linux/drivers/gpu/drm/i915/i915_gem_gtt.h
<<
>>
Prefs
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Please try to maintain the following order within this file unless it makes
  24 * sense to do otherwise. From top to bottom:
  25 * 1. typedefs
  26 * 2. #defines, and macros
  27 * 3. structure definitions
  28 * 4. function prototypes
  29 *
  30 * Within each section, please try to order by generation in ascending order,
  31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
  32 */
  33
  34#ifndef __I915_GEM_GTT_H__
  35#define __I915_GEM_GTT_H__
  36
  37struct drm_i915_file_private;
  38
  39typedef uint32_t gen6_pte_t;
  40typedef uint64_t gen8_pte_t;
  41typedef uint64_t gen8_pde_t;
  42typedef uint64_t gen8_ppgtt_pdpe_t;
  43typedef uint64_t gen8_ppgtt_pml4e_t;
  44
  45#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
  46
  47
  48/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
  49#define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
  50#define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
  51#define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
  52#define GEN6_PTE_CACHE_LLC              (2 << 1)
  53#define GEN6_PTE_UNCACHED               (1 << 1)
  54#define GEN6_PTE_VALID                  (1 << 0)
  55
  56#define I915_PTES(pte_len)              (PAGE_SIZE / (pte_len))
  57#define I915_PTE_MASK(pte_len)          (I915_PTES(pte_len) - 1)
  58#define I915_PDES                       512
  59#define I915_PDE_MASK                   (I915_PDES - 1)
  60#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
  61
  62#define GEN6_PTES                       I915_PTES(sizeof(gen6_pte_t))
  63#define GEN6_PD_SIZE                    (I915_PDES * PAGE_SIZE)
  64#define GEN6_PD_ALIGN                   (PAGE_SIZE * 16)
  65#define GEN6_PDE_SHIFT                  22
  66#define GEN6_PDE_VALID                  (1 << 0)
  67
  68#define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
  69
  70#define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
  71#define BYT_PTE_WRITEABLE               (1 << 1)
  72
  73/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
  74 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  75 */
  76#define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
  77                                         (((bits) & 0x8) << (11 - 3)))
  78#define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
  79#define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
  80#define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
  81#define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
  82#define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
  83#define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
  84#define HSW_PTE_UNCACHED                (0)
  85#define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
  86#define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
  87
  88/* GEN8 legacy style address is defined as a 3 level page table:
  89 * 31:30 | 29:21 | 20:12 |  11:0
  90 * PDPE  |  PDE  |  PTE  | offset
  91 * The difference as compared to normal x86 3 level page table is the PDPEs are
  92 * programmed via register.
  93 *
  94 * GEN8 48b legacy style address is defined as a 4 level page table:
  95 * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
  96 * PML4E | PDPE  |  PDE  |  PTE  | offset
  97 */
  98#define GEN8_PML4ES_PER_PML4            512
  99#define GEN8_PML4E_SHIFT                39
 100#define GEN8_PML4E_MASK                 (GEN8_PML4ES_PER_PML4 - 1)
 101#define GEN8_PDPE_SHIFT                 30
 102/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
 103 * tables */
 104#define GEN8_PDPE_MASK                  0x1ff
 105#define GEN8_PDE_SHIFT                  21
 106#define GEN8_PDE_MASK                   0x1ff
 107#define GEN8_PTE_SHIFT                  12
 108#define GEN8_PTE_MASK                   0x1ff
 109#define GEN8_LEGACY_PDPES               4
 110#define GEN8_PTES                       I915_PTES(sizeof(gen8_pte_t))
 111
 112#define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
