linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define NR_RAID1_BIOS 256
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70                          sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
  72
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75        struct pool_info *pi = data;
  76        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78        /* allocate a r1bio with room for raid_disks entries in the bios array */
  79        return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84        kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
  94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
  95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
  96
  97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  98{
  99        struct pool_info *pi = data;
 100        struct r1bio *r1_bio;
 101        struct bio *bio;
 102        int need_pages;
 103        int i, j;
 104
 105        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 106        if (!r1_bio)
 107                return NULL;
 108
 109        /*
 110         * Allocate bios : 1 for reading, n-1 for writing
 111         */
 112        for (j = pi->raid_disks ; j-- ; ) {
 113                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 114                if (!bio)
 115                        goto out_free_bio;
 116                r1_bio->bios[j] = bio;
 117        }
 118        /*
 119         * Allocate RESYNC_PAGES data pages and attach them to
 120         * the first bio.
 121         * If this is a user-requested check/repair, allocate
 122         * RESYNC_PAGES for each bio.
 123         */
 124        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 125                need_pages = pi->raid_disks;
 126        else
 127                need_pages = 1;
 128        for (j = 0; j < need_pages; j++) {
 129                bio = r1_bio->bios[j];
 130                bio->bi_vcnt = RESYNC_PAGES;
 131
 132                if (bio_alloc_pages(bio, gfp_flags))
 133                        goto out_free_pages;
 134        }
 135        /* If not user-requests, copy the page pointers to all bios */
 136        if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 137                for (i=0; i<RESYNC_PAGES ; i++)
 138                        for (j=1; j<pi->raid_disks; j++)
 139                                r1_bio->bios[j]->bi_io_vec[i].bv_page =
 140                                        r1_bio->bios[0]->bi_io_vec[i].bv_page;
 141        }
 142
 143        r1_bio->master_bio = NULL;
 144
 145        return r1_bio;
 146
 147out_free_pages:
 148        while (--j >= 0) {
 149                struct bio_vec *bv;
 150
 151                bio_for_each_segment_all(bv, r1_bio->bios[j], i)
 152                        __free_page(bv->bv_page);
 153        }
 154
 155out_free_bio:
 156        while (++j < pi->raid_disks)
 157                bio_put(r1_bio->bios[j]);
 158        r1bio_pool_free(r1_bio, data);
 159        return NULL;
 160}
 161
 162static void r1buf_pool_free(void *__r1_bio, void *data)
 163{
 164        struct pool_info *pi = data;
 165        int i,j;
 166        struct r1bio *r1bio = __r1_bio;
 167
 168        for (i = 0; i < RESYNC_PAGES; i++)
 169                for (j = pi->raid_disks; j-- ;) {
 170                        if (j == 0 ||
 171                            r1bio->bios[j]->bi_io_vec[i].bv_page !=
 172                            r1bio->bios[0]->bi_io_vec[i].bv_page)
 173                                safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 174                }
 175        for (i=0 ; i < pi->raid_disks; i++)
 176                bio_put(r1bio->bios[i]);
 177
 178        r1bio_pool_free(r1bio, data);
 179}
 180
 181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 182{
 183        int i;
 184
 185        for (i = 0; i < conf->raid_disks * 2; i++) {
 186                struct bio **bio = r1_bio->bios + i;
 187                if (!BIO_SPECIAL(*bio))
 188                        bio_put(*bio);
 189                *bio = NULL;
 190        }
 191}
 192
 193static void free_r1bio(struct r1bio *r1_bio)
 194{
 195        struct r1conf *conf = r1_bio->mddev->private;
 196
 197        put_all_bios(conf, r1_bio);
 198        mempool_free(r1_bio, conf->r1bio_pool);
 199}
 200
 201static void put_buf(struct r1bio *r1_bio)
 202{
 203        struct r1conf *conf = r1_bio->mddev->private;
 204        int i;
 205
 206        for (i = 0; i < conf->raid_disks * 2; i++) {
 207                struct bio *bio = r1_bio->bios[i];
 208                if (bio->bi_end_io)
 209                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 210        }
 211
 212        mempool_free(r1_bio, conf->r1buf_pool);
 213
 214        lower_barrier(conf);
 215}
 216
 217static void reschedule_retry(struct r1bio *r1_bio)
 218{
 219        unsigned long flags;
 220        struct mddev *mddev = r1_bio->mddev;
 221        struct r1conf *conf = mddev->private;
 222
 223        spin_lock_irqsave(&conf->device_lock, flags);
 224        list_add(&r1_bio->retry_list, &conf->retry_list);
 225        conf->nr_queued ++;
 226        spin_unlock_irqrestore(&conf->device_lock, flags);
 227
 228        wake_up(&conf->wait_barrier);
 229        md_wakeup_thread(mddev->thread);
 230}
 231
 232/*
 233 * raid_end_bio_io() is called when we have finished servicing a mirrored
 234 * operation and are ready to return a success/failure code to the buffer
 235 * cache layer.
 236 */
 237static void call_bio_endio(struct r1bio *r1_bio)
 238{
 239        struct bio *bio = r1_bio->master_bio;
 240        int done;
 241        struct r1conf *conf = r1_bio->mddev->private;
 242        sector_t start_next_window = r1_bio->start_next_window;
 243        sector_t bi_sector = bio->bi_iter.bi_sector;
 244
 245        if (bio->bi_phys_segments) {
 246                unsigned long flags;
 247                spin_lock_irqsave(&conf->device_lock, flags);
 248                bio->bi_phys_segments--;
 249                done = (bio->bi_phys_segments == 0);
 250                spin_unlock_irqrestore(&conf->device_lock, flags);
 251                /*
 252                 * make_request() might be waiting for
 253                 * bi_phys_segments to decrease
 254                 */
 255                wake_up(&conf->wait_barrier);
 256        } else
 257                done = 1;
 258
 259        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 260                bio->bi_error = -EIO;
 261
 262        if (done) {
 263                bio_endio(bio);
 264                /*
 265                 * Wake up any possible resync thread that waits for the device
 266                 * to go idle.
 267                 */
 268                allow_barrier(conf, start_next_window, bi_sector);
 269        }
 270}
 271
 272static void raid_end_bio_io(struct r1bio *r1_bio)
 273{
 274        struct bio *bio = r1_bio->master_bio;
 275
 276        /* if nobody has done the final endio yet, do it now */
 277        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 278                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 279                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 280                         (unsigned long long) bio->bi_iter.bi_sector,
 281                         (unsigned long long) bio_end_sector(bio) - 1);
 282
 283                call_bio_endio(r1_bio);
 284        }
 285        free_r1bio(r1_bio);
 286}
 287
 288/*
 289 * Update disk head position estimator based on IRQ completion info.
 290 */
 291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 292{
 293        struct r1conf *conf = r1_bio->mddev->private;
 294
 295        conf->mirrors[disk].head_position =
 296                r1_bio->sector + (r1_bio->sectors);
 297}
 298
 299/*
 300 * Find the disk number which triggered given bio
 301 */
 302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 303{
 304        int mirror;
 305        struct r1conf *conf = r1_bio->mddev->private;
 306        int raid_disks = conf->raid_disks;
 307
 308        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 309                if (r1_bio->bios[mirror] == bio)
 310                        break;
 311
 312        BUG_ON(mirror == raid_disks * 2);
 313        update_head_pos(mirror, r1_bio);
 314
 315        return mirror;
 316}
 317
 318static void raid1_end_read_request(struct bio *bio)
 319{
 320        int uptodate = !bio->bi_error;
 321        struct r1bio *r1_bio = bio->bi_private;
 322        int mirror;
 323        struct r1conf *conf = r1_bio->mddev->private;
 324
 325        mirror = r1_bio->read_disk;
 326        /*
 327         * this branch is our 'one mirror IO has finished' event handler:
 328         */
 329        update_head_pos(mirror, r1_bio);
 330
 331        if (uptodate)
 332                set_bit(R1BIO_Uptodate, &r1_bio->state);
 333        else {
 334                /* If all other devices have failed, we want to return
 335                 * the error upwards rather than fail the last device.
