linux/drivers/gpu/drm/tegra/dc.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
  12#include <linux/iommu.h>
  13#include <linux/reset.h>
  14
  15#include <soc/tegra/pmc.h>
  16
  17#include "dc.h"
  18#include "drm.h"
  19#include "gem.h"
  20
  21#include <drm/drm_atomic.h>
  22#include <drm/drm_atomic_helper.h>
  23#include <drm/drm_plane_helper.h>
  24
  25struct tegra_dc_soc_info {
  26        bool supports_border_color;
  27        bool supports_interlacing;
  28        bool supports_cursor;
  29        bool supports_block_linear;
  30        unsigned int pitch_align;
  31        bool has_powergate;
  32};
  33
  34struct tegra_plane {
  35        struct drm_plane base;
  36        unsigned int index;
  37};
  38
  39static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  40{
  41        return container_of(plane, struct tegra_plane, base);
  42}
  43
  44struct tegra_dc_state {
  45        struct drm_crtc_state base;
  46
  47        struct clk *clk;
  48        unsigned long pclk;
  49        unsigned int div;
  50
  51        u32 planes;
  52};
  53
  54static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
  55{
  56        if (state)
  57                return container_of(state, struct tegra_dc_state, base);
  58
  59        return NULL;
  60}
  61
  62struct tegra_plane_state {
  63        struct drm_plane_state base;
  64
  65        struct tegra_bo_tiling tiling;
  66        u32 format;
  67        u32 swap;
  68};
  69
  70static inline struct tegra_plane_state *
  71to_tegra_plane_state(struct drm_plane_state *state)
  72{
  73        if (state)
  74                return container_of(state, struct tegra_plane_state, base);
  75
  76        return NULL;
  77}
  78
  79static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  80{
  81        stats->frames = 0;
  82        stats->vblank = 0;
  83        stats->underflow = 0;
  84        stats->overflow = 0;
  85}
  86
  87/*
  88 * Reads the active copy of a register. This takes the dc->lock spinlock to
  89 * prevent races with the VBLANK processing which also needs access to the
  90 * active copy of some registers.
  91 */
  92static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  93{
  94        unsigned long flags;
  95        u32 value;
  96
  97        spin_lock_irqsave(&dc->lock, flags);
  98
  99        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 100        value = tegra_dc_readl(dc, offset);
 101        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 102
 103        spin_unlock_irqrestore(&dc->lock, flags);
 104        return value;
 105}
 106
 107/*
 108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 110 * Latching happens mmediately if the display controller is in STOP mode or
 111 * on the next frame boundary otherwise.
 112 *
 113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 116 * into the ACTIVE copy, either immediately if the display controller is in
 117 * STOP mode, or at the next frame boundary otherwise.
 118 */
 119void tegra_dc_commit(struct tegra_dc *dc)
 120{
 121        tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 122        tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 123}
 124
 125static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
 126{
 127        /* assume no swapping of fetched data */
 128        if (swap)
 129                *swap = BYTE_SWAP_NOSWAP;
 130
 131        switch (fourcc) {
 132        case DRM_FORMAT_XBGR8888:
 133                *format = WIN_COLOR_DEPTH_R8G8B8A8;
 134                break;
 135
 136        case DRM_FORMAT_XRGB8888:
 137                *format = WIN_COLOR_DEPTH_B8G8R8A8;
 138                break;
 139
 140        case DRM_FORMAT_RGB565:
 141                *format = WIN_COLOR_DEPTH_B5G6R5;
 142                break;
 143
 144        case DRM_FORMAT_UYVY:
 145                *format = WIN_COLOR_DEPTH_YCbCr422;
 146                break;
 147
 148        case DRM_FORMAT_YUYV:
 149                if (swap)
 150                        *swap = BYTE_SWAP_SWAP2;
 151
 152                *format = WIN_COLOR_DEPTH_YCbCr422;
 153                break;
 154
 155        case DRM_FORMAT_YUV420:
 156                *format = WIN_COLOR_DEPTH_YCbCr420P;
 157                break;
 158
 159        case DRM_FORMAT_YUV422:
 160                *format = WIN_COLOR_DEPTH_YCbCr422P;
 161                break;
 162
 163        default:
 164                return -EINVAL;
 165        }
 166
 167        return 0;
 168}
 169
 170static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
 171{
 172        switch (format) {
 173        case WIN_COLOR_DEPTH_YCbCr422:
 174        case WIN_COLOR_DEPTH_YUV422:
 175                if (planar)
 176                        *planar = false;
 177
 178                return true;
 179
 180        case WIN_COLOR_DEPTH_YCbCr420P:
 181        case WIN_COLOR_DEPTH_YUV420P:
 182        case WIN_COLOR_DEPTH_YCbCr422P:
 183        case WIN_COLOR_DEPTH_YUV422P:
 184        case WIN_COLOR_DEPTH_YCbCr422R:
 185        case WIN_COLOR_DEPTH_YUV422R:
 186        case WIN_COLOR_DEPTH_YCbCr422RA:
 187        case WIN_COLOR_DEPTH_YUV422RA:
 188                if (planar)
 189                        *planar = true;
 190
 191                return true;
 192        }
 193
 194        if (planar)
 195                *planar = false;
 196
 197        return false;
 198}
 199
 200static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 201                                  unsigned int bpp)
 202{
 203        fixed20_12 outf = dfixed_init(out);
 204        fixed20_12 inf = dfixed_init(in);
 205        u32 dda_inc;
 206        int max;
 207
 208        if (v)
 209                max = 15;
 210        else {
 211                switch (bpp) {
 212                case 2:
 213                        max = 8;
 214                        break;
 215
 216                default:
 217                        WARN_ON_ONCE(1);
 218                        /* fallthrough */
 219                case 4:
 220                        max = 4;
 221                        break;
 222                }
 223        }
 224
 225        outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 226        inf.full -= dfixed_const(1);
 227
 228        dda_inc = dfixed_div(inf, outf);
 229        dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 230
 231        return dda_inc;
 232}
 233
 234static inline u32 compute_initial_dda(unsigned int in)
 235{
 236        fixed20_12 inf = dfixed_init(in);
 237        return dfixed_frac(inf);
 238}
 239
 240static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
 241                                  const struct tegra_dc_window *window)
 242{
 243        unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 244        unsigned long value, flags;
 245        bool yuv, planar;
 246
 247        /*
 248         * For YUV planar modes, the number of bytes per pixel takes into
 249         * account only the luma component and therefore is 1.
 250         */
 251        yuv = tegra_dc_format_is_yuv(window->format, &planar);
 252        if (!yuv)
 253                bpp = window->bits_per_pixel / 8;
 254        else
 255                bpp = planar ? 1 : 2;
 256
 257        spin_lock_irqsave(&dc->lock, flags);
 258
 259        value = WINDOW_A_SELECT << index;
 260        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 261
 262        tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
 263        tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
 264
 265        value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 266        tegra_dc_writel(dc, value, DC_WIN_POSITION);
 267
 268        value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 269        tegra_dc_writel(dc, value, DC_WIN_SIZE);
 270
 271        h_offset = window->src.x * bpp;
 272        v_offset = window->src.y;
 273        h_size = window->src.w * bpp;
 274        v_size = window->src.h;
 275
 276        value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 277        tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
 278
 279        /*
 280         * For DDA computations the number of bytes per pixel for YUV planar
 281         * modes needs to take into account all Y, U and V components.
