BUSY             -2
  64#define SENSOR_NOT_EXIST        -3
  65#define SENSOR_DR_ENTITY        -9000
  66
  67/* Location Codes */
  68#define LOC_SCSI_DEV_ADDR       'A'
  69#define LOC_SCSI_DEV_LOC        'B'
  70#define LOC_CPU                 'C'
  71#define LOC_DISKETTE            'D'
  72#define LOC_ETHERNET            'E'
  73#define LOC_FAN                 'F'
  74#define LOC_GRAPHICS            'G'
  75/* reserved / not used          'H' */
  76#define LOC_IO_ADAPTER          'I'
  77/* reserved / not used          'J' */
  78#define LOC_KEYBOARD            'K'
  79#define LOC_LCD                 'L'
  80#define LOC_MEMORY              'M'
  81#define LOC_NV_MEMORY           'N'
  82#define LOC_MOUSE               'O'
  83#define LOC_PLANAR              'P'
  84#define LOC_OTHER_IO            'Q'
  85#define LOC_PARALLEL            'R'
  86#define LOC_SERIAL              'S'
  87#define LOC_DEAD_RING           'T'
  88#define LOC_RACKMOUNTED         'U' /* for _u_nit is rack mounted */
  89#define LOC_VOLTAGE             'V'
  90#define LOC_SWITCH_ADAPTER      'W'
  91#define LOC_OTHER               'X'
  92#define LOC_FIRMWARE            'Y'
  93#define LOC_SCSI                'Z'
  94
  95/* Tokens for indicators */
  96#define TONE_FREQUENCY          0x0001 /* 0 - 1000 (HZ)*/
  97#define TONE_VOLUME             0x0002 /* 0 - 100 (%) */
  98#define SYSTEM_POWER_STATE      0x0003 
  99#define WARNING_LIGHT           0x0004
 100#define DISK_ACTIVITY_LIGHT     0x0005
 101#define HEX_DISPLAY_UNIT        0x0006
 102#define BATTERY_WARNING_TIME    0x0007
 103#define CONDITION_CYCLE_REQUEST 0x0008
 104#define SURVEILLANCE_INDICATOR  0x2328 /* 9000 */
 105#define DR_ACTION               0x2329 /* 9001 */
 106#define DR_INDICATOR            0x232a /* 9002 */
 107/* 9003 - 9004: Vendor specific */
 108/* 9006 - 9999: Vendor specific */
 109
 110/* other */
 111#define MAX_SENSORS              17  /* I only know of 17 sensors */    
 112#define MAX_LINELENGTH          256
 113#define SENSOR_PREFIX           "ibm,sensor-"
 114#define cel_to_fahr(x)          ((x*9/5)+32)
 115
 116struct individual_sensor {
 117        unsigned int token;
 118        unsigned int quant;
 119};
 120
 121struct rtas_sensors {
 122        struct individual_sensor sensor[MAX_SENSORS];
 123        unsigned int quant;
 124};
 125
 126/* Globals */
 127static struct rtas_sensors sensors;
 128static struct device_node *rtas_node = NULL;
 129static unsigned long power_on_time = 0; /* Save the time the user set */
 130static char progress_led[MAX_LINELENGTH];
 131
 132static unsigned long rtas_tone_frequency = 1000;
 133static unsigned long rtas_tone_volume = 0;
 134
 135/* ****************************************************************** */
 136/* Declarations */
 137static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
 138static int ppc_rtas_clock_show(struct seq_file *m, void *v);
 139static ssize_t ppc_rtas_clock_write(struct file *file,
 140                const char __user *buf, size_t count, loff_t *ppos);
 141static int ppc_rtas_progress_show(struct seq_file *m, void *v);
 142static ssize_t ppc_rtas_progress_write(struct file *file,
 143                const char __user *buf, size_t count, loff_t *ppos);
 144static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
 145static ssize_t ppc_rtas_poweron_write(struct file *file,
 146                const char __user *buf, size_t count, loff_t *ppos);
 147
 148static ssize_t ppc_rtas_tone_freq_write(struct file *file,
 149                const char __user *buf, size_t count, loff_t *ppos);
 150static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
 151static ssize_t ppc_rtas_tone_volume_write(struct file *file,
 152                const char __user *buf, size_t count, loff_t *ppos);
 153static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
 154static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
 155
 156static int sensors_open(struct inode *inode, struct file *file)
 157{
 158        return single_open(file, ppc_rtas_sensors_show, NULL);
 159}
 160
 161static const struct file_operations ppc_rtas_sensors_operations = {
 162        .open           = sensors_open,
 163        .read           = seq_read,
 164        .llseek         = seq_lseek,
 165        .release        = single_release,
 166};
 167
 168static int poweron_open(struct inode *inode, struct file *file)
 169{
 170        return single_open(file, ppc_rtas_poweron_show, NULL);
 171}
 172
 173static const struct file_operations ppc_rtas_poweron_operations = {
 174        .open           = poweron_open,
 175        .read           = seq_read,
 176        .llseek         = seq_lseek,
 177        .write          = ppc_rtas_poweron_write,
 178        .release        = single_release,
 179};
 180
 181static int progress_open(struct inode *inode, struct file *file)
 182{
 183        return single_open(file, ppc_rtas_progress_show, NULL);
 184}
 185
 186static const struct file_operations ppc_rtas_progress_operations = {
 187        .open           = progress_open,
