linux/arch/s390/mm/pgtable.c
<<
>>
Prefs
   1/*
   2 *    Copyright IBM Corp. 2007, 2011
   3 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/kernel.h>
   8#include <linux/errno.h>
   9#include <linux/gfp.h>
  10#include <linux/mm.h>
  11#include <linux/swap.h>
  12#include <linux/smp.h>
  13#include <linux/spinlock.h>
  14#include <linux/rcupdate.h>
  15#include <linux/slab.h>
  16#include <linux/swapops.h>
  17#include <linux/sysctl.h>
  18#include <linux/ksm.h>
  19#include <linux/mman.h>
  20
  21#include <asm/pgtable.h>
  22#include <asm/pgalloc.h>
  23#include <asm/tlb.h>
  24#include <asm/tlbflush.h>
  25#include <asm/mmu_context.h>
  26
  27unsigned long *crst_table_alloc(struct mm_struct *mm)
  28{
  29        struct page *page = alloc_pages(GFP_KERNEL, 2);
  30
  31        if (!page)
  32                return NULL;
  33        return (unsigned long *) page_to_phys(page);
  34}
  35
  36void crst_table_free(struct mm_struct *mm, unsigned long *table)
  37{
  38        free_pages((unsigned long) table, 2);
  39}
  40
  41static void __crst_table_upgrade(void *arg)
  42{
  43        struct mm_struct *mm = arg;
  44
  45        if (current->active_mm == mm) {
  46                clear_user_asce();
  47                set_user_asce(mm);
  48        }
  49        __tlb_flush_local();
  50}
  51
  52int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
  53{
  54        unsigned long *table, *pgd;
  55        unsigned long entry;
  56        int flush;
  57
  58        BUG_ON(limit > TASK_MAX_SIZE);
  59        flush = 0;
  60repeat:
  61        table = crst_table_alloc(mm);
  62        if (!table)
  63                return -ENOMEM;
  64        spin_lock_bh(&mm->page_table_lock);
  65        if (mm->context.asce_limit < limit) {
  66                pgd = (unsigned long *) mm->pgd;
  67                if (mm->context.asce_limit <= (1UL << 31)) {
  68                        entry = _REGION3_ENTRY_EMPTY;
  69                        mm->context.asce_limit = 1UL << 42;
  70                        mm->context.asce_bits = _ASCE_TABLE_LENGTH |
  71                                                _ASCE_USER_BITS |
  72                                                _ASCE_TYPE_REGION3;
  73                } else {
  74                        entry = _REGION2_ENTRY_EMPTY;
  75                        mm->context.asce_limit = 1UL << 53;
  76                        mm->context.asce_bits = _ASCE_TABLE_LENGTH |
  77                                                _ASCE_USER_BITS |
  78                                                _ASCE_TYPE_REGION2;
  79                }
  80                crst_table_init(table, entry);
  81                pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
  82                mm->pgd = (pgd_t *) table;
  83                mm->task_size = mm->context.asce_limit;
  84                table = NULL;
  85                flush = 1;
  86        }
  87        spin_unlock_bh(&mm->page_table_lock);
  88        if (table)
  89                crst_table_free(mm, table);
  90        if (mm->context.asce_limit < limit)
  91                goto repeat;
  92        if (flush)
  93                on_each_cpu(__crst_table_upgrade, mm, 0);
  94        return 0;
  95}
  96
  97void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
  98{
  99        pgd_t *pgd;
 100
 101        if (current->active_mm == mm) {
 102                clear_user_asce();
 103                __tlb_flush_mm(mm);
 104        }
 105        while (mm->context.asce_limit > limit) {
 106                pgd = mm->pgd;
 107                switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
 108                case _REGION_ENTRY_TYPE_R2:
 109                        mm->context.asce_limit = 1UL << 42;
 110                        mm->context.asce_bits = _ASCE_TABLE_LENGTH |
 111                                                _ASCE_USER_BITS |
 112                                                _ASCE_TYPE_REGION3;
 113                        break;
 114                case _REGION_ENTRY_TYPE_R3:
 115                        mm->context.asce_limit = 1UL << 31;
 116                        mm->context.asce_bits = _ASCE_TABLE_LENGTH |
 117                                                _ASCE_USER_BITS |
 118                                                _ASCE_TYPE_SEGMENT;
 119                        break;
 120                default:
 121                        BUG();
 122                }
 123                mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
 124                mm->task_size = mm->context.asce_limit;
 125                crst_table_free(mm, (unsigned long *) pgd);
 126        }
 127        if (current->active_mm == mm)
 128                set_user_asce(mm);
 129}
 130
 131#ifdef CONFIG_PGSTE
 132
 133/**
 134 * gmap_alloc - allocate a guest address space
 135 * @mm: pointer to the parent mm_struct
 136 * @limit: maximum address of the gmap address space
 137 *
 138 * Returns a guest address space structure.