 282         */
 283        if (yuv && planar)
 284                bpp = 2;
 285
 286        h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 287        v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 288
 289        value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 290        tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
 291
 292        h_dda = compute_initial_dda(window->src.x);
 293        v_dda = compute_initial_dda(window->src.y);
 294
 295        tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
 296        tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
 297
 298        tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
 299        tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
 300
 301        tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
 302
 303        if (yuv && planar) {
 304                tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
 305                tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
 306                value = window->stride[1] << 16 | window->stride[0];
 307                tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
 308        } else {
 309                tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
 310        }
 311
 312        if (window->bottom_up)
 313                v_offset += window->src.h - 1;
 314
 315        tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 316        tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 317
 318        if (dc->soc->supports_block_linear) {
 319                unsigned long height = window->tiling.value;
 320
 321                switch (window->tiling.mode) {
 322                case TEGRA_BO_TILING_MODE_PITCH:
 323                        value = DC_WINBUF_SURFACE_KIND_PITCH;
 324                        break;
 325
 326                case TEGRA_BO_TILING_MODE_TILED:
 327                        value = DC_WINBUF_SURFACE_KIND_TILED;
 328                        break;
 329
 330                case TEGRA_BO_TILING_MODE_BLOCK:
 331                        value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 332                                DC_WINBUF_SURFACE_KIND_BLOCK;
 333                        break;
 334                }
 335
 336                tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
 337        } else {
 338                switch (window->tiling.mode) {
 339                case TEGRA_BO_TILING_MODE_PITCH:
 340                        value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 341                                DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 342                        break;
 343
 344                case TEGRA_BO_TILING_MODE_TILED:
 345                        value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 346                                DC_WIN_BUFFER_ADDR_MODE_TILE;
 347                        break;
 348
 349                case TEGRA_BO_TILING_MODE_BLOCK:
 350                        /*
 351                         * No need to handle this here because ->atomic_check
 352                         * will already have filtered it out.
 353                         */
 354                        break;
 355                }
 356
 357                tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
 358        }
 359
 360        value = WIN_ENABLE;
 361
 362        if (yuv) {
 363                /* setup default colorspace conversion coefficients */
 364                tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
 365                tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
 366                tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
 367                tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
 368                tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
 369                tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
 370                tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
 371                tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
 372
 373                value |= CSC_ENABLE;
 374        } else if (window->bits_per_pixel < 24) {
 375                value |= COLOR_EXPAND;
 376        }
 377
 378        if (window->bottom_up)
 379                value |= V_DIRECTION;
 380
 381        tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 382
 383        /*
 384         * Disable blending and assume Window A is the bottom-most window,
 385         * Window C is the top-most window and Window B is in the middle.
 386         */
 387        tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
 388        tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
 389
 390        switch (index) {
 391        case 0:
 392                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
 393                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 394                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 395                break;
 396
 397        case 1:
 398                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 399                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 400                tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 401                break;
 402
 403        case 2:
 404                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 405                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
 406                tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
 407                break;
 408        }
 409
 410        spin_unlock_irqrestore(&dc->lock, flags);
 411}
 412
 413static void tegra_plane_destroy(struct drm_plane *plane)
 414{
 415        struct tegra_plane *p = to_tegra_plane(plane);
 416
 417        drm_plane_cleanup(plane);
 418        kfree(p);
 419}
 420
 421static const u32 tegra_primary_plane_formats[] = {
 422        DRM_FORMAT_XBGR8888,
 423        DRM_FORMAT_XRGB8888,
 424        DRM_FORMAT_RGB565,
 425};
 426
 427static void tegra_primary_plane_destroy(struct drm_plane *plane)
 428{
 429        tegra_plane_destroy(plane);
 430}
 431
 432static void tegra_plane_reset(struct drm_plane *plane)
 433{
 434        struct tegra_plane_state *state;
 435
 436        if (plane->state)
 437                __drm_atomic_helper_plane_destroy_state(plane, plane->state);
 438
 439        kfree(plane->state);
 440        plane->state = NULL;
 441
 442        state = kzalloc(sizeof(*state), GFP_KERNEL);
 443        if (state) {
 444                plane->state = &state->base;
 445                plane->state->plane = plane;
 446        }
 447}
 448
 449static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
 450{
 451        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 452        struct tegra_plane_state *copy;
 453
 454        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
 455        if (!copy)
 456                return NULL;
 457
 458        __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
 459        copy->tiling = state->tiling;
 460        copy->format = state->format;
 461        copy->swap = state->swap;
 462
 463        return &copy->base;
 464}
 465
 466static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
 467                                             struct drm_plane_state *state)
 468{
 469        __drm_atomic_helper_plane_destroy_state(plane, state);
 470        kfree(state);
 471}
 472
 473static const struct drm_plane_funcs tegra_primary_plane_funcs = {
 474        .update_plane = drm_atomic_helper_update_plane,
 475        .disable_plane = drm_atomic_helper_disable_plane,
 476        .destroy = tegra_primary_plane_destroy,
 477        .reset = tegra_plane_reset,
 478        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 479        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 480};
 481
 482static int tegra_plane_prepare_fb(struct drm_plane *plane,
 483                                  const struct drm_plane_state *new_state)
 484{
 485        return 0;
 486}
 487
 488static void tegra_plane_cleanup_fb(struct drm_plane *plane,
 489                                   const struct drm_plane_state *old_fb)
 490{
 491}
 492
 493static int tegra_plane_state_add(struct tegra_plane *plane,
 494                                 struct drm_plane_state *state)
 495{
 496        struct drm_crtc_state *crtc_state;
 497        struct tegra_dc_state *tegra;
 498
 499        /* Propagate errors from allocation or locking failures. */
 500        crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
 501        if (IS_ERR(crtc_state))
 502                return PTR_ERR(crtc_state);
 503
 504        tegra = to_dc_state(crtc_state);
 505
 506        tegra->planes |= WIN_A_ACT_REQ << plane->index;
 507
 508        return 0;
 509}
 510
 511static int tegra_plane_atomic_check(struct drm_plane *plane,
 512                                    struct drm_plane_state *state)
 513{
 514        struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 515        struct tegra_bo_tiling *tiling = &plane_state->tiling;
 516        struct tegra_plane *tegra = to_tegra_plane(plane);
 517        struct tegra_dc *dc = to_tegra_dc(state->crtc);
 518        int err;
 519
 520        /* no need for further checks if the plane is being disabled */
 521        if (!state->crtc)
 522                return 0;
 523
 524        err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
 525                              &plane_state->swap);
 526        if (err < 0)
 527                return err;
 528
 529        err = tegra_fb_get_tiling(state->fb, tiling);
 530        if (err < 0)
 531                return err;
 532
 533        if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 534            !dc->soc->supports_block_linear) {
 535                DRM_ERROR("hardware doesn't support block linear mode\n");
 536                return -EINVAL;
 537        }
 538
 539        /*
 540         * Tegra doesn't support different strides for U and V planes so we
 541         * error out if the user tries to display a framebuffer with such a
 542         * configuration.
