linux/drivers/clocksource/exynos_mct.c
<<
>>
Prefs
   1/* linux/arch/arm/mach-exynos4/mct.c
   2 *
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *              http://www.samsung.com
   5 *
   6 * EXYNOS4 MCT(Multi-Core Timer) support
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11*/
  12
  13#include <linux/sched.h>
  14#include <linux/interrupt.h>
  15#include <linux/irq.h>
  16#include <linux/err.h>
  17#include <linux/clk.h>
  18#include <linux/clockchips.h>
  19#include <linux/cpu.h>
  20#include <linux/platform_device.h>
  21#include <linux/delay.h>
  22#include <linux/percpu.h>
  23#include <linux/of.h>
  24#include <linux/of_irq.h>
  25#include <linux/of_address.h>
  26#include <linux/clocksource.h>
  27#include <linux/sched_clock.h>
  28
  29#define EXYNOS4_MCTREG(x)               (x)
  30#define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
  31#define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
  32#define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
  33#define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
  34#define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
  35#define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
  36#define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
  37#define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
  38#define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
  39#define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
  40#define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
  41#define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
  42#define EXYNOS4_MCT_L_MASK              (0xffffff00)
  43
  44#define MCT_L_TCNTB_OFFSET              (0x00)
  45#define MCT_L_ICNTB_OFFSET              (0x08)
  46#define MCT_L_TCON_OFFSET               (0x20)
  47#define MCT_L_INT_CSTAT_OFFSET          (0x30)
  48#define MCT_L_INT_ENB_OFFSET            (0x34)
  49#define MCT_L_WSTAT_OFFSET              (0x40)
  50#define MCT_G_TCON_START                (1 << 8)
  51#define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
  52#define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
  53#define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
  54#define MCT_L_TCON_INT_START            (1 << 1)
  55#define MCT_L_TCON_TIMER_START          (1 << 0)
  56
  57#define TICK_BASE_CNT   1
  58
  59enum {
  60        MCT_INT_SPI,
  61        MCT_INT_PPI
  62};
  63
  64enum {
  65        MCT_G0_IRQ,
  66        MCT_G1_IRQ,
  67        MCT_G2_IRQ,
  68        MCT_G3_IRQ,
  69        MCT_L0_IRQ,
  70        MCT_L1_IRQ,
  71        MCT_L2_IRQ,
  72        MCT_L3_IRQ,
  73        MCT_L4_IRQ,
  74        MCT_L5_IRQ,
  75        MCT_L6_IRQ,
  76        MCT_L7_IRQ,
  77        MCT_NR_IRQS,
  78};
  79
  80static void __iomem *reg_base;
  81static unsigned long clk_rate;
  82static unsigned int mct_int_type;
  83static int mct_irqs[MCT_NR_IRQS];
  84
  85struct mct_clock_event_device {
  86        struct clock_event_device evt;
  87        unsigned long base;
  88        char name[10];
  89};
  90
  91static void exynos4_mct_write(unsigned int value, unsigned long offset)
  92{
  93        unsigned long stat_addr;
  94        u32 mask;
  95        u32 i;
  96
  97        writel_relaxed(value, reg_base + offset);
  98
  99        if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
 100                stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
 101                switch (offset & ~EXYNOS4_MCT_L_MASK) {
 102                case MCT_L_TCON_OFFSET:
 103                        mask = 1 << 3;          /* L_TCON write status */
 104                        break;
 105                case MCT_L_ICNTB_OFFSET:
 106                        mask = 1 << 1;          /* L_ICNTB write status */
 107                        break;
 108                case MCT_L_TCNTB_OFFSET:
 109                        mask = 1 << 0;          /* L_TCNTB write status */
 110                        break;
 111                default:
 112                        return;
 113                }
 114        } else {
 115                switch (offset) {
 116                case EXYNOS4_MCT_G_TCON:
 117                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 118                        mask = 1 << 16;         /* G_TCON write status */
 119                        break;
 120                case EXYNOS4_MCT_G_COMP0_L:
 121                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 122                        mask = 1 << 0;          /* G_COMP0_L write status */
 123                        break;
 124                case EXYNOS4_MCT_G_COMP0_U:
 125                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 126                        mask = 1 << 1;          /* G_COMP0_U write status */
 127                        break;
 128                case EXYNOS4_MCT_G_COMP0_ADD_INCR:
 129                        stat_addr = EXYNOS4_MCT_G_WSTAT;
 130                        mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
 131                        break;
 132                case EXYNOS4_MCT_G_CNT_L:
 133                        stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
 134                        mask = 1 << 0;          /* G_CNT_L write status */
 135                        break;
 136                case EXYNOS4_MCT_G_CNT_U:
 137                        stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
 138                        mask = 1 << 1;          /* G_CNT_U write status */
 139                        break;
 140                default:
 141                        return;
 142                }
 143        }
 144
 145        /* Wait maximum 1 ms until written values are applied */
 146        for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
 147                if (readl_relaxed(reg_base + stat_addr) & mask) {
 148                        writel_relaxed(mask, reg_base + stat_addr);
 149                        return;
 150                }
 151
 152        panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
 153}
 154
 155/* Clocksource handling */
 156static void exynos4_mct_frc_start(void)
 157{
 158        u32 reg;
 159
 160        reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 161        reg |= MCT_G_TCON_START;
 162        exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
 163}
 164
 165/**
 166 * exynos4_read_count_64 - Read all 64-bits of the global counter
 167 *
 168 * This will read all 64-bits of the global counter taking care to make sure
 169 * that the upper and lower half match.  Note that reading the MCT can be quite
 170 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
 171 * only) version when possible.
