linux/arch/powerpc/mm/slice.c
<<
>>
Prefs
   1/*
   2 * address space "slices" (meta-segments) support
   3 *
   4 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
   5 *
   6 * Based on hugetlb implementation
   7 *
   8 * Copyright (C) 2003 David Gibson, IBM Corporation.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 */
  24
  25#undef DEBUG
  26
  27#include <linux/kernel.h>
  28#include <linux/mm.h>
  29#include <linux/pagemap.h>
  30#include <linux/err.h>
  31#include <linux/spinlock.h>
  32#include <linux/export.h>
  33#include <linux/hugetlb.h>
  34#include <asm/mman.h>
  35#include <asm/mmu.h>
  36#include <asm/copro.h>
  37#include <asm/hugetlb.h>
  38
  39/* some sanity checks */
  40#if (PGTABLE_RANGE >> 43) > SLICE_MASK_SIZE
  41#error PGTABLE_RANGE exceeds slice_mask high_slices size
  42#endif
  43
  44static DEFINE_SPINLOCK(slice_convert_lock);
  45
  46
  47#ifdef DEBUG
  48int _slice_debug = 1;
  49
  50static void slice_print_mask(const char *label, struct slice_mask mask)
  51{
  52        char    *p, buf[16 + 3 + 64 + 1];
  53        int     i;
  54
  55        if (!_slice_debug)
  56                return;
  57        p = buf;
  58        for (i = 0; i < SLICE_NUM_LOW; i++)
  59                *(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
  60        *(p++) = ' ';
  61        *(p++) = '-';
  62        *(p++) = ' ';
  63        for (i = 0; i < SLICE_NUM_HIGH; i++)
  64                *(p++) = (mask.high_slices & (1ul << i)) ? '1' : '0';
  65        *(p++) = 0;
  66
  67        printk(KERN_DEBUG "%s:%s\n", label, buf);
  68}
  69
  70#define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
  71
  72#else
  73
  74static void slice_print_mask(const char *label, struct slice_mask mask) {}
  75#define slice_dbg(fmt...)
  76
  77#endif
  78
  79static struct slice_mask slice_range_to_mask(unsigned long start,
  80                                             unsigned long len)
  81{
  82        unsigned long end = start + len - 1;
  83        struct slice_mask ret = { 0, 0 };
  84
  85        if (start < SLICE_LOW_TOP) {
  86                unsigned long mend = min(end, SLICE_LOW_TOP);
  87                unsigned long mstart = min(start, SLICE_LOW_TOP);
  88
  89                ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
  90                        - (1u << GET_LOW_SLICE_INDEX(mstart));
  91        }
  92
  93        if ((start + len) > SLICE_LOW_TOP)
  94                ret.high_slices = (1ul << (GET_HIGH_SLICE_INDEX(end) + 1))
  95                        - (1ul << GET_HIGH_SLICE_INDEX(start));
  96
  97        return ret;
  98}
  99
 100static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
 101                              unsigned long len)
 102{
 103        struct vm_area_struct *vma;
 104
 105        if ((mm->task_size - len) < addr)
 106                return 0;
 107        vma = find_vma(mm, addr);
 108        return (!vma || (addr + len) <= vma->vm_start);
 109}
 110
 111static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
 112{
 113        return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
 114                                   1ul << SLICE_LOW_SHIFT);
 115}
 116
 117static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
 118{
 119        unsigned long start = slice << SLICE_HIGH_SHIFT;
 120        unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
 121
 122        /* Hack, so that each addresses is controlled by exactly one
 123         * of the high or low area bitmaps, the first high area starts
 124         * at 4GB, not 0 */
 125        if (start == 0)
 126                start = SLICE_LOW_TOP;
 127
 128        return !slice_area_is_free(mm, start, end - start);
 129}
 130
 131static struct slice_mask slice_mask_for_free(struct mm_struct *mm)
 132{
 133        struct slice_mask ret = { 0, 0 };
 134        unsigned long i;
 135
