linux/drivers/dma/edma.c
<<
>>
Prefs
   1/*
   2 * TI EDMA DMA engine driver
   3 *
   4 * Copyright 2012 Texas Instruments
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation version 2.
   9 *
  10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  11 * kind, whether express or implied; without even the implied warranty
  12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/dmaengine.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/edma.h>
  19#include <linux/err.h>
  20#include <linux/init.h>
  21#include <linux/interrupt.h>
  22#include <linux/list.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/of.h>
  28#include <linux/of_dma.h>
  29#include <linux/of_irq.h>
  30#include <linux/of_address.h>
  31#include <linux/of_device.h>
  32#include <linux/pm_runtime.h>
  33
  34#include <linux/platform_data/edma.h>
  35
  36#include "dmaengine.h"
  37#include "virt-dma.h"
  38
  39/* Offsets matching "struct edmacc_param" */
  40#define PARM_OPT                0x00
  41#define PARM_SRC                0x04
  42#define PARM_A_B_CNT            0x08
  43#define PARM_DST                0x0c
  44#define PARM_SRC_DST_BIDX       0x10
  45#define PARM_LINK_BCNTRLD       0x14
  46#define PARM_SRC_DST_CIDX       0x18
  47#define PARM_CCNT               0x1c
  48
  49#define PARM_SIZE               0x20
  50
  51/* Offsets for EDMA CC global channel registers and their shadows */
  52#define SH_ER                   0x00    /* 64 bits */
  53#define SH_ECR                  0x08    /* 64 bits */
  54#define SH_ESR                  0x10    /* 64 bits */
  55#define SH_CER                  0x18    /* 64 bits */
  56#define SH_EER                  0x20    /* 64 bits */
  57#define SH_EECR                 0x28    /* 64 bits */
  58#define SH_EESR                 0x30    /* 64 bits */
  59#define SH_SER                  0x38    /* 64 bits */
  60#define SH_SECR                 0x40    /* 64 bits */
  61#define SH_IER                  0x50    /* 64 bits */
  62#define SH_IECR                 0x58    /* 64 bits */
  63#define SH_IESR                 0x60    /* 64 bits */
  64#define SH_IPR                  0x68    /* 64 bits */
  65#define SH_ICR                  0x70    /* 64 bits */
  66#define SH_IEVAL                0x78
  67#define SH_QER                  0x80
  68#define SH_QEER                 0x84
  69#define SH_QEECR                0x88
  70#define SH_QEESR                0x8c
  71#define SH_QSER                 0x90
  72#define SH_QSECR                0x94
  73#define SH_SIZE                 0x200
  74
  75/* Offsets for EDMA CC global registers */
  76#define EDMA_REV                0x0000
  77#define EDMA_CCCFG              0x0004
  78#define EDMA_QCHMAP             0x0200  /* 8 registers */
  79#define EDMA_DMAQNUM            0x0240  /* 8 registers (4 on OMAP-L1xx) */
  80#define EDMA_QDMAQNUM           0x0260
  81#define EDMA_QUETCMAP           0x0280
  82#define EDMA_QUEPRI             0x0284
  83#define EDMA_EMR                0x0300  /* 64 bits */
  84#define EDMA_EMCR               0x0308  /* 64 bits */
  85#define EDMA_QEMR               0x0310
  86#define EDMA_QEMCR              0x0314
  87#define EDMA_CCERR              0x0318
  88#define EDMA_CCERRCLR           0x031c
  89#define EDMA_EEVAL              0x0320
  90#define EDMA_DRAE               0x0340  /* 4 x 64 bits*/
  91#define EDMA_QRAE               0x0380  /* 4 registers */
  92#define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
  93#define EDMA_QSTAT              0x0600  /* 2 registers */
  94#define EDMA_QWMTHRA            0x0620
  95#define EDMA_QWMTHRB            0x0624
  96#define EDMA_CCSTAT             0x0640
  97
  98#define EDMA_M                  0x1000  /* global channel registers */
  99#define EDMA_ECR                0x1008
 100#define EDMA_ECRH               0x100C
 101#define EDMA_SHADOW0            0x2000  /* 4 shadow regions */
 102#define EDMA_PARM               0x4000  /* PaRAM entries */
 103
 104#define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
 105
 106#define EDMA_DCHMAP             0x0100  /* 64 registers */
 107
 108/* CCCFG register */
 109#define GET_NUM_DMACH(x)        (x & 0x7) /* bits 0-2 */
 110#define GET_NUM_QDMACH(x)       ((x & 0x70) >> 4) /* bits 4-6 */
 111#define GET_NUM_PAENTRY(x)      ((x & 0x7000) >> 12) /* bits 12-14 */
 112#define GET_NUM_EVQUE(x)        ((x & 0x70000) >> 16) /* bits 16-18 */
 113#define GET_NUM_REGN(x)         ((x & 0x300000) >> 20) /* bits 20-21 */
 114#define CHMAP_EXIST             BIT(24)
 115
 116/* CCSTAT register */
 117#define EDMA_CCSTAT_ACTV        BIT(4)
 118
 119/*
 120 * Max of 20 segments per channel to conserve PaRAM slots
 121 * Also note that MAX_NR_SG should be atleast the no.of periods
 122 * that are required for ASoC, otherwise DMA prep calls will
 123 * fail. Today davinci-pcm is the only user of this driver and
 124 * requires atleast 17 slots, so we setup the default to 20.
 125 */
 126#define MAX_NR_SG               20
 127#define EDMA_MAX_SLOTS          MAX_NR_SG
 128#define EDMA_DESCRIPTORS        16
 129
 130#define EDMA_CHANNEL_ANY                -1      /* for edma_alloc_channel() */
 131#define EDMA_SLOT_ANY                   -1      /* for edma_alloc_slot() */
 132#define EDMA_CONT_PARAMS_ANY             1001
 133#define EDMA_CONT_PARAMS_FIXED_EXACT     1002
 134#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
 135
 136/* PaRAM slots are laid out like this */
 137struct edmacc_param {
 138        u32 opt;
 139        u32 src;
 140        u32 a_b_cnt;
 141        u32 dst;
 142        u32 src_dst_bidx;
 143        u32 link_bcntrld;
 144        u32 src_dst_cidx;
 145        u32 ccnt;
 146} __packed;
 147
 148/* fields in edmacc_param.opt */
 149#define SAM             BIT(0)
 150#define DAM             BIT(1)
 151#define SYNCDIM         BIT(2)
 152#define STATIC          BIT(3)
 153#define EDMA_FWID       (0x07 << 8)
 154#define TCCMODE         BIT(11)
 155#define EDMA_TCC(t)     ((t) << 12)
 156#define TCINTEN         BIT(20)
 157#define ITCINTEN        BIT(21)
 158#define TCCHEN          BIT(22)
 159#define ITCCHEN         BIT(23)
 160
 161struct edma_pset {
 162        u32                             len;
 163        dma_addr_t                      addr;
 164        struct edmacc_param             param;
 165};
 166
 167struct edma_desc {
 168        struct virt_dma_desc            vdesc;
 169        struct list_head                node;
 170        enum dma_transfer_direction     direction;
 171        int                             cyclic;
 172        int                             absync;
 173        int                             pset_nr;
 174        struct edma_chan                *echan;
 175        int                             processed;
 176
 177        /*
 178         * The following 4 elements are used for residue accounting.
 179         *
 180         * - processed_stat: the number of SG elements we have traversed
 181         * so far to cover accounting. This is updated directly to processed
 182         * during edma_callback and is always <= processed, because processed
 183         * refers to the number of pending transfer (programmed to EDMA
 184         * controller), where as processed_stat tracks number of transfers
 185         * accounted for so far.
 186         *
 187         * - residue: The amount of bytes we have left to transfer for this desc
 188         *
 189         * - residue_stat: The residue in bytes of data we have covered
 190         * so far for accounting. This is updated directly to residue
 191         * during callbacks to keep it current.
 192         *
 193         * - sg_len: Tracks the length of the current intermediate transfer,
 194         * this is required to update the residue during intermediate transfer
 195         * completion callback.
 196         */
 197        int                             processed_stat;
 198        u32                             sg_len;
 199        u32                             residue;
 200        u32                             residue_stat;
 201
 202        struct edma_pset                pset[0];
 203};
 204
 205struct edma_cc;
 206
 207struct edma_tc {
 208        struct device_node              *node;
 209        u16                             id;
 210};
 211
 212struct edma_chan {
 213        struct virt_dma_chan            vchan;
 214        struct list_head                node;
 215        struct edma_desc                *edesc;
 216        struct edma_cc                  *ecc;
 217        struct edma_tc                  *tc;
 218        int                             ch_num;
 219        bool                            alloced;
 220        bool                            hw_triggered;
 221        int                             slot[EDMA_MAX_SLOTS];
 222        int                             missed;
 223        struct dma_slave_config         cfg;
 224};
 225
 226struct edma_cc {
 227        struct device                   *dev;
 228        struct edma_soc_info            *info;
 229        void __iomem                    *base;
 230        int                             id;
 231        bool                            legacy_mode;
 232
 233        /* eDMA3 resource information */
 234        unsigned                        num_channels;
 235        unsigned                        num_qchannels;
 236        unsigned                        num_region;
 237        unsigned                        num_slots;
 238        unsigned                        num_tc;
 239        bool                            chmap_exist;
 240        enum dma_event_q                default_queue;
 241
 242        /*
 243         * The slot_inuse bit for each PaRAM slot is clear unless the slot is
 244         * in use by Linux or if it is allocated to be used by DSP.