 172 *
 173 * Returns the number of cycles in the global counter.
 174 */
 175static u64 exynos4_read_count_64(void)
 176{
 177        unsigned int lo, hi;
 178        u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
 179
 180        do {
 181                hi = hi2;
 182                lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
 183                hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
 184        } while (hi != hi2);
 185
 186        return ((cycle_t)hi << 32) | lo;
 187}
 188
 189/**
 190 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
 191 *
 192 * This will read just the lower 32-bits of the global counter.  This is marked
 193 * as notrace so it can be used by the scheduler clock.
 194 *
 195 * Returns the number of cycles in the global counter (lower 32 bits).
 196 */
 197static u32 notrace exynos4_read_count_32(void)
 198{
 199        return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
 200}
 201
 202static cycle_t exynos4_frc_read(struct clocksource *cs)
 203{
 204        return exynos4_read_count_32();
 205}
 206
 207static void exynos4_frc_resume(struct clocksource *cs)
 208{
 209        exynos4_mct_frc_start();
 210}
 211
 212static struct clocksource mct_frc = {
 213        .name           = "mct-frc",
 214        .rating         = 400,
 215        .read           = exynos4_frc_read,
 216        .mask           = CLOCKSOURCE_MASK(32),
 217        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 218        .resume         = exynos4_frc_resume,
 219};
 220
 221static u64 notrace exynos4_read_sched_clock(void)
 222{
 223        return exynos4_read_count_32();
 224}
 225
 226static struct delay_timer exynos4_delay_timer;
 227
 228static cycles_t exynos4_read_current_timer(void)
 229{
 230        BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
 231                         "cycles_t needs to move to 32-bit for ARM64 usage");
 232        return exynos4_read_count_32();
 233}
 234
 235static void __init exynos4_clocksource_init(void)
 236{
 237        exynos4_mct_frc_start();
 238
 239        exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
 240        exynos4_delay_timer.freq = clk_rate;
 241        register_current_timer_delay(&exynos4_delay_timer);
 242
 243        if (clocksource_register_hz(&mct_frc, clk_rate))
 244                panic("%s: can't register clocksource\n", mct_frc.name);
 245
 246        sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
 247}
 248
 249static void exynos4_mct_comp0_stop(void)
 250{
 251        unsigned int tcon;
 252
 253        tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 254        tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
 255
 256        exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
 257        exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
 258}
 259
 260static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
 261{
 262        unsigned int tcon;
 263        cycle_t comp_cycle;
 264
 265        tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
 266
 267        if (periodic) {
 268                tcon |= MCT_G_TCON_COMP0_AUTO_INC;
 269                exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
 270        }
 271
 272        comp_cycle = exynos4_read_count_64() + cycles;
 273        exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
 274        exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
 275
 276        exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
 277
 278        tcon |= MCT_G_TCON_COMP0_ENABLE;
 279        exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
 280}
 281
 282static int exynos4_comp_set_next_event(unsigned long cycles,
 283                                       struct clock_event_device *evt)
 284{
 285        exynos4_mct_comp0_start(false, cycles);
 286
 287        return 0;
 288}
 289
 290static int mct_set_state_shutdown(struct clock_event_device *evt)
 291{
 292        exynos4_mct_comp0_stop();
 293        return 0;
 294}
 295
 296static int mct_set_state_periodic(struct clock_event_device *evt)
 297{
 298        unsigned long cycles_per_jiffy;
 299
 300        cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
 301                            >> evt->shift);
 302        exynos4_mct_comp0_stop();
 303        exynos4_mct_comp0_start(true, cycles_per_jiffy);
 304        return 0;
 305}
 306
 307static struct clock_event_device mct_comp_device = {
 308        .name                   = "mct-comp",
 309        .features               = CLOCK_EVT_FEAT_PERIODIC |
 310                                  CLOCK_EVT_FEAT_ONESHOT,
 311        .rating                 = 250,
 312        .set_next_event         = exynos4_comp_set_next_event,
 313        .set_state_periodic     = mct_set_state_periodic,
 314        .set_state_shutdown     = mct_set_state_shutdown,
 315        .set_state_oneshot      = mct_set_state_shutdown,
 316        .tick_resume            = mct_set_state_shutdown,
 317};
 318
 319static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
 320{
 321        struct clock_event_device *evt = dev_id;
 322
 323        exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
 324
 325        evt->event_handler(evt);
 326
 327        return IRQ_HANDLED;
 328}
 329