 336                 * Here we redefine "uptodate" to mean "Don't want to retry"
 337                 */
 338                unsigned long flags;
 339                spin_lock_irqsave(&conf->device_lock, flags);
 340                if (r1_bio->mddev->degraded == conf->raid_disks ||
 341                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 342                     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
 343                        uptodate = 1;
 344                spin_unlock_irqrestore(&conf->device_lock, flags);
 345        }
 346
 347        if (uptodate) {
 348                raid_end_bio_io(r1_bio);
 349                rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 350        } else {
 351                /*
 352                 * oops, read error:
 353                 */
 354                char b[BDEVNAME_SIZE];
 355                printk_ratelimited(
 356                        KERN_ERR "md/raid1:%s: %s: "
 357                        "rescheduling sector %llu\n",
 358                        mdname(conf->mddev),
 359                        bdevname(conf->mirrors[mirror].rdev->bdev,
 360                                 b),
 361                        (unsigned long long)r1_bio->sector);
 362                set_bit(R1BIO_ReadError, &r1_bio->state);
 363                reschedule_retry(r1_bio);
 364                /* don't drop the reference on read_disk yet */
 365        }
 366}
 367
 368static void close_write(struct r1bio *r1_bio)
 369{
 370        /* it really is the end of this request */
 371        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 372                /* free extra copy of the data pages */
 373                int i = r1_bio->behind_page_count;
 374                while (i--)
 375                        safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 376                kfree(r1_bio->behind_bvecs);
 377                r1_bio->behind_bvecs = NULL;
 378        }
 379        /* clear the bitmap if all writes complete successfully */
 380        bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 381                        r1_bio->sectors,
 382                        !test_bit(R1BIO_Degraded, &r1_bio->state),
 383                        test_bit(R1BIO_BehindIO, &r1_bio->state));
 384        md_write_end(r1_bio->mddev);
 385}
 386
 387static void r1_bio_write_done(struct r1bio *r1_bio)
 388{
 389        if (!atomic_dec_and_test(&r1_bio->remaining))
 390                return;
 391
 392        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 393                reschedule_retry(r1_bio);
 394        else {
 395                close_write(r1_bio);
 396                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 397                        reschedule_retry(r1_bio);
 398                else
 399                        raid_end_bio_io(r1_bio);
 400        }
 401}
 402
 403static void raid1_end_write_request(struct bio *bio)
 404{
 405        struct r1bio *r1_bio = bio->bi_private;
 406        int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 407        struct r1conf *conf = r1_bio->mddev->private;
 408        struct bio *to_put = NULL;
 409
 410        mirror = find_bio_disk(r1_bio, bio);
 411
 412        /*
 413         * 'one mirror IO has finished' event handler:
 414         */
 415        if (bio->bi_error) {
 416                set_bit(WriteErrorSeen,
 417                        &conf->mirrors[mirror].rdev->flags);
 418                if (!test_and_set_bit(WantReplacement,
 419                                      &conf->mirrors[mirror].rdev->flags))
 420                        set_bit(MD_RECOVERY_NEEDED, &
 421                                conf->mddev->recovery);
 422
 423                set_bit(R1BIO_WriteError, &r1_bio->state);
 424        } else {
 425                /*
 426                 * Set R1BIO_Uptodate in our master bio, so that we
 427                 * will return a good error code for to the higher
 428                 * levels even if IO on some other mirrored buffer
 429                 * fails.
 430                 *
 431                 * The 'master' represents the composite IO operation
 432                 * to user-side. So if something waits for IO, then it
 433                 * will wait for the 'master' bio.
 434                 */
 435                sector_t first_bad;
 436                int bad_sectors;
 437
 438                r1_bio->bios[mirror] = NULL;
 439                to_put = bio;
 440                /*
 441                 * Do not set R1BIO_Uptodate if the current device is
 442                 * rebuilding or Faulty. This is because we cannot use
 443                 * such device for properly reading the data back (we could
 444                 * potentially use it, if the current write would have felt
 445                 * before rdev->recovery_offset, but for simplicity we don't
 446                 * check this here.
 447                 */
 448                if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 449                    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 450                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 451
 452                /* Maybe we can clear some bad blocks. */
 453                if (is_badblock(conf->mirrors[mirror].rdev,
 454                                r1_bio->sector, r1_bio->sectors,
 455                                &first_bad, &bad_sectors)) {
 456                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 457                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 458                }
 459        }
 460
 461        if (behind) {
 462                if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 463                        atomic_dec(&r1_bio->behind_remaining);
 464
 465                /*
 466                 * In behind mode, we ACK the master bio once the I/O
 467                 * has safely reached all non-writemostly
 468                 * disks. Setting the Returned bit ensures that this
 469                 * gets done only once -- we don't ever want to return
 470                 * -EIO here, instead we'll wait
 471                 */
 472                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 473                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 474                        /* Maybe we can return now */
 475                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 476                                struct bio *mbio = r1_bio->master_bio;
 477                                pr_debug("raid1: behind end write sectors"
 478                                         " %llu-%llu\n",
 479                                         (unsigned long long) mbio->bi_iter.bi_sector,
 480                                         (unsigned long long) bio_end_sector(mbio) - 1);
 481                                call_bio_endio(r1_bio);
 482                        }
 483                }
 484        }
 485        if (r1_bio->bios[mirror] == NULL)
 486                rdev_dec_pending(conf->mirrors[mirror].rdev,
 487                                 conf->mddev);
 488
 489        /*
 490         * Let's see if all mirrored write operations have finished
 491         * already.
 492         */
 493        r1_bio_write_done(r1_bio);
 494
 495        if (to_put)
 496                bio_put(to_put);
 497}
 498
 499/*
 500 * This routine returns the disk from which the requested read should
 501 * be done. There is a per-array 'next expected sequential IO' sector
 502 * number - if this matches on the next IO then we use the last disk.
 503 * There is also a per-disk 'last know head position' sector that is
 504 * maintained from IRQ contexts, both the normal and the resync IO
 505 * completion handlers update this position correctly. If there is no
 506 * perfect sequential match then we pick the disk whose head is closest.
 507 *
 508 * If there are 2 mirrors in the same 2 devices, performance degrades
 509 * because position is mirror, not device based.
 510 *
 511 * The rdev for the device selected will have nr_pending incremented.
 512 */
 513static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 514{
 515        const sector_t this_sector = r1_bio->sector;
 516        int sectors;
 517        int best_good_sectors;
 518        int best_disk, best_dist_disk, best_pending_disk;
 519        int has_nonrot_disk;
 520        int disk;
 521        sector_t best_dist;
 522        unsigned int min_pending;
 523        struct md_rdev *rdev;
 524        int choose_first;
 525        int choose_next_idle;
 526
 527        rcu_read_lock();
 528        /*
 529         * Check if we can balance. We can balance on the whole
 530         * device if no resync is going on, or below the resync window.
 531         * We take the first readable disk when above the resync window.
 532         */
 533 retry:
 534        sectors = r1_bio->sectors;
 535        best_disk = -1;
 536        best_dist_disk = -1;
 537        best_dist = MaxSector;
 538        best_pending_disk = -1;
 539        min_pending = UINT_MAX;
 540        best_good_sectors = 0;
 541        has_nonrot_disk = 0;
 542        choose_next_idle = 0;
 543
 544        if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 545            (mddev_is_clustered(conf->mddev) &&
 546            md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 547                    this_sector + sectors)))
 548                choose_first = 1;
 549        else
 550                choose_first = 0;
 551
 552        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 553                sector_t dist;
 554                sector_t first_bad;
 555                int bad_sectors;
 556                unsigned int pending;
 557                bool nonrot;
 558
 559                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 560                if (r1_bio->bios[disk] == IO_BLOCKED
 561                    || rdev == NULL
 562                    || test_bit(Faulty, &rdev->flags))
 563                        continue;
 564                if (!test_bit(In_sync, &rdev->flags) &&
 565                    rdev->recovery_offset < this_sector + sectors)
 566                        continue;
 567                if (test_bit(WriteMostly, &rdev->flags)) {
 568                        /* Don't balance among write-mostly, just
 569                         * use the first as a last resort */
 570                        if (best_dist_disk < 0) {
 571                                if (is_badblock(rdev, this_sector, sectors,
 572                                                &first_bad, &bad_sectors)) {
 573                                        if (first_bad < this_sector)
 574                                                /* Cannot use this */
 575                                                continue;
 576                                        best_good_sectors = first_bad - this_sector;
 577                                } else
 578                                        best_good_sectors = sectors;
 579                                best_dist_disk = disk;
 580                                best_pending_disk = disk;
 581                        }
 582                        continue;
 583                }
 584                /* This is a reasonable device to use.  It might
 585                 * even be best.