 139 */
 140struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
 141{
 142        struct gmap *gmap;
 143        struct page *page;
 144        unsigned long *table;
 145        unsigned long etype, atype;
 146
 147        if (limit < (1UL << 31)) {
 148                limit = (1UL << 31) - 1;
 149                atype = _ASCE_TYPE_SEGMENT;
 150                etype = _SEGMENT_ENTRY_EMPTY;
 151        } else if (limit < (1UL << 42)) {
 152                limit = (1UL << 42) - 1;
 153                atype = _ASCE_TYPE_REGION3;
 154                etype = _REGION3_ENTRY_EMPTY;
 155        } else if (limit < (1UL << 53)) {
 156                limit = (1UL << 53) - 1;
 157                atype = _ASCE_TYPE_REGION2;
 158                etype = _REGION2_ENTRY_EMPTY;
 159        } else {
 160                limit = -1UL;
 161                atype = _ASCE_TYPE_REGION1;
 162                etype = _REGION1_ENTRY_EMPTY;
 163        }
 164        gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
 165        if (!gmap)
 166                goto out;
 167        INIT_LIST_HEAD(&gmap->crst_list);
 168        INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
 169        INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
 170        spin_lock_init(&gmap->guest_table_lock);
 171        gmap->mm = mm;
 172        page = alloc_pages(GFP_KERNEL, 2);
 173        if (!page)
 174                goto out_free;
 175        page->index = 0;
 176        list_add(&page->lru, &gmap->crst_list);
 177        table = (unsigned long *) page_to_phys(page);
 178        crst_table_init(table, etype);
 179        gmap->table = table;
 180        gmap->asce = atype | _ASCE_TABLE_LENGTH |
 181                _ASCE_USER_BITS | __pa(table);
 182        gmap->asce_end = limit;
 183        down_write(&mm->mmap_sem);
 184        list_add(&gmap->list, &mm->context.gmap_list);
 185        up_write(&mm->mmap_sem);
 186        return gmap;
 187
 188out_free:
 189        kfree(gmap);
 190out:
 191        return NULL;
 192}
 193EXPORT_SYMBOL_GPL(gmap_alloc);
 194
 195static void gmap_flush_tlb(struct gmap *gmap)
 196{
 197        if (MACHINE_HAS_IDTE)
 198                __tlb_flush_asce(gmap->mm, gmap->asce);
 199        else
 200                __tlb_flush_global();
 201}
 202
 203static void gmap_radix_tree_free(struct radix_tree_root *root)
 204{
 205        struct radix_tree_iter iter;
 206        unsigned long indices[16];
 207        unsigned long index;
 208        void **slot;
 209        int i, nr;
 210
 211        /* A radix tree is freed by deleting all of its entries */
 212        index = 0;
 213        do {
 214                nr = 0;
 215                radix_tree_for_each_slot(slot, root, &iter, index) {
 216                        indices[nr] = iter.index;
 217                        if (++nr == 16)
 218                                break;
 219                }
 220                for (i = 0; i < nr; i++) {
 221                        index = indices[i];
 222                        radix_tree_delete(root, index);
 223                }
 224        } while (nr > 0);
 225}
 226
 227/**
 228 * gmap_free - free a guest address space
 229 * @gmap: pointer to the guest address space structure
 230 */
 231void gmap_free(struct gmap *gmap)
 232{
 233        struct page *page, *next;
 234
 235        /* Flush tlb. */
 236        if (MACHINE_HAS_IDTE)
 237                __tlb_flush_asce(gmap->mm, gmap->asce);
 238        else
 239                __tlb_flush_global();
 240
 241        /* Free all segment & region tables. */
 242        list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
 243                __free_pages(page, 2);
 244        gmap_radix_tree_free(&gmap->guest_to_host);
 245        gmap_radix_tree_free(&gmap->host_to_guest);
 246        down_write(&gmap->mm->mmap_sem);
 247        list_del(&gmap->list);
 248        up_write(&gmap->mm->mmap_sem);
 249        kfree(gmap);
 250}
 251EXPORT_SYMBOL_GPL(gmap_free);
 252
 253/**
 254 * gmap_enable - switch primary space to the guest address space
 255 * @gmap: pointer to the guest address space structure
 256 */
 257void gmap_enable(struct gmap *gmap)
 258{
 259        S390_lowcore.gmap = (unsigned long) gmap;
 260}
 261EXPORT_SYMBOL_GPL(gmap_enable);
 262
 263/**
 264 * gmap_disable - switch back to the standard primary address space
 265 * @gmap: pointer to the guest address space structure
 266 */
 267void gmap_disable(struct gmap *gmap)
 268{
 269        S390_lowcore.gmap = 0UL;
 270}
 271EXPORT_SYMBOL_GPL(gmap_disable);
 272
 273/*
 274 * gmap_alloc_table is assumed to be called with mmap_sem held
 275 */
 276static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
 277                            unsigned long init, unsigned long gaddr)
 278{
 279        struct page *page;
 280        unsigned long *new;
 281
 282        /* since we dont free the gmap table until gmap_free we can unlock */
 283        page = alloc_pages(GFP_KERNEL, 2);
 284        if (!page)
 285                return -ENOMEM;
 286        new = (unsigned long *) page_to_phys(page);
 287        crst_table_init(new, init);
 288        spin_lock(&gmap->mm->page_table_lock);
 289        if (*table & _REGION_ENTRY_INVALID) {
 290                list_add(&page->lru, &gmap->crst_list);
 291                *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
 292                        (*table & _REGION_ENTRY_TYPE_MASK);
 293                page->index = gaddr;
 294                page = NULL;
 295        }
 296        spin_unlock(&gmap->mm->page_table_lock);
 297        if (page)
 298                __free_pages(page, 2);
 299        return 0;
 300}
 301
 302/**
 303 * __gmap_segment_gaddr - find virtual address from segment pointer
 304 * @entry: pointer to a segment table entry in the guest address space
 305 *
 306 * Returns the virtual address in the guest address space for the segment
 307 */
 308static unsigned long __gmap_segment_gaddr(unsigned long *entry)
 309{
 310        struct page *page;
 311        unsigned long offset, mask;
 312
 313        offset = (unsigned long) entry / sizeof(unsigned long);
 314        offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
 315        mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
 316        page = virt_to_page((void *)((unsigned long) entry & mask));
 317        return page->index + offset;
 318}
 319
 320/**
 321 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
 322 * @gmap: pointer to the guest address space structure
 323 * @vmaddr: address in the host process address space
 324 *
 325 * Returns 1 if a TLB flush is required
 326 */
 327static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
 328{
 329        unsigned long *entry;
 330        int flush = 0;
 331
 332        spin_lock(&gmap->guest_table_lock);
 333        entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
 334        if (entry) {
 335                flush = (*entry != _SEGMENT_ENTRY_INVALID);
 336                *entry = _SEGMENT_ENTRY_INVALID;
 337        }
 338        spin_unlock(&gmap->guest_table_lock);
 339        return flush;
 340}
 341
 342/**
 343 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
 344 * @gmap: pointer to the guest address space structure
 345 * @gaddr: address in the guest address space
 346 *
 347 * Returns 1 if a TLB flush is required
 348 */
 349static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
 350{
 351        unsigned long vmaddr;
 352
 353        vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
 354                                                   gaddr >> PMD_SHIFT);
 355        return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
 356}
 357
 358/**
 359 * gmap_unmap_segment - unmap segment from the guest address space
 360 * @gmap: pointer to the guest address space structure
 361 * @to: address in the guest address space
 362 * @len: length of the memory area to unmap
 363 *
 364 * Returns 0 if the unmap succeeded, -EINVAL if not.