 543         */
 544        if (drm_format_num_planes(state->fb->pixel_format) > 2) {
 545                if (state->fb->pitches[2] != state->fb->pitches[1]) {
 546                        DRM_ERROR("unsupported UV-plane configuration\n");
 547                        return -EINVAL;
 548                }
 549        }
 550
 551        err = tegra_plane_state_add(tegra, state);
 552        if (err < 0)
 553                return err;
 554
 555        return 0;
 556}
 557
 558static void tegra_plane_atomic_update(struct drm_plane *plane,
 559                                      struct drm_plane_state *old_state)
 560{
 561        struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 562        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 563        struct drm_framebuffer *fb = plane->state->fb;
 564        struct tegra_plane *p = to_tegra_plane(plane);
 565        struct tegra_dc_window window;
 566        unsigned int i;
 567
 568        /* rien ne va plus */
 569        if (!plane->state->crtc || !plane->state->fb)
 570                return;
 571
 572        memset(&window, 0, sizeof(window));
 573        window.src.x = plane->state->src_x >> 16;
 574        window.src.y = plane->state->src_y >> 16;
 575        window.src.w = plane->state->src_w >> 16;
 576        window.src.h = plane->state->src_h >> 16;
 577        window.dst.x = plane->state->crtc_x;
 578        window.dst.y = plane->state->crtc_y;
 579        window.dst.w = plane->state->crtc_w;
 580        window.dst.h = plane->state->crtc_h;
 581        window.bits_per_pixel = fb->bits_per_pixel;
 582        window.bottom_up = tegra_fb_is_bottom_up(fb);
 583
 584        /* copy from state */
 585        window.tiling = state->tiling;
 586        window.format = state->format;
 587        window.swap = state->swap;
 588
 589        for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
 590                struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 591
 592                window.base[i] = bo->paddr + fb->offsets[i];
 593                window.stride[i] = fb->pitches[i];
 594        }
 595
 596        tegra_dc_setup_window(dc, p->index, &window);
 597}
 598
 599static void tegra_plane_atomic_disable(struct drm_plane *plane,
 600                                       struct drm_plane_state *old_state)
 601{
 602        struct tegra_plane *p = to_tegra_plane(plane);
 603        struct tegra_dc *dc;
 604        unsigned long flags;
 605        u32 value;
 606
 607        /* rien ne va plus */
 608        if (!old_state || !old_state->crtc)
 609                return;
 610
 611        dc = to_tegra_dc(old_state->crtc);
 612
 613        spin_lock_irqsave(&dc->lock, flags);
 614
 615        value = WINDOW_A_SELECT << p->index;
 616        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 617
 618        value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
 619        value &= ~WIN_ENABLE;
 620        tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 621
 622        spin_unlock_irqrestore(&dc->lock, flags);
 623}
 624
 625static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
 626        .prepare_fb = tegra_plane_prepare_fb,
 627        .cleanup_fb = tegra_plane_cleanup_fb,
 628        .atomic_check = tegra_plane_atomic_check,
 629        .atomic_update = tegra_plane_atomic_update,
 630        .atomic_disable = tegra_plane_atomic_disable,
 631};
 632
 633static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
 634                                                       struct tegra_dc *dc)
 635{
 636        /*
 637         * Ideally this would use drm_crtc_mask(), but that would require the
 638         * CRTC to already be in the mode_config's list of CRTCs. However, it
 639         * will only be added to that list in the drm_crtc_init_with_planes()
 640         * (in tegra_dc_init()), which in turn requires registration of these
 641         * planes. So we have ourselves a nice little chicken and egg problem
 642         * here.
 643         *
 644         * We work around this by manually creating the mask from the number
 645         * of CRTCs that have been registered, and should therefore always be
 646         * the same as drm_crtc_index() after registration.
 647         */
 648        unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
 649        struct tegra_plane *plane;
 650        unsigned int num_formats;
 651        const u32 *formats;
 652        int err;
 653
 654        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 655        if (!plane)
 656                return ERR_PTR(-ENOMEM);
 657
 658        num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
 659        formats = tegra_primary_plane_formats;
 660
 661        err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 662                                       &tegra_primary_plane_funcs, formats,
 663                                       num_formats, DRM_PLANE_TYPE_PRIMARY,
 664                                       NULL);
 665        if (err < 0) {
 666                kfree(plane);
 667                return ERR_PTR(err);
 668        }
 669
 670        drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
 671
 672        return &plane->base;
 673}
 674
 675static const u32 tegra_cursor_plane_formats[] = {
 676        DRM_FORMAT_RGBA8888,
 677};
 678
 679static int tegra_cursor_atomic_check(struct drm_plane *plane,
 680                                     struct drm_plane_state *state)
 681{
 682        struct tegra_plane *tegra = to_tegra_plane(plane);
 683        int err;
 684
 685        /* no need for further checks if the plane is being disabled */
 686        if (!state->crtc)
 687                return 0;
 688
 689        /* scaling not supported for cursor */
 690        if ((state->src_w >> 16 != state->crtc_w) ||
 691            (state->src_h >> 16 != state->crtc_h))
 692                return -EINVAL;
 693
 694        /* only square cursors supported */
 695        if (state->src_w != state->src_h)
 696                return -EINVAL;
 697
 698        if (state->crtc_w != 32 && state->crtc_w != 64 &&
 699            state->crtc_w != 128 && state->crtc_w != 256)
 700                return -EINVAL;
 701
 702        err = tegra_plane_state_add(tegra, state);
 703        if (err < 0)
 704                return err;
 705
 706        return 0;
 707}
 708
 709static void tegra_cursor_atomic_update(struct drm_plane *plane,
 710                                       struct drm_plane_state *old_state)
 711{
 712        struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 713        struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 714        struct drm_plane_state *state = plane->state;
 715        u32 value = CURSOR_CLIP_DISPLAY;
 716
 717        /* rien ne va plus */
 718        if (!plane->state->crtc || !plane->state->fb)
 719                return;
 720
 721        switch (state->crtc_w) {
 722        case 32:
 723                value |= CURSOR_SIZE_32x32;
 724                break;
 725
 726        case 64:
 727                value |= CURSOR_SIZE_64x64;
 728                break;
 729
 730        case 128:
 731                value |= CURSOR_SIZE_128x128;
 732                break;
 733
 734        case 256:
 735                value |= CURSOR_SIZE_256x256;
 736                break;
 737
 738        default:
 739                WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 740                     state->crtc_h);
 741                return;
 742        }
 743
 744        value |= (bo->paddr >> 10) & 0x3fffff;
 745        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 746
 747#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 748        value = (bo->paddr >> 32) & 0x3;
 749        tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 750#endif
 751
 752        /* enable cursor and set blend mode */
 753        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 754        value |= CURSOR_ENABLE;
 755        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 756
 757        value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 758        value &= ~CURSOR_DST_BLEND_MASK;
 759        value &= ~CURSOR_SRC_BLEND_MASK;
 760        value |= CURSOR_MODE_NORMAL;
 761        value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 762        value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 763        value |= CURSOR_ALPHA;
 764        tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 765
 766        /* position the cursor */
 767        value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 768        tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 769}
 770
 771static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 772                                        struct drm_plane_state *old_state)
 773{
 774        struct tegra_dc *dc;
 775        u32 value;
 776
 777        /* rien ne va plus */
 778        if (!old_state || !old_state->crtc)
 779                return;
 780
 781        dc = to_tegra_dc(old_state->crtc);
 782
 783        value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 784        value &= ~CURSOR_ENABLE;
 785        tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 786}
 787
 788static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
 789        .update_plane = drm_atomic_helper_update_plane,
 790        .disable_plane = drm_atomic_helper_disable_plane,
 791        .destroy = tegra_plane_destroy,
 792        .reset = tegra_plane_reset,
 793        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 794        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 795};
 796
 797static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 798        .prepare_fb = tegra_plane_prepare_fb,
 799        .cleanup_fb = tegra_plane_cleanup_fb,
 800        .atomic_check = tegra_cursor_atomic_check,
 801        .atomic_update = tegra_cursor_atomic_update,
 802        .atomic_disable = tegra_cursor_atomic_disable,
 803};
 804
 805static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 806                                                      struct tegra_dc *dc)
 807{
 808        struct tegra_plane *plane;
 809        unsigned int num_formats;
 810        const u32 *formats;
 811        int err;
 812
 813        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 814        if (!plane)
 815                return ERR_PTR(-ENOMEM);
 816
 817        /*
 818         * This index is kind of fake. The cursor isn't a regular plane, but
 819         * its update and activation request bits in DC_CMD_STATE_CONTROL do
 820         * use the same programming. Setting this fake index here allows the
 821         * code in tegra_add_plane_state() to do the right thing without the
 822         * need to special-casing the cursor plane.