 586                 */
 587                if (is_badblock(rdev, this_sector, sectors,
 588                                &first_bad, &bad_sectors)) {
 589                        if (best_dist < MaxSector)
 590                                /* already have a better device */
 591                                continue;
 592                        if (first_bad <= this_sector) {
 593                                /* cannot read here. If this is the 'primary'
 594                                 * device, then we must not read beyond
 595                                 * bad_sectors from another device..
 596                                 */
 597                                bad_sectors -= (this_sector - first_bad);
 598                                if (choose_first && sectors > bad_sectors)
 599                                        sectors = bad_sectors;
 600                                if (best_good_sectors > sectors)
 601                                        best_good_sectors = sectors;
 602
 603                        } else {
 604                                sector_t good_sectors = first_bad - this_sector;
 605                                if (good_sectors > best_good_sectors) {
 606                                        best_good_sectors = good_sectors;
 607                                        best_disk = disk;
 608                                }
 609                                if (choose_first)
 610                                        break;
 611                        }
 612                        continue;
 613                } else
 614                        best_good_sectors = sectors;
 615
 616                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 617                has_nonrot_disk |= nonrot;
 618                pending = atomic_read(&rdev->nr_pending);
 619                dist = abs(this_sector - conf->mirrors[disk].head_position);
 620                if (choose_first) {
 621                        best_disk = disk;
 622                        break;
 623                }
 624                /* Don't change to another disk for sequential reads */
 625                if (conf->mirrors[disk].next_seq_sect == this_sector
 626                    || dist == 0) {
 627                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 628                        struct raid1_info *mirror = &conf->mirrors[disk];
 629
 630                        best_disk = disk;
 631                        /*
 632                         * If buffered sequential IO size exceeds optimal
 633                         * iosize, check if there is idle disk. If yes, choose
 634                         * the idle disk. read_balance could already choose an
 635                         * idle disk before noticing it's a sequential IO in
 636                         * this disk. This doesn't matter because this disk
 637                         * will idle, next time it will be utilized after the
 638                         * first disk has IO size exceeds optimal iosize. In
 639                         * this way, iosize of the first disk will be optimal
 640                         * iosize at least. iosize of the second disk might be
 641                         * small, but not a big deal since when the second disk
 642                         * starts IO, the first disk is likely still busy.
 643                         */
 644                        if (nonrot && opt_iosize > 0 &&
 645                            mirror->seq_start != MaxSector &&
 646                            mirror->next_seq_sect > opt_iosize &&
 647                            mirror->next_seq_sect - opt_iosize >=
 648                            mirror->seq_start) {
 649                                choose_next_idle = 1;
 650                                continue;
 651                        }
 652                        break;
 653                }
 654                /* If device is idle, use it */
 655                if (pending == 0) {
 656                        best_disk = disk;
 657                        break;
 658                }
 659
 660                if (choose_next_idle)
 661                        continue;
 662
 663                if (min_pending > pending) {
 664                        min_pending = pending;
 665                        best_pending_disk = disk;
 666                }
 667
 668                if (dist < best_dist) {
 669                        best_dist = dist;
 670                        best_dist_disk = disk;
 671                }
 672        }
 673
 674        /*
 675         * If all disks are rotational, choose the closest disk. If any disk is
 676         * non-rotational, choose the disk with less pending request even the
 677         * disk is rotational, which might/might not be optimal for raids with
 678         * mixed ratation/non-rotational disks depending on workload.
 679         */
 680        if (best_disk == -1) {
 681                if (has_nonrot_disk)
 682                        best_disk = best_pending_disk;
 683                else
 684                        best_disk = best_dist_disk;
 685        }
 686
 687        if (best_disk >= 0) {
 688                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 689                if (!rdev)
 690                        goto retry;
 691                atomic_inc(&rdev->nr_pending);
 692                if (test_bit(Faulty, &rdev->flags)) {
 693                        /* cannot risk returning a device that failed
 694                         * before we inc'ed nr_pending
 695                         */
 696                        rdev_dec_pending(rdev, conf->mddev);
 697                        goto retry;
 698                }
 699                sectors = best_good_sectors;
 700
 701                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 702                        conf->mirrors[best_disk].seq_start = this_sector;
 703
 704                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 705        }
 706        rcu_read_unlock();
 707        *max_sectors = sectors;
 708
 709        return best_disk;
 710}
 711
 712static int raid1_congested(struct mddev *mddev, int bits)
 713{
 714        struct r1conf *conf = mddev->private;
 715        int i, ret = 0;
 716
 717        if ((bits & (1 << WB_async_congested)) &&
 718            conf->pending_count >= max_queued_requests)
 719                return 1;
 720
 721        rcu_read_lock();
 722        for (i = 0; i < conf->raid_disks * 2; i++) {
 723                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 724                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 725                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 726
 727                        BUG_ON(!q);
 728
 729                        /* Note the '|| 1' - when read_balance prefers
 730                         * non-congested targets, it can be removed
 731                         */
 732                        if ((bits & (1 << WB_async_congested)) || 1)
 733                                ret |= bdi_congested(&q->backing_dev_info, bits);
 734                        else
 735                                ret &= bdi_congested(&q->backing_dev_info, bits);
 736                }
 737        }
 738        rcu_read_unlock();
 739        return ret;
 740}
 741
 742static void flush_pending_writes(struct r1conf *conf)
 743{
 744        /* Any writes that have been queued but are awaiting
 745         * bitmap updates get flushed here.
 746         */
 747        spin_lock_irq(&conf->device_lock);
 748
 749        if (conf->pending_bio_list.head) {
 750                struct bio *bio;
 751                bio = bio_list_get(&conf->pending_bio_list);
 752                conf->pending_count = 0;
 753                spin_unlock_irq(&conf->device_lock);
 754                /* flush any pending bitmap writes to
 755                 * disk before proceeding w/ I/O */
 756                bitmap_unplug(conf->mddev->bitmap);
 757                wake_up(&conf->wait_barrier);
 758
 759                while (bio) { /* submit pending writes */
 760                        struct bio *next = bio->bi_next;
 761                        bio->bi_next = NULL;
 762                        if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 763                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 764                                /* Just ignore it */
 765                                bio_endio(bio);
 766                        else
 767                                generic_make_request(bio);
 768                        bio = next;
 769                }
 770        } else
 771                spin_unlock_irq(&conf->device_lock);
 772}
 773
 774/* Barriers....
 775 * Sometimes we need to suspend IO while we do something else,
 776 * either some resync/recovery, or reconfigure the array.
 777 * To do this we raise a 'barrier'.
 778 * The 'barrier' is a counter that can be raised multiple times
 779 * to count how many activities are happening which preclude
 780 * normal IO.
 781 * We can only raise the barrier if there is no pending IO.
 782 * i.e. if nr_pending == 0.
 783 * We choose only to raise the barrier if no-one is waiting for the
 784 * barrier to go down.  This means that as soon as an IO request
 785 * is ready, no other operations which require a barrier will start
 786 * until the IO request has had a chance.
 787 *
 788 * So: regular IO calls 'wait_barrier'.  When that returns there
 789 *    is no backgroup IO happening,  It must arrange to call
 790 *    allow_barrier when it has finished its IO.
 791 * backgroup IO calls must call raise_barrier.  Once that returns
 792 *    there is no normal IO happeing.  It must arrange to call
 793 *    lower_barrier when the particular background IO completes.