 188        .read           = seq_read,
 189        .llseek         = seq_lseek,
 190        .write          = ppc_rtas_progress_write,
 191        .release        = single_release,
 192};
 193
 194static int clock_open(struct inode *inode, struct file *file)
 195{
 196        return single_open(file, ppc_rtas_clock_show, NULL);
 197}
 198
 199static const struct file_operations ppc_rtas_clock_operations = {
 200        .open           = clock_open,
 201        .read           = seq_read,
 202        .llseek         = seq_lseek,
 203        .write          = ppc_rtas_clock_write,
 204        .release        = single_release,
 205};
 206
 207static int tone_freq_open(struct inode *inode, struct file *file)
 208{
 209        return single_open(file, ppc_rtas_tone_freq_show, NULL);
 210}
 211
 212static const struct file_operations ppc_rtas_tone_freq_operations = {
 213        .open           = tone_freq_open,
 214        .read           = seq_read,
 215        .llseek         = seq_lseek,
 216        .write          = ppc_rtas_tone_freq_write,
 217        .release        = single_release,
 218};
 219
 220static int tone_volume_open(struct inode *inode, struct file *file)
 221{
 222        return single_open(file, ppc_rtas_tone_volume_show, NULL);
 223}
 224
 225static const struct file_operations ppc_rtas_tone_volume_operations = {
 226        .open           = tone_volume_open,
 227        .read           = seq_read,
 228        .llseek         = seq_lseek,
 229        .write          = ppc_rtas_tone_volume_write,
 230        .release        = single_release,
 231};
 232
 233static int rmo_buf_open(struct inode *inode, struct file *file)
 234{
 235        return single_open(file, ppc_rtas_rmo_buf_show, NULL);
 236}
 237
 238static const struct file_operations ppc_rtas_rmo_buf_ops = {
 239        .open           = rmo_buf_open,
 240        .read           = seq_read,
 241        .llseek         = seq_lseek,
 242        .release        = single_release,
 243};
 244
 245static int ppc_rtas_find_all_sensors(void);
 246static void ppc_rtas_process_sensor(struct seq_file *m,
 247        struct individual_sensor *s, int state, int error, const char *loc);
 248static char *ppc_rtas_process_error(int error);
 249static void get_location_code(struct seq_file *m,
 250        struct individual_sensor *s, const char *loc);
 251static void check_location_string(struct seq_file *m, const char *c);
 252static void check_location(struct seq_file *m, const char *c);
 253
 254static int __init proc_rtas_init(void)
 255{
 256        if (!machine_is(pseries))
 257                return -ENODEV;
 258
 259        rtas_node = of_find_node_by_name(NULL, "rtas");
 260        if (rtas_node == NULL)
 261                return -ENODEV;
 262
 263        proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
 264                    &ppc_rtas_progress_operations);
 265        proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
 266                    &ppc_rtas_clock_operations);
 267        proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
 268                    &ppc_rtas_poweron_operations);
 269        proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
 270                    &ppc_rtas_sensors_operations);
 271        proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
 272                    &ppc_rtas_tone_freq_operations);
 273        proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
 274                    &ppc_rtas_tone_volume_operations);
 275        proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
 276                    &ppc_rtas_rmo_buf_ops);
 277        return 0;
 278}
 279
 280__initcall(proc_rtas_init);
 281
 282static int parse_number(const char __user *p, size_t count, unsigned long *val)
 283{
 284        char buf[40];
 285        char *end;
 286
 287        if (count > 39)
 288                return -EINVAL;
 289
 290        if (copy_from_user(buf, p, count))
 291                return -EFAULT;
 292
 293        buf[count] = 0;
 294
 295        *val = simple_strtoul(buf, &end, 10);
 296        if (*end && *end != '\n')
 297                return -EINVAL;
 298
 299        return 0;
 300}
 301
 302/* ****************************************************************** */
 303/* POWER-ON-TIME                                                      */
 304/* ****************************************************************** */
 305static ssize_t ppc_rtas_poweron_write(struct file *file,
 306                const char __user *buf, size_t count, loff_t *ppos)
 307{
 308        struct rtc_time tm;
 309        unsigned long nowtime;
 310        int error = parse_number(buf, count, &nowtime);
 311        if (error)
 312                return error;
 313
 314        power_on_time = nowtime; /* save the time */
 315
 316        to_tm(nowtime, &tm);
 317
 318        error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
 319                        tm.tm_year, tm.tm_mon, tm.tm_mday, 
 320                        tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
 321        if (error)