 823         */
 824        plane->index = 6;
 825
 826        num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 827        formats = tegra_cursor_plane_formats;
 828
 829        err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 830                                       &tegra_cursor_plane_funcs, formats,
 831                                       num_formats, DRM_PLANE_TYPE_CURSOR,
 832                                       NULL);
 833        if (err < 0) {
 834                kfree(plane);
 835                return ERR_PTR(err);
 836        }
 837
 838        drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 839
 840        return &plane->base;
 841}
 842
 843static void tegra_overlay_plane_destroy(struct drm_plane *plane)
 844{
 845        tegra_plane_destroy(plane);
 846}
 847
 848static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
 849        .update_plane = drm_atomic_helper_update_plane,
 850        .disable_plane = drm_atomic_helper_disable_plane,
 851        .destroy = tegra_overlay_plane_destroy,
 852        .reset = tegra_plane_reset,
 853        .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 854        .atomic_destroy_state = tegra_plane_atomic_destroy_state,
 855};
 856
 857static const uint32_t tegra_overlay_plane_formats[] = {
 858        DRM_FORMAT_XBGR8888,
 859        DRM_FORMAT_XRGB8888,
 860        DRM_FORMAT_RGB565,
 861        DRM_FORMAT_UYVY,
 862        DRM_FORMAT_YUYV,
 863        DRM_FORMAT_YUV420,
 864        DRM_FORMAT_YUV422,
 865};
 866
 867static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
 868        .prepare_fb = tegra_plane_prepare_fb,
 869        .cleanup_fb = tegra_plane_cleanup_fb,
 870        .atomic_check = tegra_plane_atomic_check,
 871        .atomic_update = tegra_plane_atomic_update,
 872        .atomic_disable = tegra_plane_atomic_disable,
 873};
 874
 875static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 876                                                       struct tegra_dc *dc,
 877                                                       unsigned int index)
 878{
 879        struct tegra_plane *plane;
 880        unsigned int num_formats;
 881        const u32 *formats;
 882        int err;
 883
 884        plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 885        if (!plane)
 886                return ERR_PTR(-ENOMEM);
 887
 888        plane->index = index;
 889
 890        num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
 891        formats = tegra_overlay_plane_formats;
 892
 893        err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 894                                       &tegra_overlay_plane_funcs, formats,
 895                                       num_formats, DRM_PLANE_TYPE_OVERLAY,
 896                                       NULL);
 897        if (err < 0) {
 898                kfree(plane);
 899                return ERR_PTR(err);
 900        }
 901
 902        drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
 903
 904        return &plane->base;
 905}
 906
 907static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
 908{
 909        struct drm_plane *plane;
 910        unsigned int i;
 911
 912        for (i = 0; i < 2; i++) {
 913                plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
 914                if (IS_ERR(plane))
 915                        return PTR_ERR(plane);
 916        }
 917
 918        return 0;
 919}
 920
 921u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
 922{
 923        if (dc->syncpt)
 924                return host1x_syncpt_read(dc->syncpt);
 925
 926        /* fallback to software emulated VBLANK counter */
 927        return drm_crtc_vblank_count(&dc->base);
 928}
 929
 930void tegra_dc_enable_vblank(struct tegra_dc *dc)
 931{
 932        unsigned long value, flags;
 933
 934        spin_lock_irqsave(&dc->lock, flags);
 935
 936        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 937        value |= VBLANK_INT;
 938        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 939
 940        spin_unlock_irqrestore(&dc->lock, flags);
 941}
 942
 943void tegra_dc_disable_vblank(struct tegra_dc *dc)
 944{
 945        unsigned long value, flags;
 946
 947        spin_lock_irqsave(&dc->lock, flags);
 948
 949        value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 950        value &= ~VBLANK_INT;
 951        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 952
 953        spin_unlock_irqrestore(&dc->lock, flags);
 954}
 955
 956static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
 957{
 958        struct drm_device *drm = dc->base.dev;
 959        struct drm_crtc *crtc = &dc->base;
 960        unsigned long flags, base;
 961        struct tegra_bo *bo;
 962
 963        spin_lock_irqsave(&drm->event_lock, flags);
 964
 965        if (!dc->event) {
 966                spin_unlock_irqrestore(&drm->event_lock, flags);
 967                return;
 968        }
 969
 970        bo = tegra_fb_get_plane(crtc->primary->fb, 0);
 971
 972        spin_lock(&dc->lock);
 973
 974        /* check if new start address has been latched */
 975        tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
 976        tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 977        base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
 978        tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 979
 980        spin_unlock(&dc->lock);
 981
 982        if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
 983                drm_crtc_send_vblank_event(crtc, dc->event);
 984                drm_crtc_vblank_put(crtc);
 985                dc->event = NULL;
 986        }
 987
 988        spin_unlock_irqrestore(&drm->event_lock, flags);
 989}
 990
 991void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
 992{
 993        struct tegra_dc *dc = to_tegra_dc(crtc);
 994        struct drm_device *drm = crtc->dev;
 995        unsigned long flags;
 996
 997        spin_lock_irqsave(&drm->event_lock, flags);
 998
 999        if (dc->event && dc->event->base.file_priv == file) {
1000                dc->event->base.destroy(&dc->event->base);
1001                drm_crtc_vblank_put(crtc);
1002                dc->event = NULL;
1003        }
1004
1005        spin_unlock_irqrestore(&drm->event_lock, flags);
1006}
1007
1008static void tegra_dc_destroy(struct drm_crtc *crtc)
1009{
1010        drm_crtc_cleanup(crtc);
1011}
1012
1013static void tegra_crtc_reset(struct drm_crtc *crtc)
1014{
1015        struct tegra_dc_state *state;
1016
1017        if (crtc->state)
1018                __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1019
1020        kfree(crtc->state);
1021        crtc->state = NULL;
1022
1023        state = kzalloc(sizeof(*state), GFP_KERNEL);
1024        if (state) {
1025                crtc->state = &state->base;
1026                crtc->state->crtc = crtc;
1027        }
1028
1029        drm_crtc_vblank_reset(crtc);
1030}
1031
1032static struct drm_crtc_state *
1033tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1034{
1035        struct tegra_dc_state *state = to_dc_state(crtc->state);
1036        struct tegra_dc_state *copy;
1037
1038        copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1039        if (!copy)
1040                return NULL;
1041
1042        __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1043        copy->clk = state->clk;
1044        copy->pclk = state->pclk;
1045        copy->div = state->div;
1046        copy->planes = state->planes;
1047
1048        return &copy->base;
1049}
1050
1051static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1052                                            struct drm_crtc_state *state)
1053{
1054        __drm_atomic_helper_crtc_destroy_state(crtc, state);
1055        kfree(state);
1056}
1057
1058static const struct drm_crtc_funcs tegra_crtc_funcs = {
1059        .page_flip = drm_atomic_helper_page_flip,
1060        .set_config = drm_atomic_helper_set_config,
1061        .destroy = tegra_dc_destroy,
1062        .reset = tegra_crtc_reset,
1063        .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1064        .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1065};
1066
1067static int tegra_dc_set_timings(struct tegra_dc *dc,
1068                                struct drm_display_mode *mode)
1069{
1070        unsigned int h_ref_to_sync = 1;
1071        unsigned int v_ref_to_sync = 1;
1072        unsigned long value;
1073
1074        tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1075
1076        value = (v_ref_to_sync << 16) | h_ref_to_sync;
1077        tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1078
1079        value = ((mode->vsync_end - mode->vsync_start) << 16) |
1080                ((mode->hsync_end - mode->hsync_start) <<  0);
1081        tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1082
1083        value = ((mode->vtotal - mode->vsync_end) << 16) |
1084                ((mode->htotal - mode->hsync_end) <<  0);
1085        tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1086
1087        value = ((mode->vsync_start - mode->vdisplay) << 16) |
1088                ((mode->hsync_start - mode->hdisplay) <<  0);
1089        tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1090
1091        value = (mode->vdisplay << 16) | mode->hdisplay;
1092        tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1093
1094        return 0;
1095}
1096
1097/**
1098 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1099 *     state
1100 * @dc: display controller
1101 * @crtc_state: CRTC atomic state
1102 * @clk: parent clock for display controller
1103 * @pclk: pixel clock
1104 * @div: shift clock divider
1105 *
1106 * Returns:
1107 * 0 on success or a negative error-code on failure.
