linux/drivers/hv/hv_balloon.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2012, Microsoft Corporation.
   3 *
   4 * Author:
   5 *   K. Y. Srinivasan <kys@microsoft.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms of the GNU General Public License version 2 as published
   9 * by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful, but
  12 * WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14 * NON INFRINGEMENT.  See the GNU General Public License for more
  15 * details.
  16 *
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/kernel.h>
  22#include <linux/jiffies.h>
  23#include <linux/mman.h>
  24#include <linux/delay.h>
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/kthread.h>
  29#include <linux/completion.h>
  30#include <linux/memory_hotplug.h>
  31#include <linux/memory.h>
  32#include <linux/notifier.h>
  33#include <linux/percpu_counter.h>
  34
  35#include <linux/hyperv.h>
  36
  37/*
  38 * We begin with definitions supporting the Dynamic Memory protocol
  39 * with the host.
  40 *
  41 * Begin protocol definitions.
  42 */
  43
  44
  45
  46/*
  47 * Protocol versions. The low word is the minor version, the high word the major
  48 * version.
  49 *
  50 * History:
  51 * Initial version 1.0
  52 * Changed to 0.1 on 2009/03/25
  53 * Changes to 0.2 on 2009/05/14
  54 * Changes to 0.3 on 2009/12/03
  55 * Changed to 1.0 on 2011/04/05
  56 */
  57
  58#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
  59#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
  60#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
  61
  62enum {
  63        DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
  64        DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
  65        DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
  66
  67        DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
  68        DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
  69        DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
  70
  71        DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
  72};
  73
  74
  75
  76/*
  77 * Message Types
  78 */
  79
  80enum dm_message_type {
  81        /*
  82         * Version 0.3
  83         */
  84        DM_ERROR                        = 0,
  85        DM_VERSION_REQUEST              = 1,
  86        DM_VERSION_RESPONSE             = 2,
  87        DM_CAPABILITIES_REPORT          = 3,
  88        DM_CAPABILITIES_RESPONSE        = 4,
  89        DM_STATUS_REPORT                = 5,
  90        DM_BALLOON_REQUEST              = 6,
  91        DM_BALLOON_RESPONSE             = 7,
  92        DM_UNBALLOON_REQUEST            = 8,
  93        DM_UNBALLOON_RESPONSE           = 9,
  94        DM_MEM_HOT_ADD_REQUEST          = 10,
  95        DM_MEM_HOT_ADD_RESPONSE         = 11,
  96        DM_VERSION_03_MAX               = 11,
  97        /*
  98         * Version 1.0.
  99         */
 100        DM_INFO_MESSAGE                 = 12,
 101        DM_VERSION_1_MAX                = 12
 102};
 103
 104
 105/*
 106 * Structures defining the dynamic memory management
 107 * protocol.
 108 */
 109
 110union dm_version {
 111        struct {
 112                __u16 minor_version;
 113                __u16 major_version;
 114        };
 115        __u32 version;
 116} __packed;
 117
 118
 119union dm_caps {
 120        struct {
 121                __u64 balloon:1;
 122                __u64 hot_add:1;
 123                /*
 124                 * To support guests that may have alignment
 125                 * limitations on hot-add, the guest can specify
 126                 * its alignment requirements; a value of n
 127                 * represents an alignment of 2^n in mega bytes.
 128                 */
 129                __u64 hot_add_alignment:4;
 130                __u64 reservedz:58;
 131        } cap_bits;
 132        __u64 caps;
 133} __packed;
 134
 135union dm_mem_page_range {
 136        struct  {
 137                /*
 138                 * The PFN number of the first page in the range.
 139                 * 40 bits is the architectural limit of a PFN
 140                 * number for AMD64.
 141                 */
 142                __u64 start_page:40;
 143                /*
 144                 * The number of pages in the range.
 145                 */
 146                __u64 page_cnt:24;
 147        } finfo;
 148        __u64  page_range;
 149} __packed;
 150
 151
 152
 153/*
 154 * The header for all dynamic memory messages:
 155 *
 156 * type: Type of the message.
 157 * size: Size of the message in bytes; including the header.
 158 * trans_id: The guest is responsible for manufacturing this ID.
 159 */
 160
 161struct dm_header {
 162        __u16 type;
 163        __u16 size;
 164        __u32 trans_id;
 165} __packed;
 166
 167/*
 168 * A generic message format for dynamic memory.
 169 * Specific message formats are defined later in the file.
 170 */
 171
 172struct dm_message {
 173        struct dm_header hdr;
 174        __u8 data[]; /* enclosed message */
 175} __packed;
 176
 177
 178/*
 179 * Specific message types supporting the dynamic memory protocol.
 180 */
 181
 182/*
 183 * Version negotiation message. Sent from the guest to the host.
 184 * The guest is free to try different versions until the host
 185 * accepts the version.
 186 *
 187 * dm_version: The protocol version requested.
 188 * is_last_attempt: If TRUE, this is the last version guest will request.
 189 * reservedz: Reserved field, set to zero.
 190 */
 191
 192struct dm_version_request {
 193        struct dm_header hdr;
 194        union dm_version version;
 195        __u32 is_last_attempt:1;
 196        __u32 reservedz:31;
 197} __packed;
 198
 199/*
 200 * Version response message; Host to Guest and indicates
 201 * if the host has accepted the version sent by the guest.
 202 *
 203 * is_accepted: If TRUE, host has accepted the version and the guest
 204 * should proceed to the next stage of the protocol. FALSE indicates that
 205 * guest should re-try with a different version.
 206 *
 207 * reservedz: Reserved field, set to zero.
 208 */
 209
 210struct dm_version_response {
 211        struct dm_header hdr;
 212        __u64 is_accepted:1;
 213        __u64 reservedz:63;
 214} __packed;
 215
 216/*
 217 * Message reporting capabilities. This is sent from the guest to the
 218 * host.
 219 */
 220
 221struct dm_capabilities {
 222        struct dm_header hdr;
 223        union dm_caps caps;
 224        __u64 min_page_cnt;
 225        __u64 max_page_number;
 226} __packed;
 227
 228/*
 229 * Response to the capabilities message. This is sent from the host to the
 230 * guest. This message notifies if the host has accepted the guest's
 231 * capabilities. If the host has not accepted, the guest must shutdown
 232 * the service.
 233 *
 234 * is_accepted: Indicates if the host has accepted guest's capabilities.
 235 * reservedz: Must be 0.