 365 */
 366int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
 367{
 368        unsigned long off;
 369        int flush;
 370
 371        if ((to | len) & (PMD_SIZE - 1))
 372                return -EINVAL;
 373        if (len == 0 || to + len < to)
 374                return -EINVAL;
 375
 376        flush = 0;
 377        down_write(&gmap->mm->mmap_sem);
 378        for (off = 0; off < len; off += PMD_SIZE)
 379                flush |= __gmap_unmap_by_gaddr(gmap, to + off);
 380        up_write(&gmap->mm->mmap_sem);
 381        if (flush)
 382                gmap_flush_tlb(gmap);
 383        return 0;
 384}
 385EXPORT_SYMBOL_GPL(gmap_unmap_segment);
 386
 387/**
 388 * gmap_mmap_segment - map a segment to the guest address space
 389 * @gmap: pointer to the guest address space structure
 390 * @from: source address in the parent address space
 391 * @to: target address in the guest address space
 392 * @len: length of the memory area to map
 393 *
 394 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
 395 */
 396int gmap_map_segment(struct gmap *gmap, unsigned long from,
 397                     unsigned long to, unsigned long len)
 398{
 399        unsigned long off;
 400        int flush;
 401
 402        if ((from | to | len) & (PMD_SIZE - 1))
 403                return -EINVAL;
 404        if (len == 0 || from + len < from || to + len < to ||
 405            from + len - 1 > TASK_MAX_SIZE || to + len - 1 > gmap->asce_end)
 406                return -EINVAL;
 407
 408        flush = 0;
 409        down_write(&gmap->mm->mmap_sem);
 410        for (off = 0; off < len; off += PMD_SIZE) {
 411                /* Remove old translation */
 412                flush |= __gmap_unmap_by_gaddr(gmap, to + off);
 413                /* Store new translation */
 414                if (radix_tree_insert(&gmap->guest_to_host,
 415                                      (to + off) >> PMD_SHIFT,
 416                                      (void *) from + off))
 417                        break;
 418        }
 419        up_write(&gmap->mm->mmap_sem);
 420        if (flush)
 421                gmap_flush_tlb(gmap);
 422        if (off >= len)
 423                return 0;
 424        gmap_unmap_segment(gmap, to, len);
 425        return -ENOMEM;
 426}
 427EXPORT_SYMBOL_GPL(gmap_map_segment);
 428
 429/**
 430 * __gmap_translate - translate a guest address to a user space address
 431 * @gmap: pointer to guest mapping meta data structure
 432 * @gaddr: guest address
 433 *
 434 * Returns user space address which corresponds to the guest address or
 435 * -EFAULT if no such mapping exists.
 436 * This function does not establish potentially missing page table entries.
 437 * The mmap_sem of the mm that belongs to the address space must be held
 438 * when this function gets called.
 439 */
 440unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
 441{
 442        unsigned long vmaddr;
 443
 444        vmaddr = (unsigned long)
 445                radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
 446        return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
 447}
 448EXPORT_SYMBOL_GPL(__gmap_translate);
 449
 450/**
 451 * gmap_translate - translate a guest address to a user space address
 452 * @gmap: pointer to guest mapping meta data structure
 453 * @gaddr: guest address
 454 *
 455 * Returns user space address which corresponds to the guest address or
 456 * -EFAULT if no such mapping exists.
 457 * This function does not establish potentially missing page table entries.
 458 */
 459unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
 460{
 461        unsigned long rc;
 462
 463        down_read(&gmap->mm->mmap_sem);
 464        rc = __gmap_translate(gmap, gaddr);
 465        up_read(&gmap->mm->mmap_sem);
 466        return rc;
 467}
 468EXPORT_SYMBOL_GPL(gmap_translate);
 469
 470/**
 471 * gmap_unlink - disconnect a page table from the gmap shadow tables
 472 * @gmap: pointer to guest mapping meta data structure
 473 * @table: pointer to the host page table
 474 * @vmaddr: vm address associated with the host page table
 475 */
 476static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
 477                        unsigned long vmaddr)
 478{
 479        struct gmap *gmap;
 480        int flush;
 481
 482        list_for_each_entry(gmap, &mm->context.gmap_list, list) {
 483                flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
 484                if (flush)
 485                        gmap_flush_tlb(gmap);
 486        }
 487}
 488
 489/**
 490 * gmap_link - set up shadow page tables to connect a host to a guest address
 491 * @gmap: pointer to guest mapping meta data structure
 492 * @gaddr: guest address
 493 * @vmaddr: vm address
 494 *
 495 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
 496 * if the vm address is already mapped to a different guest segment.
 497 * The mmap_sem of the mm that belongs to the address space must be held
 498 * when this function gets called.