 794 */
 795static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
 796{
 797        spin_lock_irq(&conf->resync_lock);
 798
 799        /* Wait until no block IO is waiting */
 800        wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 801                            conf->resync_lock);
 802
 803        /* block any new IO from starting */
 804        conf->barrier++;
 805        conf->next_resync = sector_nr;
 806
 807        /* For these conditions we must wait:
 808         * A: while the array is in frozen state
 809         * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 810         *    the max count which allowed.
 811         * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 812         *    next resync will reach to the window which normal bios are
 813         *    handling.
 814         * D: while there are any active requests in the current window.
 815         */
 816        wait_event_lock_irq(conf->wait_barrier,
 817                            !conf->array_frozen &&
 818                            conf->barrier < RESYNC_DEPTH &&
 819                            conf->current_window_requests == 0 &&
 820                            (conf->start_next_window >=
 821                             conf->next_resync + RESYNC_SECTORS),
 822                            conf->resync_lock);
 823
 824        conf->nr_pending++;
 825        spin_unlock_irq(&conf->resync_lock);
 826}
 827
 828static void lower_barrier(struct r1conf *conf)
 829{
 830        unsigned long flags;
 831        BUG_ON(conf->barrier <= 0);
 832        spin_lock_irqsave(&conf->resync_lock, flags);
 833        conf->barrier--;
 834        conf->nr_pending--;
 835        spin_unlock_irqrestore(&conf->resync_lock, flags);
 836        wake_up(&conf->wait_barrier);
 837}
 838
 839static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 840{
 841        bool wait = false;
 842
 843        if (conf->array_frozen || !bio)
 844                wait = true;
 845        else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 846                if ((conf->mddev->curr_resync_completed
 847                     >= bio_end_sector(bio)) ||
 848                    (conf->next_resync + NEXT_NORMALIO_DISTANCE
 849                     <= bio->bi_iter.bi_sector))
 850                        wait = false;
 851                else
 852                        wait = true;
 853        }
 854
 855        return wait;
 856}
 857
 858static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 859{
 860        sector_t sector = 0;
 861
 862        spin_lock_irq(&conf->resync_lock);
 863        if (need_to_wait_for_sync(conf, bio)) {
 864                conf->nr_waiting++;
 865                /* Wait for the barrier to drop.
 866                 * However if there are already pending
 867                 * requests (preventing the barrier from
 868                 * rising completely), and the
 869                 * per-process bio queue isn't empty,
 870                 * then don't wait, as we need to empty
 871                 * that queue to allow conf->start_next_window
 872                 * to increase.
 873                 */
 874                wait_event_lock_irq(conf->wait_barrier,
 875                                    !conf->array_frozen &&
 876                                    (!conf->barrier ||
 877                                     ((conf->start_next_window <
 878                                       conf->next_resync + RESYNC_SECTORS) &&
 879                                      current->bio_list &&
 880                                      !bio_list_empty(current->bio_list))),
 881                                    conf->resync_lock);
 882                conf->nr_waiting--;
 883        }
 884
 885        if (bio && bio_data_dir(bio) == WRITE) {
 886                if (bio->bi_iter.bi_sector >= conf->next_resync) {
 887                        if (conf->start_next_window == MaxSector)
 888                                conf->start_next_window =
 889                                        conf->next_resync +
 890                                        NEXT_NORMALIO_DISTANCE;
 891
 892                        if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 893                            <= bio->bi_iter.bi_sector)
 894                                conf->next_window_requests++;
 895                        else
 896                                conf->current_window_requests++;
 897                        sector = conf->start_next_window;
 898                }
 899        }
 900
 901        conf->nr_pending++;
 902        spin_unlock_irq(&conf->resync_lock);
 903        return sector;
 904}
 905
 906static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 907                          sector_t bi_sector)
 908{
 909        unsigned long flags;
 910
 911        spin_lock_irqsave(&conf->resync_lock, flags);
 912        conf->nr_pending--;
 913        if (start_next_window) {
 914                if (start_next_window == conf->start_next_window) {
 915                        if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 916                            <= bi_sector)
 917                                conf->next_window_requests--;
 918                        else
 919                                conf->current_window_requests--;
 920                } else
 921                        conf->current_window_requests--;
 922
 923                if (!conf->current_window_requests) {
 924                        if (conf->next_window_requests) {
 925                                conf->current_window_requests =
 926                                        conf->next_window_requests;
 927                                conf->next_window_requests = 0;
 928                                conf->start_next_window +=
 929                                        NEXT_NORMALIO_DISTANCE;
 930                        } else
 931                                conf->start_next_window = MaxSector;
 932                }
 933        }
 934        spin_unlock_irqrestore(&conf->resync_lock, flags);
 935        wake_up(&conf->wait_barrier);
 936}
 937
 938static void freeze_array(struct r1conf *conf, int extra)
 939{
 940        /* stop syncio and normal IO and wait for everything to
 941         * go quite.
 942         * We wait until nr_pending match nr_queued+extra
 943         * This is called in the context of one normal IO request
 944         * that has failed. Thus any sync request that might be pending
 945         * will be blocked by nr_pending, and we need to wait for
 946         * pending IO requests to complete or be queued for re-try.
 947         * Thus the number queued (nr_queued) plus this request (extra)
 948         * must match the number of pending IOs (nr_pending) before
 949         * we continue.
 950         */
 951        spin_lock_irq(&conf->resync_lock);
 952        conf->array_frozen = 1;
 953        wait_event_lock_irq_cmd(conf->wait_barrier,
 954                                conf->nr_pending == conf->nr_queued+extra,
 955                                conf->resync_lock,
 956                                flush_pending_writes(conf));
 957        spin_unlock_irq(&conf->resync_lock);
 958}
 959static void unfreeze_array(struct r1conf *conf)
 960{
 961        /* reverse the effect of the freeze */
 962        spin_lock_irq(&conf->resync_lock);
 963        conf->array_frozen = 0;
 964        wake_up(&conf->wait_barrier);
 965        spin_unlock_irq(&conf->resync_lock);
 966}
 967
 968/* duplicate the data pages for behind I/O
 969 */
 970static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
 971{
 972        int i;
 973        struct bio_vec *bvec;
 974        struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 975                                        GFP_NOIO);
 976        if (unlikely(!bvecs))
 977                return;
 978
 979        bio_for_each_segment_all(bvec, bio, i) {
 980                bvecs[i] = *bvec;
 981                bvecs[i].bv_page = alloc_page(GFP_NOIO);
 982                if (unlikely(!bvecs[i].bv_page))
 983                        goto do_sync_io;
 984                memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 985                       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 986                kunmap(bvecs[i].bv_page);
 987                kunmap(bvec->bv_page);
 988        }
 989        r1_bio->behind_bvecs = bvecs;
 990        r1_bio->behind_page_count = bio->bi_vcnt;
 991        set_bit(R1BIO_BehindIO, &r1_bio->state);
 992        return;
 993
 994do_sync_io:
 995        for (i = 0; i < bio->bi_vcnt; i++)
 996                if (bvecs[i].bv_page)
 997                        put_page(bvecs[i].bv_page);
 998        kfree(bvecs);
 999        pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000                 bio->bi_iter.bi_size);
1001}
1002
1003struct raid1_plug_cb {
1004        struct blk_plug_cb      cb;
1005        struct bio_list         pending;
1006        int                     pending_cnt;
1007};
1008
1009static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010{
1011        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012                                                  cb);
1013        struct mddev *mddev = plug->cb.data;
1014        struct r1conf *conf = mddev->private;
1015        struct bio *bio;
1016
1017        if (from_schedule || current->bio_list) {
1018                spin_lock_irq(&conf->device_lock);
1019                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020                conf->pending_count += plug->pending_cnt;
1021                spin_unlock_irq(&conf->device_lock);
1022                wake_up(&conf->wait_barrier);
1023                md_wakeup_thread(mddev->thread);
1024                kfree(plug);
1025                return;
1026        }
1027
1028        /* we aren't scheduling, so we can do the write-out directly. */
1029        bio = bio_list_get(&plug->pending);
1030        bitmap_unplug(mddev->bitmap);
1031        wake_up(&conf->wait_barrier);
1032
1033        while (bio) { /* submit pending writes */
1034                struct bio *next = bio->bi_next;
1035                bio->bi_next = NULL;
1036                if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038                        /* Just ignore it */
1039                        bio_endio(bio);
1040                else
1041                        generic_make_request(bio);
1042                bio = next;
1043        }
1044        kfree(plug);
1045}
1046
1047static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1048{
1049        struct r1conf *conf = mddev->private;
1050        struct raid1_info *mirror;
1051        struct r1bio *r1_bio;
1052        struct bio *read_bio;
1053        int i, disks;
1054        struct bitmap *bitmap;
1055        unsigned long flags;
1056        const int rw = bio_data_dir(bio);
1057        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1058        const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1059        const unsigned long do_discard = (bio->bi_rw
1060                                          & (REQ_DISCARD | REQ_SECURE));
1061        const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1062        struct md_rdev *blocked_rdev;
1063        struct blk_plug_cb *cb;
1064        struct raid1_plug_cb *plug = NULL;
1065        int first_clone;
1066        int sectors_handled;
1067        int max_sectors;
1068        sector_t start_next_window;
1069
1070        /*
1071         * Register the new request and wait if the reconstruction
1072         * thread has put up a bar for new requests.