 245         */
 246        unsigned long *slot_inuse;
 247
 248        struct dma_device               dma_slave;
 249        struct dma_device               *dma_memcpy;
 250        struct edma_chan                *slave_chans;
 251        struct edma_tc                  *tc_list;
 252        int                             dummy_slot;
 253};
 254
 255/* dummy param set used to (re)initialize parameter RAM slots */
 256static const struct edmacc_param dummy_paramset = {
 257        .link_bcntrld = 0xffff,
 258        .ccnt = 1,
 259};
 260
 261#define EDMA_BINDING_LEGACY     0
 262#define EDMA_BINDING_TPCC       1
 263static const struct of_device_id edma_of_ids[] = {
 264        {
 265                .compatible = "ti,edma3",
 266                .data = (void *)EDMA_BINDING_LEGACY,
 267        },
 268        {
 269                .compatible = "ti,edma3-tpcc",
 270                .data = (void *)EDMA_BINDING_TPCC,
 271        },
 272        {}
 273};
 274
 275static const struct of_device_id edma_tptc_of_ids[] = {
 276        { .compatible = "ti,edma3-tptc", },
 277        {}
 278};
 279
 280static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
 281{
 282        return (unsigned int)__raw_readl(ecc->base + offset);
 283}
 284
 285static inline void edma_write(struct edma_cc *ecc, int offset, int val)
 286{
 287        __raw_writel(val, ecc->base + offset);
 288}
 289
 290static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
 291                               unsigned or)
 292{
 293        unsigned val = edma_read(ecc, offset);
 294
 295        val &= and;
 296        val |= or;
 297        edma_write(ecc, offset, val);
 298}
 299
 300static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
 301{
 302        unsigned val = edma_read(ecc, offset);
 303
 304        val &= and;
 305        edma_write(ecc, offset, val);
 306}
 307
 308static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
 309{
 310        unsigned val = edma_read(ecc, offset);
 311
 312        val |= or;
 313        edma_write(ecc, offset, val);
 314}
 315
 316static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
 317                                           int i)
 318{
 319        return edma_read(ecc, offset + (i << 2));
 320}
 321
 322static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
 323                                    unsigned val)
 324{
 325        edma_write(ecc, offset + (i << 2), val);
 326}
 327
 328static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
 329                                     unsigned and, unsigned or)
 330{
 331        edma_modify(ecc, offset + (i << 2), and, or);
 332}
 333
 334static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
 335                                 unsigned or)
 336{
 337        edma_or(ecc, offset + (i << 2), or);
 338}
 339
 340static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
 341                                  unsigned or)
 342{
 343        edma_or(ecc, offset + ((i * 2 + j) << 2), or);
 344}
 345
 346static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
 347                                     int j, unsigned val)
 348{
 349        edma_write(ecc, offset + ((i * 2 + j) << 2), val);
 350}
 351
 352static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
 353{
 354        return edma_read(ecc, EDMA_SHADOW0 + offset);
 355}
 356
 357static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
 358                                                   int offset, int i)
 359{
 360        return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
 361}
 362
 363static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
 364                                      unsigned val)
 365{
 366        edma_write(ecc, EDMA_SHADOW0 + offset, val);
 367}
 368
 369static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
 370                                            int i, unsigned val)
 371{
 372        edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
 373}
 374
 375static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
 376                                           int param_no)
 377{
 378        return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
 379}
 380
 381static inline void edma_param_write(struct edma_cc *ecc, int offset,
 382                                    int param_no, unsigned val)
 383{
 384        edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
 385}
 386
 387static inline void edma_param_modify(struct edma_cc *ecc, int offset,
 388                                     int param_no, unsigned and, unsigned or)
 389{
 390        edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
 391}
 392
 393static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
 394                                  unsigned and)
 395{
 396        edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
 397}
 398
 399static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
 400                                 unsigned or)
 401{
 402        edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
 403}
 404
 405static inline void set_bits(int offset, int len, unsigned long *p)
 406{
 407        for (; len > 0; len--)
 408                set_bit(offset + (len - 1), p);
 409}
 410
 411static inline void clear_bits(int offset, int len, unsigned long *p)
 412{
 413        for (; len > 0; len--)
 414                clear_bit(offset + (len - 1), p);
 415}
 416
 417static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
 418                                          int priority)
 419{
 420        int bit = queue_no * 4;
 421
 422        edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
 423}
 424
 425static void edma_set_chmap(struct edma_chan *echan, int slot)
 426{
 427        struct edma_cc *ecc = echan->ecc;
 428        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 429
 430        if (ecc->chmap_exist) {
 431                slot = EDMA_CHAN_SLOT(slot);
 432                edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
 433        }
 434}
 435
 436static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
 437{
 438        struct edma_cc *ecc = echan->ecc;
 439        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 440
 441        if (enable) {
 442                edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
 443                                         BIT(channel & 0x1f));
 444                edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
 445                                         BIT(channel & 0x1f));
 446        } else {
 447                edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
 448                                         BIT(channel & 0x1f));
 449        }
 450}
 451
 452/*
 453 * paRAM slot management functions
 454 */
 455static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
 456                            const struct edmacc_param *param)
 457{
 458        slot = EDMA_CHAN_SLOT(slot);
 459        if (slot >= ecc->num_slots)
 460                return;
 461        memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
 462}
 463
 464static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
 465                           struct edmacc_param *param)
 466{
 467        slot = EDMA_CHAN_SLOT(slot);
 468        if (slot >= ecc->num_slots)
 469                return;
 470        memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
 471}
 472
 473/**
 474 * edma_alloc_slot - allocate DMA parameter RAM
 475 * @ecc: pointer to edma_cc struct
 476 * @slot: specific slot to allocate; negative for "any unused slot"
 477 *
 478 * This allocates a parameter RAM slot, initializing it to hold a
 479 * dummy transfer.  Slots allocated using this routine have not been
 480 * mapped to a hardware DMA channel, and will normally be used by
 481 * linking to them from a slot associated with a DMA channel.
 482 *
 483 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 484 * slots may be allocated on behalf of DSP firmware.
 485 *
 486 * Returns the number of the slot, else negative errno.
 487 */
 488static int edma_alloc_slot(struct edma_cc *ecc, int slot)
 489{
 490        if (slot >= 0) {
 491                slot = EDMA_CHAN_SLOT(slot);
 492                /* Requesting entry paRAM slot for a HW triggered channel. */
 493                if (ecc->chmap_exist && slot < ecc->num_channels)
 494                        slot = EDMA_SLOT_ANY;
 495        }
 496
 497        if (slot < 0) {
 498                if (ecc->chmap_exist)
 499                        slot = 0;
 500                else
 501                        slot = ecc->num_channels;
 502                for (;;) {
 503                        slot = find_next_zero_bit(ecc->slot_inuse,
 504                                                  ecc->num_slots,
 505                                                  slot);
 506                        if (slot == ecc->num_slots)
 507                                return -ENOMEM;
 508                        if (!test_and_set_bit(slot, ecc->slot_inuse))
 509                                break;
 510                }
 511        } else if (slot >= ecc->num_slots) {
 512                return -EINVAL;
 513        } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
 514                return -EBUSY;
 515        }
 516
 517        edma_write_slot(ecc, slot, &dummy_paramset);
 518
 519        return EDMA_CTLR_CHAN(ecc->id, slot);
 520}
 521
 522static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
 523{
 524        slot = EDMA_CHAN_SLOT(slot);
 525        if (slot >= ecc->num_slots)
 526                return;
 527
 528        edma_write_slot(ecc, slot, &dummy_paramset);
 529        clear_bit(slot, ecc->slot_inuse);
 530}
 531
 532/**
 533 * edma_link - link one parameter RAM slot to another
 534 * @ecc: pointer to edma_cc struct
 535 * @from: parameter RAM slot originating the link
 536 * @to: parameter RAM slot which is the link target
 537 *
 538 * The originating slot should not be part of any active DMA transfer.
 539 */
 540static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
 541{
 542        if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
 543                dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
 544
 545        from = EDMA_CHAN_SLOT(from);
 546        to = EDMA_CHAN_SLOT(to);
 547        if (from >= ecc->num_slots || to >= ecc->num_slots)
 548                return;
 549
 550        edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
 551                          PARM_OFFSET(to));
 552}
 553
 554/**
 555 * edma_get_position - returns the current transfer point
 556 * @ecc: pointer to edma_cc struct
 557 * @slot: parameter RAM slot being examined
 558 * @dst:  true selects the dest position, false the source
 559 *
 560 * Returns the position of the current active slot
 561 */
 562static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
 563                                    bool dst)
 564{
 565        u32 offs;
 566
 567        slot = EDMA_CHAN_SLOT(slot);
 568        offs = PARM_OFFSET(slot);
 569        offs += dst ? PARM_DST : PARM_SRC;
 570
 571        return edma_read(ecc, offs);
 572}
 573
 574/*
 575 * Channels with event associations will be triggered by their hardware
 576 * events, and channels without such associations will be triggered by
 577 * software.  (At this writing there is no interface for using software
 578 * triggers except with channels that don't support hardware triggers.)
 579 */
 580static void edma_start(struct edma_chan *echan)
 581{
 582        struct edma_cc *ecc = echan->ecc;
 583        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 584        int j = (channel >> 5);
 585        unsigned int mask = BIT(channel & 0x1f);
 586
 587        if (!echan->hw_triggered) {
 588                /* EDMA channels without event association */
 589                dev_dbg(ecc->dev, "ESR%d %08x\n", j,
 590                        edma_shadow0_read_array(ecc, SH_ESR, j));
 591                edma_shadow0_write_array(ecc, SH_ESR, j, mask);
 592        } else {
 593                /* EDMA channel with event association */
 594                dev_dbg(ecc->dev, "ER%d %08x\n", j,
 595                        edma_shadow0_read_array(ecc, SH_ER, j));
 596                /* Clear any pending event or error */
 597                edma_write_array(ecc, EDMA_ECR, j, mask);
 598                edma_write_array(ecc, EDMA_EMCR, j, mask);
 599                /* Clear any SER */
 600                edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 601                edma_shadow0_write_array(ecc, SH_EESR, j, mask);
 602                dev_dbg(ecc->dev, "EER%d %08x\n", j,
 603                        edma_shadow0_read_array(ecc, SH_EER, j));
 604        }
 605}
 606
 607static void edma_stop(struct edma_chan *echan)
 608{
 609        struct edma_cc *ecc = echan->ecc;
 610        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 611        int j = (channel >> 5);
 612        unsigned int mask = BIT(channel & 0x1f);
 613
 614        edma_shadow0_write_array(ecc, SH_EECR, j, mask);
 615        edma_shadow0_write_array(ecc, SH_ECR, j, mask);
 616        edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 617        edma_write_array(ecc, EDMA_EMCR, j, mask);
 618
 619        /* clear possibly pending completion interrupt */
 620        edma_shadow0_write_array(ecc, SH_ICR, j, mask);
 621
 622        dev_dbg(ecc->dev, "EER%d %08x\n", j,
 623                edma_shadow0_read_array(ecc, SH_EER, j));
 624
 625        /* REVISIT:  consider guarding against inappropriate event
 626         * chaining by overwriting with dummy_paramset.
