linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 *  S390 version
   3 *    Copyright IBM Corp. 1999, 2000
   4 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   5 *               Ulrich Weigand (weigand@de.ibm.com)
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 *
   8 *  Derived from "include/asm-i386/pgtable.h"
   9 */
  10
  11#ifndef _ASM_S390_PGTABLE_H
  12#define _ASM_S390_PGTABLE_H
  13
  14/*
  15 * The Linux memory management assumes a three-level page table setup.
  16 * For s390 64 bit we use up to four of the five levels the hardware
  17 * provides (region first tables are not used).
  18 *
  19 * The "pgd_xxx()" functions are trivial for a folded two-level
  20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  21 * into the pgd entry)
  22 *
  23 * This file contains the functions and defines necessary to modify and use
  24 * the S390 page table tree.
  25 */
  26#ifndef __ASSEMBLY__
  27#include <linux/sched.h>
  28#include <linux/mm_types.h>
  29#include <linux/page-flags.h>
  30#include <linux/radix-tree.h>
  31#include <asm/bug.h>
  32#include <asm/page.h>
  33
  34extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  35extern void paging_init(void);
  36extern void vmem_map_init(void);
  37
  38/*
  39 * The S390 doesn't have any external MMU info: the kernel page
  40 * tables contain all the necessary information.
  41 */
  42#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  43#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  44
  45/*
  46 * ZERO_PAGE is a global shared page that is always zero; used
  47 * for zero-mapped memory areas etc..
  48 */
  49
  50extern unsigned long empty_zero_page;
  51extern unsigned long zero_page_mask;
  52
  53#define ZERO_PAGE(vaddr) \
  54        (virt_to_page((void *)(empty_zero_page + \
  55         (((unsigned long)(vaddr)) &zero_page_mask))))
  56#define __HAVE_COLOR_ZERO_PAGE
  57
  58/* TODO: s390 cannot support io_remap_pfn_range... */
  59#endif /* !__ASSEMBLY__ */
  60
  61/*
  62 * PMD_SHIFT determines the size of the area a second-level page
  63 * table can map
  64 * PGDIR_SHIFT determines what a third-level page table entry can map
  65 */
  66#define PMD_SHIFT       20
  67#define PUD_SHIFT       31
  68#define PGDIR_SHIFT     42
  69
  70#define PMD_SIZE        (1UL << PMD_SHIFT)
  71#define PMD_MASK        (~(PMD_SIZE-1))
  72#define PUD_SIZE        (1UL << PUD_SHIFT)
  73#define PUD_MASK        (~(PUD_SIZE-1))
  74#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  75#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  76
  77/*
  78 * entries per page directory level: the S390 is two-level, so
  79 * we don't really have any PMD directory physically.
  80 * for S390 segment-table entries are combined to one PGD
  81 * that leads to 1024 pte per pgd
  82 */
  83#define PTRS_PER_PTE    256
  84#define PTRS_PER_PMD    2048
  85#define PTRS_PER_PUD    2048
  86#define PTRS_PER_PGD    2048
  87
  88#define FIRST_USER_ADDRESS  0UL
  89
  90#define pte_ERROR(e) \
  91        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  92#define pmd_ERROR(e) \
  93        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  94#define pud_ERROR(e) \
  95        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  96#define pgd_ERROR(e) \
  97        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  98
  99#ifndef __ASSEMBLY__
 100/*
 101 * The vmalloc and module area will always be on the topmost area of the
 102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
 103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
 104 * modules will reside. That makes sure that inter module branches always
 105 * happen without trampolines and in addition the placement within a 2GB frame
 106 * is branch prediction unit friendly.
 107 */
 108extern unsigned long VMALLOC_START;
 109extern unsigned long VMALLOC_END;
 110extern struct page *vmemmap;
 111
 112#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
 113
 114extern unsigned long MODULES_VADDR;
 115extern unsigned long MODULES_END;
 116#define MODULES_VADDR   MODULES_VADDR
 117#define MODULES_END     MODULES_END
 118#define MODULES_LEN     (1UL << 31)
 119
 120static inline int is_module_addr(void *addr)
 121{
 122        BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 123        if (addr < (void *)MODULES_VADDR)
 124                return 0;
 125        if (addr > (void *)MODULES_END)
 126                return 0;
 127        return 1;
 128}
 129
 130/*
 131 * A 64 bit pagetable entry of S390 has following format:
 132 * |                     PFRA                         |0IPC|  OS  |
 133 * 0000000000111111111122222222223333333333444444444455555555556666
 134 * 0123456789012345678901234567890123456789012345678901234567890123
 135 *
 136 * I Page-Invalid Bit:    Page is not available for address-translation
 137 * P Page-Protection Bit: Store access not possible for page
 138 * C Change-bit override: HW is not required to set change bit
 139 *
 140 * A 64 bit segmenttable entry of S390 has following format:
 141 * |        P-table origin                              |      TT
 142 * 0000000000111111111122222222223333333333444444444455555555556666
 143 * 0123456789012345678901234567890123456789012345678901234567890123
 144 *
 145 * I Segment-Invalid Bit:    Segment is not available for address-translation
 146 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 147 * P Page-Protection Bit: Store access not possible for page
 148 * TT Type 00
 149 *
 150 * A 64 bit region table entry of S390 has following format:
 151 * |        S-table origin                             |   TF  TTTL
 152 * 0000000000111111111122222222223333333333444444444455555555556666
 153 * 0123456789012345678901234567890123456789012345678901234567890123
 154 *
 155 * I Segment-Invalid Bit:    Segment is not available for address-translation
 156 * TT Type 01
 157 * TF
 158 * TL Table length
 159 *
 160 * The 64 bit regiontable origin of S390 has following format:
 161 * |      region table origon                          |       DTTL
 162 * 0000000000111111111122222222223333333333444444444455555555556666
 163 * 0123456789012345678901234567890123456789012345678901234567890123
 164 *
 165 * X Space-Switch event:
 166 * G Segment-Invalid Bit:  
 167 * P Private-Space Bit:    
 168 * S Storage-Alteration:
 169 * R Real space
 170 * TL Table-Length:
 171 *
 172 * A storage key has the following format:
 173 * | ACC |F|R|C|0|
 174 *  0   3 4 5 6 7
 175 * ACC: access key
 176 * F  : fetch protection bit
 177 * R  : referenced bit
 178 * C  : changed bit
 179 */
 180
 181/* Hardware bits in the page table entry */
 182#define _PAGE_PROTECT   0x200           /* HW read-only bit  */
 183#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 184#define _PAGE_LARGE     0x800           /* Bit to mark a large pte */
 185
 186/* Software bits in the page table entry */
 187#define _PAGE_PRESENT   0x001           /* SW pte present bit */
 188#define _PAGE_YOUNG     0x004           /* SW pte young bit */
 189#define _PAGE_DIRTY     0x008           /* SW pte dirty bit */
 190#define _PAGE_READ      0x010           /* SW pte read bit */
 191#define _PAGE_WRITE     0x020           /* SW pte write bit */
 192#define _PAGE_SPECIAL   0x040           /* SW associated with special page */
 193#define _PAGE_UNUSED    0x080           /* SW bit for pgste usage state */
 194#define __HAVE_ARCH_PTE_SPECIAL
 195
 196#ifdef CONFIG_MEM_SOFT_DIRTY
 197#define _PAGE_SOFT_DIRTY 0x002          /* SW pte soft dirty bit */
 198#else
 199#define _PAGE_SOFT_DIRTY 0x000
 200#endif
 201
 202/* Set of bits not changed in pte_modify */
 203#define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 204                                 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 205
 206/*
 207 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 209 * distinguish present from not-present ptes. It is changed only with the page
 210 * table lock held.