 236 */
 237
 238struct dm_capabilities_resp_msg {
 239        struct dm_header hdr;
 240        __u64 is_accepted:1;
 241        __u64 reservedz:63;
 242} __packed;
 243
 244/*
 245 * This message is used to report memory pressure from the guest.
 246 * This message is not part of any transaction and there is no
 247 * response to this message.
 248 *
 249 * num_avail: Available memory in pages.
 250 * num_committed: Committed memory in pages.
 251 * page_file_size: The accumulated size of all page files
 252 *                 in the system in pages.
 253 * zero_free: The nunber of zero and free pages.
 254 * page_file_writes: The writes to the page file in pages.
 255 * io_diff: An indicator of file cache efficiency or page file activity,
 256 *          calculated as File Cache Page Fault Count - Page Read Count.
 257 *          This value is in pages.
 258 *
 259 * Some of these metrics are Windows specific and fortunately
 260 * the algorithm on the host side that computes the guest memory
 261 * pressure only uses num_committed value.
 262 */
 263
 264struct dm_status {
 265        struct dm_header hdr;
 266        __u64 num_avail;
 267        __u64 num_committed;
 268        __u64 page_file_size;
 269        __u64 zero_free;
 270        __u32 page_file_writes;
 271        __u32 io_diff;
 272} __packed;
 273
 274
 275/*
 276 * Message to ask the guest to allocate memory - balloon up message.
 277 * This message is sent from the host to the guest. The guest may not be
 278 * able to allocate as much memory as requested.
 279 *
 280 * num_pages: number of pages to allocate.
 281 */
 282
 283struct dm_balloon {
 284        struct dm_header hdr;
 285        __u32 num_pages;
 286        __u32 reservedz;
 287} __packed;
 288
 289
 290/*
 291 * Balloon response message; this message is sent from the guest
 292 * to the host in response to the balloon message.
 293 *
 294 * reservedz: Reserved; must be set to zero.
 295 * more_pages: If FALSE, this is the last message of the transaction.
 296 * if TRUE there will atleast one more message from the guest.
 297 *
 298 * range_count: The number of ranges in the range array.
 299 *
 300 * range_array: An array of page ranges returned to the host.
 301 *
 302 */
 303
 304struct dm_balloon_response {
 305        struct dm_header hdr;
 306        __u32 reservedz;
 307        __u32 more_pages:1;
 308        __u32 range_count:31;
 309        union dm_mem_page_range range_array[];
 310} __packed;
 311
 312/*
 313 * Un-balloon message; this message is sent from the host
 314 * to the guest to give guest more memory.
 315 *
 316 * more_pages: If FALSE, this is the last message of the transaction.
 317 * if TRUE there will atleast one more message from the guest.
 318 *
 319 * reservedz: Reserved; must be set to zero.
 320 *
 321 * range_count: The number of ranges in the range array.
 322 *
 323 * range_array: An array of page ranges returned to the host.
 324 *
 325 */
 326
 327struct dm_unballoon_request {
 328        struct dm_header hdr;
 329        __u32 more_pages:1;
 330        __u32 reservedz:31;
 331        __u32 range_count;
 332        union dm_mem_page_range range_array[];
 333} __packed;
 334
 335/*
 336 * Un-balloon response message; this message is sent from the guest
 337 * to the host in response to an unballoon request.
 338 *
 339 */
 340
 341struct dm_unballoon_response {
 342        struct dm_header hdr;
 343} __packed;
 344
 345
 346/*
 347 * Hot add request message. Message sent from the host to the guest.
 348 *
 349 * mem_range: Memory range to hot add.
 350 *
 351 * On Linux we currently don't support this since we cannot hot add
 352 * arbitrary granularity of memory.
 353 */
 354
 355struct dm_hot_add {
 356        struct dm_header hdr;
 357        union dm_mem_page_range range;
 358} __packed;
 359
 360/*
 361 * Hot add response message.
 362 * This message is sent by the guest to report the status of a hot add request.
 363 * If page_count is less than the requested page count, then the host should
 364 * assume all further hot add requests will fail, since this indicates that
 365 * the guest has hit an upper physical memory barrier.
 366 *
 367 * Hot adds may also fail due to low resources; in this case, the guest must
 368 * not complete this message until the hot add can succeed, and the host must
 369 * not send a new hot add request until the response is sent.
 370 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 371 * times it fails the request.
 372 *
 373 *
 374 * page_count: number of pages that were successfully hot added.
 375 *
 376 * result: result of the operation 1: success, 0: failure.
 377 *
 378 */
 379
 380struct dm_hot_add_response {
 381        struct dm_header hdr;
 382        __u32 page_count;
 383        __u32 result;
 384} __packed;
 385
 386/*
 387 * Types of information sent from host to the guest.
 388 */
 389
 390enum dm_info_type {
 391        INFO_TYPE_MAX_PAGE_CNT = 0,
 392        MAX_INFO_TYPE
 393};
 394
 395
 396/*
 397 * Header for the information message.
 398 */
 399
 400struct dm_info_header {
 401        enum dm_info_type type;
 402        __u32 data_size;
 403} __packed;
 404
 405/*
 406 * This message is sent from the host to the guest to pass
 407 * some relevant information (win8 addition).
 408 *
 409 * reserved: no used.
 410 * info_size: size of the information blob.
 411 * info: information blob.
 412 */
 413
 414struct dm_info_msg {
 415        struct dm_header hdr;
 416        __u32 reserved;
 417        __u32 info_size;
 418        __u8  info[];
 419};
 420
 421/*
 422 * End protocol definitions.
 423 */
 424
 425/*
 426 * State to manage hot adding memory into the guest.
 427 * The range start_pfn : end_pfn specifies the range
 428 * that the host has asked us to hot add. The range
 429 * start_pfn : ha_end_pfn specifies the range that we have
 430 * currently hot added. We hot add in multiples of 128M
 431 * chunks; it is possible that we may not be able to bring
 432 * online all the pages in the region. The range
 433 * covered_end_pfn defines the pages that can
 434 * be brough online.
 435 */
 436
 437struct hv_hotadd_state {
 438        struct list_head list;
 439        unsigned long start_pfn;
 440        unsigned long covered_end_pfn;
 441        unsigned long ha_end_pfn;
 442        unsigned long end_pfn;
 443};
 444
 445struct balloon_state {
 446        __u32 num_pages;
 447        struct work_struct wrk;
 448};
 449
 450struct hot_add_wrk {
 451        union dm_mem_page_range ha_page_range;
 452        union dm_mem_page_range ha_region_range;
 453        struct work_struct wrk;
 454};
 455
 456static bool hot_add = true;
 457static bool do_hot_add;
 458/*
 459 * Delay reporting memory pressure by
 460 * the specified number of seconds.