 627         */
 628}
 629
 630/*
 631 * Temporarily disable EDMA hardware events on the specified channel,
 632 * preventing them from triggering new transfers
 633 */
 634static void edma_pause(struct edma_chan *echan)
 635{
 636        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 637        unsigned int mask = BIT(channel & 0x1f);
 638
 639        edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
 640}
 641
 642/* Re-enable EDMA hardware events on the specified channel.  */
 643static void edma_resume(struct edma_chan *echan)
 644{
 645        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 646        unsigned int mask = BIT(channel & 0x1f);
 647
 648        edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
 649}
 650
 651static void edma_trigger_channel(struct edma_chan *echan)
 652{
 653        struct edma_cc *ecc = echan->ecc;
 654        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 655        unsigned int mask = BIT(channel & 0x1f);
 656
 657        edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
 658
 659        dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
 660                edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
 661}
 662
 663static void edma_clean_channel(struct edma_chan *echan)
 664{
 665        struct edma_cc *ecc = echan->ecc;
 666        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 667        int j = (channel >> 5);
 668        unsigned int mask = BIT(channel & 0x1f);
 669
 670        dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
 671        edma_shadow0_write_array(ecc, SH_ECR, j, mask);
 672        /* Clear the corresponding EMR bits */
 673        edma_write_array(ecc, EDMA_EMCR, j, mask);
 674        /* Clear any SER */
 675        edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 676        edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
 677}
 678
 679/* Move channel to a specific event queue */
 680static void edma_assign_channel_eventq(struct edma_chan *echan,
 681                                       enum dma_event_q eventq_no)
 682{
 683        struct edma_cc *ecc = echan->ecc;
 684        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 685        int bit = (channel & 0x7) * 4;
 686
 687        /* default to low priority queue */
 688        if (eventq_no == EVENTQ_DEFAULT)
 689                eventq_no = ecc->default_queue;
 690        if (eventq_no >= ecc->num_tc)
 691                return;
 692
 693        eventq_no &= 7;
 694        edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
 695                          eventq_no << bit);
 696}
 697
 698static int edma_alloc_channel(struct edma_chan *echan,
 699                              enum dma_event_q eventq_no)
 700{
 701        struct edma_cc *ecc = echan->ecc;
 702        int channel = EDMA_CHAN_SLOT(echan->ch_num);
 703
 704        /* ensure access through shadow region 0 */
 705        edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
 706
 707        /* ensure no events are pending */
 708        edma_stop(echan);
 709
 710        edma_setup_interrupt(echan, true);
 711
 712        edma_assign_channel_eventq(echan, eventq_no);
 713
 714        return 0;
 715}
 716
 717static void edma_free_channel(struct edma_chan *echan)
 718{
 719        /* ensure no events are pending */
 720        edma_stop(echan);
 721        /* REVISIT should probably take out of shadow region 0 */
 722        edma_setup_interrupt(echan, false);
 723}
 724
 725static inline struct edma_cc *to_edma_cc(struct dma_device *d)
 726{
 727        return container_of(d, struct edma_cc, dma_slave);
 728}
 729
 730static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 731{
 732        return container_of(c, struct edma_chan, vchan.chan);
 733}
 734
 735static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
 736{
 737        return container_of(tx, struct edma_desc, vdesc.tx);
 738}
 739
 740static void edma_desc_free(struct virt_dma_desc *vdesc)
 741{
 742        kfree(container_of(vdesc, struct edma_desc, vdesc));
 743}
 744
 745/* Dispatch a queued descriptor to the controller (caller holds lock) */
 746static void edma_execute(struct edma_chan *echan)
 747{
 748        struct edma_cc *ecc = echan->ecc;
 749        struct virt_dma_desc *vdesc;
 750        struct edma_desc *edesc;
 751        struct device *dev = echan->vchan.chan.device->dev;
 752        int i, j, left, nslots;
 753
 754        if (!echan->edesc) {
 755                /* Setup is needed for the first transfer */
 756                vdesc = vchan_next_desc(&echan->vchan);
 757                if (!vdesc)
 758                        return;
 759                list_del(&vdesc->node);
 760                echan->edesc = to_edma_desc(&vdesc->tx);
 761        }
 762
 763        edesc = echan->edesc;
 764
 765        /* Find out how many left */
 766        left = edesc->pset_nr - edesc->processed;
 767        nslots = min(MAX_NR_SG, left);
 768        edesc->sg_len = 0;
 769
 770        /* Write descriptor PaRAM set(s) */
 771        for (i = 0; i < nslots; i++) {
 772                j = i + edesc->processed;
 773                edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
 774                edesc->sg_len += edesc->pset[j].len;
 775                dev_vdbg(dev,
 776                         "\n pset[%d]:\n"
 777                         "  chnum\t%d\n"
 778                         "  slot\t%d\n"
 779                         "  opt\t%08x\n"
 780                         "  src\t%08x\n"
 781                         "  dst\t%08x\n"
 782                         "  abcnt\t%08x\n"
 783                         "  ccnt\t%08x\n"
 784                         "  bidx\t%08x\n"
 785                         "  cidx\t%08x\n"
 786                         "  lkrld\t%08x\n",
 787                         j, echan->ch_num, echan->slot[i],
 788                         edesc->pset[j].param.opt,
 789                         edesc->pset[j].param.src,
 790                         edesc->pset[j].param.dst,
 791                         edesc->pset[j].param.a_b_cnt,
 792                         edesc->pset[j].param.ccnt,
 793                         edesc->pset[j].param.src_dst_bidx,
 794                         edesc->pset[j].param.src_dst_cidx,
 795                         edesc->pset[j].param.link_bcntrld);
 796                /* Link to the previous slot if not the last set */
 797                if (i != (nslots - 1))
 798                        edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
 799        }
 800
 801        edesc->processed += nslots;
 802
 803        /*
 804         * If this is either the last set in a set of SG-list transactions
 805         * then setup a link to the dummy slot, this results in all future
 806         * events being absorbed and that's OK because we're done
 807         */
 808        if (edesc->processed == edesc->pset_nr) {
 809                if (edesc->cyclic)
 810                        edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
 811                else
 812                        edma_link(ecc, echan->slot[nslots - 1],
 813                                  echan->ecc->dummy_slot);
 814        }
 815
 816        if (echan->missed) {
 817                /*
 818                 * This happens due to setup times between intermediate
 819                 * transfers in long SG lists which have to be broken up into
 820                 * transfers of MAX_NR_SG
 821                 */
 822                dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
 823                edma_clean_channel(echan);
 824                edma_stop(echan);
 825                edma_start(echan);
 826                edma_trigger_channel(echan);
 827                echan->missed = 0;
 828        } else if (edesc->processed <= MAX_NR_SG) {
 829                dev_dbg(dev, "first transfer starting on channel %d\n",
 830                        echan->ch_num);
 831                edma_start(echan);
 832        } else {
 833                dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
 834                        echan->ch_num, edesc->processed);
 835                edma_resume(echan);
 836        }
 837}
 838
 839static int edma_terminate_all(struct dma_chan *chan)
 840{
 841        struct edma_chan *echan = to_edma_chan(chan);
 842        unsigned long flags;
 843        LIST_HEAD(head);
 844
 845        spin_lock_irqsave(&echan->vchan.lock, flags);
 846
 847        /*
 848         * Stop DMA activity: we assume the callback will not be called
 849         * after edma_dma() returns (even if it does, it will see
 850         * echan->edesc is NULL and exit.)
 851         */
 852        if (echan->edesc) {
 853                edma_stop(echan);
 854                /* Move the cyclic channel back to default queue */
 855                if (!echan->tc && echan->edesc->cyclic)
 856                        edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
 857                /*
 858                 * free the running request descriptor
 859                 * since it is not in any of the vdesc lists
 860                 */
 861                edma_desc_free(&echan->edesc->vdesc);
 862                echan->edesc = NULL;
 863        }
 864
 865        vchan_get_all_descriptors(&echan->vchan, &head);
 866        spin_unlock_irqrestore(&echan->vchan.lock, flags);
 867        vchan_dma_desc_free_list(&echan->vchan, &head);
 868
 869        return 0;
 870}
 871
 872static int edma_slave_config(struct dma_chan *chan,
 873        struct dma_slave_config *cfg)
 874{
 875        struct edma_chan *echan = to_edma_chan(chan);
 876
 877        if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 878            cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 879                return -EINVAL;
 880
 881        memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
 882
 883        return 0;
 884}
 885
 886static int edma_dma_pause(struct dma_chan *chan)
 887{
 888        struct edma_chan *echan = to_edma_chan(chan);
 889
 890        if (!echan->edesc)
 891                return -EINVAL;
 892
 893        edma_pause(echan);
 894        return 0;
 895}
 896
 897static int edma_dma_resume(struct dma_chan *chan)
 898{
 899        struct edma_chan *echan = to_edma_chan(chan);
 900
 901        edma_resume(echan);
 902        return 0;
 903}
 904
 905/*
 906 * A PaRAM set configuration abstraction used by other modes
 907 * @chan: Channel who's PaRAM set we're configuring
 908 * @pset: PaRAM set to initialize and setup.
 909 * @src_addr: Source address of the DMA
 910 * @dst_addr: Destination address of the DMA
 911 * @burst: In units of dev_width, how much to send
 912 * @dev_width: How much is the dev_width
 913 * @dma_length: Total length of the DMA transfer
 914 * @direction: Direction of the transfer
 915 */
 916static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
 917                            dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
 918                            unsigned int acnt, unsigned int dma_length,
 919                            enum dma_transfer_direction direction)
 920{
 921        struct edma_chan *echan = to_edma_chan(chan);
 922        struct device *dev = chan->device->dev;
 923        struct edmacc_param *param = &epset->param;
 924        int bcnt, ccnt, cidx;
 925        int src_bidx, dst_bidx, src_cidx, dst_cidx;
 926        int absync;
 927
 928        /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
 929        if (!burst)
 930                burst = 1;
 931        /*
 932         * If the maxburst is equal to the fifo width, use
 933         * A-synced transfers. This allows for large contiguous
 934         * buffer transfers using only one PaRAM set.