 499 */
 500int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
 501{
 502        struct mm_struct *mm;
 503        unsigned long *table;
 504        spinlock_t *ptl;
 505        pgd_t *pgd;
 506        pud_t *pud;
 507        pmd_t *pmd;
 508        int rc;
 509
 510        /* Create higher level tables in the gmap page table */
 511        table = gmap->table;
 512        if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
 513                table += (gaddr >> 53) & 0x7ff;
 514                if ((*table & _REGION_ENTRY_INVALID) &&
 515                    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
 516                                     gaddr & 0xffe0000000000000UL))
 517                        return -ENOMEM;
 518                table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
 519        }
 520        if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
 521                table += (gaddr >> 42) & 0x7ff;
 522                if ((*table & _REGION_ENTRY_INVALID) &&
 523                    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
 524                                     gaddr & 0xfffffc0000000000UL))
 525                        return -ENOMEM;
 526                table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
 527        }
 528        if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
 529                table += (gaddr >> 31) & 0x7ff;
 530                if ((*table & _REGION_ENTRY_INVALID) &&
 531                    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
 532                                     gaddr & 0xffffffff80000000UL))
 533                        return -ENOMEM;
 534                table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
 535        }
 536        table += (gaddr >> 20) & 0x7ff;
 537        /* Walk the parent mm page table */
 538        mm = gmap->mm;
 539        pgd = pgd_offset(mm, vmaddr);
 540        VM_BUG_ON(pgd_none(*pgd));
 541        pud = pud_offset(pgd, vmaddr);
 542        VM_BUG_ON(pud_none(*pud));
 543        pmd = pmd_offset(pud, vmaddr);
 544        VM_BUG_ON(pmd_none(*pmd));
 545        /* large pmds cannot yet be handled */
 546        if (pmd_large(*pmd))
 547                return -EFAULT;
 548        /* Link gmap segment table entry location to page table. */
 549        rc = radix_tree_preload(GFP_KERNEL);
 550        if (rc)
 551                return rc;
 552        ptl = pmd_lock(mm, pmd);
 553        spin_lock(&gmap->guest_table_lock);
 554        if (*table == _SEGMENT_ENTRY_INVALID) {
 555                rc = radix_tree_insert(&gmap->host_to_guest,
 556                                       vmaddr >> PMD_SHIFT, table);
 557                if (!rc)
 558                        *table = pmd_val(*pmd);
 559        } else
 560                rc = 0;
 561        spin_unlock(&gmap->guest_table_lock);
 562        spin_unlock(ptl);
 563        radix_tree_preload_end();
 564        return rc;
 565}
 566
 567/**
 568 * gmap_fault - resolve a fault on a guest address
 569 * @gmap: pointer to guest mapping meta data structure
 570 * @gaddr: guest address
 571 * @fault_flags: flags to pass down to handle_mm_fault()
 572 *
 573 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
 574 * if the vm address is already mapped to a different guest segment.
 575 */
 576int gmap_fault(struct gmap *gmap, unsigned long gaddr,
 577               unsigned int fault_flags)
 578{
 579        unsigned long vmaddr;
 580        int rc;
 581        bool unlocked;
 582
 583        down_read(&gmap->mm->mmap_sem);
 584
 585retry:
 586        unlocked = false;
 587        vmaddr = __gmap_translate(gmap, gaddr);
 588        if (IS_ERR_VALUE(vmaddr)) {
 589                rc = vmaddr;
 590                goto out_up;
 591        }
 592        if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
 593                             &unlocked)) {
 594                rc = -EFAULT;
 595                goto out_up;
 596        }
 597        /*
 598         * In the case that fixup_user_fault unlocked the mmap_sem during
 599         * faultin redo __gmap_translate to not race with a map/unmap_segment.
 600         */
 601        if (unlocked)
 602                goto retry;
 603
 604        rc = __gmap_link(gmap, gaddr, vmaddr);
 605out_up:
 606        up_read(&gmap->mm->mmap_sem);
 607        return rc;
 608}
 609EXPORT_SYMBOL_GPL(gmap_fault);
 610
 611static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
 612{
 613        if (!non_swap_entry(entry))
 614                dec_mm_counter(mm, MM_SWAPENTS);
 615        else if (is_migration_entry(entry)) {
 616                struct page *page = migration_entry_to_page(entry);
 617
 618                dec_mm_counter(mm, mm_counter(page));
 619        }
 620        free_swap_and_cache(entry);
 621}
 622
 623/*
 624 * this function is assumed to be called with mmap_sem held
 625 */
 626void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
 627{
 628        unsigned long vmaddr, ptev, pgstev;
 629        pte_t *ptep, pte;
 630        spinlock_t *ptl;
 631        pgste_t pgste;
 632
 633        /* Find the vm address for the guest address */
 634        vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
 635                                                   gaddr >> PMD_SHIFT);
 636        if (!vmaddr)
 637                return;
 638        vmaddr |= gaddr & ~PMD_MASK;
 639        /* Get pointer to the page table entry */
 640        ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
 641        if (unlikely(!ptep))
 642                return;
 643        pte = *ptep;
 644        if (!pte_swap(pte))
 645                goto out_pte;
 646        /* Zap unused and logically-zero pages */
 647        pgste = pgste_get_lock(ptep);
 648        pgstev = pgste_val(pgste);
 649        ptev = pte_val(pte);
 650        if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
 651            ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
 652                gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
 653                pte_clear(gmap->mm, vmaddr, ptep);
 654        }
 655        pgste_set_unlock(ptep, pgste);
 656out_pte:
 657        pte_unmap_unlock(ptep, ptl);
 658}
 659EXPORT_SYMBOL_GPL(__gmap_zap);
 660
 661void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
 662{
 663        unsigned long gaddr, vmaddr, size;
 664        struct vm_area_struct *vma;
 665
 666        down_read(&gmap->mm->mmap_sem);
 667        for (gaddr = from; gaddr < to;
 668             gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
 669                /* Find the vm address for the guest address */
 670                vmaddr = (unsigned long)
 671                        radix_tree_lookup(&gmap->guest_to_host,
 672                                          gaddr >> PMD_SHIFT);
 673                if (!vmaddr)
 674                        continue;
 675                vmaddr |= gaddr & ~PMD_MASK;
 676                /* Find vma in the parent mm */
 677                vma = find_vma(gmap->mm, vmaddr);
 678                size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
 679                zap_page_range(vma, vmaddr, size, NULL);
 680        }
 681        up_read(&gmap->mm->mmap_sem);
 682}
 683EXPORT_SYMBOL_GPL(gmap_discard);
 684
 685static LIST_HEAD(gmap_notifier_list);
 686static DEFINE_SPINLOCK(gmap_notifier_lock);
 687
 688/**
 689 * gmap_register_ipte_notifier - register a pte invalidation callback
 690 * @nb: pointer to the gmap notifier block
 691 */
 692void gmap_register_ipte_notifier(struct gmap_notifier *nb)
 693{
 694        spin_lock(&gmap_notifier_lock);
 695        list_add(&nb->list, &gmap_notifier_list);
 696        spin_unlock(&gmap_notifier_lock);
 697}
 698EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
 699
 700/**
 701 * gmap_unregister_ipte_notifier - remove a pte invalidation callback
 702 * @nb: pointer to the gmap notifier block
 703 */
 704void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
 705{
 706        spin_lock(&gmap_notifier_lock);
 707        list_del_init(&nb->list);
 708        spin_unlock(&gmap_notifier_lock);
 709}
 710EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
 711
 712/**
 713 * gmap_ipte_notify - mark a range of ptes for invalidation notification
 714 * @gmap: pointer to guest mapping meta data structure
 715 * @gaddr: virtual address in the guest address space
 716 * @len: size of area
 717 *
 718 * Returns 0 if for each page in the given range a gmap mapping exists and
 719 * the invalidation notification could be set. If the gmap mapping is missing
 720 * for one or more pages -EFAULT is returned. If no memory could be allocated
 721 * -ENOMEM is returned. This function establishes missing page table entries.