 461 */
 462static uint pressure_report_delay = 45;
 463
 464/*
 465 * The last time we posted a pressure report to host.
 466 */
 467static unsigned long last_post_time;
 468
 469module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
 470MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
 471
 472module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
 473MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
 474static atomic_t trans_id = ATOMIC_INIT(0);
 475
 476static int dm_ring_size = (5 * PAGE_SIZE);
 477
 478/*
 479 * Driver specific state.
 480 */
 481
 482enum hv_dm_state {
 483        DM_INITIALIZING = 0,
 484        DM_INITIALIZED,
 485        DM_BALLOON_UP,
 486        DM_BALLOON_DOWN,
 487        DM_HOT_ADD,
 488        DM_INIT_ERROR
 489};
 490
 491
 492static __u8 recv_buffer[PAGE_SIZE];
 493static __u8 *send_buffer;
 494#define PAGES_IN_2M     512
 495#define HA_CHUNK (32 * 1024)
 496
 497struct hv_dynmem_device {
 498        struct hv_device *dev;
 499        enum hv_dm_state state;
 500        struct completion host_event;
 501        struct completion config_event;
 502
 503        /*
 504         * Number of pages we have currently ballooned out.
 505         */
 506        unsigned int num_pages_ballooned;
 507        unsigned int num_pages_onlined;
 508        unsigned int num_pages_added;
 509
 510        /*
 511         * State to manage the ballooning (up) operation.
 512         */
 513        struct balloon_state balloon_wrk;
 514
 515        /*
 516         * State to execute the "hot-add" operation.
 517         */
 518        struct hot_add_wrk ha_wrk;
 519
 520        /*
 521         * This state tracks if the host has specified a hot-add
 522         * region.
 523         */
 524        bool host_specified_ha_region;
 525
 526        /*
 527         * State to synchronize hot-add.
 528         */
 529        struct completion  ol_waitevent;
 530        bool ha_waiting;
 531        /*
 532         * This thread handles hot-add
 533         * requests from the host as well as notifying
 534         * the host with regards to memory pressure in
 535         * the guest.
 536         */
 537        struct task_struct *thread;
 538
 539        struct mutex ha_region_mutex;
 540
 541        /*
 542         * A list of hot-add regions.
 543         */
 544        struct list_head ha_region_list;
 545
 546        /*
 547         * We start with the highest version we can support
 548         * and downgrade based on the host; we save here the
 549         * next version to try.
 550         */
 551        __u32 next_version;
 552};
 553
 554static struct hv_dynmem_device dm_device;
 555
 556static void post_status(struct hv_dynmem_device *dm);
 557
 558#ifdef CONFIG_MEMORY_HOTPLUG
 559static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
 560                              void *v)
 561{
 562        struct memory_notify *mem = (struct memory_notify *)v;
 563
 564        switch (val) {
 565        case MEM_GOING_ONLINE:
 566                mutex_lock(&dm_device.ha_region_mutex);
 567                break;
 568
 569        case MEM_ONLINE:
 570                dm_device.num_pages_onlined += mem->nr_pages;
 571        case MEM_CANCEL_ONLINE:
 572                if (val == MEM_ONLINE ||
 573                    mutex_is_locked(&dm_device.ha_region_mutex))
 574                        mutex_unlock(&dm_device.ha_region_mutex);
 575                if (dm_device.ha_waiting) {
 576                        dm_device.ha_waiting = false;
 577                        complete(&dm_device.ol_waitevent);
 578                }
 579                break;
 580
 581        case MEM_OFFLINE:
 582                mutex_lock(&dm_device.ha_region_mutex);
 583                dm_device.num_pages_onlined -= mem->nr_pages;
 584                mutex_unlock(&dm_device.ha_region_mutex);
 585                break;
 586        case MEM_GOING_OFFLINE:
 587        case MEM_CANCEL_OFFLINE:
 588                break;
 589        }
 590        return NOTIFY_OK;
 591}
 592
 593static struct notifier_block hv_memory_nb = {
 594        .notifier_call = hv_memory_notifier,
 595        .priority = 0
 596};
 597
 598
 599static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
 600{
 601        int i;
 602
 603        for (i = 0; i < size; i++) {
 604                struct page *pg;
 605                pg = pfn_to_page(start_pfn + i);
 606                __online_page_set_limits(pg);
 607                __online_page_increment_counters(pg);
 608                __online_page_free(pg);
 609        }
 610}
 611
 612static void hv_mem_hot_add(unsigned long start, unsigned long size,
 613                                unsigned long pfn_count,
 614                                struct hv_hotadd_state *has)
 615{
 616        int ret = 0;
 617        int i, nid;
 618        unsigned long start_pfn;
 619        unsigned long processed_pfn;
 620        unsigned long total_pfn = pfn_count;
 621
 622        for (i = 0; i < (size/HA_CHUNK); i++) {
 623                start_pfn = start + (i * HA_CHUNK);
 624                has->ha_end_pfn +=  HA_CHUNK;
 625
 626                if (total_pfn > HA_CHUNK) {
 627                        processed_pfn = HA_CHUNK;
 628                        total_pfn -= HA_CHUNK;
 629                } else {
 630                        processed_pfn = total_pfn;
 631                        total_pfn = 0;
 632                }
 633
 634                has->covered_end_pfn +=  processed_pfn;
 635
 636                init_completion(&dm_device.ol_waitevent);
 637                dm_device.ha_waiting = true;
 638
 639                mutex_unlock(&dm_device.ha_region_mutex);
 640                nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
 641                ret = add_memory(nid, PFN_PHYS((start_pfn)),
 642                                (HA_CHUNK << PAGE_SHIFT));
 643
 644                if (ret) {
 645                        pr_info("hot_add memory failed error is %d\n", ret);
 646                        if (ret == -EEXIST) {
 647                                /*
 648                                 * This error indicates that the error
 649                                 * is not a transient failure. This is the
 650                                 * case where the guest's physical address map
 651                                 * precludes hot adding memory. Stop all further
 652                                 * memory hot-add.
 653                                 */
 654                                do_hot_add = false;
 655                        }
 656                        has->ha_end_pfn -= HA_CHUNK;
 657                        has->covered_end_pfn -=  processed_pfn;
 658                        mutex_lock(&dm_device.ha_region_mutex);
 659                        break;
 660                }
 661
 662                /*
 663                 * Wait for the memory block to be onlined.