 211 *
 212 * The following table gives the different possible bit combinations for
 213 * the pte hardware and software bits in the last 12 bits of a pte
 214 * (. unassigned bit, x don't care, t swap type):
 215 *
 216 *                              842100000000
 217 *                              000084210000
 218 *                              000000008421
 219 *                              .IR.uswrdy.p
 220 * empty                        .10.00000000
 221 * swap                         .11..ttttt.0
 222 * prot-none, clean, old        .11.xx0000.1
 223 * prot-none, clean, young      .11.xx0001.1
 224 * prot-none, dirty, old        .10.xx0010.1
 225 * prot-none, dirty, young      .10.xx0011.1
 226 * read-only, clean, old        .11.xx0100.1
 227 * read-only, clean, young      .01.xx0101.1
 228 * read-only, dirty, old        .11.xx0110.1
 229 * read-only, dirty, young      .01.xx0111.1
 230 * read-write, clean, old       .11.xx1100.1
 231 * read-write, clean, young     .01.xx1101.1
 232 * read-write, dirty, old       .10.xx1110.1
 233 * read-write, dirty, young     .00.xx1111.1
 234 * HW-bits: R read-only, I invalid
 235 * SW-bits: p present, y young, d dirty, r read, w write, s special,
 236 *          u unused, l large
 237 *
 238 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 239 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 241 */
 242
 243/* Bits in the segment/region table address-space-control-element */
 244#define _ASCE_ORIGIN            ~0xfffUL/* segment table origin             */
 245#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 246#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 247#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 248#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 249#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 250#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 251#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 252#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 253#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 254#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 255
 256/* Bits in the region table entry */
 257#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 258#define _REGION_ENTRY_PROTECT   0x200   /* region protection bit            */
 259#define _REGION_ENTRY_INVALID   0x20    /* invalid region table entry       */
 260#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region/segment table type mask   */
 261#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 262#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 263#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 264#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 265
 266#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 267#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 268#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 269#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 270#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 271#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 272
 273#define _REGION3_ENTRY_LARGE    0x400   /* RTTE-format control, large page  */
 274#define _REGION3_ENTRY_RO       0x200   /* page protection bit              */
 275
 276/* Bits in the segment table entry */
 277#define _SEGMENT_ENTRY_BITS     0xfffffffffffffe33UL
 278#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
 279#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 280#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* segment table origin             */
 281#define _SEGMENT_ENTRY_PROTECT  0x200   /* page protection bit              */
 282#define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 283
 284#define _SEGMENT_ENTRY          (0)
 285#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 286
 287#define _SEGMENT_ENTRY_DIRTY    0x2000  /* SW segment dirty bit */
 288#define _SEGMENT_ENTRY_YOUNG    0x1000  /* SW segment young bit */
 289#define _SEGMENT_ENTRY_LARGE    0x0400  /* STE-format control, large page */
 290#define _SEGMENT_ENTRY_READ     0x0002  /* SW segment read bit */
 291#define _SEGMENT_ENTRY_WRITE    0x0001  /* SW segment write bit */
 292
 293#ifdef CONFIG_MEM_SOFT_DIRTY
 294#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 295#else
 296#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 297#endif
 298
 299/*
 300 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
 301 *                              dy..R...I...wr
 302 * prot-none, clean, old        00..1...1...00
 303 * prot-none, clean, young      01..1...1...00
 304 * prot-none, dirty, old        10..1...1...00
 305 * prot-none, dirty, young      11..1...1...00
 306 * read-only, clean, old        00..1...1...01
 307 * read-only, clean, young      01..1...0...01
 308 * read-only, dirty, old        10..1...1...01
 309 * read-only, dirty, young      11..1...0...01
 310 * read-write, clean, old       00..1...1...11
 311 * read-write, clean, young     01..1...0...11
 312 * read-write, dirty, old       10..0...1...11
 313 * read-write, dirty, young     11..0...0...11
 314 * The segment table origin is used to distinguish empty (origin==0) from
 315 * read-write, old segment table entries (origin!=0)
 316 * HW-bits: R read-only, I invalid
 317 * SW-bits: y young, d dirty, r read, w write
 318 */
 319
 320/* Page status table bits for virtualization */
 321#define PGSTE_ACC_BITS  0xf000000000000000UL
 322#define PGSTE_FP_BIT    0x0800000000000000UL
 323#define PGSTE_PCL_BIT   0x0080000000000000UL
 324#define PGSTE_HR_BIT    0x0040000000000000UL
 325#define PGSTE_HC_BIT    0x0020000000000000UL
 326#define PGSTE_GR_BIT    0x0004000000000000UL
 327#define PGSTE_GC_BIT    0x0002000000000000UL
 328#define PGSTE_UC_BIT    0x0000800000000000UL    /* user dirty (migration) */
 329#define PGSTE_IN_BIT    0x0000400000000000UL    /* IPTE notify bit */
 330
 331/* Guest Page State used for virtualization */
 332#define _PGSTE_GPS_ZERO         0x0000000080000000UL
 333#define _PGSTE_GPS_USAGE_MASK   0x0000000003000000UL
 334#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
 335#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
 336
 337/*
 338 * A user page table pointer has the space-switch-event bit, the
 339 * private-space-control bit and the storage-alteration-event-control
 340 * bit set. A kernel page table pointer doesn't need them.
