linux/arch/powerpc/platforms/cell/spu_manage.c
<<
>>
Prefs
   1/*
   2 * spu management operations for of based platforms
   3 *
   4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
   5 * Copyright 2006 Sony Corp.
   6 * (C) Copyright 2007 TOSHIBA CORPORATION
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; version 2 of the License.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License along
  18 * with this program; if not, write to the Free Software Foundation, Inc.,
  19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20 */
  21
  22#include <linux/interrupt.h>
  23#include <linux/list.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/wait.h>
  27#include <linux/mm.h>
  28#include <linux/io.h>
  29#include <linux/mutex.h>
  30#include <linux/device.h>
  31
  32#include <asm/spu.h>
  33#include <asm/spu_priv1.h>
  34#include <asm/firmware.h>
  35#include <asm/prom.h>
  36
  37#include "spufs/spufs.h"
  38#include "interrupt.h"
  39
  40struct device_node *spu_devnode(struct spu *spu)
  41{
  42        return spu->devnode;
  43}
  44
  45EXPORT_SYMBOL_GPL(spu_devnode);
  46
  47static u64 __init find_spu_unit_number(struct device_node *spe)
  48{
  49        const unsigned int *prop;
  50        int proplen;
  51
  52        /* new device trees should provide the physical-id attribute */
  53        prop = of_get_property(spe, "physical-id", &proplen);
  54        if (proplen == 4)
  55                return (u64)*prop;
  56
  57        /* celleb device tree provides the unit-id */
  58        prop = of_get_property(spe, "unit-id", &proplen);
  59        if (proplen == 4)
  60                return (u64)*prop;
  61
  62        /* legacy device trees provide the id in the reg attribute */
  63        prop = of_get_property(spe, "reg", &proplen);
  64        if (proplen == 4)
  65                return (u64)*prop;
  66
  67        return 0;
  68}
  69
  70static void spu_unmap(struct spu *spu)
  71{
  72        if (!firmware_has_feature(FW_FEATURE_LPAR))
  73                iounmap(spu->priv1);
  74        iounmap(spu->priv2);
  75        iounmap(spu->problem);
  76        iounmap((__force u8 __iomem *)spu->local_store);
  77}
  78
  79static int __init spu_map_interrupts_old(struct spu *spu,
  80        struct device_node *np)
  81{
  82        unsigned int isrc;
  83        const u32 *tmp;
  84        int nid;
  85
  86        /* Get the interrupt source unit from the device-tree */
  87        tmp = of_get_property(np, "isrc", NULL);
  88        if (!tmp)
  89                return -ENODEV;
  90        isrc = tmp[0];
  91
  92        tmp = of_get_property(np->parent->parent, "node-id", NULL);
  93        if (!tmp) {
  94                printk(KERN_WARNING "%s: can't find node-id\n", __func__);
  95                nid = spu->node;
  96        } else
  97                nid = tmp[0];
  98
  99        /* Add the node number */
 100        isrc |= nid << IIC_IRQ_NODE_SHIFT;
 101
 102        /* Now map interrupts of all 3 classes */
 103        spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
 104        spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
 105        spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
 106
 107        /* Right now, we only fail if class 2 failed */
 108        return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
 109}
 110
 111static void __iomem * __init spu_map_prop_old(struct spu *spu,
 112                                              struct device_node *n,
 113                                              const char *name)
 114{
 115        const struct address_prop {
 116                unsigned long address;
 117                unsigned int len;
 118        } __attribute__((packed)) *prop;
 119        int proplen;
 120
 121        prop = of_get_property(n, name, &proplen);
 122        if (prop == NULL || proplen != sizeof (struct address_prop))
 123                return NULL;
 124
 125        return ioremap(prop->address, prop->len);
 126}
 127
 128static int __init spu_map_device_old(struct spu *spu)
 129{
 130        struct device_node *node = spu->devnode;
 131        const char *prop;
 132        int ret;
 133
 134        ret = -ENODEV;
 135        spu->name = of_get_property(node, "name", NULL);
 136        if (!spu->name)
 137                goto out;
 138
 139        prop = of_get_property(node, "local-store", NULL);
 140        if (!prop)
 141                goto out;
 142        spu->local_store_phys = *(unsigned long *)prop;
 143
 144        /* we use local store as ram, not io memory */
 145        spu->local_store = (void __force *)
 146                spu_map_prop_old(spu, node, "local-store");
 147        if (!spu->local_store)
 148                goto out;
 149
 150        prop = of_get_property(node, "problem", NULL);
 151        if (!prop)
 152                goto out_unmap;
 153        spu->problem_phys = *(unsigned long *)prop;