 330static struct irqaction mct_comp_event_irq = {
 331        .name           = "mct_comp_irq",
 332        .flags          = IRQF_TIMER | IRQF_IRQPOLL,
 333        .handler        = exynos4_mct_comp_isr,
 334        .dev_id         = &mct_comp_device,
 335};
 336
 337static void exynos4_clockevent_init(void)
 338{
 339        mct_comp_device.cpumask = cpumask_of(0);
 340        clockevents_config_and_register(&mct_comp_device, clk_rate,
 341                                        0xf, 0xffffffff);
 342        setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
 343}
 344
 345static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
 346
 347/* Clock event handling */
 348static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
 349{
 350        unsigned long tmp;
 351        unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
 352        unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
 353
 354        tmp = readl_relaxed(reg_base + offset);
 355        if (tmp & mask) {
 356                tmp &= ~mask;
 357                exynos4_mct_write(tmp, offset);
 358        }
 359}
 360
 361static void exynos4_mct_tick_start(unsigned long cycles,
 362                                   struct mct_clock_event_device *mevt)
 363{
 364        unsigned long tmp;
 365
 366        exynos4_mct_tick_stop(mevt);
 367
 368        tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
 369
 370        /* update interrupt count buffer */
 371        exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
 372
 373        /* enable MCT tick interrupt */
 374        exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
 375
 376        tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
 377        tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
 378               MCT_L_TCON_INTERVAL_MODE;
 379        exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
 380}
 381
 382static int exynos4_tick_set_next_event(unsigned long cycles,
 383                                       struct clock_event_device *evt)
 384{
 385        struct mct_clock_event_device *mevt;
 386
 387        mevt = container_of(evt, struct mct_clock_event_device, evt);
 388        exynos4_mct_tick_start(cycles, mevt);
 389        return 0;
 390}
 391
 392static int set_state_shutdown(struct clock_event_device *evt)
 393{
 394        struct mct_clock_event_device *mevt;
 395
 396        mevt = container_of(evt, struct mct_clock_event_device, evt);
 397        exynos4_mct_tick_stop(mevt);
 398        return 0;
 399}
 400
 401static int set_state_periodic(struct clock_event_device *evt)
 402{
 403        struct mct_clock_event_device *mevt;
 404        unsigned long cycles_per_jiffy;
 405
 406        mevt = container_of(evt, struct mct_clock_event_device, evt);
 407        cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
 408                            >> evt->shift);
 409        exynos4_mct_tick_stop(mevt);
 410        exynos4_mct_tick_start(cycles_per_jiffy, mevt);
 411        return 0;
 412}
 413
 414static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
 415{
 416        /*
 417         * This is for supporting oneshot mode.
 418         * Mct would generate interrupt periodically
 419         * without explicit stopping.
 420         */
 421        if (!clockevent_state_periodic(&mevt->evt))
 422                exynos4_mct_tick_stop(mevt);
 423
 424        /* Clear the MCT tick interrupt */
 425        if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
 426                exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
 427}
 428
 429static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
 430{
 431        struct mct_clock_event_device *mevt = dev_id;
 432        struct clock_event_device *evt = &mevt->evt;
 433
 434        exynos4_mct_tick_clear(mevt);
 435
 436        evt->event_handler(evt);
 437
 438        return IRQ_HANDLED;
 439}
 440
 441static int exynos4_local_timer_setup(struct mct_clock_event_device *mevt)
 442{
 443        struct clock_event_device *evt = &mevt->evt;
 444        unsigned int cpu = smp_processor_id();
 445
 446        mevt->base = EXYNOS4_MCT_L_BASE(cpu);
 447        snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
 448
 449        evt->name = mevt->name;
 450        evt->cpumask = cpumask_of(cpu);
 451        evt->set_next_event = exynos4_tick_set_next_event;
 452        evt->set_state_periodic = set_state_periodic;
 453        evt->set_state_shutdown = set_state_shutdown;
 454        evt->set_state_oneshot = set_state_shutdown;
 455        evt->tick_resume = set_state_shutdown;
 456        evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
 457        evt->rating = 450;
 458
 459        exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
 460
 461        if (mct_int_type == MCT_INT_SPI) {
 462
 463                if (evt->irq == -1)
 464                        return -EIO;
 465
 466                irq_force_affinity(evt->irq, cpumask_of(cpu));
 467                enable_irq(evt->irq);
 468        } else {
 469                enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
 470        }
 471        clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
 472                                        0xf, 0x7fffffff);
 473
 474        return 0;