1108 */
1109int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1110                               struct drm_crtc_state *crtc_state,
1111                               struct clk *clk, unsigned long pclk,
1112                               unsigned int div)
1113{
1114        struct tegra_dc_state *state = to_dc_state(crtc_state);
1115
1116        if (!clk_has_parent(dc->clk, clk))
1117                return -EINVAL;
1118
1119        state->clk = clk;
1120        state->pclk = pclk;
1121        state->div = div;
1122
1123        return 0;
1124}
1125
1126static void tegra_dc_commit_state(struct tegra_dc *dc,
1127                                  struct tegra_dc_state *state)
1128{
1129        u32 value;
1130        int err;
1131
1132        err = clk_set_parent(dc->clk, state->clk);
1133        if (err < 0)
1134                dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1135
1136        /*
1137         * Outputs may not want to change the parent clock rate. This is only
1138         * relevant to Tegra20 where only a single display PLL is available.
1139         * Since that PLL would typically be used for HDMI, an internal LVDS
1140         * panel would need to be driven by some other clock such as PLL_P
1141         * which is shared with other peripherals. Changing the clock rate
1142         * should therefore be avoided.
1143         */
1144        if (state->pclk > 0) {
1145                err = clk_set_rate(state->clk, state->pclk);
1146                if (err < 0)
1147                        dev_err(dc->dev,
1148                                "failed to set clock rate to %lu Hz\n",
1149                                state->pclk);
1150        }
1151
1152        DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1153                      state->div);
1154        DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1155
1156        value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1157        tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1158}
1159
1160static void tegra_dc_stop(struct tegra_dc *dc)
1161{
1162        u32 value;
1163
1164        /* stop the display controller */
1165        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1166        value &= ~DISP_CTRL_MODE_MASK;
1167        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1168
1169        tegra_dc_commit(dc);
1170}
1171
1172static bool tegra_dc_idle(struct tegra_dc *dc)
1173{
1174        u32 value;
1175
1176        value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1177
1178        return (value & DISP_CTRL_MODE_MASK) == 0;
1179}
1180
1181static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1182{
1183        timeout = jiffies + msecs_to_jiffies(timeout);
1184
1185        while (time_before(jiffies, timeout)) {
1186                if (tegra_dc_idle(dc))
1187                        return 0;
1188
1189                usleep_range(1000, 2000);
1190        }
1191
1192        dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1193        return -ETIMEDOUT;
1194}
1195
1196static void tegra_crtc_disable(struct drm_crtc *crtc)
1197{
1198        struct tegra_dc *dc = to_tegra_dc(crtc);
1199        u32 value;
1200
1201        if (!tegra_dc_idle(dc)) {
1202                tegra_dc_stop(dc);
1203
1204                /*
1205                 * Ignore the return value, there isn't anything useful to do
1206                 * in case this fails.
1207                 */
1208                tegra_dc_wait_idle(dc, 100);
1209        }
1210
1211        /*
1212         * This should really be part of the RGB encoder driver, but clearing
1213         * these bits has the side-effect of stopping the display controller.
1214         * When that happens no VBLANK interrupts will be raised. At the same
1215         * time the encoder is disabled before the display controller, so the
1216         * above code is always going to timeout waiting for the controller
1217         * to go idle.
1218         *
1219         * Given the close coupling between the RGB encoder and the display
1220         * controller doing it here is still kind of okay. None of the other
1221         * encoder drivers require these bits to be cleared.
1222         *
1223         * XXX: Perhaps given that the display controller is switched off at
1224         * this point anyway maybe clearing these bits isn't even useful for
1225         * the RGB encoder?