1073         * Continue immediately if no resync is active currently.
1074         */
1075
1076        md_write_start(mddev, bio); /* wait on superblock update early */
1077
1078        if (bio_data_dir(bio) == WRITE &&
1079            ((bio_end_sector(bio) > mddev->suspend_lo &&
1080            bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1081            (mddev_is_clustered(mddev) &&
1082             md_cluster_ops->area_resyncing(mddev, WRITE,
1083                     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1084                /* As the suspend_* range is controlled by
1085                 * userspace, we want an interruptible
1086                 * wait.
1087                 */
1088                DEFINE_WAIT(w);
1089                for (;;) {
1090                        flush_signals(current);
1091                        prepare_to_wait(&conf->wait_barrier,
1092                                        &w, TASK_INTERRUPTIBLE);
1093                        if (bio_end_sector(bio) <= mddev->suspend_lo ||
1094                            bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1095                            (mddev_is_clustered(mddev) &&
1096                             !md_cluster_ops->area_resyncing(mddev, WRITE,
1097                                     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1098                                break;
1099                        schedule();
1100                }
1101                finish_wait(&conf->wait_barrier, &w);
1102        }
1103
1104        start_next_window = wait_barrier(conf, bio);
1105
1106        bitmap = mddev->bitmap;
1107
1108        /*
1109         * make_request() can abort the operation when READA is being
1110         * used and no empty request is available.
1111         *
1112         */
1113        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1114
1115        r1_bio->master_bio = bio;
1116        r1_bio->sectors = bio_sectors(bio);
1117        r1_bio->state = 0;
1118        r1_bio->mddev = mddev;
1119        r1_bio->sector = bio->bi_iter.bi_sector;
1120
1121        /* We might need to issue multiple reads to different
1122         * devices if there are bad blocks around, so we keep
1123         * track of the number of reads in bio->bi_phys_segments.
1124         * If this is 0, there is only one r1_bio and no locking
1125         * will be needed when requests complete.  If it is
1126         * non-zero, then it is the number of not-completed requests.
1127         */
1128        bio->bi_phys_segments = 0;
1129        bio_clear_flag(bio, BIO_SEG_VALID);
1130
1131        if (rw == READ) {
1132                /*
1133                 * read balancing logic:
1134                 */
1135                int rdisk;
1136
1137read_again:
1138                rdisk = read_balance(conf, r1_bio, &max_sectors);
1139
1140                if (rdisk < 0) {
1141                        /* couldn't find anywhere to read from */
1142                        raid_end_bio_io(r1_bio);
1143                        return;
1144                }
1145                mirror = conf->mirrors + rdisk;
1146
1147                if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1148                    bitmap) {
1149                        /* Reading from a write-mostly device must
1150                         * take care not to over-take any writes
1151                         * that are 'behind'
1152                         */
1153                        wait_event(bitmap->behind_wait,
1154                                   atomic_read(&bitmap->behind_writes) == 0);
1155                }
1156                r1_bio->read_disk = rdisk;
1157                r1_bio->start_next_window = 0;
1158
1159                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1160                bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1161                         max_sectors);
1162
1163                r1_bio->bios[rdisk] = read_bio;
1164
1165                read_bio->bi_iter.bi_sector = r1_bio->sector +
1166                        mirror->rdev->data_offset;
1167                read_bio->bi_bdev = mirror->rdev->bdev;
1168                read_bio->bi_end_io = raid1_end_read_request;
1169                read_bio->bi_rw = READ | do_sync;
1170                read_bio->bi_private = r1_bio;
1171
1172                if (max_sectors < r1_bio->sectors) {
1173                        /* could not read all from this device, so we will
1174                         * need another r1_bio.
1175                         */
1176
1177                        sectors_handled = (r1_bio->sector + max_sectors
1178                                           - bio->bi_iter.bi_sector);
1179                        r1_bio->sectors = max_sectors;
1180                        spin_lock_irq(&conf->device_lock);
1181                        if (bio->bi_phys_segments == 0)
1182                                bio->bi_phys_segments = 2;
1183                        else
1184                                bio->bi_phys_segments++;
1185                        spin_unlock_irq(&conf->device_lock);
1186                        /* Cannot call generic_make_request directly
1187                         * as that will be queued in __make_request
1188                         * and subsequent mempool_alloc might block waiting
1189                         * for it.  So hand bio over to raid1d.
1190                         */
1191                        reschedule_retry(r1_bio);
1192
1193                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1194
1195                        r1_bio->master_bio = bio;
1196                        r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1197                        r1_bio->state = 0;
1198                        r1_bio->mddev = mddev;
1199                        r1_bio->sector = bio->bi_iter.bi_sector +
1200                                sectors_handled;
1201                        goto read_again;
1202                } else
1203                        generic_make_request(read_bio);
1204                return;
1205        }
1206
1207        /*
1208         * WRITE:
1209         */
1210        if (conf->pending_count >= max_queued_requests) {
1211                md_wakeup_thread(mddev->thread);
1212                wait_event(conf->wait_barrier,
1213                           conf->pending_count < max_queued_requests);
1214        }
1215        /* first select target devices under rcu_lock and
1216         * inc refcount on their rdev.  Record them by setting
1217         * bios[x] to bio
1218         * If there are known/acknowledged bad blocks on any device on
1219         * which we have seen a write error, we want to avoid writing those
1220         * blocks.
1221         * This potentially requires several writes to write around
1222         * the bad blocks.  Each set of writes gets it's own r1bio
1223         * with a set of bios attached.
1224         */
1225
1226        disks = conf->raid_disks * 2;
1227 retry_write:
1228        r1_bio->start_next_window = start_next_window;
1229        blocked_rdev = NULL;
1230        rcu_read_lock();
1231        max_sectors = r1_bio->sectors;
1232        for (i = 0;  i < disks; i++) {
1233                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1234                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1235                        atomic_inc(&rdev->nr_pending);
1236                        blocked_rdev = rdev;
1237                        break;
1238                }
1239                r1_bio->bios[i] = NULL;
1240                if (!rdev || test_bit(Faulty, &rdev->flags)) {
1241                        if (i < conf->raid_disks)
1242                                set_bit(R1BIO_Degraded, &r1_bio->state);
1243                        continue;
1244                }
1245
1246                atomic_inc(&rdev->nr_pending);
1247                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1248                        sector_t first_bad;
1249                        int bad_sectors;
1250                        int is_bad;
1251
1252                        is_bad = is_badblock(rdev, r1_bio->sector,
1253                                             max_sectors,
1254                                             &first_bad, &bad_sectors);
1255                        if (is_bad < 0) {
1256                                /* mustn't write here until the bad block is
1257                                 * acknowledged*/
1258                                set_bit(BlockedBadBlocks, &rdev->flags);
1259                                blocked_rdev = rdev;
1260                                break;
1261                        }
1262                        if (is_bad && first_bad <= r1_bio->sector) {
1263                                /* Cannot write here at all */
1264                                bad_sectors -= (r1_bio->sector - first_bad);
1265                                if (bad_sectors < max_sectors)
1266                                        /* mustn't write more than bad_sectors
1267                                         * to other devices yet
1268                                         */
1269                                        max_sectors = bad_sectors;
1270                                rdev_dec_pending(rdev, mddev);
1271                                /* We don't set R1BIO_Degraded as that
1272                                 * only applies if the disk is
1273                                 * missing, so it might be re-added,
1274                                 * and we want to know to recover this
1275                                 * chunk.