 475}
 476
 477static void exynos4_local_timer_stop(struct mct_clock_event_device *mevt)
 478{
 479        struct clock_event_device *evt = &mevt->evt;
 480
 481        evt->set_state_shutdown(evt);
 482        if (mct_int_type == MCT_INT_SPI) {
 483                if (evt->irq != -1)
 484                        disable_irq_nosync(evt->irq);
 485        } else {
 486                disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
 487        }
 488}
 489
 490static int exynos4_mct_cpu_notify(struct notifier_block *self,
 491                                           unsigned long action, void *hcpu)
 492{
 493        struct mct_clock_event_device *mevt;
 494
 495        /*
 496         * Grab cpu pointer in each case to avoid spurious
 497         * preemptible warnings
 498         */
 499        switch (action & ~CPU_TASKS_FROZEN) {
 500        case CPU_STARTING:
 501                mevt = this_cpu_ptr(&percpu_mct_tick);
 502                exynos4_local_timer_setup(mevt);
 503                break;
 504        case CPU_DYING:
 505                mevt = this_cpu_ptr(&percpu_mct_tick);
 506                exynos4_local_timer_stop(mevt);
 507                break;
 508        }
 509
 510        return NOTIFY_OK;
 511}
 512
 513static struct notifier_block exynos4_mct_cpu_nb = {
 514        .notifier_call = exynos4_mct_cpu_notify,
 515};
 516
 517static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
 518{
 519        int err, cpu;
 520        struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
 521        struct clk *mct_clk, *tick_clk;
 522
 523        tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
 524                                clk_get(NULL, "fin_pll");
 525        if (IS_ERR(tick_clk))
 526                panic("%s: unable to determine tick clock rate\n", __func__);
 527        clk_rate = clk_get_rate(tick_clk);
 528
 529        mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
 530        if (IS_ERR(mct_clk))
 531                panic("%s: unable to retrieve mct clock instance\n", __func__);
 532        clk_prepare_enable(mct_clk);
 533
 534        reg_base = base;
 535        if (!reg_base)
 536                panic("%s: unable to ioremap mct address space\n", __func__);
 537
 538        if (mct_int_type == MCT_INT_PPI) {
 539
 540                err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
 541                                         exynos4_mct_tick_isr, "MCT",
 542                                         &percpu_mct_tick);
 543                WARN(err, "MCT: can't request IRQ %d (%d)\n",
 544                     mct_irqs[MCT_L0_IRQ], err);
 545        } else {
 546                for_each_possible_cpu(cpu) {
 547                        int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
 548                        struct mct_clock_event_device *pcpu_mevt =
 549                                per_cpu_ptr(&percpu_mct_tick, cpu);
 550
 551                        pcpu_mevt->evt.irq = -1;
 552
 553                        irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
 554                        if (request_irq(mct_irq,
 555                                        exynos4_mct_tick_isr,
 556                                        IRQF_TIMER | IRQF_NOBALANCING,
 557                                        pcpu_mevt->name, pcpu_mevt)) {
 558                                pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
 559                                                                        cpu);
 560
 561                                continue;
 562                        }
 563                        pcpu_mevt->evt.irq = mct_irq;
 564                }
 565        }
 566
 567        err = register_cpu_notifier(&exynos4_mct_cpu_nb);
 568        if (err)
 569                goto out_irq;
 570
 571        /* Immediately configure the timer on the boot CPU */
 572        exynos4_local_timer_setup(mevt);
 573        return;
 574
 575out_irq:
 576        free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
 577}
 578
 579static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
 580{
 581        u32 nr_irqs, i;
 582
 583        mct_int_type = int_type;
 584
 585        /* This driver uses only one global timer interrupt */
 586        mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
 587
 588        /*
 589         * Find out the number of local irqs specified. The local
 590         * timer irqs are specified after the four global timer
 591         * irqs are specified.
 592         */
 593#ifdef CONFIG_OF
 594        nr_irqs = of_irq_count(np);
 595#else
 596        nr_irqs = 0;
 597#endif
 598        for (i = MCT_L0_IRQ; i < nr_irqs; i++)
 599                mct_irqs[i] = irq_of_parse_and_map(np, i);
 600
 601        exynos4_timer_resources(np, of_iomap(np, 0));
 602        exynos4_clocksource_init();
 603        exynos4_clockevent_init();
 604}
 605
 606
 607static void __init mct_init_spi(struct device_node *np)
 608{
 609        return mct_init_dt(np, MCT_INT_SPI);
 610}
 611
 612static void __init mct_init_ppi(struct device_node *np)
 613{
 614        return mct_init_dt(np, MCT_INT_PPI);
 615}
 616CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
 617CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
 618