 722 */
 723int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
 724{
 725        unsigned long addr;
 726        spinlock_t *ptl;
 727        pte_t *ptep, entry;
 728        pgste_t pgste;
 729        bool unlocked;
 730        int rc = 0;
 731
 732        if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
 733                return -EINVAL;
 734        down_read(&gmap->mm->mmap_sem);
 735        while (len) {
 736                unlocked = false;
 737                /* Convert gmap address and connect the page tables */
 738                addr = __gmap_translate(gmap, gaddr);
 739                if (IS_ERR_VALUE(addr)) {
 740                        rc = addr;
 741                        break;
 742                }
 743                /* Get the page mapped */
 744                if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE,
 745                                     &unlocked)) {
 746                        rc = -EFAULT;
 747                        break;
 748                }
 749                /* While trying to map mmap_sem got unlocked. Let us retry */
 750                if (unlocked)
 751                        continue;
 752                rc = __gmap_link(gmap, gaddr, addr);
 753                if (rc)
 754                        break;
 755                /* Walk the process page table, lock and get pte pointer */
 756                ptep = get_locked_pte(gmap->mm, addr, &ptl);
 757                VM_BUG_ON(!ptep);
 758                /* Set notification bit in the pgste of the pte */
 759                entry = *ptep;
 760                if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
 761                        pgste = pgste_get_lock(ptep);
 762                        pgste_val(pgste) |= PGSTE_IN_BIT;
 763                        pgste_set_unlock(ptep, pgste);
 764                        gaddr += PAGE_SIZE;
 765                        len -= PAGE_SIZE;
 766                }
 767                pte_unmap_unlock(ptep, ptl);
 768        }
 769        up_read(&gmap->mm->mmap_sem);
 770        return rc;
 771}
 772EXPORT_SYMBOL_GPL(gmap_ipte_notify);
 773
 774/**
 775 * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
 776 * @mm: pointer to the process mm_struct
 777 * @addr: virtual address in the process address space
 778 * @pte: pointer to the page table entry
 779 *
 780 * This function is assumed to be called with the page table lock held
 781 * for the pte to notify.
 782 */
 783void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
 784{
 785        unsigned long offset, gaddr;
 786        unsigned long *table;
 787        struct gmap_notifier *nb;
 788        struct gmap *gmap;
 789
 790        offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
 791        offset = offset * (4096 / sizeof(pte_t));
 792        spin_lock(&gmap_notifier_lock);
 793        list_for_each_entry(gmap, &mm->context.gmap_list, list) {
 794                table = radix_tree_lookup(&gmap->host_to_guest,
 795                                          vmaddr >> PMD_SHIFT);
 796                if (!table)
 797                        continue;
 798                gaddr = __gmap_segment_gaddr(table) + offset;
 799                list_for_each_entry(nb, &gmap_notifier_list, list)
 800                        nb->notifier_call(gmap, gaddr);
 801        }
 802        spin_unlock(&gmap_notifier_lock);
 803}
 804EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
 805
 806int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
 807                          unsigned long key, bool nq)
 808{
 809        spinlock_t *ptl;
 810        pgste_t old, new;
 811        pte_t *ptep;
 812        bool unlocked;
 813
 814        down_read(&mm->mmap_sem);
 815retry:
 816        unlocked = false;
 817        ptep = get_locked_pte(mm, addr, &ptl);
 818        if (unlikely(!ptep)) {
 819                up_read(&mm->mmap_sem);
 820                return -EFAULT;
 821        }
 822        if (!(pte_val(*ptep) & _PAGE_INVALID) &&
 823             (pte_val(*ptep) & _PAGE_PROTECT)) {
 824                pte_unmap_unlock(ptep, ptl);
 825                /*
 826                 * We do not really care about unlocked. We will retry either
 827                 * way. But this allows fixup_user_fault to enable userfaultfd.