 935         */
 936        if (burst == 1) {
 937                /*
 938                 * For the A-sync case, bcnt and ccnt are the remainder
 939                 * and quotient respectively of the division of:
 940                 * (dma_length / acnt) by (SZ_64K -1). This is so
 941                 * that in case bcnt over flows, we have ccnt to use.
 942                 * Note: In A-sync tranfer only, bcntrld is used, but it
 943                 * only applies for sg_dma_len(sg) >= SZ_64K.
 944                 * In this case, the best way adopted is- bccnt for the
 945                 * first frame will be the remainder below. Then for
 946                 * every successive frame, bcnt will be SZ_64K-1. This
 947                 * is assured as bcntrld = 0xffff in end of function.
 948                 */
 949                absync = false;
 950                ccnt = dma_length / acnt / (SZ_64K - 1);
 951                bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
 952                /*
 953                 * If bcnt is non-zero, we have a remainder and hence an
 954                 * extra frame to transfer, so increment ccnt.
 955                 */
 956                if (bcnt)
 957                        ccnt++;
 958                else
 959                        bcnt = SZ_64K - 1;
 960                cidx = acnt;
 961        } else {
 962                /*
 963                 * If maxburst is greater than the fifo address_width,
 964                 * use AB-synced transfers where A count is the fifo
 965                 * address_width and B count is the maxburst. In this
 966                 * case, we are limited to transfers of C count frames
 967                 * of (address_width * maxburst) where C count is limited
 968                 * to SZ_64K-1. This places an upper bound on the length
 969                 * of an SG segment that can be handled.
 970                 */
 971                absync = true;
 972                bcnt = burst;
 973                ccnt = dma_length / (acnt * bcnt);
 974                if (ccnt > (SZ_64K - 1)) {
 975                        dev_err(dev, "Exceeded max SG segment size\n");
 976                        return -EINVAL;
 977                }
 978                cidx = acnt * bcnt;
 979        }
 980
 981        epset->len = dma_length;
 982
 983        if (direction == DMA_MEM_TO_DEV) {
 984                src_bidx = acnt;
 985                src_cidx = cidx;
 986                dst_bidx = 0;
 987                dst_cidx = 0;
 988                epset->addr = src_addr;
 989        } else if (direction == DMA_DEV_TO_MEM)  {
 990                src_bidx = 0;
 991                src_cidx = 0;
 992                dst_bidx = acnt;
 993                dst_cidx = cidx;
 994                epset->addr = dst_addr;
 995        } else if (direction == DMA_MEM_TO_MEM)  {
 996                src_bidx = acnt;
 997                src_cidx = cidx;
 998                dst_bidx = acnt;
 999                dst_cidx = cidx;
1000        } else {
1001                dev_err(dev, "%s: direction not implemented yet\n", __func__);
1002                return -EINVAL;
1003        }
1004
1005        param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1006        /* Configure A or AB synchronized transfers */
1007        if (absync)
1008                param->opt |= SYNCDIM;
1009
1010        param->src = src_addr;
1011        param->dst = dst_addr;
1012
1013        param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1014        param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1015
1016        param->a_b_cnt = bcnt << 16 | acnt;
1017        param->ccnt = ccnt;
1018        /*
1019         * Only time when (bcntrld) auto reload is required is for
1020         * A-sync case, and in this case, a requirement of reload value
1021         * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1022         * and then later will be populated by edma_execute.
1023         */
1024        param->link_bcntrld = 0xffffffff;
1025        return absync;
1026}
1027
1028static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1029        struct dma_chan *chan, struct scatterlist *sgl,
1030        unsigned int sg_len, enum dma_transfer_direction direction,
1031        unsigned long tx_flags, void *context)
1032{
1033        struct edma_chan *echan = to_edma_chan(chan);
1034        struct device *dev = chan->device->dev;
1035        struct edma_desc *edesc;
1036        dma_addr_t src_addr = 0, dst_addr = 0;
1037        enum dma_slave_buswidth dev_width;
1038        u32 burst;
1039        struct scatterlist *sg;
1040        int i, nslots, ret;
1041
1042        if (unlikely(!echan || !sgl || !sg_len))
1043                return NULL;
1044
1045        if (direction == DMA_DEV_TO_MEM) {
1046                src_addr = echan->cfg.src_addr;
1047                dev_width = echan->cfg.src_addr_width;
1048                burst = echan->cfg.src_maxburst;
1049        } else if (direction == DMA_MEM_TO_DEV) {
1050                dst_addr = echan->cfg.dst_addr;
1051                dev_width = echan->cfg.dst_addr_width;
1052                burst = echan->cfg.dst_maxburst;
1053        } else {
1054                dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1055                return NULL;
1056        }
1057
1058        if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1059                dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1060                return NULL;
1061        }
1062
1063        edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1064                        GFP_ATOMIC);
1065        if (!edesc) {
1066                dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1067                return NULL;
1068        }
1069
1070        edesc->pset_nr = sg_len;
1071        edesc->residue = 0;
1072        edesc->direction = direction;
1073        edesc->echan = echan;
1074
1075        /* Allocate a PaRAM slot, if needed */
1076        nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1077
1078        for (i = 0; i < nslots; i++) {
1079                if (echan->slot[i] < 0) {
1080                        echan->slot[i] =
1081                                edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1082                        if (echan->slot[i] < 0) {
1083                                kfree(edesc);
1084                                dev_err(dev, "%s: Failed to allocate slot\n",
1085                                        __func__);
1086                                return NULL;
1087                        }
1088                }
1089        }
1090
1091        /* Configure PaRAM sets for each SG */
1092        for_each_sg(sgl, sg, sg_len, i) {
1093                /* Get address for each SG */
1094                if (direction == DMA_DEV_TO_MEM)
1095                        dst_addr = sg_dma_address(sg);
1096                else
1097                        src_addr = sg_dma_address(sg);
1098
1099                ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1100                                       dst_addr, burst, dev_width,
1101                                       sg_dma_len(sg), direction);
1102                if (ret < 0) {
1103                        kfree(edesc);
1104                        return NULL;
1105                }
1106
1107                edesc->absync = ret;
1108                edesc->residue += sg_dma_len(sg);
1109
1110                /* If this is the last in a current SG set of transactions,
1111                   enable interrupts so that next set is processed */
1112                if (!((i+1) % MAX_NR_SG))
1113                        edesc->pset[i].param.opt |= TCINTEN;
1114
1115                /* If this is the last set, enable completion interrupt flag */
1116                if (i == sg_len - 1)
1117                        edesc->pset[i].param.opt |= TCINTEN;
1118        }
1119        edesc->residue_stat = edesc->residue;
1120
1121        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1122}
1123
1124static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1125        struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1126        size_t len, unsigned long tx_flags)
1127{
1128        int ret, nslots;
1129        struct edma_desc *edesc;
1130        struct device *dev = chan->device->dev;
1131        struct edma_chan *echan = to_edma_chan(chan);
1132        unsigned int width, pset_len;
1133
1134        if (unlikely(!echan || !len))
1135                return NULL;
1136
1137        if (len < SZ_64K) {
1138                /*
1139                 * Transfer size less than 64K can be handled with one paRAM
1140                 * slot and with one burst.
1141                 * ACNT = length
1142                 */
1143                width = len;
1144                pset_len = len;
1145                nslots = 1;
1146        } else {
1147                /*
1148                 * Transfer size bigger than 64K will be handled with maximum of
1149                 * two paRAM slots.
1150                 * slot1: (full_length / 32767) times 32767 bytes bursts.
1151                 *        ACNT = 32767, length1: (full_length / 32767) * 32767
1152                 * slot2: the remaining amount of data after slot1.
1153                 *        ACNT = full_length - length1, length2 = ACNT
1154                 *
1155                 * When the full_length is multibple of 32767 one slot can be
1156                 * used to complete the transfer.
1157                 */
1158                width = SZ_32K - 1;
1159                pset_len = rounddown(len, width);
1160                /* One slot is enough for lengths multiple of (SZ_32K -1) */
1161                if (unlikely(pset_len == len))
1162                        nslots = 1;
1163                else
1164                        nslots = 2;
1165        }
1166
1167        edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1168                        GFP_ATOMIC);
1169        if (!edesc) {
1170                dev_dbg(dev, "Failed to allocate a descriptor\n");
1171                return NULL;
1172        }
1173
1174        edesc->pset_nr = nslots;
1175        edesc->residue = edesc->residue_stat = len;
1176        edesc->direction = DMA_MEM_TO_MEM;
1177        edesc->echan = echan;
1178
1179        ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1180                               width, pset_len, DMA_MEM_TO_MEM);
1181        if (ret < 0) {
1182                kfree(edesc);
1183                return NULL;
1184        }
1185
1186        edesc->absync = ret;
1187
1188        edesc->pset[0].param.opt |= ITCCHEN;
1189        if (nslots == 1) {
1190                /* Enable transfer complete interrupt */
1191                edesc->pset[0].param.opt |= TCINTEN;
1192        } else {
1193                /* Enable transfer complete chaining for the first slot */
1194                edesc->pset[0].param.opt |= TCCHEN;
1195
1196                if (echan->slot[1] < 0) {
1197                        echan->slot[1] = edma_alloc_slot(echan->ecc,
1198                                                         EDMA_SLOT_ANY);
1199                        if (echan->slot[1] < 0) {
1200                                kfree(edesc);
1201                                dev_err(dev, "%s: Failed to allocate slot\n",
1202                                        __func__);
1203                                return NULL;
1204                        }
1205                }
1206                dest += pset_len;
1207                src += pset_len;
1208                pset_len = width = len % (SZ_32K - 1);
1209
1210                ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1211                                       width, pset_len, DMA_MEM_TO_MEM);
1212                if (ret < 0) {
1213                        kfree(edesc);
1214                        return NULL;
1215                }
1216
1217                edesc->pset[1].param.opt |= ITCCHEN;
1218                edesc->pset[1].param.opt |= TCINTEN;
1219        }
1220
1221        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1222}
1223
1224static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1225        struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1226        size_t period_len, enum dma_transfer_direction direction,
1227        unsigned long tx_flags)
1228{
1229        struct edma_chan *echan = to_edma_chan(chan);
1230        struct device *dev = chan->device->dev;
1231        struct edma_desc *edesc;
1232        dma_addr_t src_addr, dst_addr;
1233        enum dma_slave_buswidth dev_width;
1234        u32 burst;
1235        int i, ret, nslots;
1236
1237        if (unlikely(!echan || !buf_len || !period_len))
1238                return NULL;
1239
1240        if (direction == DMA_DEV_TO_MEM) {
1241                src_addr = echan->cfg.src_addr;
1242                dst_addr = buf_addr;
1243                dev_width = echan->cfg.src_addr_width;
1244                burst = echan->cfg.src_maxburst;
1245        } else if (direction == DMA_MEM_TO_DEV) {
1246                src_addr = buf_addr;
1247                dst_addr = echan->cfg.dst_addr;
1248                dev_width = echan->cfg.dst_addr_width;
1249                burst = echan->cfg.dst_maxburst;
1250        } else {
1251                dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1252                return NULL;
1253        }
1254
1255        if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1256                dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1257                return NULL;
1258        }
1259
1260        if (unlikely(buf_len % period_len)) {
1261                dev_err(dev, "Period should be multiple of Buffer length\n");
1262                return NULL;
1263        }
1264
1265        nslots = (buf_len / period_len) + 1;
1266
1267        /*
1268         * Cyclic DMA users such as audio cannot tolerate delays introduced
1269         * by cases where the number of periods is more than the maximum
1270         * number of SGs the EDMA driver can handle at a time. For DMA types
1271         * such as Slave SGs, such delays are tolerable and synchronized,
1272         * but the synchronization is difficult to achieve with Cyclic and
1273         * cannot be guaranteed, so we error out early.