 322                printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
 323                                ppc_rtas_process_error(error));
 324        return count;
 325}
 326/* ****************************************************************** */
 327static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
 328{
 329        if (power_on_time == 0)
 330                seq_printf(m, "Power on time not set\n");
 331        else
 332                seq_printf(m, "%lu\n",power_on_time);
 333        return 0;
 334}
 335
 336/* ****************************************************************** */
 337/* PROGRESS                                                           */
 338/* ****************************************************************** */
 339static ssize_t ppc_rtas_progress_write(struct file *file,
 340                const char __user *buf, size_t count, loff_t *ppos)
 341{
 342        unsigned long hex;
 343
 344        if (count >= MAX_LINELENGTH)
 345                count = MAX_LINELENGTH -1;
 346        if (copy_from_user(progress_led, buf, count)) { /* save the string */
 347                return -EFAULT;
 348        }
 349        progress_led[count] = 0;
 350
 351        /* Lets see if the user passed hexdigits */
 352        hex = simple_strtoul(progress_led, NULL, 10);
 353
 354        rtas_progress ((char *)progress_led, hex);
 355        return count;
 356
 357        /* clear the line */
 358        /* rtas_progress("                   ", 0xffff);*/
 359}
 360/* ****************************************************************** */
 361static int ppc_rtas_progress_show(struct seq_file *m, void *v)
 362{
 363        if (progress_led[0])
 364                seq_printf(m, "%s\n", progress_led);
 365        return 0;
 366}
 367
 368/* ****************************************************************** */
 369/* CLOCK                                                              */
 370/* ****************************************************************** */
 371static ssize_t ppc_rtas_clock_write(struct file *file,
 372                const char __user *buf, size_t count, loff_t *ppos)
 373{
 374        struct rtc_time tm;
 375        unsigned long nowtime;
 376        int error = parse_number(buf, count, &nowtime);
 377        if (error)
 378                return error;
 379
 380        to_tm(nowtime, &tm);
 381        error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
 382                        tm.tm_year, tm.tm_mon, tm.tm_mday, 
 383                        tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
 384        if (error)
 385                printk(KERN_WARNING "error: setting the clock returned: %s\n", 
 386                                ppc_rtas_process_error(error));
 387        return count;
 388}
 389/* ****************************************************************** */
 390static int ppc_rtas_clock_show(struct seq_file *m, void *v)
 391{
 392        int ret[8];
 393        int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
 394
 395        if (error) {
 396                printk(KERN_WARNING "error: reading the clock returned: %s\n", 
 397                                ppc_rtas_process_error(error));
 398                seq_printf(m, "0");
 399        } else { 
 400                unsigned int year, mon, day, hour, min, sec;
 401                year = ret[0]; mon  = ret[1]; day  = ret[2];
 402                hour = ret[3]; min  = ret[4]; sec  = ret[5];
 403                seq_printf(m, "%lu\n",
 404                                mktime(year, mon, day, hour, min, sec));
 405        }
 406        return 0;
 407}
 408
 409/* ****************************************************************** */
 410/* SENSOR STUFF                                                       */
 411/* ****************************************************************** */
 412static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
 413{
 414        int i,j;
 415        int state, error;
 416        int get_sensor_state = rtas_token("get-sensor-state");
 417
 418        seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
 419        seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
 420        seq_printf(m, "********************************************************\n");
 421
 422        if (ppc_rtas_find_all_sensors() != 0) {
 423                seq_printf(m, "\nNo sensors are available\n");
 424                return 0;
 425        }
 426
 427        for (i=0; i<sensors.quant; i++) {
 428                struct individual_sensor *p = &sensors.sensor[i];
 429                char rstr[64];
 430                const char *loc;
 431                int llen, offs;
 432
 433                sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
 434                loc = of_get_property(rtas_node, rstr, &llen);
 435
 436                /* A sensor may have multiple instances */
 437                for (j = 0, offs = 0; j <= p->quant; j++) {
 438                        error = rtas_call(get_sensor_state, 2, 2, &state, 