 341 */
 342#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 343                                 _ASCE_ALT_EVENT)
 344
 345/*
 346 * Page protection definitions.
 347 */
 348#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
 349#define PAGE_READ       __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 350                                 _PAGE_INVALID | _PAGE_PROTECT)
 351#define PAGE_WRITE      __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 352                                 _PAGE_INVALID | _PAGE_PROTECT)
 353
 354#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 355                                 _PAGE_YOUNG | _PAGE_DIRTY)
 356#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 357                                 _PAGE_YOUNG | _PAGE_DIRTY)
 358#define PAGE_KERNEL_RO  __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 359                                 _PAGE_PROTECT)
 360
 361/*
 362 * On s390 the page table entry has an invalid bit and a read-only bit.
 363 * Read permission implies execute permission and write permission
 364 * implies read permission.
 365 */
 366         /*xwr*/
 367#define __P000  PAGE_NONE
 368#define __P001  PAGE_READ
 369#define __P010  PAGE_READ
 370#define __P011  PAGE_READ
 371#define __P100  PAGE_READ
 372#define __P101  PAGE_READ
 373#define __P110  PAGE_READ
 374#define __P111  PAGE_READ
 375
 376#define __S000  PAGE_NONE
 377#define __S001  PAGE_READ
 378#define __S010  PAGE_WRITE
 379#define __S011  PAGE_WRITE
 380#define __S100  PAGE_READ
 381#define __S101  PAGE_READ
 382#define __S110  PAGE_WRITE
 383#define __S111  PAGE_WRITE
 384
 385/*
 386 * Segment entry (large page) protection definitions.
 387 */
 388#define SEGMENT_NONE    __pgprot(_SEGMENT_ENTRY_INVALID | \
 389                                 _SEGMENT_ENTRY_PROTECT)
 390#define SEGMENT_READ    __pgprot(_SEGMENT_ENTRY_PROTECT | \
 391                                 _SEGMENT_ENTRY_READ)
 392#define SEGMENT_WRITE   __pgprot(_SEGMENT_ENTRY_READ | \
 393                                 _SEGMENT_ENTRY_WRITE)
 394
 395static inline int mm_has_pgste(struct mm_struct *mm)
 396{
 397#ifdef CONFIG_PGSTE
 398        if (unlikely(mm->context.has_pgste))
 399                return 1;
 400#endif
 401        return 0;
 402}
 403
 404static inline int mm_alloc_pgste(struct mm_struct *mm)
 405{
 406#ifdef CONFIG_PGSTE
 407        if (unlikely(mm->context.alloc_pgste))
 408                return 1;
 409#endif
 410        return 0;
 411}
 412
 413/*
 414 * In the case that a guest uses storage keys
 415 * faults should no longer be backed by zero pages
 416 */
 417#define mm_forbids_zeropage mm_use_skey
 418static inline int mm_use_skey(struct mm_struct *mm)
 419{
 420#ifdef CONFIG_PGSTE
 421        if (mm->context.use_skey)
 422                return 1;
 423#endif
 424        return 0;
 425}
 426
 427/*
 428 * pgd/pmd/pte query functions
 429 */
 430static inline int pgd_present(pgd_t pgd)
 431{
 432        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 433                return 1;
 434        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 435}
 436
 437static inline int pgd_none(pgd_t pgd)
 438{
 439        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 440                return 0;
 441        return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 442}
 443
 444static inline int pgd_bad(pgd_t pgd)
 445{
 446        /*
 447         * With dynamic page table levels the pgd can be a region table
 448         * entry or a segment table entry. Check for the bit that are
 449         * invalid for either table entry.
 450         */
 451        unsigned long mask =
 452                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
 453                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 454        return (pgd_val(pgd) & mask) != 0;
 455}
 456
 457static inline int pud_present(pud_t pud)
 458{
 459        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 460                return 1;
 461        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 462}
 463
 464static inline int pud_none(pud_t pud)
 465{
 466        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 467                return 0;
 468        return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
 469}
 470
 471static inline int pud_large(pud_t pud)
 472{
 473        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 474                return 0;
 475        return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 476}
 477
 478static inline int pud_bad(pud_t pud)
 479{
 480        /*
 481         * With dynamic page table levels the pud can be a region table
 482         * entry or a segment table entry. Check for the bit that are
 483         * invalid for either table entry.
 484         */
 485        unsigned long mask =
 486                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
 487                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 488        return (pud_val(pud) & mask) != 0;
 489}
 490
 491static inline int pmd_present(pmd_t pmd)
 492{
 493        return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
 494}
 495
 496static inline int pmd_none(pmd_t pmd)
 497{
 498        return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
 499}
 500
 501static inline int pmd_large(pmd_t pmd)
 502{
 503        return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 504}
 505
 506static inline unsigned long pmd_pfn(pmd_t pmd)
 507{
 508        unsigned long origin_mask;
 509
 510        origin_mask = _SEGMENT_ENTRY_ORIGIN;
 511        if (pmd_large(pmd))
 512                origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
 513        return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
 514}
 515
 516static inline int pmd_bad(pmd_t pmd)
 517{
 518        if (pmd_large(pmd))
 519                return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
 520        return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 521}
 522
 523#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 524extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 525                                 unsigned long address, pmd_t *pmdp,
 526                                 pmd_t entry, int dirty);
 527
 528#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 529extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 530                                  unsigned long address, pmd_t *pmdp);
 531
 532#define __HAVE_ARCH_PMD_WRITE
 533static inline int pmd_write(pmd_t pmd)
 534{
 535        return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 536}
 537
 538static inline int pmd_dirty(pmd_t pmd)
 539{
 540        int dirty = 1;
 541        if (pmd_large(pmd))
 542                dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 543        return dirty;
 544}
 545
 546static inline int pmd_young(pmd_t pmd)
 547{
 548        int young = 1;
 549        if (pmd_large(pmd))
 550                young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 551        return young;
 552}
 553
 554static inline int pte_present(pte_t pte)
 555{
 556        /* Bit pattern: (pte & 0x001) == 0x001 */
 557        return (pte_val(pte) & _PAGE_PRESENT) != 0;
 558}
 559
 560static inline int pte_none(pte_t pte)
 561{
 562        /* Bit pattern: pte == 0x400 */
 563        return pte_val(pte) == _PAGE_INVALID;
 564}
 565
 566static inline int pte_swap(pte_t pte)
 567{
 568        /* Bit pattern: (pte & 0x201) == 0x200 */
 569        return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 570                == _PAGE_PROTECT;
 571}
 572
 573static inline int pte_special(pte_t pte)
 574{
 575        return (pte_val(pte) & _PAGE_SPECIAL);
 576}
 577
 578#define __HAVE_ARCH_PTE_SAME
 579static inline int pte_same(pte_t a, pte_t b)
 580{
 581        return pte_val(a) == pte_val(b);
 582}
 583
 584#ifdef CONFIG_NUMA_BALANCING
 585static inline int pte_protnone(pte_t pte)
 586{
 587        return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 588}
 589
 590static inline int pmd_protnone(pmd_t pmd)
 591{
 592        /* pmd_large(pmd) implies pmd_present(pmd) */
 593        return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 594}
 595#endif
 596