1274         */
1275        if (nslots > MAX_NR_SG)
1276                return NULL;
1277
1278        edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1279                        GFP_ATOMIC);
1280        if (!edesc) {
1281                dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1282                return NULL;
1283        }
1284
1285        edesc->cyclic = 1;
1286        edesc->pset_nr = nslots;
1287        edesc->residue = edesc->residue_stat = buf_len;
1288        edesc->direction = direction;
1289        edesc->echan = echan;
1290
1291        dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1292                __func__, echan->ch_num, nslots, period_len, buf_len);
1293
1294        for (i = 0; i < nslots; i++) {
1295                /* Allocate a PaRAM slot, if needed */
1296                if (echan->slot[i] < 0) {
1297                        echan->slot[i] =
1298                                edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1299                        if (echan->slot[i] < 0) {
1300                                kfree(edesc);
1301                                dev_err(dev, "%s: Failed to allocate slot\n",
1302                                        __func__);
1303                                return NULL;
1304                        }
1305                }
1306
1307                if (i == nslots - 1) {
1308                        memcpy(&edesc->pset[i], &edesc->pset[0],
1309                               sizeof(edesc->pset[0]));
1310                        break;
1311                }
1312
1313                ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1314                                       dst_addr, burst, dev_width, period_len,
1315                                       direction);
1316                if (ret < 0) {
1317                        kfree(edesc);
1318                        return NULL;
1319                }
1320
1321                if (direction == DMA_DEV_TO_MEM)
1322                        dst_addr += period_len;
1323                else
1324                        src_addr += period_len;
1325
1326                dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1327                dev_vdbg(dev,
1328                        "\n pset[%d]:\n"
1329                        "  chnum\t%d\n"
1330                        "  slot\t%d\n"
1331                        "  opt\t%08x\n"
1332                        "  src\t%08x\n"
1333                        "  dst\t%08x\n"
1334                        "  abcnt\t%08x\n"
1335                        "  ccnt\t%08x\n"
1336                        "  bidx\t%08x\n"
1337                        "  cidx\t%08x\n"
1338                        "  lkrld\t%08x\n",
1339                        i, echan->ch_num, echan->slot[i],
1340                        edesc->pset[i].param.opt,
1341                        edesc->pset[i].param.src,
1342                        edesc->pset[i].param.dst,
1343                        edesc->pset[i].param.a_b_cnt,
1344                        edesc->pset[i].param.ccnt,
1345                        edesc->pset[i].param.src_dst_bidx,
1346                        edesc->pset[i].param.src_dst_cidx,
1347                        edesc->pset[i].param.link_bcntrld);
1348
1349                edesc->absync = ret;
1350
1351                /*
1352                 * Enable period interrupt only if it is requested
1353                 */
1354                if (tx_flags & DMA_PREP_INTERRUPT)
1355                        edesc->pset[i].param.opt |= TCINTEN;
1356        }
1357
1358        /* Place the cyclic channel to highest priority queue */
1359        if (!echan->tc)
1360                edma_assign_channel_eventq(echan, EVENTQ_0);
1361
1362        return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1363}
1364
1365static void edma_completion_handler(struct edma_chan *echan)
1366{
1367        struct device *dev = echan->vchan.chan.device->dev;
1368        struct edma_desc *edesc = echan->edesc;
1369
1370        if (!edesc)
1371                return;
1372
1373        spin_lock(&echan->vchan.lock);
1374        if (edesc->cyclic) {
1375                vchan_cyclic_callback(&edesc->vdesc);
1376                spin_unlock(&echan->vchan.lock);
1377                return;
1378        } else if (edesc->processed == edesc->pset_nr) {
1379                edesc->residue = 0;
1380                edma_stop(echan);
1381                vchan_cookie_complete(&edesc->vdesc);
1382                echan->edesc = NULL;
1383
1384                dev_dbg(dev, "Transfer completed on channel %d\n",
1385                        echan->ch_num);
1386        } else {
1387                dev_dbg(dev, "Sub transfer completed on channel %d\n",
1388                        echan->ch_num);
1389
1390                edma_pause(echan);
1391
1392                /* Update statistics for tx_status */
1393                edesc->residue -= edesc->sg_len;
1394                edesc->residue_stat = edesc->residue;
1395                edesc->processed_stat = edesc->processed;
1396        }
1397        edma_execute(echan);
1398
1399        spin_unlock(&echan->vchan.lock);
1400}
1401
1402/* eDMA interrupt handler */
1403static irqreturn_t dma_irq_handler(int irq, void *data)
1404{
1405        struct edma_cc *ecc = data;
1406        int ctlr;
1407        u32 sh_ier;
1408        u32 sh_ipr;
1409        u32 bank;
1410
1411        ctlr = ecc->id;
1412        if (ctlr < 0)
1413                return IRQ_NONE;
1414
1415        dev_vdbg(ecc->dev, "dma_irq_handler\n");
1416
1417        sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1418        if (!sh_ipr) {
1419                sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1420                if (!sh_ipr)
1421                        return IRQ_NONE;
1422                sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1423                bank = 1;
1424        } else {
1425                sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1426                bank = 0;
1427        }
1428
1429        do {
1430                u32 slot;
1431                u32 channel;
1432
1433                slot = __ffs(sh_ipr);
1434                sh_ipr &= ~(BIT(slot));
1435
1436                if (sh_ier & BIT(slot)) {
1437                        channel = (bank << 5) | slot;
1438                        /* Clear the corresponding IPR bits */
1439                        edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1440                        edma_completion_handler(&ecc->slave_chans[channel]);
1441                }
1442        } while (sh_ipr);
1443
1444        edma_shadow0_write(ecc, SH_IEVAL, 1);
1445        return IRQ_HANDLED;
1446}
1447
1448static void edma_error_handler(struct edma_chan *echan)
1449{
1450        struct edma_cc *ecc = echan->ecc;
1451        struct device *dev = echan->vchan.chan.device->dev;
1452        struct edmacc_param p;
1453
1454        if (!echan->edesc)
1455                return;
1456
1457        spin_lock(&echan->vchan.lock);
1458
1459        edma_read_slot(ecc, echan->slot[0], &p);
1460        /*
1461         * Issue later based on missed flag which will be sure
1462         * to happen as:
1463         * (1) we finished transmitting an intermediate slot and
1464         *     edma_execute is coming up.
1465         * (2) or we finished current transfer and issue will
1466         *     call edma_execute.
1467         *
1468         * Important note: issuing can be dangerous here and
1469         * lead to some nasty recursion when we are in a NULL
1470         * slot. So we avoid doing so and set the missed flag.
1471         */
1472        if (p.a_b_cnt == 0 && p.ccnt == 0) {
1473                dev_dbg(dev, "Error on null slot, setting miss\n");
1474                echan->missed = 1;
1475        } else {
1476                /*
1477                 * The slot is already programmed but the event got
1478                 * missed, so its safe to issue it here.