 136        for (i = 0; i < SLICE_NUM_LOW; i++)
 137                if (!slice_low_has_vma(mm, i))
 138                        ret.low_slices |= 1u << i;
 139
 140        if (mm->task_size <= SLICE_LOW_TOP)
 141                return ret;
 142
 143        for (i = 0; i < SLICE_NUM_HIGH; i++)
 144                if (!slice_high_has_vma(mm, i))
 145                        ret.high_slices |= 1ul << i;
 146
 147        return ret;
 148}
 149
 150static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize)
 151{
 152        unsigned char *hpsizes;
 153        int index, mask_index;
 154        struct slice_mask ret = { 0, 0 };
 155        unsigned long i;
 156        u64 lpsizes;
 157
 158        lpsizes = mm->context.low_slices_psize;
 159        for (i = 0; i < SLICE_NUM_LOW; i++)
 160                if (((lpsizes >> (i * 4)) & 0xf) == psize)
 161                        ret.low_slices |= 1u << i;
 162
 163        hpsizes = mm->context.high_slices_psize;
 164        for (i = 0; i < SLICE_NUM_HIGH; i++) {
 165                mask_index = i & 0x1;
 166                index = i >> 1;
 167                if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == psize)
 168                        ret.high_slices |= 1ul << i;
 169        }
 170
 171        return ret;
 172}
 173
 174static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
 175{
 176        return (mask.low_slices & available.low_slices) == mask.low_slices &&
 177                (mask.high_slices & available.high_slices) == mask.high_slices;
 178}
 179
 180static void slice_flush_segments(void *parm)
 181{
 182        struct mm_struct *mm = parm;
 183        unsigned long flags;
 184
 185        if (mm != current->active_mm)
 186                return;
 187
 188        copy_mm_to_paca(&current->active_mm->context);
 189
 190        local_irq_save(flags);
 191        slb_flush_and_rebolt();
 192        local_irq_restore(flags);
 193}
 194
 195static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
 196{
 197        int index, mask_index;
 198        /* Write the new slice psize bits */
 199        unsigned char *hpsizes;
 200        u64 lpsizes;
 201        unsigned long i, flags;
 202
 203        slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
 204        slice_print_mask(" mask", mask);
 205
 206        /* We need to use a spinlock here to protect against
 207         * concurrent 64k -> 4k demotion ...
 208         */
 209        spin_lock_irqsave(&slice_convert_lock, flags);
 210
 211        lpsizes = mm->context.low_slices_psize;
 212        for (i = 0; i < SLICE_NUM_LOW; i++)
 213                if (mask.low_slices & (1u << i))
 214                        lpsizes = (lpsizes & ~(0xful << (i * 4))) |
 215                                (((unsigned long)psize) << (i * 4));
 216
 217        /* Assign the value back */
 218        mm->context.low_slices_psize = lpsizes;
 219
 220        hpsizes = mm->context.high_slices_psize;
 221        for (i = 0; i < SLICE_NUM_HIGH; i++) {
 222                mask_index = i & 0x1;
 223                index = i >> 1;
 224                if (mask.high_slices & (1ul << i))
 225                        hpsizes[index] = (hpsizes[index] &
 226                                          ~(0xf << (mask_index * 4))) |
 227                                (((unsigned long)psize) << (mask_index * 4));
 228        }
 229
 230        slice_dbg(" lsps=%lx, hsps=%lx\n",
 231                  mm->context.low_slices_psize,
 232                  mm->context.high_slices_psize);
 233
 234        spin_unlock_irqrestore(&slice_convert_lock, flags);
 235
 236        copro_flush_all_slbs(mm);
 237}
 238
 239/*
 240 * Compute which slice addr is part of;
 241 * set *boundary_addr to the start or end boundary of that slice
 242 * (depending on 'end' parameter);
 243 * return boolean indicating if the slice is marked as available in the
 244 * 'available' slice_mark.