1276                                 * In this case the device is here,
1277                                 * and the fact that this chunk is not
1278                                 * in-sync is recorded in the bad
1279                                 * block log
1280                                 */
1281                                continue;
1282                        }
1283                        if (is_bad) {
1284                                int good_sectors = first_bad - r1_bio->sector;
1285                                if (good_sectors < max_sectors)
1286                                        max_sectors = good_sectors;
1287                        }
1288                }
1289                r1_bio->bios[i] = bio;
1290        }
1291        rcu_read_unlock();
1292
1293        if (unlikely(blocked_rdev)) {
1294                /* Wait for this device to become unblocked */
1295                int j;
1296                sector_t old = start_next_window;
1297
1298                for (j = 0; j < i; j++)
1299                        if (r1_bio->bios[j])
1300                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1301                r1_bio->state = 0;
1302                allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1303                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1304                start_next_window = wait_barrier(conf, bio);
1305                /*
1306                 * We must make sure the multi r1bios of bio have
1307                 * the same value of bi_phys_segments
1308                 */
1309                if (bio->bi_phys_segments && old &&
1310                    old != start_next_window)
1311                        /* Wait for the former r1bio(s) to complete */
1312                        wait_event(conf->wait_barrier,
1313                                   bio->bi_phys_segments == 1);
1314                goto retry_write;
1315        }
1316
1317        if (max_sectors < r1_bio->sectors) {
1318                /* We are splitting this write into multiple parts, so
1319                 * we need to prepare for allocating another r1_bio.
1320                 */
1321                r1_bio->sectors = max_sectors;
1322                spin_lock_irq(&conf->device_lock);
1323                if (bio->bi_phys_segments == 0)
1324                        bio->bi_phys_segments = 2;
1325                else
1326                        bio->bi_phys_segments++;
1327                spin_unlock_irq(&conf->device_lock);
1328        }
1329        sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1330
1331        atomic_set(&r1_bio->remaining, 1);
1332        atomic_set(&r1_bio->behind_remaining, 0);
1333
1334        first_clone = 1;
1335        for (i = 0; i < disks; i++) {
1336                struct bio *mbio;
1337                if (!r1_bio->bios[i])
1338                        continue;
1339
1340                mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1341                bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1342
1343                if (first_clone) {
1344                        /* do behind I/O ?
1345                         * Not if there are too many, or cannot
1346                         * allocate memory, or a reader on WriteMostly
1347                         * is waiting for behind writes to flush */
1348                        if (bitmap &&
1349                            (atomic_read(&bitmap->behind_writes)
1350                             < mddev->bitmap_info.max_write_behind) &&
1351                            !waitqueue_active(&bitmap->behind_wait))
1352                                alloc_behind_pages(mbio, r1_bio);
1353
1354                        bitmap_startwrite(bitmap, r1_bio->sector,
1355                                          r1_bio->sectors,
1356                                          test_bit(R1BIO_BehindIO,
1357                                                   &r1_bio->state));
1358                        first_clone = 0;
1359                }
1360                if (r1_bio->behind_bvecs) {
1361                        struct bio_vec *bvec;
1362                        int j;
1363
1364                        /*
1365                         * We trimmed the bio, so _all is legit
1366                         */
1367                        bio_for_each_segment_all(bvec, mbio, j)
1368                                bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1369                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1370                                atomic_inc(&r1_bio->behind_remaining);
1371                }
1372
1373                r1_bio->bios[i] = mbio;
1374
1375                mbio->bi_iter.bi_sector = (r1_bio->sector +
1376                                   conf->mirrors[i].rdev->data_offset);
1377                mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1378                mbio->bi_end_io = raid1_end_write_request;
1379                mbio->bi_rw =
1380                        WRITE | do_flush_fua | do_sync | do_discard | do_same;
1381                mbio->bi_private = r1_bio;
1382
1383                atomic_inc(&r1_bio->remaining);
1384
1385                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1386                if (cb)
1387                        plug = container_of(cb, struct raid1_plug_cb, cb);
1388                else
1389                        plug = NULL;
1390                spin_lock_irqsave(&conf->device_lock, flags);
1391                if (plug) {
1392                        bio_list_add(&plug->pending, mbio);
1393                        plug->pending_cnt++;
1394                } else {
1395                        bio_list_add(&conf->pending_bio_list, mbio);
1396                        conf->pending_count++;
1397                }
1398                spin_unlock_irqrestore(&conf->device_lock, flags);
1399                if (!plug)
1400                        md_wakeup_thread(mddev->thread);
1401        }
1402        /* Mustn't call r1_bio_write_done before this next test,
1403         * as it could result in the bio being freed.
1404         */
1405        if (sectors_handled < bio_sectors(bio)) {
1406                r1_bio_write_done(r1_bio);
1407                /* We need another r1_bio.  It has already been counted
1408                 * in bio->bi_phys_segments
1409                 */
1410                r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1411                r1_bio->master_bio = bio;
1412                r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1413                r1_bio->state = 0;
1414                r1_bio->mddev = mddev;
1415                r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1416                goto retry_write;
1417        }
1418
1419        r1_bio_write_done(r1_bio);
1420
1421        /* In case raid1d snuck in to freeze_array */
1422        wake_up(&conf->wait_barrier);
1423}
1424
1425static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1426{
1427        struct r1conf *conf = mddev->private;
1428        int i;
1429
1430        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1431                   conf->raid_disks - mddev->degraded);
1432        rcu_read_lock();
1433        for (i = 0; i < conf->raid_disks; i++) {
1434                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1435                seq_printf(seq, "%s",
1436                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1437        }
1438        rcu_read_unlock();
1439        seq_printf(seq, "]");
1440}
1441
1442static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1443{
1444        char b[BDEVNAME_SIZE];
1445        struct r1conf *conf = mddev->private;
1446        unsigned long flags;
1447
1448        /*
1449         * If it is not operational, then we have already marked it as dead
1450         * else if it is the last working disks, ignore the error, let the
1451         * next level up know.
1452         * else mark the drive as failed
1453         */
1454        if (test_bit(In_sync, &rdev->flags)
1455            && (conf->raid_disks - mddev->degraded) == 1) {
1456                /*
1457                 * Don't fail the drive, act as though we were just a
1458                 * normal single drive.
1459                 * However don't try a recovery from this drive as
1460                 * it is very likely to fail.
1461                 */
1462                conf->recovery_disabled = mddev->recovery_disabled;
1463                return;
1464        }
1465        set_bit(Blocked, &rdev->flags);
1466        spin_lock_irqsave(&conf->device_lock, flags);
1467        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1468                mddev->degraded++;
1469                set_bit(Faulty, &rdev->flags);
1470        } else
1471                set_bit(Faulty, &rdev->flags);
1472        spin_unlock_irqrestore(&conf->device_lock, flags);
1473        /*
1474         * if recovery is running, make sure it aborts.