1479                 */
1480                dev_dbg(dev, "Missed event, TRIGGERING\n");
1481                edma_clean_channel(echan);
1482                edma_stop(echan);
1483                edma_start(echan);
1484                edma_trigger_channel(echan);
1485        }
1486        spin_unlock(&echan->vchan.lock);
1487}
1488
1489static inline bool edma_error_pending(struct edma_cc *ecc)
1490{
1491        if (edma_read_array(ecc, EDMA_EMR, 0) ||
1492            edma_read_array(ecc, EDMA_EMR, 1) ||
1493            edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1494                return true;
1495
1496        return false;
1497}
1498
1499/* eDMA error interrupt handler */
1500static irqreturn_t dma_ccerr_handler(int irq, void *data)
1501{
1502        struct edma_cc *ecc = data;
1503        int i, j;
1504        int ctlr;
1505        unsigned int cnt = 0;
1506        unsigned int val;
1507
1508        ctlr = ecc->id;
1509        if (ctlr < 0)
1510                return IRQ_NONE;
1511
1512        dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1513
1514        if (!edma_error_pending(ecc))
1515                return IRQ_NONE;
1516
1517        while (1) {
1518                /* Event missed register(s) */
1519                for (j = 0; j < 2; j++) {
1520                        unsigned long emr;
1521
1522                        val = edma_read_array(ecc, EDMA_EMR, j);
1523                        if (!val)
1524                                continue;
1525
1526                        dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1527                        emr = val;
1528                        for (i = find_next_bit(&emr, 32, 0); i < 32;
1529                             i = find_next_bit(&emr, 32, i + 1)) {
1530                                int k = (j << 5) + i;
1531
1532                                /* Clear the corresponding EMR bits */
1533                                edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1534                                /* Clear any SER */
1535                                edma_shadow0_write_array(ecc, SH_SECR, j,
1536                                                         BIT(i));
1537                                edma_error_handler(&ecc->slave_chans[k]);
1538                        }
1539                }
1540
1541                val = edma_read(ecc, EDMA_QEMR);
1542                if (val) {
1543                        dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1544                        /* Not reported, just clear the interrupt reason. */
1545                        edma_write(ecc, EDMA_QEMCR, val);
1546                        edma_shadow0_write(ecc, SH_QSECR, val);
1547                }
1548
1549                val = edma_read(ecc, EDMA_CCERR);
1550                if (val) {
1551                        dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1552                        /* Not reported, just clear the interrupt reason. */
1553                        edma_write(ecc, EDMA_CCERRCLR, val);
1554                }
1555
1556                if (!edma_error_pending(ecc))
1557                        break;
1558                cnt++;
1559                if (cnt > 10)
1560                        break;
1561        }
1562        edma_write(ecc, EDMA_EEVAL, 1);
1563        return IRQ_HANDLED;
1564}
1565
1566static void edma_tc_set_pm_state(struct edma_tc *tc, bool enable)
1567{
1568        struct platform_device *tc_pdev;
1569        int ret;
1570
1571        if (!IS_ENABLED(CONFIG_OF) || !tc)
1572                return;
1573
1574        tc_pdev = of_find_device_by_node(tc->node);
1575        if (!tc_pdev) {
1576                pr_err("%s: TPTC device is not found\n", __func__);
1577                return;
1578        }
1579        if (!pm_runtime_enabled(&tc_pdev->dev))
1580                pm_runtime_enable(&tc_pdev->dev);
1581
1582        if (enable)
1583                ret = pm_runtime_get_sync(&tc_pdev->dev);
1584        else
1585                ret = pm_runtime_put_sync(&tc_pdev->dev);
1586
1587        if (ret < 0)
1588                pr_err("%s: pm_runtime_%s_sync() failed for %s\n", __func__,
1589                       enable ? "get" : "put", dev_name(&tc_pdev->dev));
1590}
1591
1592/* Alloc channel resources */
1593static int edma_alloc_chan_resources(struct dma_chan *chan)
1594{
1595        struct edma_chan *echan = to_edma_chan(chan);
1596        struct edma_cc *ecc = echan->ecc;
1597        struct device *dev = ecc->dev;
1598        enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1599        int ret;
1600
1601        if (echan->tc) {
1602                eventq_no = echan->tc->id;
1603        } else if (ecc->tc_list) {
1604                /* memcpy channel */
1605                echan->tc = &ecc->tc_list[ecc->info->default_queue];
1606                eventq_no = echan->tc->id;
1607        }
1608
1609        ret = edma_alloc_channel(echan, eventq_no);
1610        if (ret)
1611                return ret;
1612
1613        echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1614        if (echan->slot[0] < 0) {
1615                dev_err(dev, "Entry slot allocation failed for channel %u\n",
1616                        EDMA_CHAN_SLOT(echan->ch_num));
1617                goto err_slot;
1618        }
1619
1620        /* Set up channel -> slot mapping for the entry slot */
1621        edma_set_chmap(echan, echan->slot[0]);
1622        echan->alloced = true;
1623
1624        dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1625                EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1626                echan->hw_triggered ? "HW" : "SW");
1627
1628        edma_tc_set_pm_state(echan->tc, true);
1629
1630        return 0;
1631
1632err_slot:
1633        edma_free_channel(echan);
1634        return ret;
1635}
1636
1637/* Free channel resources */
1638static void edma_free_chan_resources(struct dma_chan *chan)
1639{
1640        struct edma_chan *echan = to_edma_chan(chan);
1641        struct device *dev = echan->ecc->dev;
1642        int i;
1643
1644        /* Terminate transfers */
1645        edma_stop(echan);
1646
1647        vchan_free_chan_resources(&echan->vchan);
1648
1649        /* Free EDMA PaRAM slots */
1650        for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1651                if (echan->slot[i] >= 0) {
1652                        edma_free_slot(echan->ecc, echan->slot[i]);
1653                        echan->slot[i] = -1;
1654                }
1655        }
1656
1657        /* Set entry slot to the dummy slot */
1658        edma_set_chmap(echan, echan->ecc->dummy_slot);
1659
1660        /* Free EDMA channel */
1661        if (echan->alloced) {
1662                edma_free_channel(echan);
1663                echan->alloced = false;
1664        }
1665
1666        edma_tc_set_pm_state(echan->tc, false);
1667        echan->tc = NULL;
1668        echan->hw_triggered = false;
1669
1670        dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1671                EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1672}
1673
1674/* Send pending descriptor to hardware */
1675static void edma_issue_pending(struct dma_chan *chan)
1676{
1677        struct edma_chan *echan = to_edma_chan(chan);
1678        unsigned long flags;
1679
1680        spin_lock_irqsave(&echan->vchan.lock, flags);
1681        if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1682                edma_execute(echan);
1683        spin_unlock_irqrestore(&echan->vchan.lock, flags);
1684}
1685
1686/*
1687 * This limit exists to avoid a possible infinite loop when waiting for proof
1688 * that a particular transfer is completed. This limit can be hit if there
1689 * are large bursts to/from slow devices or the CPU is never able to catch
1690 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1691 * RX-FIFO, as many as 55 loops have been seen.
1692 */
1693#define EDMA_MAX_TR_WAIT_LOOPS 1000
1694
1695static u32 edma_residue(struct edma_desc *edesc)
1696{
1697        bool dst = edesc->direction == DMA_DEV_TO_MEM;
1698        int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1699        struct edma_chan *echan = edesc->echan;
1700        struct edma_pset *pset = edesc->pset;
1701        dma_addr_t done, pos;
1702        int i;
1703
1704        /*
1705         * We always read the dst/src position from the first RamPar
1706         * pset. That's the one which is active now.
1707         */
1708        pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1709
1710        /*
1711         * "pos" may represent a transfer request that is still being
1712         * processed by the EDMACC or EDMATC. We will busy wait until
1713         * any one of the situations occurs:
1714         *   1. the DMA hardware is idle
1715         *   2. a new transfer request is setup
1716         *   3. we hit the loop limit
1717         */
1718        while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
1719                /* check if a new transfer request is setup */
1720                if (edma_get_position(echan->ecc,
1721                                      echan->slot[0], dst) != pos) {
1722                        break;
1723                }
1724
1725                if (!--loop_count) {
1726                        dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1727                                "%s: timeout waiting for PaRAM update\n",
1728                                __func__);
1729                        break;
1730                }
1731
1732                cpu_relax();
1733        }
1734
1735        /*
1736         * Cyclic is simple. Just subtract pset[0].addr from pos.
1737         *
1738         * We never update edesc->residue in the cyclic case, so we
1739         * can tell the remaining room to the end of the circular
1740         * buffer.
1741         */
1742        if (edesc->cyclic) {
1743                done = pos - pset->addr;
1744                edesc->residue_stat = edesc->residue - done;
1745                return edesc->residue_stat;
1746        }
1747
1748        /*
1749         * For SG operation we catch up with the last processed
1750         * status.
1751         */
1752        pset += edesc->processed_stat;
1753
1754        for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1755                /*
1756                 * If we are inside this pset address range, we know
1757                 * this is the active one. Get the current delta and
1758                 * stop walking the psets.
1759                 */
1760                if (pos >= pset->addr && pos < pset->addr + pset->len)
1761                        return edesc->residue_stat - (pos - pset->addr);
1762
1763                /* Otherwise mark it done and update residue_stat. */
1764                edesc->processed_stat++;
1765                edesc->residue_stat -= pset->len;
1766        }
1767        return edesc->residue_stat;
1768}
1769
1770/* Check request completion status */
1771static enum dma_status edma_tx_status(struct dma_chan *chan,
1772                                      dma_cookie_t cookie,
1773                                      struct dma_tx_state *txstate)
1774{
1775        struct edma_chan *echan = to_edma_chan(chan);
1776        struct virt_dma_desc *vdesc;
1777        enum dma_status ret;
1778        unsigned long flags;
1779
1780        ret = dma_cookie_status(chan, cookie, txstate);
1781        if (ret == DMA_COMPLETE || !txstate)
1782                return ret;
1783
1784        spin_lock_irqsave(&echan->vchan.lock, flags);
1785        if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1786                txstate->residue = edma_residue(echan->edesc);
1787        else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1788                txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1789        spin_unlock_irqrestore(&echan->vchan.lock, flags);
1790
1791        return ret;
1792}
1793
1794static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1795{
1796        if (!memcpy_channels)
1797                return false;
1798        while (*memcpy_channels != -1) {
1799                if (*memcpy_channels == ch_num)
1800                        return true;
1801                memcpy_channels++;
1802        }
1803        return false;
1804}
1805
1806#define EDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1807                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1808                                 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1809                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1810
1811static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1812{
1813        struct dma_device *s_ddev = &ecc->dma_slave;
1814        struct dma_device *m_ddev = NULL;
1815        s32 *memcpy_channels = ecc->info->memcpy_channels;
1816        int i, j;
1817
1818        dma_cap_zero(s_ddev->cap_mask);
1819        dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1820        dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1821        if (ecc->legacy_mode && !memcpy_channels) {
1822                dev_warn(ecc->dev,
1823                         "Legacy memcpy is enabled, things might not work\n");
1824
1825                dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1826                s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1827                s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1828        }
1829
1830        s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1831        s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1832        s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1833        s_ddev->device_free_chan_resources = edma_free_chan_resources;
1834        s_ddev->device_issue_pending = edma_issue_pending;
1835        s_ddev->device_tx_status = edma_tx_status;
1836        s_ddev->device_config = edma_slave_config;
1837        s_ddev->device_pause = edma_dma_pause;
1838        s_ddev->device_resume = edma_dma_resume;
1839        s_ddev->device_terminate_all = edma_terminate_all;
1840
1841        s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1842        s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1843        s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1844        s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1845
1846        s_ddev->dev = ecc->dev;
1847        INIT_LIST_HEAD(&s_ddev->channels);
1848
1849        if (memcpy_channels) {
1850                m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1851                ecc->dma_memcpy = m_ddev;
1852
1853                dma_cap_zero(m_ddev->cap_mask);
1854                dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1855
1856                m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1857                m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1858                m_ddev->device_free_chan_resources = edma_free_chan_resources;
1859                m_ddev->device_issue_pending = edma_issue_pending;
1860                m_ddev->device_tx_status = edma_tx_status;
1861                m_ddev->device_config = edma_slave_config;
1862                m_ddev->device_pause = edma_dma_pause;
1863                m_ddev->device_resume = edma_dma_resume;
1864                m_ddev->device_terminate_all = edma_terminate_all;
1865
1866                m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1867                m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1868                m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1869                m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1870
1871                m_ddev->dev = ecc->dev;
1872                INIT_LIST_HEAD(&m_ddev->channels);
1873        } else if (!ecc->legacy_mode) {
1874                dev_info(ecc->dev, "memcpy is disabled\n");
1875        }
1876
1877        for (i = 0; i < ecc->num_channels; i++) {
1878                struct edma_chan *echan = &ecc->slave_chans[i];
1879                echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1880                echan->ecc = ecc;
1881                echan->vchan.desc_free = edma_desc_free;
1882
1883                if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1884                        vchan_init(&echan->vchan, m_ddev);
1885                else
1886                        vchan_init(&echan->vchan, s_ddev);
1887
1888                INIT_LIST_HEAD(&echan->node);
1889                for (j = 0; j < EDMA_MAX_SLOTS; j++)
1890                        echan->slot[j] = -1;
1891        }
1892}
1893
1894static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1895                              struct edma_cc *ecc)
1896{
1897        int i;
1898        u32 value, cccfg;
1899        s8 (*queue_priority_map)[2];
1900
1901        /* Decode the eDMA3 configuration from CCCFG register */
1902        cccfg = edma_read(ecc, EDMA_CCCFG);
1903
1904        value = GET_NUM_REGN(cccfg);
1905        ecc->num_region = BIT(value);
1906
1907        value = GET_NUM_DMACH(cccfg);
1908        ecc->num_channels = BIT(value + 1);
1909
1910        value = GET_NUM_QDMACH(cccfg);
1911        ecc->num_qchannels = value * 2;
1912
1913        value = GET_NUM_PAENTRY(cccfg);
1914        ecc->num_slots = BIT(value + 4);
1915
1916        value = GET_NUM_EVQUE(cccfg);
1917        ecc->num_tc = value + 1;
1918
1919        ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1920
1921        dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1922        dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1923        dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1924        dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1925        dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1926        dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1927        dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1928
1929        /* Nothing need to be done if queue priority is provided */
1930        if (pdata->queue_priority_mapping)
1931                return 0;
1932
1933        /*
1934         * Configure TC/queue priority as follows:
1935         * Q0 - priority 0
1936         * Q1 - priority 1
1937         * Q2 - priority 2
1938         * ...