1226         */
1227        if (dc->rgb) {
1228                value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1229                value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1230                           PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1231                tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1232        }
1233
1234        tegra_dc_stats_reset(&dc->stats);
1235        drm_crtc_vblank_off(crtc);
1236}
1237
1238static void tegra_crtc_enable(struct drm_crtc *crtc)
1239{
1240        struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1241        struct tegra_dc_state *state = to_dc_state(crtc->state);
1242        struct tegra_dc *dc = to_tegra_dc(crtc);
1243        u32 value;
1244
1245        tegra_dc_commit_state(dc, state);
1246
1247        /* program display mode */
1248        tegra_dc_set_timings(dc, mode);
1249
1250        /* interlacing isn't supported yet, so disable it */
1251        if (dc->soc->supports_interlacing) {
1252                value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1253                value &= ~INTERLACE_ENABLE;
1254                tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1255        }
1256
1257        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1258        value &= ~DISP_CTRL_MODE_MASK;
1259        value |= DISP_CTRL_MODE_C_DISPLAY;
1260        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1261
1262        value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1263        value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1264                 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1265        tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1266
1267        tegra_dc_commit(dc);
1268
1269        drm_crtc_vblank_on(crtc);
1270}
1271
1272static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1273                                   struct drm_crtc_state *state)
1274{
1275        return 0;
1276}
1277
1278static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1279                                    struct drm_crtc_state *old_crtc_state)
1280{
1281        struct tegra_dc *dc = to_tegra_dc(crtc);
1282
1283        if (crtc->state->event) {
1284                crtc->state->event->pipe = drm_crtc_index(crtc);
1285
1286                WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1287
1288                dc->event = crtc->state->event;
1289                crtc->state->event = NULL;
1290        }
1291}
1292
1293static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1294                                    struct drm_crtc_state *old_crtc_state)
1295{
1296        struct tegra_dc_state *state = to_dc_state(crtc->state);
1297        struct tegra_dc *dc = to_tegra_dc(crtc);
1298
1299        tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1300        tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1301}
1302
1303static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1304        .disable = tegra_crtc_disable,
1305        .enable = tegra_crtc_enable,
1306        .atomic_check = tegra_crtc_atomic_check,
1307        .atomic_begin = tegra_crtc_atomic_begin,
1308        .atomic_flush = tegra_crtc_atomic_flush,
1309};
1310
1311static irqreturn_t tegra_dc_irq(int irq, void *data)
1312{
1313        struct tegra_dc *dc = data;
1314        unsigned long status;
1315
1316        status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1317        tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1318
1319        if (status & FRAME_END_INT) {
1320                /*
1321                dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1322                */
1323                dc->stats.frames++;
1324        }
1325
1326        if (status & VBLANK_INT) {
1327                /*
1328                dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1329                */
1330                drm_crtc_handle_vblank(&dc->base);
1331                tegra_dc_finish_page_flip(dc);
1332                dc->stats.vblank++;
1333        }
1334
1335        if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1336                /*
1337                dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1338                */
1339                dc->stats.underflow++;
1340        }
1341
1342        if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1343                /*
1344                dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1345                */
1346                dc->stats.overflow++;
1347        }
1348
1349        return IRQ_HANDLED;
1350}
1351
1352static int tegra_dc_show_regs(struct seq_file *s, void *data)
1353{
1354        struct drm_info_node *node = s->private;
1355        struct tegra_dc *dc = node->info_ent->data;
1356        int err = 0;
1357
1358        drm_modeset_lock_crtc(&dc->base, NULL);
1359
1360        if (!dc->base.state->active) {
1361                err = -EBUSY;
1362                goto unlock;
1363        }
1364
1365#define DUMP_REG(name)                                          \
1366        seq_printf(s, "%-40s %#05x %08x\n", #name, name,        \
1367                   tegra_dc_readl(dc, name))
1368
1369        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1370        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1371        DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1372        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1373        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1374        DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1375        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1376        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1377        DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1378        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1379        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1380        DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1381        DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1382        DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1383        DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1384        DUMP_REG(DC_CMD_SIGNAL_RAISE);
1385        DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1386        DUMP_REG(DC_CMD_INT_STATUS);
1387        DUMP_REG(DC_CMD_INT_MASK);
1388        DUMP_REG(DC_CMD_INT_ENABLE);
1389        DUMP_REG(DC_CMD_INT_TYPE);
1390        DUMP_REG(DC_CMD_INT_POLARITY);
1391        DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1392        DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1393        DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1394        DUMP_REG(DC_CMD_STATE_ACCESS);
1395        DUMP_REG(DC_CMD_STATE_CONTROL);
1396        DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1397        DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1398        DUMP_REG(DC_COM_CRC_CONTROL);
1399        DUMP_REG(DC_COM_CRC_CHECKSUM);
1400        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1401        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1402        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1403        DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1404        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1405        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1406        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1407        DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1408        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1409        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1410        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1411        DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1412        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1413        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1414        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1415        DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1416        DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1417        DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1418        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1419        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1420        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1421        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1422        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1423        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1424        DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1425        DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1426        DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1427        DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1428        DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1429        DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1430        DUMP_REG(DC_COM_SPI_CONTROL);
1431        DUMP_REG(DC_COM_SPI_START_BYTE);
1432        DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1433        DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1434        DUMP_REG(DC_COM_HSPI_CS_DC);
1435        DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1436        DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1437        DUMP_REG(DC_COM_GPIO_CTRL);
1438        DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1439        DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1440        DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1441        DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1442        DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1443        DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1444        DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1445        DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1446        DUMP_REG(DC_DISP_REF_TO_SYNC);
1447        DUMP_REG(DC_DISP_SYNC_WIDTH);
1448        DUMP_REG(DC_DISP_BACK_PORCH);
1449        DUMP_REG(DC_DISP_ACTIVE);
1450        DUMP_REG(DC_DISP_FRONT_PORCH);
1451        DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1452        DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1453        DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1454        DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1455        DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1456        DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1457        DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1458        DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1459        DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1460        DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1461        DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1462        DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1463        DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1464        DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1465        DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1466        DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1467        DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1468        DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1469        DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1470        DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1471        DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1472        DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1473        DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1474        DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1475        DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1476        DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1477        DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1478        DUMP_REG(DC_DISP_M0_CONTROL);