1475         */
1476        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1477        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1478        set_bit(MD_CHANGE_PENDING, &mddev->flags);
1479        printk(KERN_ALERT
1480               "md/raid1:%s: Disk failure on %s, disabling device.\n"
1481               "md/raid1:%s: Operation continuing on %d devices.\n",
1482               mdname(mddev), bdevname(rdev->bdev, b),
1483               mdname(mddev), conf->raid_disks - mddev->degraded);
1484}
1485
1486static void print_conf(struct r1conf *conf)
1487{
1488        int i;
1489
1490        printk(KERN_DEBUG "RAID1 conf printout:\n");
1491        if (!conf) {
1492                printk(KERN_DEBUG "(!conf)\n");
1493                return;
1494        }
1495        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1496                conf->raid_disks);
1497
1498        rcu_read_lock();
1499        for (i = 0; i < conf->raid_disks; i++) {
1500                char b[BDEVNAME_SIZE];
1501                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502                if (rdev)
1503                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1504                               i, !test_bit(In_sync, &rdev->flags),
1505                               !test_bit(Faulty, &rdev->flags),
1506                               bdevname(rdev->bdev,b));
1507        }
1508        rcu_read_unlock();
1509}
1510
1511static void close_sync(struct r1conf *conf)
1512{
1513        wait_barrier(conf, NULL);
1514        allow_barrier(conf, 0, 0);
1515
1516        mempool_destroy(conf->r1buf_pool);
1517        conf->r1buf_pool = NULL;
1518
1519        spin_lock_irq(&conf->resync_lock);
1520        conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1521        conf->start_next_window = MaxSector;
1522        conf->current_window_requests +=
1523                conf->next_window_requests;
1524        conf->next_window_requests = 0;
1525        spin_unlock_irq(&conf->resync_lock);
1526}
1527
1528static int raid1_spare_active(struct mddev *mddev)
1529{
1530        int i;
1531        struct r1conf *conf = mddev->private;
1532        int count = 0;
1533        unsigned long flags;
1534
1535        /*
1536         * Find all failed disks within the RAID1 configuration
1537         * and mark them readable.
1538         * Called under mddev lock, so rcu protection not needed.
1539         * device_lock used to avoid races with raid1_end_read_request
1540         * which expects 'In_sync' flags and ->degraded to be consistent.
1541         */
1542        spin_lock_irqsave(&conf->device_lock, flags);
1543        for (i = 0; i < conf->raid_disks; i++) {
1544                struct md_rdev *rdev = conf->mirrors[i].rdev;
1545                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1546                if (repl
1547                    && !test_bit(Candidate, &repl->flags)
1548                    && repl->recovery_offset == MaxSector
1549                    && !test_bit(Faulty, &repl->flags)
1550                    && !test_and_set_bit(In_sync, &repl->flags)) {
1551                        /* replacement has just become active */
1552                        if (!rdev ||
1553                            !test_and_clear_bit(In_sync, &rdev->flags))
1554                                count++;
1555                        if (rdev) {
1556                                /* Replaced device not technically
1557                                 * faulty, but we need to be sure
1558                                 * it gets removed and never re-added
1559                                 */
1560                                set_bit(Faulty, &rdev->flags);
1561                                sysfs_notify_dirent_safe(
1562                                        rdev->sysfs_state);
1563                        }
1564                }
1565                if (rdev
1566                    && rdev->recovery_offset == MaxSector
1567                    && !test_bit(Faulty, &rdev->flags)
1568                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1569                        count++;
1570                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1571                }
1572        }
1573        mddev->degraded -= count;
1574        spin_unlock_irqrestore(&conf->device_lock, flags);
1575
1576        print_conf(conf);
1577        return count;
1578}
1579
1580static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1581{
1582        struct r1conf *conf = mddev->private;
1583        int err = -EEXIST;
1584        int mirror = 0;
1585        struct raid1_info *p;
1586        int first = 0;
1587        int last = conf->raid_disks - 1;
1588
1589        if (mddev->recovery_disabled == conf->recovery_disabled)
1590                return -EBUSY;
1591
1592        if (md_integrity_add_rdev(rdev, mddev))
1593                return -ENXIO;
1594
1595        if (rdev->raid_disk >= 0)
1596                first = last = rdev->raid_disk;
1597
1598        /*
1599         * find the disk ... but prefer rdev->saved_raid_disk
1600         * if possible.
1601         */
1602        if (rdev->saved_raid_disk >= 0 &&
1603            rdev->saved_raid_disk >= first &&
1604            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1605                first = last = rdev->saved_raid_disk;
1606
1607        for (mirror = first; mirror <= last; mirror++) {
1608                p = conf->mirrors+mirror;
1609                if (!p->rdev) {
1610
1611                        if (mddev->gendisk)
1612                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1613                                                  rdev->data_offset << 9);
1614
1615                        p->head_position = 0;
1616                        rdev->raid_disk = mirror;
1617                        err = 0;
1618                        /* As all devices are equivalent, we don't need a full recovery
1619                         * if this was recently any drive of the array
1620                         */
1621                        if (rdev->saved_raid_disk < 0)
1622                                conf->fullsync = 1;
1623                        rcu_assign_pointer(p->rdev, rdev);
1624                        break;
1625                }
1626                if (test_bit(WantReplacement, &p->rdev->flags) &&
1627                    p[conf->raid_disks].rdev == NULL) {
1628                        /* Add this device as a replacement */
1629                        clear_bit(In_sync, &rdev->flags);
1630                        set_bit(Replacement, &rdev->flags);
1631                        rdev->raid_disk = mirror;
1632                        err = 0;
1633                        conf->fullsync = 1;
1634                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1635                        break;
1636                }
1637        }
1638        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1639                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1640        print_conf(conf);
1641        return err;
1642}
1643
1644static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1645{
1646        struct r1conf *conf = mddev->private;
1647        int err = 0;
1648        int number = rdev->raid_disk;
1649        struct raid1_info *p = conf->mirrors + number;
1650
1651        if (rdev != p->rdev)
1652                p = conf->mirrors + conf->raid_disks + number;
1653
1654        print_conf(conf);
1655        if (rdev == p->rdev) {
1656                if (test_bit(In_sync, &rdev->flags) ||
1657                    atomic_read(&rdev->nr_pending)) {
1658                        err = -EBUSY;
1659                        goto abort;
1660                }
1661                /* Only remove non-faulty devices if recovery
1662                 * is not possible.
1663                 */
1664                if (!test_bit(Faulty, &rdev->flags) &&
1665                    mddev->recovery_disabled != conf->recovery_disabled &&
1666                    mddev->degraded < conf->raid_disks) {
1667                        err = -EBUSY;
1668                        goto abort;
1669                }
1670                p->rdev = NULL;
1671                synchronize_rcu();
1672                if (atomic_read(&rdev->nr_pending)) {
1673                        /* lost the race, try later */
1674                        err = -EBUSY;
1675                        p->rdev = rdev;
1676                        goto abort;
1677                } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1678                        /* We just removed a device that is being replaced.
1679                         * Move down the replacement.  We drain all IO before
1680                         * doing this to avoid confusion.
1681                         */
1682                        struct md_rdev *repl =
1683                                conf->mirrors[conf->raid_disks + number].rdev;
1684                        freeze_array(conf, 0);
1685                        clear_bit(Replacement, &repl->flags);
1686                        p->rdev = repl;
1687                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1688                        unfreeze_array(conf);
1689                        clear_bit(WantReplacement, &rdev->flags);
1690                } else
1691                        clear_bit(WantReplacement, &rdev->flags);
1692                err = md_integrity_register(mddev);
1693        }
1694abort:
1695
1696        print_conf(conf);
1697        return err;
1698}
1699
1700static void end_sync_read(struct bio *bio)
1701{
1702        struct r1bio *r1_bio = bio->bi_private;
1703
1704        update_head_pos(r1_bio->read_disk, r1_bio);
1705
1706        /*
1707         * we have read a block, now it needs to be re-written,
1708         * or re-read if the read failed.