 597static inline int pte_soft_dirty(pte_t pte)
 598{
 599        return pte_val(pte) & _PAGE_SOFT_DIRTY;
 600}
 601#define pte_swp_soft_dirty pte_soft_dirty
 602
 603static inline pte_t pte_mksoft_dirty(pte_t pte)
 604{
 605        pte_val(pte) |= _PAGE_SOFT_DIRTY;
 606        return pte;
 607}
 608#define pte_swp_mksoft_dirty pte_mksoft_dirty
 609
 610static inline pte_t pte_clear_soft_dirty(pte_t pte)
 611{
 612        pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
 613        return pte;
 614}
 615#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 616
 617static inline int pmd_soft_dirty(pmd_t pmd)
 618{
 619        return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 620}
 621
 622static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 623{
 624        pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
 625        return pmd;
 626}
 627
 628static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 629{
 630        pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
 631        return pmd;
 632}
 633
 634static inline pgste_t pgste_get_lock(pte_t *ptep)
 635{
 636        unsigned long new = 0;
 637#ifdef CONFIG_PGSTE
 638        unsigned long old;
 639
 640        preempt_disable();
 641        asm(
 642                "       lg      %0,%2\n"
 643                "0:     lgr     %1,%0\n"
 644                "       nihh    %0,0xff7f\n"    /* clear PCL bit in old */
 645                "       oihh    %1,0x0080\n"    /* set PCL bit in new */
 646                "       csg     %0,%1,%2\n"
 647                "       jl      0b\n"
 648                : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
 649                : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
 650#endif
 651        return __pgste(new);
 652}
 653
 654static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
 655{
 656#ifdef CONFIG_PGSTE
 657        asm(
 658                "       nihh    %1,0xff7f\n"    /* clear PCL bit */
 659                "       stg     %1,%0\n"
 660                : "=Q" (ptep[PTRS_PER_PTE])
 661                : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
 662                : "cc", "memory");
 663        preempt_enable();
 664#endif
 665}
 666
 667static inline pgste_t pgste_get(pte_t *ptep)
 668{
 669        unsigned long pgste = 0;
 670#ifdef CONFIG_PGSTE
 671        pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
 672#endif
 673        return __pgste(pgste);
 674}
 675
 676static inline void pgste_set(pte_t *ptep, pgste_t pgste)
 677{
 678#ifdef CONFIG_PGSTE
 679        *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
 680#endif
 681}
 682
 683static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
 684                                       struct mm_struct *mm)
 685{
 686#ifdef CONFIG_PGSTE
 687        unsigned long address, bits, skey;
 688
 689        if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
 690                return pgste;
 691        address = pte_val(*ptep) & PAGE_MASK;
 692        skey = (unsigned long) page_get_storage_key(address);
 693        bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
 694        /* Transfer page changed & referenced bit to guest bits in pgste */
 695        pgste_val(pgste) |= bits << 48;         /* GR bit & GC bit */
 696        /* Copy page access key and fetch protection bit to pgste */
 697        pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
 698        pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
 699#endif
 700        return pgste;
 701
 702}
 703
 704static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
 705                                 struct mm_struct *mm)
 706{
 707#ifdef CONFIG_PGSTE
 708        unsigned long address;
 709        unsigned long nkey;
 710
 711        if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
 712                return;
 713        VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
 714        address = pte_val(entry) & PAGE_MASK;
 715        /*
 716         * Set page access key and fetch protection bit from pgste.
 717         * The guest C/R information is still in the PGSTE, set real
 718         * key C/R to 0.
 719         */
 720        nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
 721        nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
 722        page_set_storage_key(address, nkey, 0);
 723#endif
 724}
 725
 726static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
 727{
 728        if ((pte_val(entry) & _PAGE_PRESENT) &&
 729            (pte_val(entry) & _PAGE_WRITE) &&
 730            !(pte_val(entry) & _PAGE_INVALID)) {
 731                if (!MACHINE_HAS_ESOP) {
 732                        /*
 733                         * Without enhanced suppression-on-protection force
 734                         * the dirty bit on for all writable ptes.
 735                         */
 736                        pte_val(entry) |= _PAGE_DIRTY;
 737                        pte_val(entry) &= ~_PAGE_PROTECT;
 738                }
 739                if (!(pte_val(entry) & _PAGE_PROTECT))
 740                        /* This pte allows write access, set user-dirty */
 741                        pgste_val(pgste) |= PGSTE_UC_BIT;
 742        }
 743        *ptep = entry;
 744        return pgste;
 745}
 746
 747/**
 748 * struct gmap_struct - guest address space
 749 * @crst_list: list of all crst tables used in the guest address space
 750 * @mm: pointer to the parent mm_struct
 751 * @guest_to_host: radix tree with guest to host address translation
 752 * @host_to_guest: radix tree with pointer to segment table entries
 753 * @guest_table_lock: spinlock to protect all entries in the guest page table
 754 * @table: pointer to the page directory
 755 * @asce: address space control element for gmap page table
 756 * @pfault_enabled: defines if pfaults are applicable for the guest
 757 */
 758struct gmap {
 759        struct list_head list;
 760        struct list_head crst_list;
 761        struct mm_struct *mm;
 762        struct radix_tree_root guest_to_host;
 763        struct radix_tree_root host_to_guest;
 764        spinlock_t guest_table_lock;
 765        unsigned long *table;
 766        unsigned long asce;
 767        unsigned long asce_end;
 768        void *private;
 769        bool pfault_enabled;
 770};
 771
 772/**
 773 * struct gmap_notifier - notify function block for page invalidation
 774 * @notifier_call: address of callback function
 775 */
 776struct gmap_notifier {
 777        struct list_head list;
 778        void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
 779};
 780
 781struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
 782void gmap_free(struct gmap *gmap);
 783void gmap_enable(struct gmap *gmap);
 784void gmap_disable(struct gmap *gmap);
 785int gmap_map_segment(struct gmap *gmap, unsigned long from,
 786                     unsigned long to, unsigned long len);
 787int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
 788unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
 789unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
 790int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
 791int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
 792void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
 793void __gmap_zap(struct gmap *, unsigned long gaddr);
 794bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
 795
 796
 797void gmap_register_ipte_notifier(struct gmap_notifier *);
 798void gmap_unregister_ipte_notifier(struct gmap_notifier *);
 799int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
 800void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
 801
 802static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
 803                                        unsigned long addr,
 804                                        pte_t *ptep, pgste_t pgste)
 805{
 806#ifdef CONFIG_PGSTE
 807        if (pgste_val(pgste) & PGSTE_IN_BIT) {
 808                pgste_val(pgste) &= ~PGSTE_IN_BIT;
 809                gmap_do_ipte_notify(mm, addr, ptep);
 810        }
 811#endif
 812        return pgste;
 813}
 814
 815/*
 816 * Certain architectures need to do special things when PTEs
 817 * within a page table are directly modified.  Thus, the following
 818 * hook is made available.