 664                 * Since the hot add has succeeded, it is ok to
 665                 * proceed even if the pages in the hot added region
 666                 * have not been "onlined" within the allowed time.
 667                 */
 668                wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
 669                mutex_lock(&dm_device.ha_region_mutex);
 670                post_status(&dm_device);
 671        }
 672
 673        return;
 674}
 675
 676static void hv_online_page(struct page *pg)
 677{
 678        struct list_head *cur;
 679        struct hv_hotadd_state *has;
 680        unsigned long cur_start_pgp;
 681        unsigned long cur_end_pgp;
 682
 683        list_for_each(cur, &dm_device.ha_region_list) {
 684                has = list_entry(cur, struct hv_hotadd_state, list);
 685                cur_start_pgp = (unsigned long)pfn_to_page(has->start_pfn);
 686                cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
 687
 688                if (((unsigned long)pg >= cur_start_pgp) &&
 689                        ((unsigned long)pg < cur_end_pgp)) {
 690                        /*
 691                         * This frame is currently backed; online the
 692                         * page.
 693                         */
 694                        __online_page_set_limits(pg);
 695                        __online_page_increment_counters(pg);
 696                        __online_page_free(pg);
 697                }
 698        }
 699}
 700
 701static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
 702{
 703        struct list_head *cur;
 704        struct hv_hotadd_state *has;
 705        unsigned long residual, new_inc;
 706
 707        if (list_empty(&dm_device.ha_region_list))
 708                return false;
 709
 710        list_for_each(cur, &dm_device.ha_region_list) {
 711                has = list_entry(cur, struct hv_hotadd_state, list);
 712
 713                /*
 714                 * If the pfn range we are dealing with is not in the current
 715                 * "hot add block", move on.
 716                 */
 717                if ((start_pfn >= has->end_pfn))
 718                        continue;
 719                /*
 720                 * If the current hot add-request extends beyond
 721                 * our current limit; extend it.
 722                 */
 723                if ((start_pfn + pfn_cnt) > has->end_pfn) {
 724                        residual = (start_pfn + pfn_cnt - has->end_pfn);
 725                        /*
 726                         * Extend the region by multiples of HA_CHUNK.
 727                         */
 728                        new_inc = (residual / HA_CHUNK) * HA_CHUNK;
 729                        if (residual % HA_CHUNK)
 730                                new_inc += HA_CHUNK;
 731
 732                        has->end_pfn += new_inc;
 733                }
 734
 735                /*
 736                 * If the current start pfn is not where the covered_end
 737                 * is, update it.
 738                 */
 739
 740                if (has->covered_end_pfn != start_pfn)
 741                        has->covered_end_pfn = start_pfn;
 742
 743                return true;
 744
 745        }
 746
 747        return false;
 748}
 749
 750static unsigned long handle_pg_range(unsigned long pg_start,
 751                                        unsigned long pg_count)
 752{
 753        unsigned long start_pfn = pg_start;
 754        unsigned long pfn_cnt = pg_count;
 755        unsigned long size;
 756        struct list_head *cur;
 757        struct hv_hotadd_state *has;
 758        unsigned long pgs_ol = 0;
 759        unsigned long old_covered_state;
 760
 761        if (list_empty(&dm_device.ha_region_list))
 762                return 0;
 763
 764        list_for_each(cur, &dm_device.ha_region_list) {
 765                has = list_entry(cur, struct hv_hotadd_state, list);
 766
 767                /*
 768                 * If the pfn range we are dealing with is not in the current
 769                 * "hot add block", move on.
 770                 */
 771                if ((start_pfn >= has->end_pfn))
 772                        continue;
 773
 774                old_covered_state = has->covered_end_pfn;
 775
 776                if (start_pfn < has->ha_end_pfn) {
 777                        /*
 778                         * This is the case where we are backing pages
 779                         * in an already hot added region. Bring
 780                         * these pages online first.
 781                         */
 782                        pgs_ol = has->ha_end_pfn - start_pfn;
 783                        if (pgs_ol > pfn_cnt)
 784                                pgs_ol = pfn_cnt;
 785
 786                        /*
 787                         * Check if the corresponding memory block is already
 788                         * online by checking its last previously backed page.
 789                         * In case it is we need to bring rest (which was not
 790                         * backed previously) online too.
 791                         */
 792                        if (start_pfn > has->start_pfn &&
 793                            !PageReserved(pfn_to_page(start_pfn - 1)))
 794                                hv_bring_pgs_online(start_pfn, pgs_ol);
 795
 796                        has->covered_end_pfn +=  pgs_ol;
 797                        pfn_cnt -= pgs_ol;
 798                }
 799
 800                if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
 801                        /*
 802                         * We have some residual hot add range
 803                         * that needs to be hot added; hot add
 804                         * it now. Hot add a multiple of
 805                         * of HA_CHUNK that fully covers the pages
 806                         * we have.
 807                         */
 808                        size = (has->end_pfn - has->ha_end_pfn);
 809                        if (pfn_cnt <= size) {
 810                                size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
 811                                if (pfn_cnt % HA_CHUNK)
 812                                        size += HA_CHUNK;
 813                        } else {
 814                                pfn_cnt = size;
 815                        }
 816                        hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
 817                }
 818                /*
 819                 * If we managed to online any pages that were given to us,
 820                 * we declare success.
 821                 */
 822                return has->covered_end_pfn - old_covered_state;
 823
 824        }
 825
 826        return 0;
 827}
 828
 829static unsigned long process_hot_add(unsigned long pg_start,
 830                                        unsigned long pfn_cnt,
 831                                        unsigned long rg_start,
 832                                        unsigned long rg_size)
 833{
 834        struct hv_hotadd_state *ha_region = NULL;
 835
 836        if (pfn_cnt == 0)
 837                return 0;
 838
 839        if (!dm_device.host_specified_ha_region)
 840                if (pfn_covered(pg_start, pfn_cnt))
 841                        goto do_pg_range;
 842
 843        /*
 844         * If the host has specified a hot-add range; deal with it first.