 439                                          p->token, j);
 440
 441                        ppc_rtas_process_sensor(m, p, state, error, loc);
 442                        seq_putc(m, '\n');
 443                        if (loc) {
 444                                offs += strlen(loc) + 1;
 445                                loc += strlen(loc) + 1;
 446                                if (offs >= llen)
 447                                        loc = NULL;
 448                        }
 449                }
 450        }
 451        return 0;
 452}
 453
 454/* ****************************************************************** */
 455
 456static int ppc_rtas_find_all_sensors(void)
 457{
 458        const unsigned int *utmp;
 459        int len, i;
 460
 461        utmp = of_get_property(rtas_node, "rtas-sensors", &len);
 462        if (utmp == NULL) {
 463                printk (KERN_ERR "error: could not get rtas-sensors\n");
 464                return 1;
 465        }
 466
 467        sensors.quant = len / 8;      /* int + int */
 468
 469        for (i=0; i<sensors.quant; i++) {
 470                sensors.sensor[i].token = *utmp++;
 471                sensors.sensor[i].quant = *utmp++;
 472        }
 473        return 0;
 474}
 475
 476/* ****************************************************************** */
 477/*
 478 * Builds a string of what rtas returned
 479 */
 480static char *ppc_rtas_process_error(int error)
 481{
 482        switch (error) {
 483                case SENSOR_CRITICAL_HIGH:
 484                        return "(critical high)";
 485                case SENSOR_WARNING_HIGH:
 486                        return "(warning high)";
 487                case SENSOR_NORMAL:
 488                        return "(normal)";
 489                case SENSOR_WARNING_LOW:
 490                        return "(warning low)";
 491                case SENSOR_CRITICAL_LOW:
 492                        return "(critical low)";
 493                case SENSOR_SUCCESS:
 494                        return "(read ok)";
 495                case SENSOR_HW_ERROR:
 496                        return "(hardware error)";
 497                case SENSOR_BUSY:
 498                        return "(busy)";
 499                case SENSOR_NOT_EXIST:
 500                        return "(non existent)";
 501                case SENSOR_DR_ENTITY:
 502                        return "(dr entity removed)";
 503                default:
 504                        return "(UNKNOWN)";
 505        }
 506}
 507
 508/* ****************************************************************** */
 509/*
 510 * Builds a string out of what the sensor said
 511 */
 512
 513static void ppc_rtas_process_sensor(struct seq_file *m,
 514        struct individual_sensor *s, int state, int error, const char *loc)
 515{
 516        /* Defined return vales */
 517        const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
 518                                                "Maintenance" };
 519        const char * enclosure_switch[]  = { "Closed", "Open" };
 520        const char * lid_status[]        = { " ", "Open", "Closed" };
 521        const char * power_source[]      = { "AC\t", "Battery", 
 522                                                "AC & Battery" };
 523        const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
 524        const char * epow_sensor[]       = { 
 525                "EPOW Reset", "Cooling warning", "Power warning",
 526                "System shutdown", "System halt", "EPOW main enclosure",
 527                "EPOW power off" };
 528        const char * battery_cyclestate[]  = { "None", "In progress", 
 529                                                "Requested" };
 530        const char * battery_charging[]    = { "Charging", "Discharching", 
 531                                                "No current flow" };
 532        const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
 533                                                "Exchange" };
 534
 535        int have_strings = 0;
 536        int num_states = 0;
 537        int temperature = 0;
 538        int unknown = 0;
 539
 540        /* What kind of sensor do we have here? */
 541        
 542        switch (s->token) {
 543                case KEY_SWITCH:
 544                        seq_printf(m, "Key switch:\t");
 545                        num_states = sizeof(key_switch) / sizeof(char *);
 546                        if (state < num_states) {
 547                                seq_printf(m, "%s\t", key_switch[state]);
 548                                have_strings = 1;
 549                        }
 550                        break;
 551                case ENCLOSURE_SWITCH:
 552                        seq_printf(m, "Enclosure switch:\t");
 553                        num_states = sizeof(enclosure_switch) / sizeof(char *);
 554                        if (state < num_states) {
 555                                seq_printf(m, "%s\t", 
 556                                                enclosure_switch[state]);
 557                                have_strings = 1;