1939         * The meaning of priority numbers: 0 highest priority, 7 lowest
1940         * priority. So Q0 is the highest priority queue and the last queue has
1941         * the lowest priority.
1942         */
1943        queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1944                                          GFP_KERNEL);
1945        if (!queue_priority_map)
1946                return -ENOMEM;
1947
1948        for (i = 0; i < ecc->num_tc; i++) {
1949                queue_priority_map[i][0] = i;
1950                queue_priority_map[i][1] = i;
1951        }
1952        queue_priority_map[i][0] = -1;
1953        queue_priority_map[i][1] = -1;
1954
1955        pdata->queue_priority_mapping = queue_priority_map;
1956        /* Default queue has the lowest priority */
1957        pdata->default_queue = i - 1;
1958
1959        return 0;
1960}
1961
1962#if IS_ENABLED(CONFIG_OF)
1963static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1964                               size_t sz)
1965{
1966        const char pname[] = "ti,edma-xbar-event-map";
1967        struct resource res;
1968        void __iomem *xbar;
1969        s16 (*xbar_chans)[2];
1970        size_t nelm = sz / sizeof(s16);
1971        u32 shift, offset, mux;
1972        int ret, i;
1973
1974        xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1975        if (!xbar_chans)
1976                return -ENOMEM;
1977
1978        ret = of_address_to_resource(dev->of_node, 1, &res);
1979        if (ret)
1980                return -ENOMEM;
1981
1982        xbar = devm_ioremap(dev, res.start, resource_size(&res));
1983        if (!xbar)
1984                return -ENOMEM;
1985
1986        ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
1987                                         nelm);
1988        if (ret)
1989                return -EIO;
1990
1991        /* Invalidate last entry for the other user of this mess */
1992        nelm >>= 1;
1993        xbar_chans[nelm][0] = -1;
1994        xbar_chans[nelm][1] = -1;
1995
1996        for (i = 0; i < nelm; i++) {
1997                shift = (xbar_chans[i][1] & 0x03) << 3;
1998                offset = xbar_chans[i][1] & 0xfffffffc;
1999                mux = readl(xbar + offset);
2000                mux &= ~(0xff << shift);
2001                mux |= xbar_chans[i][0] << shift;
2002                writel(mux, (xbar + offset));
2003        }
2004
2005        pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2006        return 0;
2007}
2008
2009static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2010                                                     bool legacy_mode)
2011{
2012        struct edma_soc_info *info;
2013        struct property *prop;
2014        size_t sz;
2015        int ret;
2016
2017        info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2018        if (!info)
2019                return ERR_PTR(-ENOMEM);
2020
2021        if (legacy_mode) {
2022                prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2023                                        &sz);
2024                if (prop) {
2025                        ret = edma_xbar_event_map(dev, info, sz);
2026                        if (ret)
2027                                return ERR_PTR(ret);
2028                }
2029                return info;
2030        }
2031
2032        /* Get the list of channels allocated to be used for memcpy */
2033        prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2034        if (prop) {
2035                const char pname[] = "ti,edma-memcpy-channels";
2036                size_t nelm = sz / sizeof(s32);
2037                s32 *memcpy_ch;
2038
2039                memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2040                                         GFP_KERNEL);
2041                if (!memcpy_ch)
2042                        return ERR_PTR(-ENOMEM);
2043
2044                ret = of_property_read_u32_array(dev->of_node, pname,
2045                                                 (u32 *)memcpy_ch, nelm);
2046                if (ret)
2047                        return ERR_PTR(ret);
2048
2049                memcpy_ch[nelm] = -1;
2050                info->memcpy_channels = memcpy_ch;
2051        }
2052
2053        prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2054                                &sz);
2055        if (prop) {
2056                const char pname[] = "ti,edma-reserved-slot-ranges";
2057                u32 (*tmp)[2];
2058                s16 (*rsv_slots)[2];
2059                size_t nelm = sz / sizeof(*tmp);
2060                struct edma_rsv_info *rsv_info;
2061                int i;
2062
2063                if (!nelm)
2064                        return info;
2065
2066                tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2067                if (!tmp)
2068                        return ERR_PTR(-ENOMEM);
2069
2070                rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2071                if (!rsv_info) {
2072                        kfree(tmp);
2073                        return ERR_PTR(-ENOMEM);
2074                }
2075
2076                rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2077                                         GFP_KERNEL);
2078                if (!rsv_slots) {
2079                        kfree(tmp);
2080                        return ERR_PTR(-ENOMEM);
2081                }
2082
2083                ret = of_property_read_u32_array(dev->of_node, pname,
2084                                                 (u32 *)tmp, nelm * 2);
2085                if (ret) {
2086                        kfree(tmp);
2087                        return ERR_PTR(ret);
2088                }
2089
2090                for (i = 0; i < nelm; i++) {
2091                        rsv_slots[i][0] = tmp[i][0];
2092                        rsv_slots[i][1] = tmp[i][1];
2093                }
2094                rsv_slots[nelm][0] = -1;
2095                rsv_slots[nelm][1] = -1;
2096
2097                info->rsv = rsv_info;
2098                info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2099
2100                kfree(tmp);
2101        }
2102
2103        return info;
2104}
2105
2106static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2107                                      struct of_dma *ofdma)
2108{
2109        struct edma_cc *ecc = ofdma->of_dma_data;
2110        struct dma_chan *chan = NULL;
2111        struct edma_chan *echan;
2112        int i;
2113
2114        if (!ecc || dma_spec->args_count < 1)
2115                return NULL;
2116
2117        for (i = 0; i < ecc->num_channels; i++) {
2118                echan = &ecc->slave_chans[i];
2119                if (echan->ch_num == dma_spec->args[0]) {
2120                        chan = &echan->vchan.chan;
2121                        break;
2122                }
2123        }
2124
2125        if (!chan)
2126                return NULL;
2127
2128        if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2129                goto out;
2130
2131        if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2132            dma_spec->args[1] < echan->ecc->num_tc) {
2133                echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2134                goto out;
2135        }
2136
2137        return NULL;
2138out:
2139        /* The channel is going to be used as HW synchronized */
2140        echan->hw_triggered = true;
2141        return dma_get_slave_channel(chan);
2142}
2143#else
2144static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2145                                                     bool legacy_mode)
2146{
2147        return ERR_PTR(-EINVAL);
2148}
2149
2150static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2151                                      struct of_dma *ofdma)
2152{
2153        return NULL;
2154}
2155#endif
2156
2157static int edma_probe(struct platform_device *pdev)
2158{
2159        struct edma_soc_info    *info = pdev->dev.platform_data;
2160        s8                      (*queue_priority_mapping)[2];
2161        int                     i, off, ln;
2162        const s16               (*rsv_slots)[2];
2163        const s16               (*xbar_chans)[2];
2164        int                     irq;
2165        char                    *irq_name;
2166        struct resource         *mem;
2167        struct device_node      *node = pdev->dev.of_node;
2168        struct device           *dev = &pdev->dev;
2169        struct edma_cc          *ecc;
2170        bool                    legacy_mode = true;
2171        int ret;
2172
2173        if (node) {
2174                const struct of_device_id *match;
2175
2176                match = of_match_node(edma_of_ids, node);
2177                if (match && (u32)match->data == EDMA_BINDING_TPCC)
2178                        legacy_mode = false;
2179
2180                info = edma_setup_info_from_dt(dev, legacy_mode);
2181                if (IS_ERR(info)) {
2182                        dev_err(dev, "failed to get DT data\n");
2183                        return PTR_ERR(info);
2184                }
2185        }
2186
2187        if (!info)
2188                return -ENODEV;
2189
2190        pm_runtime_enable(dev);
2191        ret = pm_runtime_get_sync(dev);
2192        if (ret < 0) {
2193                dev_err(dev, "pm_runtime_get_sync() failed\n");
2194                return ret;
2195        }
2196
2197        ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2198        if (ret)
2199                return ret;
2200
2201        ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2202        if (!ecc) {
2203                dev_err(dev, "Can't allocate controller\n");
2204                return -ENOMEM;
2205        }
2206
2207        ecc->dev = dev;
2208        ecc->id = pdev->id;
2209        ecc->legacy_mode = legacy_mode;
2210        /* When booting with DT the pdev->id is -1 */
2211        if (ecc->id < 0)
2212                ecc->id = 0;
2213
2214        mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2215        if (!mem) {
2216                dev_dbg(dev, "mem resource not found, using index 0\n");
2217                mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2218                if (!mem) {
2219                        dev_err(dev, "no mem resource?\n");
2220                        return -ENODEV;
2221                }
2222        }
2223        ecc->base = devm_ioremap_resource(dev, mem);
2224        if (IS_ERR(ecc->base))
2225                return PTR_ERR(ecc->base);
2226
2227        platform_set_drvdata(pdev, ecc);
2228
2229        /* Get eDMA3 configuration from IP */
2230        ret = edma_setup_from_hw(dev, info, ecc);
2231        if (ret)
2232                return ret;
2233
2234        /* Allocate memory based on the information we got from the IP */