 845         */
 846
 847        if (rg_size != 0) {
 848                ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
 849                if (!ha_region)
 850                        return 0;
 851
 852                INIT_LIST_HEAD(&ha_region->list);
 853
 854                list_add_tail(&ha_region->list, &dm_device.ha_region_list);
 855                ha_region->start_pfn = rg_start;
 856                ha_region->ha_end_pfn = rg_start;
 857                ha_region->covered_end_pfn = pg_start;
 858                ha_region->end_pfn = rg_start + rg_size;
 859        }
 860
 861do_pg_range:
 862        /*
 863         * Process the page range specified; bringing them
 864         * online if possible.
 865         */
 866        return handle_pg_range(pg_start, pfn_cnt);
 867}
 868
 869#endif
 870
 871static void hot_add_req(struct work_struct *dummy)
 872{
 873        struct dm_hot_add_response resp;
 874#ifdef CONFIG_MEMORY_HOTPLUG
 875        unsigned long pg_start, pfn_cnt;
 876        unsigned long rg_start, rg_sz;
 877#endif
 878        struct hv_dynmem_device *dm = &dm_device;
 879
 880        memset(&resp, 0, sizeof(struct dm_hot_add_response));
 881        resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
 882        resp.hdr.size = sizeof(struct dm_hot_add_response);
 883
 884#ifdef CONFIG_MEMORY_HOTPLUG
 885        mutex_lock(&dm_device.ha_region_mutex);
 886        pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
 887        pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
 888
 889        rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
 890        rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
 891
 892        if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
 893                unsigned long region_size;
 894                unsigned long region_start;
 895
 896                /*
 897                 * The host has not specified the hot-add region.
 898                 * Based on the hot-add page range being specified,
 899                 * compute a hot-add region that can cover the pages
 900                 * that need to be hot-added while ensuring the alignment
 901                 * and size requirements of Linux as it relates to hot-add.
 902                 */
 903                region_start = pg_start;
 904                region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
 905                if (pfn_cnt % HA_CHUNK)
 906                        region_size += HA_CHUNK;
 907
 908                region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
 909
 910                rg_start = region_start;
 911                rg_sz = region_size;
 912        }
 913
 914        if (do_hot_add)
 915                resp.page_count = process_hot_add(pg_start, pfn_cnt,
 916                                                rg_start, rg_sz);
 917
 918        dm->num_pages_added += resp.page_count;
 919        mutex_unlock(&dm_device.ha_region_mutex);
 920#endif
 921        /*
 922         * The result field of the response structure has the
 923         * following semantics:
 924         *
 925         * 1. If all or some pages hot-added: Guest should return success.
 926         *
 927         * 2. If no pages could be hot-added:
 928         *
 929         * If the guest returns success, then the host
 930         * will not attempt any further hot-add operations. This
 931         * signifies a permanent failure.
 932         *
 933         * If the guest returns failure, then this failure will be
 934         * treated as a transient failure and the host may retry the
 935         * hot-add operation after some delay.
 936         */
 937        if (resp.page_count > 0)
 938                resp.result = 1;
 939        else if (!do_hot_add)
 940                resp.result = 1;
 941        else
 942                resp.result = 0;
 943
 944        if (!do_hot_add || (resp.page_count == 0))
 945                pr_info("Memory hot add failed\n");
 946
 947        dm->state = DM_INITIALIZED;
 948        resp.hdr.trans_id = atomic_inc_return(&trans_id);
 949        vmbus_sendpacket(dm->dev->channel, &resp,
 950                        sizeof(struct dm_hot_add_response),
 951                        (unsigned long)NULL,
 952                        VM_PKT_DATA_INBAND, 0);
 953}
 954
 955static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
 956{
 957        struct dm_info_header *info_hdr;
 958
 959        info_hdr = (struct dm_info_header *)msg->info;
 960
 961        switch (info_hdr->type) {
 962        case INFO_TYPE_MAX_PAGE_CNT:
 963                pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
 964                pr_info("Data Size is %d\n", info_hdr->data_size);
 965                break;
 966        default:
 967                pr_info("Received Unknown type: %d\n", info_hdr->type);
 968        }
 969}
 970
 971static unsigned long compute_balloon_floor(void)
 972{
 973        unsigned long min_pages;
 974#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
 975        /* Simple continuous piecewiese linear function:
 976         *  max MiB -> min MiB  gradient
 977         *       0         0
 978         *      16        16
 979         *      32        24
 980         *     128        72    (1/2)
 981         *     512       168    (1/4)
 982         *    2048       360    (1/8)
 983         *    8192       744    (1/16)
 984         *   32768      1512    (1/32)
 985         */
 986        if (totalram_pages < MB2PAGES(128))
 987                min_pages = MB2PAGES(8) + (totalram_pages >> 1);
 988        else if (totalram_pages < MB2PAGES(512))
 989                min_pages = MB2PAGES(40) + (totalram_pages >> 2);
 990        else if (totalram_pages < MB2PAGES(2048))
 991                min_pages = MB2PAGES(104) + (totalram_pages >> 3);
 992        else if (totalram_pages < MB2PAGES(8192))
 993                min_pages = MB2PAGES(232) + (totalram_pages >> 4);
 994        else
 995                min_pages = MB2PAGES(488) + (totalram_pages >> 5);
 996#undef MB2PAGES
 997        return min_pages;
 998}
 999
1000/*
1001 * Post our status as it relates memory pressure to the
1002 * host. Host expects the guests to post this status
1003 * periodically at 1 second intervals.
1004 *
1005 * The metrics specified in this protocol are very Windows
1006 * specific and so we cook up numbers here to convey our memory
1007 * pressure.
1008 */
1009
1010static void post_status(struct hv_dynmem_device *dm)
1011{
1012        struct dm_status status;
1013        struct sysinfo val;
1014        unsigned long now = jiffies;
1015        unsigned long last_post = last_post_time;
1016
1017        if (pressure_report_delay > 0) {
1018                --pressure_report_delay;
1019                return;
1020        }
1021
1022        if (!time_after(now, (last_post_time + HZ)))
1023                return;
1024
1025        si_meminfo(&val);
1026        memset(&status, 0, sizeof(struct dm_status));
1027        status.hdr.type = DM_STATUS_REPORT;
1028        status.hdr.size = sizeof(struct dm_status);
1029        status.hdr.trans_id = atomic_inc_return(&trans_id);
1030
1031        /*
1032         * The host expects the guest to report free and committed memory.
1033         * Furthermore, the host expects the pressure information to include
1034         * the ballooned out pages. For a given amount of memory that we are
1035         * managing we need to compute a floor below which we should not
1036         * balloon. Compute this and add it to the pressure report.
1037         * We also need to report all offline pages (num_pages_added -
1038         * num_pages_onlined) as committed to the host, otherwise it can try
1039         * asking us to balloon them out.