 819 */
 820static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 821                              pte_t *ptep, pte_t entry)
 822{
 823        pgste_t pgste;
 824
 825        if (mm_has_pgste(mm)) {
 826                pgste = pgste_get_lock(ptep);
 827                pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
 828                pgste_set_key(ptep, pgste, entry, mm);
 829                pgste = pgste_set_pte(ptep, pgste, entry);
 830                pgste_set_unlock(ptep, pgste);
 831        } else {
 832                *ptep = entry;
 833        }
 834}
 835
 836/*
 837 * query functions pte_write/pte_dirty/pte_young only work if
 838 * pte_present() is true. Undefined behaviour if not..
 839 */
 840static inline int pte_write(pte_t pte)
 841{
 842        return (pte_val(pte) & _PAGE_WRITE) != 0;
 843}
 844
 845static inline int pte_dirty(pte_t pte)
 846{
 847        return (pte_val(pte) & _PAGE_DIRTY) != 0;
 848}
 849
 850static inline int pte_young(pte_t pte)
 851{
 852        return (pte_val(pte) & _PAGE_YOUNG) != 0;
 853}
 854
 855#define __HAVE_ARCH_PTE_UNUSED
 856static inline int pte_unused(pte_t pte)
 857{
 858        return pte_val(pte) & _PAGE_UNUSED;
 859}
 860
 861/*
 862 * pgd/pmd/pte modification functions
 863 */
 864
 865static inline void pgd_clear(pgd_t *pgd)
 866{
 867        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 868                pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 869}
 870
 871static inline void pud_clear(pud_t *pud)
 872{
 873        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 874                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 875}
 876
 877static inline void pmd_clear(pmd_t *pmdp)
 878{
 879        pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
 880}
 881
 882static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 883{
 884        pte_val(*ptep) = _PAGE_INVALID;
 885}
 886
 887/*
 888 * The following pte modification functions only work if
 889 * pte_present() is true. Undefined behaviour if not..
 890 */
 891static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 892{
 893        pte_val(pte) &= _PAGE_CHG_MASK;
 894        pte_val(pte) |= pgprot_val(newprot);
 895        /*
 896         * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
 897         * invalid bit set, clear it again for readable, young pages
 898         */
 899        if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 900                pte_val(pte) &= ~_PAGE_INVALID;
 901        /*
 902         * newprot for PAGE_READ and PAGE_WRITE has the page protection
 903         * bit set, clear it again for writable, dirty pages
 904         */
 905        if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 906                pte_val(pte) &= ~_PAGE_PROTECT;
 907        return pte;
 908}
 909
 910static inline pte_t pte_wrprotect(pte_t pte)
 911{
 912        pte_val(pte) &= ~_PAGE_WRITE;
 913        pte_val(pte) |= _PAGE_PROTECT;
 914        return pte;
 915}
 916
 917static inline pte_t pte_mkwrite(pte_t pte)
 918{
 919        pte_val(pte) |= _PAGE_WRITE;
 920        if (pte_val(pte) & _PAGE_DIRTY)
 921                pte_val(pte) &= ~_PAGE_PROTECT;
 922        return pte;
 923}
 924
 925static inline pte_t pte_mkclean(pte_t pte)
 926{
 927        pte_val(pte) &= ~_PAGE_DIRTY;
 928        pte_val(pte) |= _PAGE_PROTECT;
 929        return pte;
 930}
 931
 932static inline pte_t pte_mkdirty(pte_t pte)
 933{
 934        pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
 935        if (pte_val(pte) & _PAGE_WRITE)
 936                pte_val(pte) &= ~_PAGE_PROTECT;
 937        return pte;
 938}
 939
 940static inline pte_t pte_mkold(pte_t pte)
 941{
 942        pte_val(pte) &= ~_PAGE_YOUNG;
 943        pte_val(pte) |= _PAGE_INVALID;
 944        return pte;
 945}
 946
 947static inline pte_t pte_mkyoung(pte_t pte)
 948{
 949        pte_val(pte) |= _PAGE_YOUNG;
 950        if (pte_val(pte) & _PAGE_READ)
 951                pte_val(pte) &= ~_PAGE_INVALID;
 952        return pte;
 953}
 954
 955static inline pte_t pte_mkspecial(pte_t pte)
 956{
 957        pte_val(pte) |= _PAGE_SPECIAL;
 958        return pte;
 959}
 960
 961#ifdef CONFIG_HUGETLB_PAGE
 962static inline pte_t pte_mkhuge(pte_t pte)
 963{
 964        pte_val(pte) |= _PAGE_LARGE;
 965        return pte;
 966}
 967#endif
 968
 969static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
 970{
 971        unsigned long pto = (unsigned long) ptep;
 972
 973        /* Invalidation + global TLB flush for the pte */
 974        asm volatile(
 975                "       ipte    %2,%3"
 976                : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
 977}
 978
 979static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
 980{
 981        unsigned long pto = (unsigned long) ptep;
 982
 983        /* Invalidation + local TLB flush for the pte */
 984        asm volatile(
 985                "       .insn rrf,0xb2210000,%2,%3,0,1"
 986                : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
 987}
 988
 989static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
 990{
 991        unsigned long pto = (unsigned long) ptep;
 992
 993        /* Invalidate a range of ptes + global TLB flush of the ptes */
 994        do {
 995                asm volatile(
 996                        "       .insn rrf,0xb2210000,%2,%0,%1,0"
 997                        : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
 998        } while (nr != 255);
 999}
1000
1001static inline void ptep_flush_direct(struct mm_struct *mm,
1002                                     unsigned long address, pte_t *ptep)
1003{
1004        int active, count;
1005
1006        if (pte_val(*ptep) & _PAGE_INVALID)
1007                return;
1008        active = (mm == current->active_mm) ? 1 : 0;
1009        count = atomic_add_return(0x10000, &mm->context.attach_count);
1010        if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1011            cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1012                __ptep_ipte_local(address, ptep);
1013        else
1014                __ptep_ipte(address, ptep);
1015        atomic_sub(0x10000, &mm->context.attach_count);
1016}
1017
1018static inline void ptep_flush_lazy(struct mm_struct *mm,
1019                                   unsigned long address, pte_t *ptep)
1020{
1021        int active, count;
1022
1023        if (pte_val(*ptep) & _PAGE_INVALID)
1024                return;
1025        active = (mm == current->active_mm) ? 1 : 0;
1026        count = atomic_add_return(0x10000, &mm->context.attach_count);
1027        if ((count & 0xffff) <= active) {
1028                pte_val(*ptep) |= _PAGE_INVALID;
1029                mm->context.flush_mm = 1;
1030        } else
1031                __ptep_ipte(address, ptep);
1032        atomic_sub(0x10000, &mm->context.attach_count);
1033}
1034
1035/*
1036 * Get (and clear) the user dirty bit for a pte.