 245 */
 246static bool slice_scan_available(unsigned long addr,
 247                                 struct slice_mask available,
 248                                 int end,
 249                                 unsigned long *boundary_addr)
 250{
 251        unsigned long slice;
 252        if (addr < SLICE_LOW_TOP) {
 253                slice = GET_LOW_SLICE_INDEX(addr);
 254                *boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
 255                return !!(available.low_slices & (1u << slice));
 256        } else {
 257                slice = GET_HIGH_SLICE_INDEX(addr);
 258                *boundary_addr = (slice + end) ?
 259                        ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
 260                return !!(available.high_slices & (1ul << slice));
 261        }
 262}
 263
 264static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
 265                                              unsigned long len,
 266                                              struct slice_mask available,
 267                                              int psize)
 268{
 269        int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
 270        unsigned long addr, found, next_end;
 271        struct vm_unmapped_area_info info;
 272
 273        info.flags = 0;
 274        info.length = len;
 275        info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
 276        info.align_offset = 0;
 277
 278        addr = TASK_UNMAPPED_BASE;
 279        while (addr < TASK_SIZE) {
 280                info.low_limit = addr;
 281                if (!slice_scan_available(addr, available, 1, &addr))
 282                        continue;
 283
 284 next_slice:
 285                /*
 286                 * At this point [info.low_limit; addr) covers
 287                 * available slices only and ends at a slice boundary.
 288                 * Check if we need to reduce the range, or if we can
 289                 * extend it to cover the next available slice.
 290                 */
 291                if (addr >= TASK_SIZE)
 292                        addr = TASK_SIZE;
 293                else if (slice_scan_available(addr, available, 1, &next_end)) {
 294                        addr = next_end;
 295                        goto next_slice;
 296                }
 297                info.high_limit = addr;
 298
 299                found = vm_unmapped_area(&info);
 300                if (!(found & ~PAGE_MASK))
 301                        return found;
 302        }
 303
 304        return -ENOMEM;
 305}
 306
 307static unsigned long slice_find_area_topdown(struct mm_struct *mm,
 308                                             unsigned long len,
 309                                             struct slice_mask available,
 310                                             int psize)
 311{
 312        int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
 313        unsigned long addr, found, prev;
 314        struct vm_unmapped_area_info info;
 315
 316        info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 317        info.length = len;
 318        info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
 319        info.align_offset = 0;
 320
 321        addr = mm->mmap_base;
 322        while (addr > PAGE_SIZE) {
 323                info.high_limit = addr;
 324                if (!slice_scan_available(addr - 1, available, 0, &addr))
 325                        continue;
 326
 327 prev_slice:
 328                /*
 329                 * At this point [addr; info.high_limit) covers
 330                 * available slices only and starts at a slice boundary.
 331                 * Check if we need to reduce the range, or if we can
 332                 * extend it to cover the previous available slice.
 333                 */
 334                if (addr < PAGE_SIZE)
 335                        addr = PAGE_SIZE;
 336                else if (slice_scan_available(addr - 1, available, 0, &prev)) {
 337                        addr = prev;
 338                        goto prev_slice;
 339                }
 340                info.low_limit = addr;
 341
 342                found = vm_unmapped_area(&info);
 343                if (!(found & ~PAGE_MASK))
 344                        return found;
 345        }
 346
 347        /*
 348         * A failed mmap() very likely causes application failure,
 349         * so fall back to the bottom-up function here. This scenario
 350         * can happen with large stack limits and large mmap()
 351         * allocations.