 113                                 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
 114
 115#define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
 116#define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
 117#define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
 118#define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
 119
 120#define CHV_PPAT_SNOOP                  (1<<6)
 121#define GEN8_PPAT_AGE(x)                (x<<4)
 122#define GEN8_PPAT_LLCeLLC               (3<<2)
 123#define GEN8_PPAT_LLCELLC               (2<<2)
 124#define GEN8_PPAT_LLC                   (1<<2)
 125#define GEN8_PPAT_WB                    (3<<0)
 126#define GEN8_PPAT_WT                    (2<<0)
 127#define GEN8_PPAT_WC                    (1<<0)
 128#define GEN8_PPAT_UC                    (0<<0)
 129#define GEN8_PPAT_ELLC_OVERRIDE         (0<<2)
 130#define GEN8_PPAT(i, x)                 ((uint64_t) (x) << ((i) * 8))
 131
 132enum i915_ggtt_view_type {
 133        I915_GGTT_VIEW_NORMAL = 0,
 134        I915_GGTT_VIEW_ROTATED,
 135        I915_GGTT_VIEW_PARTIAL,
 136};
 137
 138struct intel_rotation_info {
 139        unsigned int height;
 140        unsigned int pitch;
 141        unsigned int uv_offset;
 142        uint32_t pixel_format;
 143        uint64_t fb_modifier;
 144        unsigned int width_pages, height_pages;
 145        uint64_t size;
 146        unsigned int width_pages_uv, height_pages_uv;
 147        uint64_t size_uv;
 148        unsigned int uv_start_page;
 149};
 150
 151struct i915_ggtt_view {
 152        enum i915_ggtt_view_type type;
 153
 154        union {
 155                struct {
 156                        u64 offset;
 157                        unsigned int size;
 158                } partial;
 159                struct intel_rotation_info rotation_info;
 160        } params;
 161
 162        struct sg_table *pages;
 163};
 164
 165extern const struct i915_ggtt_view i915_ggtt_view_normal;
 166extern const struct i915_ggtt_view i915_ggtt_view_rotated;
 167
 168enum i915_cache_level;
 169
 170/**
 171 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
 172 * VMA's presence cannot be guaranteed before binding, or after unbinding the
 173 * object into/from the address space.
 174 *
 175 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
 176 * will always be <= an objects lifetime. So object refcounting should cover us.
 177 */
 178struct i915_vma {
 179        struct drm_mm_node node;
 180        struct drm_i915_gem_object *obj;
 181        struct i915_address_space *vm;
 182
 183        /** Flags and address space this VMA is bound to */
 184#define GLOBAL_BIND     (1<<0)
 185#define LOCAL_BIND      (1<<1)
 186        unsigned int bound : 4;
 187
 188        /**
 189         * Support different GGTT views into the same object.
 190         * This means there can be multiple VMA mappings per object and per VM.
 191         * i915_ggtt_view_type is used to distinguish between those entries.
 192         * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
 193         * assumed in GEM functions which take no ggtt view parameter.
 194         */
 195        struct i915_ggtt_view ggtt_view;
 196
 197        /** This object's place on the active/inactive lists */
 198        struct list_head mm_list;
 199
 200        struct list_head vma_link; /* Link in the object's VMA list */
 201
 202        /** This vma's place in the batchbuffer or on the eviction list */
 203        struct list_head exec_list;
 204
 205        /**
 206         * Used for performing relocations during execbuffer insertion.
 207         */
 208        struct hlist_node exec_node;
 209        unsigned long exec_handle;
 210        struct drm_i915_gem_exec_object2 *exec_entry;
 211
 212        /**
 213         * How many users have pinned this object in GTT space. The following
 214         * users can each hold at most one reference: pwrite/pread, execbuffer
 215         * (objects are not allowed multiple times for the same batchbuffer),
 216         * and the framebuffer code. When switching/pageflipping, the
 217         * framebuffer code has at most two buffers pinned per crtc.