 558                        }
 559                        break;
 560                case THERMAL_SENSOR:
 561                        seq_printf(m, "Temp. (C/F):\t");
 562                        temperature = 1;
 563                        break;
 564                case LID_STATUS:
 565                        seq_printf(m, "Lid status:\t");
 566                        num_states = sizeof(lid_status) / sizeof(char *);
 567                        if (state < num_states) {
 568                                seq_printf(m, "%s\t", lid_status[state]);
 569                                have_strings = 1;
 570                        }
 571                        break;
 572                case POWER_SOURCE:
 573                        seq_printf(m, "Power source:\t");
 574                        num_states = sizeof(power_source) / sizeof(char *);
 575                        if (state < num_states) {
 576                                seq_printf(m, "%s\t", 
 577                                                power_source[state]);
 578                                have_strings = 1;
 579                        }
 580                        break;
 581                case BATTERY_VOLTAGE:
 582                        seq_printf(m, "Battery voltage:\t");
 583                        break;
 584                case BATTERY_REMAINING:
 585                        seq_printf(m, "Battery remaining:\t");
 586                        num_states = sizeof(battery_remaining) / sizeof(char *);
 587                        if (state < num_states)
 588                        {
 589                                seq_printf(m, "%s\t", 
 590                                                battery_remaining[state]);
 591                                have_strings = 1;
 592                        }
 593                        break;
 594                case BATTERY_PERCENTAGE:
 595                        seq_printf(m, "Battery percentage:\t");
 596                        break;
 597                case EPOW_SENSOR:
 598                        seq_printf(m, "EPOW Sensor:\t");
 599                        num_states = sizeof(epow_sensor) / sizeof(char *);
 600                        if (state < num_states) {
 601                                seq_printf(m, "%s\t", epow_sensor[state]);
 602                                have_strings = 1;
 603                        }
 604                        break;
 605                case BATTERY_CYCLESTATE:
 606                        seq_printf(m, "Battery cyclestate:\t");
 607                        num_states = sizeof(battery_cyclestate) / 
 608                                        sizeof(char *);
 609                        if (state < num_states) {
 610                                seq_printf(m, "%s\t", 
 611                                                battery_cyclestate[state]);
 612                                have_strings = 1;
 613                        }
 614                        break;
 615                case BATTERY_CHARGING:
 616                        seq_printf(m, "Battery Charging:\t");
 617                        num_states = sizeof(battery_charging) / sizeof(char *);
 618                        if (state < num_states) {
 619                                seq_printf(m, "%s\t", 
 620                                                battery_charging[state]);
 621                                have_strings = 1;
 622                        }
 623                        break;
 624                case IBM_SURVEILLANCE:
 625                        seq_printf(m, "Surveillance:\t");
 626                        break;
 627                case IBM_FANRPM:
 628                        seq_printf(m, "Fan (rpm):\t");
 629                        break;
 630                case IBM_VOLTAGE:
 631                        seq_printf(m, "Voltage (mv):\t");
 632                        break;
 633                case IBM_DRCONNECTOR:
 634                        seq_printf(m, "DR connector:\t");
 635                        num_states = sizeof(ibm_drconnector) / sizeof(char *);
 636                        if (state < num_states) {
 637                                seq_printf(m, "%s\t", 
 638                                                ibm_drconnector[state]);
 639                                have_strings = 1;
 640                        }
 641                        break;
 642                case IBM_POWERSUPPLY:
 643                        seq_printf(m, "Powersupply:\t");
 644                        break;
 645                default:
 646                        seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
 647                                        s->token);
 648                        unknown = 1;
 649                        have_strings = 1;
 650                        break;
 651        }
 652        if (have_strings == 0) {
 653                if (temperature) {
 654                        seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
 655                } else
 656                        seq_printf(m, "%10d\t", state);