 828                 */
 829                if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE,
 830                                     &unlocked)) {
 831                        up_read(&mm->mmap_sem);
 832                        return -EFAULT;
 833                }
 834                goto retry;
 835        }
 836
 837        new = old = pgste_get_lock(ptep);
 838        pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
 839                            PGSTE_ACC_BITS | PGSTE_FP_BIT);
 840        pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
 841        pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
 842        if (!(pte_val(*ptep) & _PAGE_INVALID)) {
 843                unsigned long address, bits, skey;
 844
 845                address = pte_val(*ptep) & PAGE_MASK;
 846                skey = (unsigned long) page_get_storage_key(address);
 847                bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
 848                skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
 849                /* Set storage key ACC and FP */
 850                page_set_storage_key(address, skey, !nq);
 851                /* Merge host changed & referenced into pgste  */
 852                pgste_val(new) |= bits << 52;
 853        }
 854        /* changing the guest storage key is considered a change of the page */
 855        if ((pgste_val(new) ^ pgste_val(old)) &
 856            (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
 857                pgste_val(new) |= PGSTE_UC_BIT;
 858
 859        pgste_set_unlock(ptep, new);
 860        pte_unmap_unlock(ptep, ptl);
 861        up_read(&mm->mmap_sem);
 862        return 0;
 863}
 864EXPORT_SYMBOL(set_guest_storage_key);
 865
 866unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr)
 867{
 868        spinlock_t *ptl;
 869        pgste_t pgste;
 870        pte_t *ptep;
 871        uint64_t physaddr;
 872        unsigned long key = 0;
 873
 874        down_read(&mm->mmap_sem);
 875        ptep = get_locked_pte(mm, addr, &ptl);
 876        if (unlikely(!ptep)) {
 877                up_read(&mm->mmap_sem);
 878                return -EFAULT;
 879        }
 880        pgste = pgste_get_lock(ptep);
 881
 882        if (pte_val(*ptep) & _PAGE_INVALID) {
 883                key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56;
 884                key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56;
 885                key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48;
 886                key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48;
 887        } else {
 888                physaddr = pte_val(*ptep) & PAGE_MASK;
 889                key = page_get_storage_key(physaddr);
 890
 891                /* Reflect guest's logical view, not physical */
 892                if (pgste_val(pgste) & PGSTE_GR_BIT)
 893                        key |= _PAGE_REFERENCED;
 894                if (pgste_val(pgste) & PGSTE_GC_BIT)
 895                        key |= _PAGE_CHANGED;
 896        }
 897
 898        pgste_set_unlock(ptep, pgste);
 899        pte_unmap_unlock(ptep, ptl);
 900        up_read(&mm->mmap_sem);
 901        return key;
 902}
 903EXPORT_SYMBOL(get_guest_storage_key);
 904
 905static int page_table_allocate_pgste_min = 0;
 906static int page_table_allocate_pgste_max = 1;
 907int page_table_allocate_pgste = 0;
 908EXPORT_SYMBOL(page_table_allocate_pgste);
 909
 910static struct ctl_table page_table_sysctl[] = {
 911        {
 912                .procname       = "allocate_pgste",
 913                .data           = &page_table_allocate_pgste,
 914                .maxlen         = sizeof(int),
 915                .mode           = S_IRUGO | S_IWUSR,
 916                .proc_handler   = proc_dointvec,
 917                .extra1         = &page_table_allocate_pgste_min,
 918                .extra2         = &page_table_allocate_pgste_max,
 919        },
 920        { }
 921};
 922
 923static struct ctl_table page_table_sysctl_dir[] = {
 924        {
 925                .procname       = "vm",
 926                .maxlen         = 0,
 927                .mode           = 0555,
 928                .child          = page_table_sysctl,
 929        },
 930        { }
 931};
 932
 933static int __init page_table_register_sysctl(void)
 934{
 935        return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
 936}
 937__initcall(page_table_register_sysctl);
 938
 939#else /* CONFIG_PGSTE */
 940
 941static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
 942                        unsigned long vmaddr)
 943{
 944}
 945
 946#endif /* CONFIG_PGSTE */
 947
 948static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
 949{
 950        unsigned int old, new;
 951
 952        do {
 953                old = atomic_read(v);
 954                new = old ^ bits;
 955        } while (atomic_cmpxchg(v, old, new) != old);
 956        return new;
 957}
 958
 959/*
 960 * page table entry allocation/free routines.
 961 */
 962unsigned long *page_table_alloc(struct mm_struct *mm)
 963{
 964        unsigned long *table;
 965        struct page *page;
 966        unsigned int mask, bit;
 967
 968        /* Try to get a fragment of a 4K page as a 2K page table */
 969        if (!mm_alloc_pgste(mm)) {
 970                table = NULL;
 971                spin_lock_bh(&mm->context.list_lock);
 972                if (!list_empty(&mm->context.pgtable_list)) {
 973                        page = list_first_entry(&mm->context.pgtable_list,
 974                                                struct page, lru);
 975                        mask = atomic_read(&page->_mapcount);
 976                        mask = (mask | (mask >> 4)) & 3;
 977                        if (mask != 3) {
 978                                table = (unsigned long *) page_to_phys(page);
 979                                bit = mask & 1;         /* =1 -> second 2K */
 980                                if (bit)
 981                                        table += PTRS_PER_PTE;
 982                                atomic_xor_bits(&page->_mapcount, 1U << bit);
 983                                list_del(&page->lru);
 984                        }
 985                }
 986                spin_unlock_bh(&mm->context.list_lock);
 987                if (table)
 988                        return table;
 989        }
 990        /* Allocate a fresh page */
 991        page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
 992        if (!page)
 993                return NULL;
 994        if (!pgtable_page_ctor(page)) {
 995                __free_page(page);
 996                return NULL;
 997        }
 998        /* Initialize page table */
 999        table = (unsigned long *) page_to_phys(page);
1000        if (mm_alloc_pgste(mm)) {
1001                /* Return 4K page table with PGSTEs */
1002                atomic_set(&page->_mapcount, 3);
1003                clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
1004                clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
1005        } else {