 218         *
 219         * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
 220         * bits with absolutely no headroom. So use 4 bits. */
 221        unsigned int pin_count:4;
 222#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
 223};
 224
 225struct i915_page_dma {
 226        struct page *page;
 227        union {
 228                dma_addr_t daddr;
 229
 230                /* For gen6/gen7 only. This is the offset in the GGTT
 231                 * where the page directory entries for PPGTT begin
 232                 */
 233                uint32_t ggtt_offset;
 234        };
 235};
 236
 237#define px_base(px) (&(px)->base)
 238#define px_page(px) (px_base(px)->page)
 239#define px_dma(px) (px_base(px)->daddr)
 240
 241struct i915_page_scratch {
 242        struct i915_page_dma base;
 243};
 244
 245struct i915_page_table {
 246        struct i915_page_dma base;
 247
 248        unsigned long *used_ptes;
 249};
 250
 251struct i915_page_directory {
 252        struct i915_page_dma base;
 253
 254        unsigned long *used_pdes;
 255        struct i915_page_table *page_table[I915_PDES]; /* PDEs */
 256};
 257
 258struct i915_page_directory_pointer {
 259        struct i915_page_dma base;
 260
 261        unsigned long *used_pdpes;
 262        struct i915_page_directory **page_directory;
 263};
 264
 265struct i915_pml4 {
 266        struct i915_page_dma base;
 267
 268        DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
 269        struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
 270};
 271
 272struct i915_address_space {
 273        struct drm_mm mm;
 274        struct drm_device *dev;
 275        struct list_head global_link;
 276        u64 start;              /* Start offset always 0 for dri2 */
 277        u64 total;              /* size addr space maps (ex. 2GB for ggtt) */
 278
 279        struct i915_page_scratch *scratch_page;
 280        struct i915_page_table *scratch_pt;
 281        struct i915_page_directory *scratch_pd;
 282        struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
 283
 284        /**
 285         * List of objects currently involved in rendering.
 286         *
 287         * Includes buffers having the contents of their GPU caches
 288         * flushed, not necessarily primitives. last_read_req
 289         * represents when the rendering involved will be completed.
 290         *
 291         * A reference is held on the buffer while on this list.
 292         */
 293        struct list_head active_list;
 294
 295        /**
 296         * LRU list of objects which are not in the ringbuffer and
 297         * are ready to unbind, but are still in the GTT.
 298         *
 299         * last_read_req is NULL while an object is in this list.
 300         *
 301         * A reference is not held on the buffer while on this list,
 302         * as merely being GTT-bound shouldn't prevent its being
 303         * freed, and we'll pull it off the list in the free path.
 304         */
 305        struct list_head inactive_list;
 306
 307        /* FIXME: Need a more generic return type */
 308        gen6_pte_t (*pte_encode)(dma_addr_t addr,
 309                                 enum i915_cache_level level,
 310                                 bool valid, u32 flags); /* Create a valid PTE */
 311        /* flags for pte_encode */
 312#define PTE_READ_ONLY   (1<<0)
 313        int (*allocate_va_range)(struct i915_address_space *vm,
 314                                 uint64_t start,
 315                                 uint64_t length);
 316        void (*clear_range)(struct i915_address_space *vm,
 317                            uint64_t start,
 318                            uint64_t length,
 319                            bool use_scratch);
 320        void (*insert_entries)(struct i915_address_space *vm,
 321                               struct sg_table *st,
 322                               uint64_t start,
 323                               enum i915_cache_level cache_level, u32 flags);
 324        void (*cleanup)(struct i915_address_space *vm);
 325        /** Unmap an object from an address space. This usually consists of
 326         * setting the valid PTE entries to a reserved scratch page. */
 327        void (*unbind_vma)(struct i915_vma *vma);
 328        /* Map an object into an address space with the given cache flags. */
 329        int (*bind_vma)(struct i915_vma *vma,
 330                        enum i915_cache_level cache_level,
 331                        u32 flags);
 332};
 333
 334/* The Graphics Translation Table is the way in which GEN hardware translates a
 335 * Graphics Virtual Address into a Physical Address. In addition to the normal
 336 * collateral associated with any va->pa translations GEN hardware also has a
 337 * portion of the GTT which can be mapped by the CPU and remain both coherent
 338 * and correct (in cases like swizzling). That region is referred to as GMADR in
 339 * the spec.