1037 */
1038static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1039                                                 unsigned long addr,
1040                                                 pte_t *ptep)
1041{
1042        pgste_t pgste;
1043        pte_t pte;
1044        int dirty;
1045
1046        if (!mm_has_pgste(mm))
1047                return 0;
1048        pgste = pgste_get_lock(ptep);
1049        dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1050        pgste_val(pgste) &= ~PGSTE_UC_BIT;
1051        pte = *ptep;
1052        if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1053                pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1054                __ptep_ipte(addr, ptep);
1055                if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1056                        pte_val(pte) |= _PAGE_PROTECT;
1057                else
1058                        pte_val(pte) |= _PAGE_INVALID;
1059                *ptep = pte;
1060        }
1061        pgste_set_unlock(ptep, pgste);
1062        return dirty;
1063}
1064
1065#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1066static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1067                                            unsigned long addr, pte_t *ptep)
1068{
1069        pgste_t pgste;
1070        pte_t pte, oldpte;
1071        int young;
1072
1073        if (mm_has_pgste(vma->vm_mm)) {
1074                pgste = pgste_get_lock(ptep);
1075                pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1076        }
1077
1078        oldpte = pte = *ptep;
1079        ptep_flush_direct(vma->vm_mm, addr, ptep);
1080        young = pte_young(pte);
1081        pte = pte_mkold(pte);
1082
1083        if (mm_has_pgste(vma->vm_mm)) {
1084                pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1085                pgste = pgste_set_pte(ptep, pgste, pte);
1086                pgste_set_unlock(ptep, pgste);
1087        } else
1088                *ptep = pte;
1089
1090        return young;
1091}
1092
1093#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1094static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1095                                         unsigned long address, pte_t *ptep)
1096{
1097        return ptep_test_and_clear_young(vma, address, ptep);
1098}
1099
1100/*
1101 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1102 * both clear the TLB for the unmapped pte. The reason is that
1103 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1104 * to modify an active pte. The sequence is
1105 *   1) ptep_get_and_clear
1106 *   2) set_pte_at
1107 *   3) flush_tlb_range
1108 * On s390 the tlb needs to get flushed with the modification of the pte
1109 * if the pte is active. The only way how this can be implemented is to
1110 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1111 * is a nop.
1112 */
1113#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1114static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1115                                       unsigned long address, pte_t *ptep)
1116{
1117        pgste_t pgste;
1118        pte_t pte;
1119
1120        if (mm_has_pgste(mm)) {
1121                pgste = pgste_get_lock(ptep);
1122                pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1123        }
1124
1125        pte = *ptep;
1126        ptep_flush_lazy(mm, address, ptep);
1127        pte_val(*ptep) = _PAGE_INVALID;
1128
1129        if (mm_has_pgste(mm)) {
1130                pgste = pgste_update_all(&pte, pgste, mm);
1131                pgste_set_unlock(ptep, pgste);
1132        }
1133        return pte;
1134}
1135
1136#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1137static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1138                                           unsigned long address,
1139                                           pte_t *ptep)
1140{
1141        pgste_t pgste;
1142        pte_t pte;
1143
1144        if (mm_has_pgste(mm)) {
1145                pgste = pgste_get_lock(ptep);
1146                pgste_ipte_notify(mm, address, ptep, pgste);
1147        }
1148
1149        pte = *ptep;
1150        ptep_flush_lazy(mm, address, ptep);
1151
1152        if (mm_has_pgste(mm)) {
1153                pgste = pgste_update_all(&pte, pgste, mm);
1154                pgste_set(ptep, pgste);
1155        }
1156        return pte;
1157}
1158
1159static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1160                                           unsigned long address,
1161                                           pte_t *ptep, pte_t pte)
1162{
1163        pgste_t pgste;
1164
1165        if (mm_has_pgste(mm)) {
1166                pgste = pgste_get(ptep);
1167                pgste_set_key(ptep, pgste, pte, mm);
1168                pgste = pgste_set_pte(ptep, pgste, pte);
1169                pgste_set_unlock(ptep, pgste);
1170        } else
1171                *ptep = pte;
1172}
1173
1174#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1175static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1176                                     unsigned long address, pte_t *ptep)
1177{
1178        pgste_t pgste;
1179        pte_t pte;
1180
1181        if (mm_has_pgste(vma->vm_mm)) {
1182                pgste = pgste_get_lock(ptep);
1183                pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1184        }
1185
1186        pte = *ptep;
1187        ptep_flush_direct(vma->vm_mm, address, ptep);
1188        pte_val(*ptep) = _PAGE_INVALID;
1189
1190        if (mm_has_pgste(vma->vm_mm)) {
1191                if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1192                    _PGSTE_GPS_USAGE_UNUSED)
1193                        pte_val(pte) |= _PAGE_UNUSED;
1194                pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1195                pgste_set_unlock(ptep, pgste);
1196        }
1197        return pte;
1198}
1199
1200/*
1201 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1202 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1203 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1204 * cannot be accessed while the batched unmap is running. In this case
1205 * full==1 and a simple pte_clear is enough. See tlb.h.