1006                /* Return the first 2K fragment of the page */
1007                atomic_set(&page->_mapcount, 1);
1008                clear_table(table, _PAGE_INVALID, PAGE_SIZE);
1009                spin_lock_bh(&mm->context.list_lock);
1010                list_add(&page->lru, &mm->context.pgtable_list);
1011                spin_unlock_bh(&mm->context.list_lock);
1012        }
1013        return table;
1014}
1015
1016void page_table_free(struct mm_struct *mm, unsigned long *table)
1017{
1018        struct page *page;
1019        unsigned int bit, mask;
1020
1021        page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1022        if (!mm_alloc_pgste(mm)) {
1023                /* Free 2K page table fragment of a 4K page */
1024                bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
1025                spin_lock_bh(&mm->context.list_lock);
1026                mask = atomic_xor_bits(&page->_mapcount, 1U << bit);
1027                if (mask & 3)
1028                        list_add(&page->lru, &mm->context.pgtable_list);
1029                else
1030                        list_del(&page->lru);
1031                spin_unlock_bh(&mm->context.list_lock);
1032                if (mask != 0)
1033                        return;
1034        }
1035
1036        pgtable_page_dtor(page);
1037        atomic_set(&page->_mapcount, -1);
1038        __free_page(page);
1039}
1040
1041void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1042                         unsigned long vmaddr)
1043{
1044        struct mm_struct *mm;
1045        struct page *page;
1046        unsigned int bit, mask;
1047
1048        mm = tlb->mm;
1049        page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1050        if (mm_alloc_pgste(mm)) {
1051                gmap_unlink(mm, table, vmaddr);
1052                table = (unsigned long *) (__pa(table) | 3);
1053                tlb_remove_table(tlb, table);
1054                return;
1055        }
1056        bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
1057        spin_lock_bh(&mm->context.list_lock);
1058        mask = atomic_xor_bits(&page->_mapcount, 0x11U << bit);
1059        if (mask & 3)
1060                list_add_tail(&page->lru, &mm->context.pgtable_list);
1061        else
1062                list_del(&page->lru);
1063        spin_unlock_bh(&mm->context.list_lock);
1064        table = (unsigned long *) (__pa(table) | (1U << bit));
1065        tlb_remove_table(tlb, table);
1066}
1067
1068static void __tlb_remove_table(void *_table)
1069{
1070        unsigned int mask = (unsigned long) _table & 3;
1071        void *table = (void *)((unsigned long) _table ^ mask);
1072        struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1073
1074        switch (mask) {
1075        case 0:         /* pmd or pud */
1076                free_pages((unsigned long) table, 2);
1077                break;
1078        case 1:         /* lower 2K of a 4K page table */
1079        case 2:         /* higher 2K of a 4K page table */
1080                if (atomic_xor_bits(&page->_mapcount, mask << 4) != 0)
1081                        break;
1082                /* fallthrough */
1083        case 3:         /* 4K page table with pgstes */
1084                pgtable_page_dtor(page);
1085                atomic_set(&page->_mapcount, -1);
1086                __free_page(page);
1087                break;
1088        }
1089}
1090
1091static void tlb_remove_table_smp_sync(void *arg)
1092{
1093        /* Simply deliver the interrupt */
1094}
1095
1096static void tlb_remove_table_one(void *table)
1097{
1098        /*
1099         * This isn't an RCU grace period and hence the page-tables cannot be
1100         * assumed to be actually RCU-freed.
1101         *
1102         * It is however sufficient for software page-table walkers that rely
1103         * on IRQ disabling. See the comment near struct mmu_table_batch.
1104         */
1105        smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1106        __tlb_remove_table(table);
1107}
1108
1109static void tlb_remove_table_rcu(struct rcu_head *head)
1110{
1111        struct mmu_table_batch *batch;
1112        int i;
1113
1114        batch = container_of(head, struct mmu_table_batch, rcu);
1115
1116        for (i = 0; i < batch->nr; i++)
1117                __tlb_remove_table(batch->tables[i]);
1118
1119        free_page((unsigned long)batch);
1120}
1121
1122void tlb_table_flush(struct mmu_gather *tlb)
1123{
1124        struct mmu_table_batch **batch = &tlb->batch;
1125
1126        if (*batch) {
1127                call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1128                *batch = NULL;
1129        }
1130}
1131
1132void tlb_remove_table(struct mmu_gather *tlb, void *table)
1133{
1134        struct mmu_table_batch **batch = &tlb->batch;
1135
1136        tlb->mm->context.flush_mm = 1;
1137        if (*batch == NULL) {
1138                *batch = (struct mmu_table_batch *)
1139                        __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1140                if (*batch == NULL) {
1141                        __tlb_flush_mm_lazy(tlb->mm);
1142                        tlb_remove_table_one(table);
1143                        return;
1144                }
1145                (*batch)->nr = 0;
1146        }
1147        (*batch)->tables[(*batch)->nr++] = table;
1148        if ((*batch)->nr == MAX_TABLE_BATCH)
1149                tlb_flush_mmu(tlb);
1150}
1151
1152#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1153static inline void thp_split_vma(struct vm_area_struct *vma)
1154{
1155        unsigned long addr;
1156
1157        for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1158                follow_page(vma, addr, FOLL_SPLIT);
1159}
1160
1161static inline void thp_split_mm(struct mm_struct *mm)
1162{
1163        struct vm_area_struct *vma;
1164
1165        for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1166                thp_split_vma(vma);
1167                vma->vm_flags &= ~VM_HUGEPAGE;
1168                vma->vm_flags |= VM_NOHUGEPAGE;
1169        }
1170        mm->def_flags |= VM_NOHUGEPAGE;
1171}
1172#else
1173static inline void thp_split_mm(struct mm_struct *mm)
1174{
1175}
1176#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1177
1178/*
1179 * switch on pgstes for its userspace process (for kvm)
1180 */
1181int s390_enable_sie(void)
1182{
1183        struct mm_struct *mm = current->mm;
1184
1185        /* Do we have pgstes? if yes, we are done */
1186        if (mm_has_pgste(mm))
1187                return 0;
1188        /* Fail if the page tables are 2K */
1189        if (!mm_alloc_pgste(mm))
1190                return -EINVAL;
1191        down_write(&mm->mmap_sem);
1192        mm->context.has_pgste = 1;
1193        /* split thp mappings and disable thp for future mappings */
1194        thp_split_mm(mm);
1195        up_write(&mm->mmap_sem);
1196        return 0;
1197}
1198EXPORT_SYMBOL_GPL(s390_enable_sie);
1199
1200/*
1201 * Enable storage key handling from now on and initialize the storage
1202 * keys with the default key.