 340 */
 341struct i915_gtt {
 342        struct i915_address_space base;
 343
 344        size_t stolen_size;             /* Total size of stolen memory */
 345        size_t stolen_usable_size;      /* Total size minus BIOS reserved */
 346        u64 mappable_end;               /* End offset that we can CPU map */
 347        struct io_mapping *mappable;    /* Mapping to our CPU mappable region */
 348        phys_addr_t mappable_base;      /* PA of our GMADR */
 349
 350        /** "Graphics Stolen Memory" holds the global PTEs */
 351        void __iomem *gsm;
 352
 353        bool do_idle_maps;
 354
 355        int mtrr;
 356
 357        /* global gtt ops */
 358        int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
 359                          size_t *stolen, phys_addr_t *mappable_base,
 360                          u64 *mappable_end);
 361};
 362
 363struct i915_hw_ppgtt {
 364        struct i915_address_space base;
 365        struct kref ref;
 366        struct drm_mm_node node;
 367        unsigned long pd_dirty_rings;
 368        union {
 369                struct i915_pml4 pml4;          /* GEN8+ & 48b PPGTT */
 370                struct i915_page_directory_pointer pdp; /* GEN8+ */
 371                struct i915_page_directory pd;          /* GEN6-7 */
 372        };
 373
 374        struct drm_i915_file_private *file_priv;
 375
 376        gen6_pte_t __iomem *pd_addr;
 377
 378        int (*enable)(struct i915_hw_ppgtt *ppgtt);
 379        int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
 380                         struct drm_i915_gem_request *req);
 381        void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
 382};
 383
 384/* For each pde iterates over every pde between from start until start + length.
 385 * If start, and start+length are not perfectly divisible, the macro will round
 386 * down, and up as needed. The macro modifies pde, start, and length. Dev is
 387 * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
 388 * and length = 2G effectively iterates over every PDE in the system.
 389 *
 390 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
 391 */
 392#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
 393        for (iter = gen6_pde_index(start); \
 394             length > 0 && iter < I915_PDES ? \
 395                        (pt = (pd)->page_table[iter]), 1 : 0; \
 396             iter++, \
 397             temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
 398             temp = min_t(unsigned, temp, length), \
 399             start += temp, length -= temp)
 400
 401#define gen6_for_all_pdes(pt, ppgtt, iter)  \
 402        for (iter = 0;          \
 403             pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
 404             iter++)
 405
 406static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
 407{
 408        const uint32_t mask = NUM_PTE(pde_shift) - 1;
 409
 410        return (address >> PAGE_SHIFT) & mask;
 411}
 412
 413/* Helper to counts the number of PTEs within the given length. This count
 414 * does not cross a page table boundary, so the max value would be
 415 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
 416*/
 417static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
 418                                      uint32_t pde_shift)
 419{
 420        const uint64_t mask = ~((1 << pde_shift) - 1);
 421        uint64_t end;
 422
 423        WARN_ON(length == 0);
 424        WARN_ON(offset_in_page(addr|length));
 425
 426        end = addr + length;
 427
 428        if ((addr & mask) != (end & mask))
 429                return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
 430
 431        return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
 432}
 433
 434static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
 435{
 436        return (addr >> shift) & I915_PDE_MASK;
 437}
 438
 439static inline uint32_t gen6_pte_index(uint32_t addr)
 440{
 441        return i915_pte_index(addr, GEN6_PDE_SHIFT);
 442}
 443
 444static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
 445{
 446        return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
 447}
 448
 449static inline uint32_t gen6_pde_index(uint32_t addr)
 450{
 451        return i915_pde_index(addr, GEN6_PDE_SHIFT);
 452}
 453
 454/* Equivalent to the gen6 version, For each pde iterates over every pde
 455 * between from start until start + length. On gen8+ it simply iterates
 456 * over every page directory entry in a page directory.