1479        DUMP_REG(DC_DISP_M1_CONTROL);
1480        DUMP_REG(DC_DISP_DI_CONTROL);
1481        DUMP_REG(DC_DISP_PP_CONTROL);
1482        DUMP_REG(DC_DISP_PP_SELECT_A);
1483        DUMP_REG(DC_DISP_PP_SELECT_B);
1484        DUMP_REG(DC_DISP_PP_SELECT_C);
1485        DUMP_REG(DC_DISP_PP_SELECT_D);
1486        DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1487        DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1488        DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1489        DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1490        DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1491        DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1492        DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1493        DUMP_REG(DC_DISP_BORDER_COLOR);
1494        DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1495        DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1496        DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1497        DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1498        DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1499        DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1500        DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1501        DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1502        DUMP_REG(DC_DISP_CURSOR_POSITION);
1503        DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1504        DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1505        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1506        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1507        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1508        DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1509        DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1510        DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1511        DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1512        DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1513        DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1514        DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1515        DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1516        DUMP_REG(DC_DISP_SD_CONTROL);
1517        DUMP_REG(DC_DISP_SD_CSC_COEFF);
1518        DUMP_REG(DC_DISP_SD_LUT(0));
1519        DUMP_REG(DC_DISP_SD_LUT(1));
1520        DUMP_REG(DC_DISP_SD_LUT(2));
1521        DUMP_REG(DC_DISP_SD_LUT(3));
1522        DUMP_REG(DC_DISP_SD_LUT(4));
1523        DUMP_REG(DC_DISP_SD_LUT(5));
1524        DUMP_REG(DC_DISP_SD_LUT(6));
1525        DUMP_REG(DC_DISP_SD_LUT(7));
1526        DUMP_REG(DC_DISP_SD_LUT(8));
1527        DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1528        DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1529        DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1530        DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1531        DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1532        DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1533        DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1534        DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1535        DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1536        DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1537        DUMP_REG(DC_DISP_SD_BL_TF(0));
1538        DUMP_REG(DC_DISP_SD_BL_TF(1));
1539        DUMP_REG(DC_DISP_SD_BL_TF(2));
1540        DUMP_REG(DC_DISP_SD_BL_TF(3));
1541        DUMP_REG(DC_DISP_SD_BL_CONTROL);
1542        DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1543        DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1544        DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1545        DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1546        DUMP_REG(DC_WIN_WIN_OPTIONS);
1547        DUMP_REG(DC_WIN_BYTE_SWAP);
1548        DUMP_REG(DC_WIN_BUFFER_CONTROL);
1549        DUMP_REG(DC_WIN_COLOR_DEPTH);
1550        DUMP_REG(DC_WIN_POSITION);
1551        DUMP_REG(DC_WIN_SIZE);
1552        DUMP_REG(DC_WIN_PRESCALED_SIZE);
1553        DUMP_REG(DC_WIN_H_INITIAL_DDA);
1554        DUMP_REG(DC_WIN_V_INITIAL_DDA);
1555        DUMP_REG(DC_WIN_DDA_INC);
1556        DUMP_REG(DC_WIN_LINE_STRIDE);
1557        DUMP_REG(DC_WIN_BUF_STRIDE);
1558        DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1559        DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1560        DUMP_REG(DC_WIN_DV_CONTROL);
1561        DUMP_REG(DC_WIN_BLEND_NOKEY);
1562        DUMP_REG(DC_WIN_BLEND_1WIN);
1563        DUMP_REG(DC_WIN_BLEND_2WIN_X);
1564        DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1565        DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1566        DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1567        DUMP_REG(DC_WINBUF_START_ADDR);
1568        DUMP_REG(DC_WINBUF_START_ADDR_NS);
1569        DUMP_REG(DC_WINBUF_START_ADDR_U);
1570        DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1571        DUMP_REG(DC_WINBUF_START_ADDR_V);
1572        DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1573        DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1574        DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1575        DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1576        DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1577        DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1578        DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1579        DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1580        DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1581
1582#undef DUMP_REG
1583
1584unlock:
1585        drm_modeset_unlock_crtc(&dc->base);
1586        return err;
1587}
1588
1589static int tegra_dc_show_crc(struct seq_file *s, void *data)
1590{
1591        struct drm_info_node *node = s->private;
1592        struct tegra_dc *dc = node->info_ent->data;
1593        int err = 0;
1594        u32 value;
1595
1596        drm_modeset_lock_crtc(&dc->base, NULL);
1597
1598        if (!dc->base.state->active) {
1599                err = -EBUSY;
1600                goto unlock;
1601        }
1602
1603        value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1604        tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1605        tegra_dc_commit(dc);
1606
1607        drm_crtc_wait_one_vblank(&dc->base);
1608        drm_crtc_wait_one_vblank(&dc->base);
1609
1610        value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1611        seq_printf(s, "%08x\n", value);
1612
1613        tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1614
1615unlock:
1616        drm_modeset_unlock_crtc(&dc->base);
1617        return err;
1618}
1619
1620static int tegra_dc_show_stats(struct seq_file *s, void *data)
1621{
1622        struct drm_info_node *node = s->private;
1623        struct tegra_dc *dc = node->info_ent->data;
1624
1625        seq_printf(s, "frames: %lu\n", dc->stats.frames);
1626        seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1627        seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1628        seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1629
1630        return 0;
1631}
1632
1633static struct drm_info_list debugfs_files[] = {
1634        { "regs", tegra_dc_show_regs, 0, NULL },
1635        { "crc", tegra_dc_show_crc, 0, NULL },
1636        { "stats", tegra_dc_show_stats, 0, NULL },
1637};
1638
1639static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1640{
1641        unsigned int i;
1642        char *name;
1643        int err;
1644
1645        name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1646        dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1647        kfree(name);
1648
1649        if (!dc->debugfs)
1650                return -ENOMEM;
1651
1652        dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1653                                    GFP_KERNEL);
1654        if (!dc->debugfs_files) {
1655                err = -ENOMEM;
1656                goto remove;
1657        }
1658
1659        for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1660                dc->debugfs_files[i].data = dc;
1661
1662        err = drm_debugfs_create_files(dc->debugfs_files,
1663                                       ARRAY_SIZE(debugfs_files),
1664                                       dc->debugfs, minor);
1665        if (err < 0)
1666                goto free;
1667
1668        dc->minor = minor;
1669
1670        return 0;
1671
1672free:
1673        kfree(dc->debugfs_files);
1674        dc->debugfs_files = NULL;
1675remove:
1676        debugfs_remove(dc->debugfs);
1677        dc->debugfs = NULL;
1678
1679        return err;
1680}
1681
1682static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1683{
1684        drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1685                                 dc->minor);
1686        dc->minor = NULL;
1687
1688        kfree(dc->debugfs_files);
1689        dc->debugfs_files = NULL;
1690
1691        debugfs_remove(dc->debugfs);
1692        dc->debugfs = NULL;
1693
1694        return 0;
1695}
1696
1697static int tegra_dc_init(struct host1x_client *client)
1698{
1699        struct drm_device *drm = dev_get_drvdata(client->parent);
1700        unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1701        struct tegra_dc *dc = host1x_client_to_dc(client);
1702        struct tegra_drm *tegra = drm->dev_private;
1703        struct drm_plane *primary = NULL;
1704        struct drm_plane *cursor = NULL;
1705        u32 value;
1706        int err;
1707
1708        dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1709        if (!dc->syncpt)
1710                dev_warn(dc->dev, "failed to allocate syncpoint\n");
1711
1712        if (tegra->domain) {
1713                err = iommu_attach_device(tegra->domain, dc->dev);
1714                if (err < 0) {
1715                        dev_err(dc->dev, "failed to attach to domain: %d\n",
1716                                err);
1717                        return err;
1718                }
1719
1720                dc->domain = tegra->domain;
1721        }
1722
1723        primary = tegra_dc_primary_plane_create(drm, dc);
1724        if (IS_ERR(primary)) {
1725                err = PTR_ERR(primary);
1726                goto cleanup;
1727        }
1728
1729        if (dc->soc->supports_cursor) {
1730                cursor = tegra_dc_cursor_plane_create(drm, dc);
1731                if (IS_ERR(cursor)) {
1732                        err = PTR_ERR(cursor);
1733                        goto cleanup;
1734                }
1735        }
1736
1737        err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1738                                        &tegra_crtc_funcs, NULL);
1739        if (err < 0)
1740                goto cleanup;
1741
1742        drm_mode_crtc_set_gamma_size(&dc->base, 256);
1743        drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1744
1745        /*
1746         * Keep track of the minimum pitch alignment across all display
1747         * controllers.
1748         */
1749        if (dc->soc->pitch_align > tegra->pitch_align)
1750                tegra->pitch_align = dc->soc->pitch_align;
1751
1752        err = tegra_dc_rgb_init(drm, dc);
1753        if (err < 0 && err != -ENODEV) {
1754                dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1755                goto cleanup;
1756        }
1757
1758        err = tegra_dc_add_planes(drm, dc);
1759        if (err < 0)
1760                goto cleanup;
1761
1762        if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1763                err = tegra_dc_debugfs_init(dc, drm->primary);
1764                if (err < 0)
1765                        dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1766        }
1767
1768        err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1769                               dev_name(dc->dev), dc);