1203 */
1204static int __s390_enable_skey(pte_t *pte, unsigned long addr,
1205                              unsigned long next, struct mm_walk *walk)
1206{
1207        unsigned long ptev;
1208        pgste_t pgste;
1209
1210        pgste = pgste_get_lock(pte);
1211        /*
1212         * Remove all zero page mappings,
1213         * after establishing a policy to forbid zero page mappings
1214         * following faults for that page will get fresh anonymous pages
1215         */
1216        if (is_zero_pfn(pte_pfn(*pte))) {
1217                ptep_flush_direct(walk->mm, addr, pte);
1218                pte_val(*pte) = _PAGE_INVALID;
1219        }
1220        /* Clear storage key */
1221        pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
1222                              PGSTE_GR_BIT | PGSTE_GC_BIT);
1223        ptev = pte_val(*pte);
1224        if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE))
1225                page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1);
1226        pgste_set_unlock(pte, pgste);
1227        return 0;
1228}
1229
1230int s390_enable_skey(void)
1231{
1232        struct mm_walk walk = { .pte_entry = __s390_enable_skey };
1233        struct mm_struct *mm = current->mm;
1234        struct vm_area_struct *vma;
1235        int rc = 0;
1236
1237        down_write(&mm->mmap_sem);
1238        if (mm_use_skey(mm))
1239                goto out_up;
1240
1241        mm->context.use_skey = 1;
1242        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1243                if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
1244                                MADV_UNMERGEABLE, &vma->vm_flags)) {
1245                        mm->context.use_skey = 0;
1246                        rc = -ENOMEM;
1247                        goto out_up;
1248                }
1249        }
1250        mm->def_flags &= ~VM_MERGEABLE;
1251
1252        walk.mm = mm;
1253        walk_page_range(0, TASK_SIZE, &walk);
1254
1255out_up:
1256        up_write(&mm->mmap_sem);
1257        return rc;
1258}
1259EXPORT_SYMBOL_GPL(s390_enable_skey);
1260
1261/*
1262 * Reset CMMA state, make all pages stable again.
1263 */
1264static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
1265                             unsigned long next, struct mm_walk *walk)
1266{
1267        pgste_t pgste;
1268
1269        pgste = pgste_get_lock(pte);
1270        pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
1271        pgste_set_unlock(pte, pgste);
1272        return 0;
1273}
1274
1275void s390_reset_cmma(struct mm_struct *mm)
1276{
1277        struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
1278
1279        down_write(&mm->mmap_sem);
1280        walk.mm = mm;
1281        walk_page_range(0, TASK_SIZE, &walk);
1282        up_write(&mm->mmap_sem);
1283}
1284EXPORT_SYMBOL_GPL(s390_reset_cmma);
1285
1286/*
1287 * Test and reset if a guest page is dirty
1288 */
1289bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1290{
1291        pte_t *pte;
1292        spinlock_t *ptl;
1293        bool dirty = false;
1294
1295        pte = get_locked_pte(gmap->mm, address, &ptl);
1296        if (unlikely(!pte))
1297                return false;
1298
1299        if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1300                dirty = true;
1301
1302        spin_unlock(ptl);
1303        return dirty;
1304}
1305EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1306
1307#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1308int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1309                           pmd_t *pmdp)
1310{
1311        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1312        /* No need to flush TLB
1313         * On s390 reference bits are in storage key and never in TLB */
1314        return pmdp_test_and_clear_young(vma, address, pmdp);
1315}
1316
1317int pmdp_set_access_flags(struct vm_area_struct *vma,
1318                          unsigned long address, pmd_t *pmdp,
1319                          pmd_t entry, int dirty)
1320{
1321        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1322
1323        entry = pmd_mkyoung(entry);
1324        if (dirty)
1325                entry = pmd_mkdirty(entry);
1326        if (pmd_same(*pmdp, entry))
1327                return 0;
1328        pmdp_invalidate(vma, address, pmdp);
1329        set_pmd_at(vma->vm_mm, address, pmdp, entry);
1330        return 1;
1331}
1332
1333void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1334                                pgtable_t pgtable)
1335{
1336        struct list_head *lh = (struct list_head *) pgtable;
1337
1338        assert_spin_locked(pmd_lockptr(mm, pmdp));
1339
1340        /* FIFO */
1341        if (!pmd_huge_pte(mm, pmdp))
1342                INIT_LIST_HEAD(lh);
1343        else
1344                list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1345        pmd_huge_pte(mm, pmdp) = pgtable;
1346}
1347
1348pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1349{
1350        struct list_head *lh;
1351        pgtable_t pgtable;
1352        pte_t *ptep;
1353
1354        assert_spin_locked(pmd_lockptr(mm, pmdp));
1355
1356        /* FIFO */
1357        pgtable = pmd_huge_pte(mm, pmdp);
1358        lh = (struct list_head *) pgtable;
1359        if (list_empty(lh))
1360                pmd_huge_pte(mm, pmdp) = NULL;
1361        else {
1362                pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1363                list_del(lh);
1364        }
1365        ptep = (pte_t *) pgtable;
1366        pte_val(*ptep) = _PAGE_INVALID;
1367        ptep++;
1368        pte_val(*ptep) = _PAGE_INVALID;
1369        return pgtable;
1370}
1371#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1372