 457 */
 458#define gen8_for_each_pde(pt, pd, start, length, iter)                  \
 459        for (iter = gen8_pde_index(start);                              \
 460             length > 0 && iter < I915_PDES &&                          \
 461                (pt = (pd)->page_table[iter], true);                    \
 462             ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);         \
 463                    temp = min(temp - start, length);                   \
 464                    start += temp, length -= temp; }), ++iter)
 465
 466#define gen8_for_each_pdpe(pd, pdp, start, length, iter)                \
 467        for (iter = gen8_pdpe_index(start);                             \
 468             length > 0 && iter < I915_PDPES_PER_PDP(dev) &&            \
 469                (pd = (pdp)->page_directory[iter], true);               \
 470             ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);        \
 471                    temp = min(temp - start, length);                   \
 472                    start += temp, length -= temp; }), ++iter)
 473
 474#define gen8_for_each_pml4e(pdp, pml4, start, length, iter)             \
 475        for (iter = gen8_pml4e_index(start);                            \
 476             length > 0 && iter < GEN8_PML4ES_PER_PML4 &&               \
 477                (pdp = (pml4)->pdps[iter], true);                       \
 478             ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);    \
 479                    temp = min(temp - start, length);                   \
 480                    start += temp, length -= temp; }), ++iter)
 481
 482static inline uint32_t gen8_pte_index(uint64_t address)
 483{
 484        return i915_pte_index(address, GEN8_PDE_SHIFT);
 485}
 486
 487static inline uint32_t gen8_pde_index(uint64_t address)
 488{
 489        return i915_pde_index(address, GEN8_PDE_SHIFT);
 490}
 491
 492static inline uint32_t gen8_pdpe_index(uint64_t address)
 493{
 494        return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
 495}
 496
 497static inline uint32_t gen8_pml4e_index(uint64_t address)
 498{
 499        return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
 500}
 501
 502static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
 503{
 504        return i915_pte_count(address, length, GEN8_PDE_SHIFT);
 505}
 506
 507static inline dma_addr_t
 508i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
 509{
 510        return test_bit(n, ppgtt->pdp.used_pdpes) ?
 511                px_dma(ppgtt->pdp.page_directory[n]) :
 512                px_dma(ppgtt->base.scratch_pd);
 513}
 514
 515int i915_gem_gtt_init(struct drm_device *dev);
 516void i915_gem_init_global_gtt(struct drm_device *dev);
 517void i915_global_gtt_cleanup(struct drm_device *dev);
 518
 519
 520int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
 521int i915_ppgtt_init_hw(struct drm_device *dev);
 522int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
 523void i915_ppgtt_release(struct kref *kref);
 524struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
 525                                        struct drm_i915_file_private *fpriv);
 526static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
 527{
 528        if (ppgtt)
 529                kref_get(&ppgtt->ref);
 530}
 531static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
 532{
 533        if (ppgtt)
 534                kref_put(&ppgtt->ref, i915_ppgtt_release);
 535}
 536
 537void i915_check_and_clear_faults(struct drm_device *dev);
 538void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
 539void i915_gem_restore_gtt_mappings(struct drm_device *dev);
 540
 541int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
 542void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
 543
 544static inline bool
 545i915_ggtt_view_equal(const struct i915_ggtt_view *a,
 546                     const struct i915_ggtt_view *b)
 547{
 548        if (WARN_ON(!a || !b))
 549                return false;
 550
 551        if (a->type != b->type)
 552                return false;
 553        if (a->type != I915_GGTT_VIEW_NORMAL)
 554                return !memcmp(&a->params, &b->params, sizeof(a->params));
 555        return true;
 556}
 557
 558size_t
 559i915_ggtt_view_size(struct drm_i915_gem_object *obj,
 560                    const struct i915_ggtt_view *view);
 561
 562#endif
 563