 657        }
 658        if (unknown == 0) {
 659                seq_printf(m, "%s\t", ppc_rtas_process_error(error));
 660                get_location_code(m, s, loc);
 661        }
 662}
 663
 664/* ****************************************************************** */
 665
 666static void check_location(struct seq_file *m, const char *c)
 667{
 668        switch (c[0]) {
 669                case LOC_PLANAR:
 670                        seq_printf(m, "Planar #%c", c[1]);
 671                        break;
 672                case LOC_CPU:
 673                        seq_printf(m, "CPU #%c", c[1]);
 674                        break;
 675                case LOC_FAN:
 676                        seq_printf(m, "Fan #%c", c[1]);
 677                        break;
 678                case LOC_RACKMOUNTED:
 679                        seq_printf(m, "Rack #%c", c[1]);
 680                        break;
 681                case LOC_VOLTAGE:
 682                        seq_printf(m, "Voltage #%c", c[1]);
 683                        break;
 684                case LOC_LCD:
 685                        seq_printf(m, "LCD #%c", c[1]);
 686                        break;
 687                case '.':
 688                        seq_printf(m, "- %c", c[1]);
 689                        break;
 690                default:
 691                        seq_printf(m, "Unknown location");
 692                        break;
 693        }
 694}
 695
 696
 697/* ****************************************************************** */
 698/* 
 699 * Format: 
 700 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
 701 * the '.' may be an abbrevation
 702 */
 703static void check_location_string(struct seq_file *m, const char *c)
 704{
 705        while (*c) {
 706                if (isalpha(*c) || *c == '.')
 707                        check_location(m, c);
 708                else if (*c == '/' || *c == '-')
 709                        seq_printf(m, " at ");
 710                c++;
 711        }
 712}
 713
 714
 715/* ****************************************************************** */
 716
 717static void get_location_code(struct seq_file *m, struct individual_sensor *s,
 718                const char *loc)
 719{
 720        if (!loc || !*loc) {
 721                seq_printf(m, "---");/* does not have a location */
 722        } else {
 723                check_location_string(m, loc);
 724        }
 725        seq_putc(m, ' ');
 726}
 727/* ****************************************************************** */
 728/* INDICATORS - Tone Frequency                                        */
 729/* ****************************************************************** */
 730static ssize_t ppc_rtas_tone_freq_write(struct file *file,
 731                const char __user *buf, size_t count, loff_t *ppos)
 732{
 733        unsigned long freq;
 734        int error = parse_number(buf, count, &freq);
 735        if (error)
 736                return error;
 737
 738        rtas_tone_frequency = freq; /* save it for later */
 739        error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
 740                        TONE_FREQUENCY, 0, freq);
 741        if (error)
 742                printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
 743                                ppc_rtas_process_error(error));
 744        return count;
 745}
 746/* ****************************************************************** */
 747static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
 748{
 749        seq_printf(m, "%lu\n", rtas_tone_frequency);
 750        return 0;
 751}
 752/* ****************************************************************** */
 753/* INDICATORS - Tone Volume                                           */
 754/* ****************************************************************** */
 755static ssize_t ppc_rtas_tone_volume_write(struct file *file,
 756                const char __user *buf, size_t count, loff_t *ppos)
 757{
 758        unsigned long volume;
 759        int error = parse_number(buf, count, &volume);
 760        if (error)
 761                return error;
 762
 763        if (volume > 100)
 764                volume = 100;
 765        
 766        rtas_tone_volume = volume; /* save it for later */
 767        error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
 768                        TONE_VOLUME, 0, volume);
 769        if (error)
 770                printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
 771                                ppc_rtas_process_error(error));
 772        return count;
 773}
 774/* ****************************************************************** */
 775static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
 776{
 777        seq_printf(m, "%lu\n", rtas_tone_volume);
 778        return 0;
 779}
 780
 781#define RMO_READ_BUF_MAX 30
 782
 783/* RTAS Userspace access */
 784static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
 785{
 786        seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
 787        return 0;
 788}
 789