 352         */
 353        return slice_find_area_bottomup(mm, len, available, psize);
 354}
 355
 356
 357static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
 358                                     struct slice_mask mask, int psize,
 359                                     int topdown)
 360{
 361        if (topdown)
 362                return slice_find_area_topdown(mm, len, mask, psize);
 363        else
 364                return slice_find_area_bottomup(mm, len, mask, psize);
 365}
 366
 367#define or_mask(dst, src)       do {                    \
 368        (dst).low_slices |= (src).low_slices;           \
 369        (dst).high_slices |= (src).high_slices;         \
 370} while (0)
 371
 372#define andnot_mask(dst, src)   do {                    \
 373        (dst).low_slices &= ~(src).low_slices;          \
 374        (dst).high_slices &= ~(src).high_slices;        \
 375} while (0)
 376
 377#ifdef CONFIG_PPC_64K_PAGES
 378#define MMU_PAGE_BASE   MMU_PAGE_64K
 379#else
 380#define MMU_PAGE_BASE   MMU_PAGE_4K
 381#endif
 382
 383unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
 384                                      unsigned long flags, unsigned int psize,
 385                                      int topdown)
 386{
 387        struct slice_mask mask = {0, 0};
 388        struct slice_mask good_mask;
 389        struct slice_mask potential_mask = {0,0} /* silence stupid warning */;
 390        struct slice_mask compat_mask = {0, 0};
 391        int fixed = (flags & MAP_FIXED);
 392        int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
 393        struct mm_struct *mm = current->mm;
 394        unsigned long newaddr;
 395
 396        /* Sanity checks */
 397        BUG_ON(mm->task_size == 0);
 398
 399        slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
 400        slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
 401                  addr, len, flags, topdown);
 402
 403        if (len > mm->task_size)
 404                return -ENOMEM;
 405        if (len & ((1ul << pshift) - 1))
 406                return -EINVAL;
 407        if (fixed && (addr & ((1ul << pshift) - 1)))
 408                return -EINVAL;
 409        if (fixed && addr > (mm->task_size - len))
 410                return -ENOMEM;
 411
 412        /* If hint, make sure it matches our alignment restrictions */
 413        if (!fixed && addr) {
 414                addr = _ALIGN_UP(addr, 1ul << pshift);
 415                slice_dbg(" aligned addr=%lx\n", addr);
 416                /* Ignore hint if it's too large or overlaps a VMA */
 417                if (addr > mm->task_size - len ||
 418                    !slice_area_is_free(mm, addr, len))
 419                        addr = 0;
 420        }
 421
 422        /* First make up a "good" mask of slices that have the right size
 423         * already
 424         */
 425        good_mask = slice_mask_for_size(mm, psize);
 426        slice_print_mask(" good_mask", good_mask);
 427
 428        /*
 429         * Here "good" means slices that are already the right page size,
 430         * "compat" means slices that have a compatible page size (i.e.
 431         * 4k in a 64k pagesize kernel), and "free" means slices without
 432         * any VMAs.
 433         *
 434         * If MAP_FIXED:
 435         *      check if fits in good | compat => OK
 436         *      check if fits in good | compat | free => convert free
 437         *      else bad
 438         * If have hint:
 439         *      check if hint fits in good => OK
 440         *      check if hint fits in good | free => convert free
 441         * Otherwise:
 442         *      search in good, found => OK
 443         *      search in good | free, found => convert free
 444         *      search in good | compat | free, found => convert free.
 445         */
 446
 447#ifdef CONFIG_PPC_64K_PAGES
 448        /* If we support combo pages, we can allow 64k pages in 4k slices */
 449        if (psize == MMU_PAGE_64K) {
 450                compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
 451                if (fixed)
 452                        or_mask(good_mask, compat_mask);
 453        }
 454#endif
 455
 456        /* First check hint if it's valid or if we have MAP_FIXED */
 457        if (addr != 0 || fixed) {
 458                /* Build a mask for the requested range */
 459                mask = slice_range_to_mask(addr, len);
 460                slice_print_mask(" mask", mask);
 461
 462                /* Check if we fit in the good mask. If we do, we just return,
 463                 * nothing else to do
 464                 */
 465                if (slice_check_fit(mask, good_mask)) {
 466                        slice_dbg(" fits good !\n");
 467                        return addr;
 468                }
 469        } else {
 470                /* Now let's see if we can find something in the existing
 471                 * slices for that size
 472                 */
 473                newaddr = slice_find_area(mm, len, good_mask, psize, topdown);
 474                if (newaddr != -ENOMEM) {
 475                        /* Found within the good mask, we don't have to setup,
 476                         * we thus return directly
 477                         */
 478                        slice_dbg(" found area at 0x%lx\n", newaddr);
 479                        return newaddr;
 480                }
 481        }
 482
 483        /* We don't fit in the good mask, check what other slices are
 484         * empty and thus can be converted
 485         */
 486        potential_mask = slice_mask_for_free(mm);
 487        or_mask(potential_mask, good_mask);
 488        slice_print_mask(" potential", potential_mask);
 489
 490        if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) {
 491                slice_dbg(" fits potential !\n");
 492                goto convert;
 493        }
 494
 495        /* If we have MAP_FIXED and failed the above steps, then error out */
 496        if (fixed)
 497                return -EBUSY;
 498
 499        slice_dbg(" search...\n");
 500
 501        /* If we had a hint that didn't work out, see if we can fit
 502         * anywhere in the good area.