1040         */
1041        status.num_avail = val.freeram;
1042        status.num_committed = vm_memory_committed() +
1043                dm->num_pages_ballooned +
1044                (dm->num_pages_added > dm->num_pages_onlined ?
1045                 dm->num_pages_added - dm->num_pages_onlined : 0) +
1046                compute_balloon_floor();
1047
1048        /*
1049         * If our transaction ID is no longer current, just don't
1050         * send the status. This can happen if we were interrupted
1051         * after we picked our transaction ID.
1052         */
1053        if (status.hdr.trans_id != atomic_read(&trans_id))
1054                return;
1055
1056        /*
1057         * If the last post time that we sampled has changed,
1058         * we have raced, don't post the status.
1059         */
1060        if (last_post != last_post_time)
1061                return;
1062
1063        last_post_time = jiffies;
1064        vmbus_sendpacket(dm->dev->channel, &status,
1065                                sizeof(struct dm_status),
1066                                (unsigned long)NULL,
1067                                VM_PKT_DATA_INBAND, 0);
1068
1069}
1070
1071static void free_balloon_pages(struct hv_dynmem_device *dm,
1072                         union dm_mem_page_range *range_array)
1073{
1074        int num_pages = range_array->finfo.page_cnt;
1075        __u64 start_frame = range_array->finfo.start_page;
1076        struct page *pg;
1077        int i;
1078
1079        for (i = 0; i < num_pages; i++) {
1080                pg = pfn_to_page(i + start_frame);
1081                __free_page(pg);
1082                dm->num_pages_ballooned--;
1083        }
1084}
1085
1086
1087
1088static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1089                                        unsigned int num_pages,
1090                                        struct dm_balloon_response *bl_resp,
1091                                        int alloc_unit)
1092{
1093        unsigned int i = 0;
1094        struct page *pg;
1095
1096        if (num_pages < alloc_unit)
1097                return 0;
1098
1099        for (i = 0; (i * alloc_unit) < num_pages; i++) {
1100                if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1101                        PAGE_SIZE)
1102                        return i * alloc_unit;
1103
1104                /*
1105                 * We execute this code in a thread context. Furthermore,
1106                 * we don't want the kernel to try too hard.
1107                 */
1108                pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1109                                __GFP_NOMEMALLOC | __GFP_NOWARN,
1110                                get_order(alloc_unit << PAGE_SHIFT));
1111
1112                if (!pg)
1113                        return i * alloc_unit;
1114
1115                dm->num_pages_ballooned += alloc_unit;
1116
1117                /*
1118                 * If we allocatted 2M pages; split them so we
1119                 * can free them in any order we get.
1120                 */
1121
1122                if (alloc_unit != 1)
1123                        split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1124
1125                bl_resp->range_count++;
1126                bl_resp->range_array[i].finfo.start_page =
1127                        page_to_pfn(pg);
1128                bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1129                bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1130
1131        }
1132
1133        return num_pages;
1134}
1135
1136
1137
1138static void balloon_up(struct work_struct *dummy)
1139{
1140        unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1141        unsigned int num_ballooned = 0;
1142        struct dm_balloon_response *bl_resp;
1143        int alloc_unit;
1144        int ret;
1145        bool done = false;
1146        int i;
1147        struct sysinfo val;
1148        unsigned long floor;
1149
1150        /* The host balloons pages in 2M granularity. */
1151        WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1152
1153        /*
1154         * We will attempt 2M allocations. However, if we fail to
1155         * allocate 2M chunks, we will go back to 4k allocations.
1156         */
1157        alloc_unit = 512;
1158
1159        si_meminfo(&val);
1160        floor = compute_balloon_floor();
1161
1162        /* Refuse to balloon below the floor, keep the 2M granularity. */
1163        if (val.freeram < num_pages || val.freeram - num_pages < floor) {
1164                num_pages = val.freeram > floor ? (val.freeram - floor) : 0;
1165                num_pages -= num_pages % PAGES_IN_2M;
1166        }
1167
1168        while (!done) {
1169                bl_resp = (struct dm_balloon_response *)send_buffer;
1170                memset(send_buffer, 0, PAGE_SIZE);
1171                bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1172                bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1173                bl_resp->more_pages = 1;
1174
1175
1176                num_pages -= num_ballooned;
1177                num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1178                                                    bl_resp, alloc_unit);
1179
1180                if (alloc_unit != 1 && num_ballooned == 0) {
1181                        alloc_unit = 1;
1182                        continue;
1183                }
1184
1185                if (num_ballooned == 0 || num_ballooned == num_pages) {
1186                        bl_resp->more_pages = 0;
1187                        done = true;
1188                        dm_device.state = DM_INITIALIZED;
1189                }
1190
1191                /*
1192                 * We are pushing a lot of data through the channel;
1193                 * deal with transient failures caused because of the
1194                 * lack of space in the ring buffer.
1195                 */
1196
1197                do {
1198                        bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1199                        ret = vmbus_sendpacket(dm_device.dev->channel,
1200                                                bl_resp,
1201                                                bl_resp->hdr.size,
1202                                                (unsigned long)NULL,
1203                                                VM_PKT_DATA_INBAND, 0);
1204
1205                        if (ret == -EAGAIN)
1206                                msleep(20);
1207                        post_status(&dm_device);
1208                } while (ret == -EAGAIN);
1209
1210                if (ret) {
1211                        /*
1212                         * Free up the memory we allocatted.
1213                         */
1214                        pr_info("Balloon response failed\n");
1215
1216                        for (i = 0; i < bl_resp->range_count; i++)
1217                                free_balloon_pages(&dm_device,
1218                                                 &bl_resp->range_array[i]);
1219
1220                        done = true;
1221                }
1222        }
1223
1224}
1225
1226static void balloon_down(struct hv_dynmem_device *dm,
1227                        struct dm_unballoon_request *req)
1228{
1229        union dm_mem_page_range *range_array = req->range_array;
1230        int range_count = req->range_count;
1231        struct dm_unballoon_response resp;
1232        int i;
1233
1234        for (i = 0; i < range_count; i++) {
1235                free_balloon_pages(dm, &range_array[i]);
1236                complete(&dm_device.config_event);
1237        }
1238
1239        if (req->more_pages == 1)
1240                return;
1241
1242        memset(&resp, 0, sizeof(struct dm_unballoon_response));
1243        resp.hdr.type = DM_UNBALLOON_RESPONSE;
1244        resp.hdr.trans_id = atomic_inc_return(&trans_id);
1245        resp.hdr.size = sizeof(struct dm_unballoon_response);
1246
1247        vmbus_sendpacket(dm_device.dev->channel, &resp,
1248                                sizeof(struct dm_unballoon_response),
1249                                (unsigned long)NULL,
1250                                VM_PKT_DATA_INBAND, 0);
1251
1252        dm->state = DM_INITIALIZED;
1253}
1254
1255static void balloon_onchannelcallback(void *context);
1256
1257static int dm_thread_func(void *dm_dev)
1258{
1259        struct hv_dynmem_device *dm = dm_dev;
1260
1261        while (!kthread_should_stop()) {
1262                wait_for_completion_interruptible_timeout(
1263                                                &dm_device.config_event, 1*HZ);
1264                /*
1265                 * The host expects us to post information on the memory
1266                 * pressure every second.