1206 */
1207#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1208static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1209                                            unsigned long address,
1210                                            pte_t *ptep, int full)
1211{
1212        pgste_t pgste;
1213        pte_t pte;
1214
1215        if (!full && mm_has_pgste(mm)) {
1216                pgste = pgste_get_lock(ptep);
1217                pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1218        }
1219
1220        pte = *ptep;
1221        if (!full)
1222                ptep_flush_lazy(mm, address, ptep);
1223        pte_val(*ptep) = _PAGE_INVALID;
1224
1225        if (!full && mm_has_pgste(mm)) {
1226                pgste = pgste_update_all(&pte, pgste, mm);
1227                pgste_set_unlock(ptep, pgste);
1228        }
1229        return pte;
1230}
1231
1232#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1233static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1234                                       unsigned long address, pte_t *ptep)
1235{
1236        pgste_t pgste;
1237        pte_t pte = *ptep;
1238
1239        if (pte_write(pte)) {
1240                if (mm_has_pgste(mm)) {
1241                        pgste = pgste_get_lock(ptep);
1242                        pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1243                }
1244
1245                ptep_flush_lazy(mm, address, ptep);
1246                pte = pte_wrprotect(pte);
1247
1248                if (mm_has_pgste(mm)) {
1249                        pgste = pgste_set_pte(ptep, pgste, pte);
1250                        pgste_set_unlock(ptep, pgste);
1251                } else
1252                        *ptep = pte;
1253        }
1254        return pte;
1255}
1256
1257#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1258static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1259                                        unsigned long address, pte_t *ptep,
1260                                        pte_t entry, int dirty)
1261{
1262        pgste_t pgste;
1263        pte_t oldpte;
1264
1265        oldpte = *ptep;
1266        if (pte_same(oldpte, entry))
1267                return 0;
1268        if (mm_has_pgste(vma->vm_mm)) {
1269                pgste = pgste_get_lock(ptep);
1270                pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1271        }
1272
1273        ptep_flush_direct(vma->vm_mm, address, ptep);
1274
1275        if (mm_has_pgste(vma->vm_mm)) {
1276                if (pte_val(oldpte) & _PAGE_INVALID)
1277                        pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1278                pgste = pgste_set_pte(ptep, pgste, entry);
1279                pgste_set_unlock(ptep, pgste);
1280        } else
1281                *ptep = entry;
1282        return 1;
1283}
1284
1285/*
1286 * Conversion functions: convert a page and protection to a page entry,
1287 * and a page entry and page directory to the page they refer to.
1288 */
1289static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1290{
1291        pte_t __pte;
1292        pte_val(__pte) = physpage + pgprot_val(pgprot);
1293        return pte_mkyoung(__pte);
1294}
1295
1296static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1297{
1298        unsigned long physpage = page_to_phys(page);
1299        pte_t __pte = mk_pte_phys(physpage, pgprot);
1300
1301        if (pte_write(__pte) && PageDirty(page))
1302                __pte = pte_mkdirty(__pte);
1303        return __pte;
1304}
1305
1306#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1307#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1308#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1309#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1310
1311#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1312#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1313
1314#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1315#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1316#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1317
1318static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1319{
1320        pud_t *pud = (pud_t *) pgd;
1321        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1322                pud = (pud_t *) pgd_deref(*pgd);
1323        return pud  + pud_index(address);
1324}
1325
1326static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1327{
1328        pmd_t *pmd = (pmd_t *) pud;
1329        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1330                pmd = (pmd_t *) pud_deref(*pud);
1331        return pmd + pmd_index(address);
1332}
1333
1334#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1335#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1336#define pte_page(x) pfn_to_page(pte_pfn(x))
1337
1338#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1339
1340/* Find an entry in the lowest level page table.. */
1341#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1342#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1343#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1344#define pte_unmap(pte) do { } while (0)
1345
1346#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1347static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1348{
1349        /*
1350         * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1351         * Convert to segment table entry format.
1352         */
1353        if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1354                return pgprot_val(SEGMENT_NONE);
1355        if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1356                return pgprot_val(SEGMENT_READ);
1357        return pgprot_val(SEGMENT_WRITE);
1358}
1359
1360static inline pmd_t pmd_wrprotect(pmd_t pmd)
1361{
1362        pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1363        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1364        return pmd;
1365}
1366
1367static inline pmd_t pmd_mkwrite(pmd_t pmd)
1368{
1369        pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1370        if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1371                return pmd;
1372        pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1373        return pmd;
1374}
1375
1376static inline pmd_t pmd_mkclean(pmd_t pmd)
1377{
1378        if (pmd_large(pmd)) {
1379                pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1380                pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1381        }
1382        return pmd;
1383}
1384
1385static inline pmd_t pmd_mkdirty(pmd_t pmd)
1386{
1387        if (pmd_large(pmd)) {
1388                pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1389                                _SEGMENT_ENTRY_SOFT_DIRTY;
1390                if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1391                        pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1392        }
1393        return pmd;
1394}
1395
1396static inline pmd_t pmd_mkyoung(pmd_t pmd)
1397{
1398        if (pmd_large(pmd)) {
1399                pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1400                if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1401                        pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1402        }
1403        return pmd;
1404}
1405
1406static inline pmd_t pmd_mkold(pmd_t pmd)
1407{
1408        if (pmd_large(pmd)) {
1409                pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1410                pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1411        }
1412        return pmd;
1413}
1414
1415static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1416{
1417        if (pmd_large(pmd)) {
1418                pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1419                        _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1420                        _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1421                pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1422                if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1423                        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1424                if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1425                        pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1426                return pmd;
1427        }
1428        pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1429        pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1430        return pmd;
1431}
1432
1433static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1434{
1435        pmd_t __pmd;
1436        pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1437        return __pmd;
1438}
1439
1440#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1441
1442static inline void __pmdp_csp(pmd_t *pmdp)
1443{
1444        register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1445        register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1446                                               _SEGMENT_ENTRY_INVALID;