 503         */
 504        if (addr) {
 505                addr = slice_find_area(mm, len, good_mask, psize, topdown);
 506                if (addr != -ENOMEM) {
 507                        slice_dbg(" found area at 0x%lx\n", addr);
 508                        return addr;
 509                }
 510        }
 511
 512        /* Now let's see if we can find something in the existing slices
 513         * for that size plus free slices
 514         */
 515        addr = slice_find_area(mm, len, potential_mask, psize, topdown);
 516
 517#ifdef CONFIG_PPC_64K_PAGES
 518        if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
 519                /* retry the search with 4k-page slices included */
 520                or_mask(potential_mask, compat_mask);
 521                addr = slice_find_area(mm, len, potential_mask, psize,
 522                                       topdown);
 523        }
 524#endif
 525
 526        if (addr == -ENOMEM)
 527                return -ENOMEM;
 528
 529        mask = slice_range_to_mask(addr, len);
 530        slice_dbg(" found potential area at 0x%lx\n", addr);
 531        slice_print_mask(" mask", mask);
 532
 533 convert:
 534        andnot_mask(mask, good_mask);
 535        andnot_mask(mask, compat_mask);
 536        if (mask.low_slices || mask.high_slices) {
 537                slice_convert(mm, mask, psize);
 538                if (psize > MMU_PAGE_BASE)
 539                        on_each_cpu(slice_flush_segments, mm, 1);
 540        }
 541        return addr;
 542
 543}
 544EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
 545
 546unsigned long arch_get_unmapped_area(struct file *filp,
 547                                     unsigned long addr,
 548                                     unsigned long len,
 549                                     unsigned long pgoff,
 550                                     unsigned long flags)
 551{
 552        return slice_get_unmapped_area(addr, len, flags,
 553                                       current->mm->context.user_psize, 0);
 554}
 555
 556unsigned long arch_get_unmapped_area_topdown(struct file *filp,
 557                                             const unsigned long addr0,
 558                                             const unsigned long len,
 559                                             const unsigned long pgoff,
 560                                             const unsigned long flags)
 561{
 562        return slice_get_unmapped_area(addr0, len, flags,
 563                                       current->mm->context.user_psize, 1);
 564}
 565
 566unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
 567{
 568        unsigned char *hpsizes;
 569        int index, mask_index;
 570
 571        if (addr < SLICE_LOW_TOP) {
 572                u64 lpsizes;
 573                lpsizes = mm->context.low_slices_psize;
 574                index = GET_LOW_SLICE_INDEX(addr);
 575                return (lpsizes >> (index * 4)) & 0xf;
 576        }
 577        hpsizes = mm->context.high_slices_psize;
 578        index = GET_HIGH_SLICE_INDEX(addr);
 579        mask_index = index & 0x1;
 580        return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xf;
 581}
 582EXPORT_SYMBOL_GPL(get_slice_psize);
 583
 584/*
 585 * This is called by hash_page when it needs to do a lazy conversion of
 586 * an address space from real 64K pages to combo 4K pages (typically
 587 * when hitting a non cacheable mapping on a processor or hypervisor
 588 * that won't allow them for 64K pages).