1267                 */
1268                reinit_completion(&dm_device.config_event);
1269                post_status(dm);
1270        }
1271
1272        return 0;
1273}
1274
1275
1276static void version_resp(struct hv_dynmem_device *dm,
1277                        struct dm_version_response *vresp)
1278{
1279        struct dm_version_request version_req;
1280        int ret;
1281
1282        if (vresp->is_accepted) {
1283                /*
1284                 * We are done; wakeup the
1285                 * context waiting for version
1286                 * negotiation.
1287                 */
1288                complete(&dm->host_event);
1289                return;
1290        }
1291        /*
1292         * If there are more versions to try, continue
1293         * with negotiations; if not
1294         * shutdown the service since we are not able
1295         * to negotiate a suitable version number
1296         * with the host.
1297         */
1298        if (dm->next_version == 0)
1299                goto version_error;
1300
1301        memset(&version_req, 0, sizeof(struct dm_version_request));
1302        version_req.hdr.type = DM_VERSION_REQUEST;
1303        version_req.hdr.size = sizeof(struct dm_version_request);
1304        version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1305        version_req.version.version = dm->next_version;
1306
1307        /*
1308         * Set the next version to try in case current version fails.
1309         * Win7 protocol ought to be the last one to try.
1310         */
1311        switch (version_req.version.version) {
1312        case DYNMEM_PROTOCOL_VERSION_WIN8:
1313                dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1314                version_req.is_last_attempt = 0;
1315                break;
1316        default:
1317                dm->next_version = 0;
1318                version_req.is_last_attempt = 1;
1319        }
1320
1321        ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1322                                sizeof(struct dm_version_request),
1323                                (unsigned long)NULL,
1324                                VM_PKT_DATA_INBAND, 0);
1325
1326        if (ret)
1327                goto version_error;
1328
1329        return;
1330
1331version_error:
1332        dm->state = DM_INIT_ERROR;
1333        complete(&dm->host_event);
1334}
1335
1336static void cap_resp(struct hv_dynmem_device *dm,
1337                        struct dm_capabilities_resp_msg *cap_resp)
1338{
1339        if (!cap_resp->is_accepted) {
1340                pr_info("Capabilities not accepted by host\n");
1341                dm->state = DM_INIT_ERROR;
1342        }
1343        complete(&dm->host_event);
1344}
1345
1346static void balloon_onchannelcallback(void *context)
1347{
1348        struct hv_device *dev = context;
1349        u32 recvlen;
1350        u64 requestid;
1351        struct dm_message *dm_msg;
1352        struct dm_header *dm_hdr;
1353        struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1354        struct dm_balloon *bal_msg;
1355        struct dm_hot_add *ha_msg;
1356        union dm_mem_page_range *ha_pg_range;
1357        union dm_mem_page_range *ha_region;
1358
1359        memset(recv_buffer, 0, sizeof(recv_buffer));
1360        vmbus_recvpacket(dev->channel, recv_buffer,
1361                         PAGE_SIZE, &recvlen, &requestid);
1362
1363        if (recvlen > 0) {
1364                dm_msg = (struct dm_message *)recv_buffer;
1365                dm_hdr = &dm_msg->hdr;
1366
1367                switch (dm_hdr->type) {
1368                case DM_VERSION_RESPONSE:
1369                        version_resp(dm,
1370                                 (struct dm_version_response *)dm_msg);
1371                        break;
1372
1373                case DM_CAPABILITIES_RESPONSE:
1374                        cap_resp(dm,
1375                                 (struct dm_capabilities_resp_msg *)dm_msg);
1376                        break;
1377
1378                case DM_BALLOON_REQUEST:
1379                        if (dm->state == DM_BALLOON_UP)
1380                                pr_warn("Currently ballooning\n");
1381                        bal_msg = (struct dm_balloon *)recv_buffer;
1382                        dm->state = DM_BALLOON_UP;
1383                        dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1384                        schedule_work(&dm_device.balloon_wrk.wrk);
1385                        break;
1386
1387                case DM_UNBALLOON_REQUEST:
1388                        dm->state = DM_BALLOON_DOWN;
1389                        balloon_down(dm,
1390                                 (struct dm_unballoon_request *)recv_buffer);
1391                        break;
1392
1393                case DM_MEM_HOT_ADD_REQUEST:
1394                        if (dm->state == DM_HOT_ADD)
1395                                pr_warn("Currently hot-adding\n");
1396                        dm->state = DM_HOT_ADD;
1397                        ha_msg = (struct dm_hot_add *)recv_buffer;
1398                        if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1399                                /*
1400                                 * This is a normal hot-add request specifying
1401                                 * hot-add memory.
1402                                 */
1403                                ha_pg_range = &ha_msg->range;
1404                                dm->ha_wrk.ha_page_range = *ha_pg_range;
1405                                dm->ha_wrk.ha_region_range.page_range = 0;
1406                        } else {
1407                                /*
1408                                 * Host is specifying that we first hot-add
1409                                 * a region and then partially populate this
1410                                 * region.
1411                                 */
1412                                dm->host_specified_ha_region = true;
1413                                ha_pg_range = &ha_msg->range;
1414                                ha_region = &ha_pg_range[1];
1415                                dm->ha_wrk.ha_page_range = *ha_pg_range;
1416                                dm->ha_wrk.ha_region_range = *ha_region;
1417                        }
1418                        schedule_work(&dm_device.ha_wrk.wrk);
1419                        break;
1420
1421                case DM_INFO_MESSAGE:
1422                        process_info(dm, (struct dm_info_msg *)dm_msg);
1423                        break;
1424
1425                default:
1426                        pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1427
1428                }
1429        }
1430
1431}
1432
1433static int balloon_probe(struct hv_device *dev,
1434                        const struct hv_vmbus_device_id *dev_id)
1435{
1436        int ret;
1437        unsigned long t;
1438        struct dm_version_request version_req;
1439        struct dm_capabilities cap_msg;
1440
1441        do_hot_add = hot_add;
1442
1443        /*
1444         * First allocate a send buffer.