 154
 155        spu->problem = spu_map_prop_old(spu, node, "problem");
 156        if (!spu->problem)
 157                goto out_unmap;
 158
 159        spu->priv2 = spu_map_prop_old(spu, node, "priv2");
 160        if (!spu->priv2)
 161                goto out_unmap;
 162
 163        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
 164                spu->priv1 = spu_map_prop_old(spu, node, "priv1");
 165                if (!spu->priv1)
 166                        goto out_unmap;
 167        }
 168
 169        ret = 0;
 170        goto out;
 171
 172out_unmap:
 173        spu_unmap(spu);
 174out:
 175        return ret;
 176}
 177
 178static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
 179{
 180        struct of_phandle_args oirq;
 181        int ret;
 182        int i;
 183
 184        for (i=0; i < 3; i++) {
 185                ret = of_irq_parse_one(np, i, &oirq);
 186                if (ret) {
 187                        pr_debug("spu_new: failed to get irq %d\n", i);
 188                        goto err;
 189                }
 190                ret = -EINVAL;
 191                pr_debug("  irq %d no 0x%x on %s\n", i, oirq.args[0],
 192                         oirq.np->full_name);
 193                spu->irqs[i] = irq_create_of_mapping(&oirq);
 194                if (spu->irqs[i] == NO_IRQ) {
 195                        pr_debug("spu_new: failed to map it !\n");
 196                        goto err;
 197                }
 198        }
 199        return 0;
 200
 201err:
 202        pr_debug("failed to map irq %x for spu %s\n", *oirq.args,
 203                spu->name);
 204        for (; i >= 0; i--) {
 205                if (spu->irqs[i] != NO_IRQ)
 206                        irq_dispose_mapping(spu->irqs[i]);
 207        }
 208        return ret;
 209}
 210
 211static int spu_map_resource(struct spu *spu, int nr,
 212                            void __iomem** virt, unsigned long *phys)
 213{
 214        struct device_node *np = spu->devnode;
 215        struct resource resource = { };
 216        unsigned long len;
 217        int ret;
 218
 219        ret = of_address_to_resource(np, nr, &resource);
 220        if (ret)
 221                return ret;
 222        if (phys)
 223                *phys = resource.start;
 224        len = resource_size(&resource);
 225        *virt = ioremap(resource.start, len);
 226        if (!*virt)
 227                return -EINVAL;
 228        return 0;
 229}
 230
 231static int __init spu_map_device(struct spu *spu)
 232{
 233        struct device_node *np = spu->devnode;
 234        int ret = -ENODEV;
 235
 236        spu->name = of_get_property(np, "name", NULL);
 237        if (!spu->name)
 238                goto out;
 239
 240        ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
 241                               &spu->local_store_phys);
 242        if (ret) {
 243                pr_debug("spu_new: failed to map %s resource 0\n",
 244                         np->full_name);
 245                goto out;
 246        }
 247        ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
 248                               &spu->problem_phys);
 249        if (ret) {
 250                pr_debug("spu_new: failed to map %s resource 1\n",
 251                         np->full_name);
 252                goto out_unmap;
 253        }
 254        ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
 255        if (ret) {
 256                pr_debug("spu_new: failed to map %s resource 2\n",
 257                         np->full_name);
 258                goto out_unmap;
 259        }
 260        if (!firmware_has_feature(FW_FEATURE_LPAR))
 261                ret = spu_map_resource(spu, 3,
 262                               (void __iomem**)&spu->priv1, NULL);
 263        if (ret) {
 264                pr_debug("spu_new: failed to map %s resource 3\n",
 265                         np->full_name);
 266                goto out_unmap;
 267        }
 268        pr_debug("spu_new: %s maps:\n", np->full_name);
 269        pr_debug("  local store   : 0x%016lx -> 0x%p\n",
 270                 spu->local_store_phys, spu->local_store);
 271        pr_debug("  problem state : 0x%016lx -> 0x%p\n",
 272                 spu->problem_phys, spu->problem);
 273        pr_debug("  priv2         :                       0x%p\n", spu->priv2);
 274        pr_debug("  priv1         :                       0x%p\n", spu->priv1);
 275
 276        return 0;
 277
 278out_unmap:
 279        spu_unmap(spu);
 280out:
 281        pr_debug("failed to map spe %s: %d\n", spu->name, ret);
 282        return ret;
 283}
 284
 285static int __init of_enumerate_spus(int (*fn)(void *data))
 286{
 287        int ret;
 288        struct device_node *node;
 289        unsigned int n = 0;
 290
 291        ret = -ENODEV;
 292        for (node = of_find_node_by_type(NULL, "spe");