 589 *
 590 * This is also called in init_new_context() to change back the user
 591 * psize from whatever the parent context had it set to
 592 * N.B. This may be called before mm->context.id has been set.
 593 *
 594 * This function will only change the content of the {low,high)_slice_psize
 595 * masks, it will not flush SLBs as this shall be handled lazily by the
 596 * caller.
 597 */
 598void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
 599{
 600        int index, mask_index;
 601        unsigned char *hpsizes;
 602        unsigned long flags, lpsizes;
 603        unsigned int old_psize;
 604        int i;
 605
 606        slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
 607
 608        spin_lock_irqsave(&slice_convert_lock, flags);
 609
 610        old_psize = mm->context.user_psize;
 611        slice_dbg(" old_psize=%d\n", old_psize);
 612        if (old_psize == psize)
 613                goto bail;
 614
 615        mm->context.user_psize = psize;
 616        wmb();
 617
 618        lpsizes = mm->context.low_slices_psize;
 619        for (i = 0; i < SLICE_NUM_LOW; i++)
 620                if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
 621                        lpsizes = (lpsizes & ~(0xful << (i * 4))) |
 622                                (((unsigned long)psize) << (i * 4));
 623        /* Assign the value back */
 624        mm->context.low_slices_psize = lpsizes;
 625
 626        hpsizes = mm->context.high_slices_psize;
 627        for (i = 0; i < SLICE_NUM_HIGH; i++) {
 628                mask_index = i & 0x1;
 629                index = i >> 1;
 630                if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == old_psize)
 631                        hpsizes[index] = (hpsizes[index] &
 632                                          ~(0xf << (mask_index * 4))) |
 633                                (((unsigned long)psize) << (mask_index * 4));
 634        }
 635
 636
 637
 638
 639        slice_dbg(" lsps=%lx, hsps=%lx\n",
 640                  mm->context.low_slices_psize,
 641                  mm->context.high_slices_psize);
 642
 643 bail:
 644        spin_unlock_irqrestore(&slice_convert_lock, flags);
 645}
 646
 647void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
 648                           unsigned long len, unsigned int psize)
 649{
 650        struct slice_mask mask = slice_range_to_mask(start, len);
 651
 652        slice_convert(mm, mask, psize);
 653}
 654
 655#ifdef CONFIG_HUGETLB_PAGE
 656/*
 657 * is_hugepage_only_range() is used by generic code to verify whether
 658 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
 659 *
 660 * until the generic code provides a more generic hook and/or starts
 661 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
 662 * here knows how to deal with), we hijack it to keep standard mappings
 663 * away from us.
 664 *
 665 * because of that generic code limitation, MAP_FIXED mapping cannot
 666 * "convert" back a slice with no VMAs to the standard page size, only
 667 * get_unmapped_area() can. It would be possible to fix it here but I
 668 * prefer working on fixing the generic code instead.
 669 *
 670 * WARNING: This will not work if hugetlbfs isn't enabled since the
 671 * generic code will redefine that function as 0 in that. This is ok
 672 * for now as we only use slices with hugetlbfs enabled. This should
 673 * be fixed as the generic code gets fixed.
 674 */
 675int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
 676                           unsigned long len)
 677{
 678        struct slice_mask mask, available;
 679        unsigned int psize = mm->context.user_psize;
 680
 681        mask = slice_range_to_mask(addr, len);
 682        available = slice_mask_for_size(mm, psize);
 683#ifdef CONFIG_PPC_64K_PAGES
 684        /* We need to account for 4k slices too */
 685        if (psize == MMU_PAGE_64K) {
 686                struct slice_mask compat_mask;
 687                compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
 688                or_mask(available, compat_mask);
 689        }
 690#endif
 691
 692#if 0 /* too verbose */
 693        slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
 694                 mm, addr, len);
 695        slice_print_mask(" mask", mask);
 696        slice_print_mask(" available", available);
 697#endif
 698        return !slice_check_fit(mask, available);
 699}
 700#endif
 701