1447        register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1448
1449        asm volatile(
1450                "       csp %1,%3"
1451                : "=m" (*pmdp)
1452                : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1453}
1454
1455static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1456{
1457        unsigned long sto;
1458
1459        sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1460        asm volatile(
1461                "       .insn   rrf,0xb98e0000,%2,%3,0,0"
1462                : "=m" (*pmdp)
1463                : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1464                : "cc" );
1465}
1466
1467static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1468{
1469        unsigned long sto;
1470
1471        sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1472        asm volatile(
1473                "       .insn   rrf,0xb98e0000,%2,%3,0,1"
1474                : "=m" (*pmdp)
1475                : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1476                : "cc" );
1477}
1478
1479static inline void pmdp_flush_direct(struct mm_struct *mm,
1480                                     unsigned long address, pmd_t *pmdp)
1481{
1482        int active, count;
1483
1484        if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1485                return;
1486        if (!MACHINE_HAS_IDTE) {
1487                __pmdp_csp(pmdp);
1488                return;
1489        }
1490        active = (mm == current->active_mm) ? 1 : 0;
1491        count = atomic_add_return(0x10000, &mm->context.attach_count);
1492        if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1493            cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1494                __pmdp_idte_local(address, pmdp);
1495        else
1496                __pmdp_idte(address, pmdp);
1497        atomic_sub(0x10000, &mm->context.attach_count);
1498}
1499
1500static inline void pmdp_flush_lazy(struct mm_struct *mm,
1501                                   unsigned long address, pmd_t *pmdp)
1502{
1503        int active, count;
1504
1505        if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1506                return;
1507        active = (mm == current->active_mm) ? 1 : 0;
1508        count = atomic_add_return(0x10000, &mm->context.attach_count);
1509        if ((count & 0xffff) <= active) {
1510                pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1511                mm->context.flush_mm = 1;
1512        } else if (MACHINE_HAS_IDTE)
1513                __pmdp_idte(address, pmdp);
1514        else
1515                __pmdp_csp(pmdp);
1516        atomic_sub(0x10000, &mm->context.attach_count);
1517}
1518
1519#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1520
1521#define __HAVE_ARCH_PGTABLE_DEPOSIT
1522extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1523                                       pgtable_t pgtable);
1524
1525#define __HAVE_ARCH_PGTABLE_WITHDRAW
1526extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1527
1528static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1529                              pmd_t *pmdp, pmd_t entry)
1530{
1531        *pmdp = entry;
1532}
1533
1534static inline pmd_t pmd_mkhuge(pmd_t pmd)
1535{
1536        pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1537        pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1538        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1539        return pmd;
1540}
1541
1542#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1543static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1544                                            unsigned long address, pmd_t *pmdp)
1545{
1546        pmd_t pmd;
1547
1548        pmd = *pmdp;
1549        pmdp_flush_direct(vma->vm_mm, address, pmdp);
1550        *pmdp = pmd_mkold(pmd);
1551        return pmd_young(pmd);
1552}
1553
1554#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1555static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1556                                            unsigned long address, pmd_t *pmdp)
1557{
1558        pmd_t pmd = *pmdp;
1559
1560        pmdp_flush_direct(mm, address, pmdp);
1561        pmd_clear(pmdp);
1562        return pmd;
1563}
1564
1565#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1566static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1567                                                 unsigned long address,
1568                                                 pmd_t *pmdp, int full)
1569{
1570        pmd_t pmd = *pmdp;
1571
1572        if (!full)
1573                pmdp_flush_lazy(mm, address, pmdp);
1574        pmd_clear(pmdp);
1575        return pmd;
1576}
1577
1578#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1579static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1580                                          unsigned long address, pmd_t *pmdp)
1581{
1582        return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1583}
1584
1585#define __HAVE_ARCH_PMDP_INVALIDATE
1586static inline void pmdp_invalidate(struct vm_area_struct *vma,
1587                                   unsigned long address, pmd_t *pmdp)
1588{
1589        pmdp_flush_direct(vma->vm_mm, address, pmdp);
1590}
1591
1592#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1593static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1594                                      unsigned long address, pmd_t *pmdp)
1595{
1596        pmd_t pmd = *pmdp;
1597
1598        if (pmd_write(pmd)) {
1599                pmdp_flush_direct(mm, address, pmdp);
1600                set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1601        }
1602}
1603
1604static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1605                                        unsigned long address,
1606                                        pmd_t *pmdp)
1607{
1608        return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1609}
1610#define pmdp_collapse_flush pmdp_collapse_flush
1611
1612#define pfn_pmd(pfn, pgprot)    mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1613#define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1614
1615static inline int pmd_trans_huge(pmd_t pmd)
1616{
1617        return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1618}
1619
1620static inline int has_transparent_hugepage(void)
1621{
1622        return MACHINE_HAS_HPAGE ? 1 : 0;
1623}
1624#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1625
1626/*
1627 * 64 bit swap entry format:
1628 * A page-table entry has some bits we have to treat in a special way.
1629 * Bits 52 and bit 55 have to be zero, otherwise a specification
1630 * exception will occur instead of a page translation exception. The
1631 * specification exception has the bad habit not to store necessary
1632 * information in the lowcore.
1633 * Bits 54 and 63 are used to indicate the page type.
1634 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1635 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1636 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1637 * for the offset.
1638 * |                      offset                        |01100|type |00|
1639 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1640 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1641 */
1642
1643#define __SWP_OFFSET_MASK       ((1UL << 52) - 1)
1644#define __SWP_OFFSET_SHIFT      12
1645#define __SWP_TYPE_MASK         ((1UL << 5) - 1)
1646#define __SWP_TYPE_SHIFT        2
1647
1648static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1649{
1650        pte_t pte;
1651
1652        pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1653        pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1654        pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1655        return pte;
1656}
1657
1658static inline unsigned long __swp_type(swp_entry_t entry)
1659{
1660        return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1661}
1662
1663static inline unsigned long __swp_offset(swp_entry_t entry)
1664{
1665        return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1666}
1667
1668static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1669{
1670        return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1671}
1672
1673#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1674#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1675
1676#endif /* !__ASSEMBLY__ */
1677
1678#define kern_addr_valid(addr)   (1)
1679
1680extern int vmem_add_mapping(unsigned long start, unsigned long size);
1681extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1682extern int s390_enable_sie(void);
1683extern int s390_enable_skey(void);
1684extern void s390_reset_cmma(struct mm_struct *mm);
1685
1686/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1687#define HAVE_ARCH_UNMAPPED_AREA
1688#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1689
1690/*
1691 * No page table caches to initialise
1692 */
1693static inline void pgtable_cache_init(void) { }
1694static inline void check_pgt_cache(void) { }
1695
1696#include <asm-generic/pgtable.h>
1697
1698#endif /* _S390_PAGE_H */
1699