 293                        node; node = of_find_node_by_type(node, "spe")) {
 294                ret = fn(node);
 295                if (ret) {
 296                        printk(KERN_WARNING "%s: Error initializing %s\n",
 297                                __func__, node->name);
 298                        break;
 299                }
 300                n++;
 301        }
 302        return ret ? ret : n;
 303}
 304
 305static int __init of_create_spu(struct spu *spu, void *data)
 306{
 307        int ret;
 308        struct device_node *spe = (struct device_node *)data;
 309        static int legacy_map = 0, legacy_irq = 0;
 310
 311        spu->devnode = of_node_get(spe);
 312        spu->spe_id = find_spu_unit_number(spe);
 313
 314        spu->node = of_node_to_nid(spe);
 315        if (spu->node >= MAX_NUMNODES) {
 316                printk(KERN_WARNING "SPE %s on node %d ignored,"
 317                       " node number too big\n", spe->full_name, spu->node);
 318                printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
 319                ret = -ENODEV;
 320                goto out;
 321        }
 322
 323        ret = spu_map_device(spu);
 324        if (ret) {
 325                if (!legacy_map) {
 326                        legacy_map = 1;
 327                        printk(KERN_WARNING "%s: Legacy device tree found, "
 328                                "trying to map old style\n", __func__);
 329                }
 330                ret = spu_map_device_old(spu);
 331                if (ret) {
 332                        printk(KERN_ERR "Unable to map %s\n",
 333                                spu->name);
 334                        goto out;
 335                }
 336        }
 337
 338        ret = spu_map_interrupts(spu, spe);
 339        if (ret) {
 340                if (!legacy_irq) {
 341                        legacy_irq = 1;
 342                        printk(KERN_WARNING "%s: Legacy device tree found, "
 343                                "trying old style irq\n", __func__);
 344                }
 345                ret = spu_map_interrupts_old(spu, spe);
 346                if (ret) {
 347                        printk(KERN_ERR "%s: could not map interrupts\n",
 348                                spu->name);
 349                        goto out_unmap;
 350                }
 351        }
 352
 353        pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
 354                spu->local_store, spu->problem, spu->priv1,
 355                spu->priv2, spu->number);
 356        goto out;
 357
 358out_unmap:
 359        spu_unmap(spu);
 360out:
 361        return ret;
 362}
 363
 364static int of_destroy_spu(struct spu *spu)
 365{
 366        spu_unmap(spu);
 367        of_node_put(spu->devnode);
 368        return 0;
 369}
 370
 371static void enable_spu_by_master_run(struct spu_context *ctx)
 372{
 373        ctx->ops->master_start(ctx);
 374}
 375
 376static void disable_spu_by_master_run(struct spu_context *ctx)
 377{
 378        ctx->ops->master_stop(ctx);
 379}
 380
 381/* Hardcoded affinity idxs for qs20 */
 382#define QS20_SPES_PER_BE 8
 383static int qs20_reg_idxs[QS20_SPES_PER_BE] =   { 0, 2, 4, 6, 7, 5, 3, 1 };
 384static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
 385
 386static struct spu *spu_lookup_reg(int node, u32 reg)
 387{
 388        struct spu *spu;
 389        const u32 *spu_reg;
 390
 391        list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 392                spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
 393                if (*spu_reg == reg)
 394                        return spu;
 395        }
 396        return NULL;
 397}
 398
 399static void init_affinity_qs20_harcoded(void)
 400{
 401        int node, i;
 402        struct spu *last_spu, *spu;
 403        u32 reg;
 404
 405        for (node = 0; node < MAX_NUMNODES; node++) {
 406                last_spu = NULL;
 407                for (i = 0; i < QS20_SPES_PER_BE; i++) {
 408                        reg = qs20_reg_idxs[i];
 409                        spu = spu_lookup_reg(node, reg);
 410                        if (!spu)
 411                                continue;
 412                        spu->has_mem_affinity = qs20_reg_memory[reg];
 413                        if (last_spu)
 414                                list_add_tail(&spu->aff_list,
 415                                                &last_spu->aff_list);
 416                        last_spu = spu;
 417                }
 418        }
 419}
 420
 421static int of_has_vicinity(void)
 422{
 423        struct device_node *dn;
 424
 425        for_each_node_by_type(dn, "spe") {
 426                if (of_find_property(dn, "vicinity", NULL))  {
 427                        of_node_put(dn);
 428                        return 1;
 429                }
 430        }
 431        return 0;
 432}
 433