1770        if (err < 0) {
1771                dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1772                        err);
1773                goto cleanup;
1774        }
1775
1776        /* initialize display controller */
1777        if (dc->syncpt) {
1778                u32 syncpt = host1x_syncpt_id(dc->syncpt);
1779
1780                value = SYNCPT_CNTRL_NO_STALL;
1781                tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1782
1783                value = SYNCPT_VSYNC_ENABLE | syncpt;
1784                tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1785        }
1786
1787        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1788                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1789        tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1790
1791        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1792                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1793        tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1794
1795        /* initialize timer */
1796        value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1797                WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1798        tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1799
1800        value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1801                WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1802        tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1803
1804        value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1805                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1806        tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1807
1808        value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1809                WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1810        tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1811
1812        if (dc->soc->supports_border_color)
1813                tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1814
1815        tegra_dc_stats_reset(&dc->stats);
1816
1817        return 0;
1818
1819cleanup:
1820        if (cursor)
1821                drm_plane_cleanup(cursor);
1822
1823        if (primary)
1824                drm_plane_cleanup(primary);
1825
1826        if (tegra->domain) {
1827                iommu_detach_device(tegra->domain, dc->dev);
1828                dc->domain = NULL;
1829        }
1830
1831        return err;
1832}
1833
1834static int tegra_dc_exit(struct host1x_client *client)
1835{
1836        struct tegra_dc *dc = host1x_client_to_dc(client);
1837        int err;
1838
1839        devm_free_irq(dc->dev, dc->irq, dc);
1840
1841        if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1842                err = tegra_dc_debugfs_exit(dc);
1843                if (err < 0)
1844                        dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1845        }
1846
1847        err = tegra_dc_rgb_exit(dc);
1848        if (err) {
1849                dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1850                return err;
1851        }
1852
1853        if (dc->domain) {
1854                iommu_detach_device(dc->domain, dc->dev);
1855                dc->domain = NULL;
1856        }
1857
1858        host1x_syncpt_free(dc->syncpt);
1859
1860        return 0;
1861}
1862
1863static const struct host1x_client_ops dc_client_ops = {
1864        .init = tegra_dc_init,
1865        .exit = tegra_dc_exit,
1866};
1867
1868static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1869        .supports_border_color = true,
1870        .supports_interlacing = false,
1871        .supports_cursor = false,
1872        .supports_block_linear = false,
1873        .pitch_align = 8,
1874        .has_powergate = false,
1875};
1876
1877static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1878        .supports_border_color = true,
1879        .supports_interlacing = false,
1880        .supports_cursor = false,
1881        .supports_block_linear = false,
1882        .pitch_align = 8,
1883        .has_powergate = false,
1884};
1885
1886static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1887        .supports_border_color = true,
1888        .supports_interlacing = false,
1889        .supports_cursor = false,
1890        .supports_block_linear = false,
1891        .pitch_align = 64,
1892        .has_powergate = true,
1893};
1894
1895static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1896        .supports_border_color = false,
1897        .supports_interlacing = true,
1898        .supports_cursor = true,
1899        .supports_block_linear = true,
1900        .pitch_align = 64,
1901        .has_powergate = true,
1902};
1903
1904static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1905        .supports_border_color = false,
1906        .supports_interlacing = true,
1907        .supports_cursor = true,
1908        .supports_block_linear = true,
1909        .pitch_align = 64,
1910        .has_powergate = true,
1911};
1912
1913static const struct of_device_id tegra_dc_of_match[] = {
1914        {
1915                .compatible = "nvidia,tegra210-dc",
1916                .data = &tegra210_dc_soc_info,
1917        }, {
1918                .compatible = "nvidia,tegra124-dc",
1919                .data = &tegra124_dc_soc_info,
1920        }, {
1921                .compatible = "nvidia,tegra114-dc",
1922                .data = &tegra114_dc_soc_info,
1923        }, {
1924                .compatible = "nvidia,tegra30-dc",
1925                .data = &tegra30_dc_soc_info,
1926        }, {
1927                .compatible = "nvidia,tegra20-dc",
1928                .data = &tegra20_dc_soc_info,
1929        }, {
1930                /* sentinel */
1931        }
1932};
1933MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1934
1935static int tegra_dc_parse_dt(struct tegra_dc *dc)
1936{
1937        struct device_node *np;
1938        u32 value = 0;
1939        int err;
1940
1941        err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1942        if (err < 0) {
1943                dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1944
1945                /*
1946                 * If the nvidia,head property isn't present, try to find the
1947                 * correct head number by looking up the position of this
1948                 * display controller's node within the device tree. Assuming
1949                 * that the nodes are ordered properly in the DTS file and
1950                 * that the translation into a flattened device tree blob
1951                 * preserves that ordering this will actually yield the right
1952                 * head number.
1953                 *
1954                 * If those assumptions don't hold, this will still work for
1955                 * cases where only a single display controller is used.
1956                 */
1957                for_each_matching_node(np, tegra_dc_of_match) {
1958                        if (np == dc->dev->of_node) {
1959                                of_node_put(np);
1960                                break;
1961                        }
1962
1963                        value++;
1964                }
1965        }
1966
1967        dc->pipe = value;
1968
1969        return 0;
1970}
1971
1972static int tegra_dc_probe(struct platform_device *pdev)
1973{
1974        const struct of_device_id *id;
1975        struct resource *regs;
1976        struct tegra_dc *dc;
1977        int err;
1978
1979        dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1980        if (!dc)
1981                return -ENOMEM;
1982
1983        id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1984        if (!id)
1985                return -ENODEV;
1986
1987        spin_lock_init(&dc->lock);
1988        INIT_LIST_HEAD(&dc->list);
1989        dc->dev = &pdev->dev;
1990        dc->soc = id->data;
1991
1992        err = tegra_dc_parse_dt(dc);
1993        if (err < 0)
1994                return err;
1995
1996        dc->clk = devm_clk_get(&pdev->dev, NULL);
1997        if (IS_ERR(dc->clk)) {
1998                dev_err(&pdev->dev, "failed to get clock\n");
1999                return PTR_ERR(dc->clk);
2000        }
2001
2002        dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2003        if (IS_ERR(dc->rst)) {
2004                dev_err(&pdev->dev, "failed to get reset\n");
2005                return PTR_ERR(dc->rst);
2006        }
2007
2008        if (dc->soc->has_powergate) {
2009                if (dc->pipe == 0)
2010                        dc->powergate = TEGRA_POWERGATE_DIS;
2011                else
2012                        dc->powergate = TEGRA_POWERGATE_DISB;
2013
2014                err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2015                                                        dc->rst);
2016                if (err < 0) {
2017                        dev_err(&pdev->dev, "failed to power partition: %d\n",
2018                                err);
2019                        return err;
2020                }
2021        } else {
2022                err = clk_prepare_enable(dc->clk);
2023                if (err < 0) {
2024                        dev_err(&pdev->dev, "failed to enable clock: %d\n",
2025                                err);
2026                        return err;
2027                }
2028
2029                err = reset_control_deassert(dc->rst);
2030                if (err < 0) {
2031                        dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2032                                err);
2033                        return err;
2034                }
2035        }
2036
2037        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2038        dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2039        if (IS_ERR(dc->regs))
2040                return PTR_ERR(dc->regs);
2041
2042        dc->irq = platform_get_irq(pdev, 0);
2043        if (dc->irq < 0) {
2044                dev_err(&pdev->dev, "failed to get IRQ\n");
2045                return -ENXIO;
2046        }
2047
2048        INIT_LIST_HEAD(&dc->client.list);
2049        dc->client.ops = &dc_client_ops;
2050        dc->client.dev = &pdev->dev;
2051
2052        err = tegra_dc_rgb_probe(dc);
2053        if (err < 0 && err != -ENODEV) {
2054                dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2055                return err;
2056        }
2057
2058        err = host1x_client_register(&dc->client);
2059        if (err < 0) {
2060                dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2061                        err);
2062                return err;
2063        }
2064
2065        platform_set_drvdata(pdev, dc);
2066
2067        return 0;
2068}
2069
2070static int tegra_dc_remove(struct platform_device *pdev)
2071{
2072        struct tegra_dc *dc = platform_get_drvdata(pdev);
2073        int err;
2074
2075        err = host1x_client_unregister(&dc->client);
2076        if (err < 0) {
2077                dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2078                        err);
2079                return err;
2080        }
2081
2082        err = tegra_dc_rgb_remove(dc);
2083        if (err < 0) {
2084                dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2085                return err;
2086        }
2087
2088        reset_control_assert(dc->rst);
2089
2090        if (dc->soc->has_powergate)
2091                tegra_powergate_power_off(dc->powergate);
2092
2093        clk_disable_unprepare(dc->clk);
2094
2095        return 0;
2096}
2097
2098struct platform_driver tegra_dc_driver = {
2099        .driver = {
2100                .name = "tegra-dc",
2101                .of_match_table = tegra_dc_of_match,
2102        },
2103        .probe = tegra_dc_probe,
2104        .remove = tegra_dc_remove,
2105};
2106