2235        ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2236                                        sizeof(*ecc->slave_chans), GFP_KERNEL);
2237        if (!ecc->slave_chans)
2238                return -ENOMEM;
2239
2240        ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2241                                       sizeof(unsigned long), GFP_KERNEL);
2242        if (!ecc->slot_inuse)
2243                return -ENOMEM;
2244
2245        ecc->default_queue = info->default_queue;
2246
2247        for (i = 0; i < ecc->num_slots; i++)
2248                edma_write_slot(ecc, i, &dummy_paramset);
2249
2250        if (info->rsv) {
2251                /* Set the reserved slots in inuse list */
2252                rsv_slots = info->rsv->rsv_slots;
2253                if (rsv_slots) {
2254                        for (i = 0; rsv_slots[i][0] != -1; i++) {
2255                                off = rsv_slots[i][0];
2256                                ln = rsv_slots[i][1];
2257                                set_bits(off, ln, ecc->slot_inuse);
2258                        }
2259                }
2260        }
2261
2262        /* Clear the xbar mapped channels in unused list */
2263        xbar_chans = info->xbar_chans;
2264        if (xbar_chans) {
2265                for (i = 0; xbar_chans[i][1] != -1; i++) {
2266                        off = xbar_chans[i][1];
2267                }
2268        }
2269
2270        irq = platform_get_irq_byname(pdev, "edma3_ccint");
2271        if (irq < 0 && node)
2272                irq = irq_of_parse_and_map(node, 0);
2273
2274        if (irq >= 0) {
2275                irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2276                                          dev_name(dev));
2277                ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2278                                       ecc);
2279                if (ret) {
2280                        dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2281                        return ret;
2282                }
2283        }
2284
2285        irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2286        if (irq < 0 && node)
2287                irq = irq_of_parse_and_map(node, 2);
2288
2289        if (irq >= 0) {
2290                irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2291                                          dev_name(dev));
2292                ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2293                                       ecc);
2294                if (ret) {
2295                        dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2296                        return ret;
2297                }
2298        }
2299
2300        ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2301        if (ecc->dummy_slot < 0) {
2302                dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2303                return ecc->dummy_slot;
2304        }
2305
2306        queue_priority_mapping = info->queue_priority_mapping;
2307
2308        if (!ecc->legacy_mode) {
2309                int lowest_priority = 0;
2310                struct of_phandle_args tc_args;
2311
2312                ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2313                                            sizeof(*ecc->tc_list), GFP_KERNEL);
2314                if (!ecc->tc_list)
2315                        return -ENOMEM;
2316
2317                for (i = 0;; i++) {
2318                        ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2319                                                               1, i, &tc_args);
2320                        if (ret || i == ecc->num_tc)
2321                                break;
2322
2323                        ecc->tc_list[i].node = tc_args.np;
2324                        ecc->tc_list[i].id = i;
2325                        queue_priority_mapping[i][1] = tc_args.args[0];
2326                        if (queue_priority_mapping[i][1] > lowest_priority) {
2327                                lowest_priority = queue_priority_mapping[i][1];
2328                                info->default_queue = i;
2329                        }
2330                }
2331        }
2332
2333        /* Event queue priority mapping */
2334        for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2335                edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2336                                              queue_priority_mapping[i][1]);
2337
2338        for (i = 0; i < ecc->num_region; i++) {
2339                edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2340                edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2341                edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2342        }
2343        ecc->info = info;
2344
2345        /* Init the dma device and channels */
2346        edma_dma_init(ecc, legacy_mode);
2347
2348        for (i = 0; i < ecc->num_channels; i++) {
2349                /* Assign all channels to the default queue */
2350                edma_assign_channel_eventq(&ecc->slave_chans[i],
2351                                           info->default_queue);
2352                /* Set entry slot to the dummy slot */
2353                edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2354        }
2355
2356        ecc->dma_slave.filter.map = info->slave_map;
2357        ecc->dma_slave.filter.mapcnt = info->slavecnt;
2358        ecc->dma_slave.filter.fn = edma_filter_fn;
2359
2360        ret = dma_async_device_register(&ecc->dma_slave);
2361        if (ret) {
2362                dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2363                goto err_reg1;
2364        }
2365
2366        if (ecc->dma_memcpy) {
2367                ret = dma_async_device_register(ecc->dma_memcpy);
2368                if (ret) {
2369                        dev_err(dev, "memcpy ddev registration failed (%d)\n",
2370                                ret);
2371                        dma_async_device_unregister(&ecc->dma_slave);
2372                        goto err_reg1;
2373                }
2374        }
2375
2376        if (node)
2377                of_dma_controller_register(node, of_edma_xlate, ecc);
2378
2379        dev_info(dev, "TI EDMA DMA engine driver\n");
2380
2381        return 0;
2382
2383err_reg1:
2384        edma_free_slot(ecc, ecc->dummy_slot);
2385        return ret;
2386}
2387
2388static int edma_remove(struct platform_device *pdev)
2389{
2390        struct device *dev = &pdev->dev;
2391        struct edma_cc *ecc = dev_get_drvdata(dev);
2392
2393        if (dev->of_node)
2394                of_dma_controller_free(dev->of_node);
2395        dma_async_device_unregister(&ecc->dma_slave);
2396        if (ecc->dma_memcpy)
2397                dma_async_device_unregister(ecc->dma_memcpy);
2398        edma_free_slot(ecc, ecc->dummy_slot);
2399
2400        return 0;
2401}
2402
2403#ifdef CONFIG_PM_SLEEP
2404static int edma_pm_suspend(struct device *dev)
2405{
2406        struct edma_cc *ecc = dev_get_drvdata(dev);
2407        struct edma_chan *echan = ecc->slave_chans;
2408        int i;
2409
2410        for (i = 0; i < ecc->num_channels; i++) {
2411                if (echan[i].alloced) {
2412                        edma_setup_interrupt(&echan[i], false);
2413                        edma_tc_set_pm_state(echan[i].tc, false);
2414                }
2415        }
2416
2417        return 0;
2418}
2419
2420static int edma_pm_resume(struct device *dev)
2421{
2422        struct edma_cc *ecc = dev_get_drvdata(dev);
2423        struct edma_chan *echan = ecc->slave_chans;
2424        int i;
2425        s8 (*queue_priority_mapping)[2];
2426
2427        queue_priority_mapping = ecc->info->queue_priority_mapping;
2428
2429        /* Event queue priority mapping */
2430        for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2431                edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2432                                              queue_priority_mapping[i][1]);
2433
2434        for (i = 0; i < ecc->num_channels; i++) {
2435                if (echan[i].alloced) {
2436                        /* ensure access through shadow region 0 */
2437                        edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2438                                       BIT(i & 0x1f));
2439
2440                        edma_setup_interrupt(&echan[i], true);
2441
2442                        /* Set up channel -> slot mapping for the entry slot */
2443                        edma_set_chmap(&echan[i], echan[i].slot[0]);
2444
2445                        edma_tc_set_pm_state(echan[i].tc, true);
2446                }
2447        }
2448
2449        return 0;
2450}
2451#endif
2452
2453static const struct dev_pm_ops edma_pm_ops = {
2454        SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2455};
2456
2457static struct platform_driver edma_driver = {
2458        .probe          = edma_probe,
2459        .remove         = edma_remove,
2460        .driver = {
2461                .name   = "edma",
2462                .pm     = &edma_pm_ops,
2463                .of_match_table = edma_of_ids,
2464        },
2465};
2466
2467static int edma_tptc_probe(struct platform_device *pdev)
2468{
2469        return 0;
2470}
2471
2472static struct platform_driver edma_tptc_driver = {
2473        .probe          = edma_tptc_probe,
2474        .driver = {
2475                .name   = "edma3-tptc",
2476                .of_match_table = edma_tptc_of_ids,
2477        },
2478};
2479
2480bool edma_filter_fn(struct dma_chan *chan, void *param)
2481{
2482        bool match = false;
2483
2484        if (chan->device->dev->driver == &edma_driver.driver) {
2485                struct edma_chan *echan = to_edma_chan(chan);
2486                unsigned ch_req = *(unsigned *)param;
2487                if (ch_req == echan->ch_num) {
2488                        /* The channel is going to be used as HW synchronized */
2489                        echan->hw_triggered = true;
2490                        match = true;
2491                }
2492        }
2493        return match;
2494}
2495EXPORT_SYMBOL(edma_filter_fn);
2496
2497static int edma_init(void)
2498{
2499        int ret;
2500
2501        ret = platform_driver_register(&edma_tptc_driver);
2502        if (ret)
2503                return ret;
2504
2505        return platform_driver_register(&edma_driver);
2506}
2507subsys_initcall(edma_init);
2508
2509static void __exit edma_exit(void)
2510{
2511        platform_driver_unregister(&edma_driver);
2512        platform_driver_unregister(&edma_tptc_driver);
2513}
2514module_exit(edma_exit);
2515
2516MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2517MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2518MODULE_LICENSE("GPL v2");
2519