 434static struct spu *devnode_spu(int cbe, struct device_node *dn)
 435{
 436        struct spu *spu;
 437
 438        list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
 439                if (spu_devnode(spu) == dn)
 440                        return spu;
 441        return NULL;
 442}
 443
 444static struct spu *
 445neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
 446{
 447        struct spu *spu;
 448        struct device_node *spu_dn;
 449        const phandle *vic_handles;
 450        int lenp, i;
 451
 452        list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
 453                spu_dn = spu_devnode(spu);
 454                if (spu_dn == avoid)
 455                        continue;
 456                vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
 457                for (i=0; i < (lenp / sizeof(phandle)); i++) {
 458                        if (vic_handles[i] == target->phandle)
 459                                return spu;
 460                }
 461        }
 462        return NULL;
 463}
 464
 465static void init_affinity_node(int cbe)
 466{
 467        struct spu *spu, *last_spu;
 468        struct device_node *vic_dn, *last_spu_dn;
 469        phandle avoid_ph;
 470        const phandle *vic_handles;
 471        const char *name;
 472        int lenp, i, added;
 473
 474        last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
 475                                                                cbe_list);
 476        avoid_ph = 0;
 477        for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
 478                last_spu_dn = spu_devnode(last_spu);
 479                vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
 480
 481                /*
 482                 * Walk through each phandle in vicinity property of the spu
 483                 * (tipically two vicinity phandles per spe node)
 484                 */
 485                for (i = 0; i < (lenp / sizeof(phandle)); i++) {
 486                        if (vic_handles[i] == avoid_ph)
 487                                continue;
 488
 489                        vic_dn = of_find_node_by_phandle(vic_handles[i]);
 490                        if (!vic_dn)
 491                                continue;
 492
 493                        /* a neighbour might be spe, mic-tm, or bif0 */
 494                        name = of_get_property(vic_dn, "name", NULL);
 495                        if (!name)
 496                                continue;
 497
 498                        if (strcmp(name, "spe") == 0) {
 499                                spu = devnode_spu(cbe, vic_dn);
 500                                avoid_ph = last_spu_dn->phandle;
 501                        } else {
 502                                /*
 503                                 * "mic-tm" and "bif0" nodes do not have
 504                                 * vicinity property. So we need to find the
 505                                 * spe which has vic_dn as neighbour, but
 506                                 * skipping the one we came from (last_spu_dn)
 507                                 */
 508                                spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
 509                                if (!spu)
 510                                        continue;
 511                                if (!strcmp(name, "mic-tm")) {
 512                                        last_spu->has_mem_affinity = 1;
 513                                        spu->has_mem_affinity = 1;
 514                                }
 515                                avoid_ph = vic_dn->phandle;
 516                        }
 517
 518                        list_add_tail(&spu->aff_list, &last_spu->aff_list);
 519                        last_spu = spu;
 520                        break;
 521                }
 522        }
 523}
 524
 525static void init_affinity_fw(void)
 526{
 527        int cbe;
 528
 529        for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
 530                init_affinity_node(cbe);
 531}
 532
 533static int __init init_affinity(void)
 534{
 535        if (of_has_vicinity()) {
 536                init_affinity_fw();
 537        } else {
 538                long root = of_get_flat_dt_root();
 539                if (of_flat_dt_is_compatible(root, "IBM,CPBW-1.0"))
 540                        init_affinity_qs20_harcoded();
 541                else
 542                        printk("No affinity configuration found\n");
 543        }
 544
 545        return 0;
 546}
 547
 548const struct spu_management_ops spu_management_of_ops = {
 549        .enumerate_spus = of_enumerate_spus,
 550        .create_spu = of_create_spu,
 551        .destroy_spu = of_destroy_spu,
 552        .enable_spu = enable_spu_by_master_run,
 553        .disable_spu = disable_spu_by_master_run,
 554        .init_affinity = init_affinity,
 555};
 556