1445         */
1446
1447        send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1448        if (!send_buffer)
1449                return -ENOMEM;
1450
1451        ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1452                        balloon_onchannelcallback, dev);
1453
1454        if (ret)
1455                goto probe_error0;
1456
1457        dm_device.dev = dev;
1458        dm_device.state = DM_INITIALIZING;
1459        dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1460        init_completion(&dm_device.host_event);
1461        init_completion(&dm_device.config_event);
1462        INIT_LIST_HEAD(&dm_device.ha_region_list);
1463        mutex_init(&dm_device.ha_region_mutex);
1464        INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1465        INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1466        dm_device.host_specified_ha_region = false;
1467
1468        dm_device.thread =
1469                 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1470        if (IS_ERR(dm_device.thread)) {
1471                ret = PTR_ERR(dm_device.thread);
1472                goto probe_error1;
1473        }
1474
1475#ifdef CONFIG_MEMORY_HOTPLUG
1476        set_online_page_callback(&hv_online_page);
1477        register_memory_notifier(&hv_memory_nb);
1478#endif
1479
1480        hv_set_drvdata(dev, &dm_device);
1481        /*
1482         * Initiate the hand shake with the host and negotiate
1483         * a version that the host can support. We start with the
1484         * highest version number and go down if the host cannot
1485         * support it.
1486         */
1487        memset(&version_req, 0, sizeof(struct dm_version_request));
1488        version_req.hdr.type = DM_VERSION_REQUEST;
1489        version_req.hdr.size = sizeof(struct dm_version_request);
1490        version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1491        version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1492        version_req.is_last_attempt = 0;
1493
1494        ret = vmbus_sendpacket(dev->channel, &version_req,
1495                                sizeof(struct dm_version_request),
1496                                (unsigned long)NULL,
1497                                VM_PKT_DATA_INBAND, 0);
1498        if (ret)
1499                goto probe_error2;
1500
1501        t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1502        if (t == 0) {
1503                ret = -ETIMEDOUT;
1504                goto probe_error2;
1505        }
1506
1507        /*
1508         * If we could not negotiate a compatible version with the host
1509         * fail the probe function.
1510         */
1511        if (dm_device.state == DM_INIT_ERROR) {
1512                ret = -ETIMEDOUT;
1513                goto probe_error2;
1514        }
1515        /*
1516         * Now submit our capabilities to the host.
1517         */
1518        memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1519        cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1520        cap_msg.hdr.size = sizeof(struct dm_capabilities);
1521        cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1522
1523        cap_msg.caps.cap_bits.balloon = 1;
1524        cap_msg.caps.cap_bits.hot_add = 1;
1525
1526        /*
1527         * Specify our alignment requirements as it relates
1528         * memory hot-add. Specify 128MB alignment.
1529         */
1530        cap_msg.caps.cap_bits.hot_add_alignment = 7;
1531
1532        /*
1533         * Currently the host does not use these
1534         * values and we set them to what is done in the
1535         * Windows driver.
1536         */
1537        cap_msg.min_page_cnt = 0;
1538        cap_msg.max_page_number = -1;
1539
1540        ret = vmbus_sendpacket(dev->channel, &cap_msg,
1541                                sizeof(struct dm_capabilities),
1542                                (unsigned long)NULL,
1543                                VM_PKT_DATA_INBAND, 0);
1544        if (ret)
1545                goto probe_error2;
1546
1547        t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1548        if (t == 0) {
1549                ret = -ETIMEDOUT;
1550                goto probe_error2;
1551        }
1552
1553        /*
1554         * If the host does not like our capabilities,
1555         * fail the probe function.
1556         */
1557        if (dm_device.state == DM_INIT_ERROR) {
1558                ret = -ETIMEDOUT;
1559                goto probe_error2;
1560        }
1561
1562        dm_device.state = DM_INITIALIZED;
1563
1564        return 0;
1565
1566probe_error2:
1567#ifdef CONFIG_MEMORY_HOTPLUG
1568        restore_online_page_callback(&hv_online_page);
1569#endif
1570        kthread_stop(dm_device.thread);
1571
1572probe_error1:
1573        vmbus_close(dev->channel);
1574probe_error0:
1575        kfree(send_buffer);
1576        return ret;
1577}
1578
1579static int balloon_remove(struct hv_device *dev)
1580{
1581        struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1582        struct list_head *cur, *tmp;
1583        struct hv_hotadd_state *has;
1584
1585        if (dm->num_pages_ballooned != 0)
1586                pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1587
1588        cancel_work_sync(&dm->balloon_wrk.wrk);
1589        cancel_work_sync(&dm->ha_wrk.wrk);
1590
1591        vmbus_close(dev->channel);
1592        kthread_stop(dm->thread);
1593        kfree(send_buffer);
1594#ifdef CONFIG_MEMORY_HOTPLUG
1595        restore_online_page_callback(&hv_online_page);
1596        unregister_memory_notifier(&hv_memory_nb);
1597#endif
1598        list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1599                has = list_entry(cur, struct hv_hotadd_state, list);
1600                list_del(&has->list);
1601                kfree(has);
1602        }
1603
1604        return 0;
1605}
1606
1607static const struct hv_vmbus_device_id id_table[] = {
1608        /* Dynamic Memory Class ID */
1609        /* 525074DC-8985-46e2-8057-A307DC18A502 */
1610        { HV_DM_GUID, },
1611        { },
1612};
1613
1614MODULE_DEVICE_TABLE(vmbus, id_table);
1615
1616static  struct hv_driver balloon_drv = {
1617        .name = "hv_balloon",
1618        .id_table = id_table,
1619        .probe =  balloon_probe,
1620        .remove =  balloon_remove,
1621};
1622
1623static int __init init_balloon_drv(void)
1624{
1625
1626        return vmbus_driver_register(&balloon_drv);
1627}
1628
1629module_init(init_balloon_drv);
1630
1631MODULE_DESCRIPTION("Hyper-V Balloon");
1632MODULE_LICENSE("GPL");
1633