1709         * We don't do much here, just schedule handling by raid1d
1710         */
1711        if (!bio->bi_error)
1712                set_bit(R1BIO_Uptodate, &r1_bio->state);
1713
1714        if (atomic_dec_and_test(&r1_bio->remaining))
1715                reschedule_retry(r1_bio);
1716}
1717
1718static void end_sync_write(struct bio *bio)
1719{
1720        int uptodate = !bio->bi_error;
1721        struct r1bio *r1_bio = bio->bi_private;
1722        struct mddev *mddev = r1_bio->mddev;
1723        struct r1conf *conf = mddev->private;
1724        int mirror=0;
1725        sector_t first_bad;
1726        int bad_sectors;
1727
1728        mirror = find_bio_disk(r1_bio, bio);
1729
1730        if (!uptodate) {
1731                sector_t sync_blocks = 0;
1732                sector_t s = r1_bio->sector;
1733                long sectors_to_go = r1_bio->sectors;
1734                /* make sure these bits doesn't get cleared. */
1735                do {
1736                        bitmap_end_sync(mddev->bitmap, s,
1737                                        &sync_blocks, 1);
1738                        s += sync_blocks;
1739                        sectors_to_go -= sync_blocks;
1740                } while (sectors_to_go > 0);
1741                set_bit(WriteErrorSeen,
1742                        &conf->mirrors[mirror].rdev->flags);
1743                if (!test_and_set_bit(WantReplacement,
1744                                      &conf->mirrors[mirror].rdev->flags))
1745                        set_bit(MD_RECOVERY_NEEDED, &
1746                                mddev->recovery);
1747                set_bit(R1BIO_WriteError, &r1_bio->state);
1748        } else if (is_badblock(conf->mirrors[mirror].rdev,
1749                               r1_bio->sector,
1750                               r1_bio->sectors,
1751                               &first_bad, &bad_sectors) &&
1752                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1753                                r1_bio->sector,
1754                                r1_bio->sectors,
1755                                &first_bad, &bad_sectors)
1756                )
1757                set_bit(R1BIO_MadeGood, &r1_bio->state);
1758
1759        if (atomic_dec_and_test(&r1_bio->remaining)) {
1760                int s = r1_bio->sectors;
1761                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1762                    test_bit(R1BIO_WriteError, &r1_bio->state))
1763                        reschedule_retry(r1_bio);
1764                else {
1765                        put_buf(r1_bio);
1766                        md_done_sync(mddev, s, uptodate);
1767                }
1768        }
1769}
1770
1771static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1772                            int sectors, struct page *page, int rw)
1773{
1774        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1775                /* success */
1776                return 1;
1777        if (rw == WRITE) {
1778                set_bit(WriteErrorSeen, &rdev->flags);
1779                if (!test_and_set_bit(WantReplacement,
1780                                      &rdev->flags))
1781                        set_bit(MD_RECOVERY_NEEDED, &
1782                                rdev->mddev->recovery);
1783        }
1784        /* need to record an error - either for the block or the device */
1785        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1786                md_error(rdev->mddev, rdev);
1787        return 0;
1788}
1789
1790static int fix_sync_read_error(struct r1bio *r1_bio)
1791{
1792        /* Try some synchronous reads of other devices to get
1793         * good data, much like with normal read errors.  Only
1794         * read into the pages we already have so we don't
1795         * need to re-issue the read request.
1796         * We don't need to freeze the array, because being in an
1797         * active sync request, there is no normal IO, and
1798         * no overlapping syncs.
1799         * We don't need to check is_badblock() again as we
1800         * made sure that anything with a bad block in range
1801         * will have bi_end_io clear.
1802         */
1803        struct mddev *mddev = r1_bio->mddev;
1804        struct r1conf *conf = mddev->private;
1805        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1806        sector_t sect = r1_bio->sector;
1807        int sectors = r1_bio->sectors;
1808        int idx = 0;
1809
1810        while(sectors) {
1811                int s = sectors;
1812                int d = r1_bio->read_disk;
1813                int success = 0;
1814                struct md_rdev *rdev;
1815                int start;
1816
1817                if (s > (PAGE_SIZE>>9))
1818                        s = PAGE_SIZE >> 9;
1819                do {
1820                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1821                                /* No rcu protection needed here devices
1822                                 * can only be removed when no resync is
1823                                 * active, and resync is currently active
1824                                 */
1825                                rdev = conf->mirrors[d].rdev;
1826                                if (sync_page_io(rdev, sect, s<<9,
1827                                                 bio->bi_io_vec[idx].bv_page,
1828                                                 READ, false)) {
1829                                        success = 1;
1830                                        break;
1831                                }
1832                        }
1833                        d++;
1834                        if (d == conf->raid_disks * 2)
1835                                d = 0;
1836                } while (!success && d != r1_bio->read_disk);
1837
1838                if (!success) {
1839                        char b[BDEVNAME_SIZE];
1840                        int abort = 0;
1841                        /* Cannot read from anywhere, this block is lost.
1842                         * Record a bad block on each device.  If that doesn't
1843                         * work just disable and interrupt the recovery.
1844                         * Don't fail devices as that won't really help.
1845                         */
1846                        printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1847                               " for block %llu\n",
1848                               mdname(mddev),
1849                               bdevname(bio->bi_bdev, b),
1850                               (unsigned long long)r1_bio->sector);
1851                        for (d = 0; d < conf->raid_disks * 2; d++) {
1852                                rdev = conf->mirrors[d].rdev;
1853                                if (!rdev || test_bit(Faulty, &rdev->flags))
1854                                        continue;
1855                                if (!rdev_set_badblocks(rdev, sect, s, 0))
1856                                        abort = 1;
1857                        }
1858                        if (abort) {
1859                                conf->recovery_disabled =
1860                                        mddev->recovery_disabled;
1861                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1862                                md_done_sync(mddev, r1_bio->sectors, 0);
1863                                put_buf(r1_bio);
1864                                return 0;
1865                        }
1866                        /* Try next page */
1867                        sectors -= s;
1868                        sect += s;
1869                        idx++;
1870                        continue;
1871                }
1872
1873                start = d;
1874                /* write it back and re-read */
1875                while (d != r1_bio->read_disk) {
1876                        if (d == 0)
1877                                d = conf->raid_disks * 2;
1878                        d--;
1879                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880                                continue;
1881                        rdev = conf->mirrors[d].rdev;
1882                        if (r1_sync_page_io(rdev, sect, s,
1883                                            bio->bi_io_vec[idx].bv_page,
1884                                            WRITE) == 0) {
1885                                r1_bio->bios[d]->bi_end_io = NULL;
1886                                rdev_dec_pending(rdev, mddev);
1887                        }
1888                }
1889                d = start;
1890                while (d != r1_bio->read_disk) {
1891                        if (d == 0)
1892                                d = conf->raid_disks * 2;
1893                        d--;
1894                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1895                                continue;
1896                        rdev = conf->mirrors[d].rdev;
1897                        if (r1_sync_page_io(rdev, sect, s,
1898                                            bio->bi_io_vec[idx].bv_page,
1899                                            READ) != 0)
1900                                atomic_add(s, &rdev->corrected_errors);
1901                }
1902                sectors -= s;
1903                sect += s;
1904                idx ++;
1905        }
1906        set_bit(R1BIO_Uptodate, &r1_bio->state);
1907        bio->bi_error = 0;
1908        return 1;
1909}
1910
1911static void process_checks(struct r1bio *r1_bio)
1912{
1913        /* We have read all readable devices.  If we haven't
1914         * got the block, then there is no hope left.
1915         * If we have, then we want to do a comparison
1916         * and skip the write if everything is the same.
1917         * If any blocks failed to read, then we need to
1918         * attempt an over-write
1919         */
1920        struct mddev *mddev = r1_bio->mddev;
1921        struct r1conf *conf = mddev->private;
1922        int primary;
1923        int i;
1924        int vcnt;
1925
1926        /* Fix variable parts of all bios */
1927        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1928        for (i = 0; i < conf->raid_disks * 2; i++) {
1929                int j;
1930                int size;
1931                int error;
1932                struct bio *b = r1_bio->bios[i];
1933                if (b->bi_end_io != end_sync_read)
1934                        continue;
1935                /* fixup the bio for reuse, but preserve errno */
1936                error = b->bi_error;
1937                bio_reset(b);
1938                b->bi_error = error;
1939                b->bi_vcnt = vcnt;
1940                b->bi_iter.bi_size = r1_bio->sectors << 9;
1941                b->bi_iter.bi_sector = r1_bio->sector +
1942                        conf->mirrors[i].rdev->data_offset;
1943                b->bi_bdev = conf->mirrors[i].rdev->bdev;
1944                b->bi_end_io = end_sync_read;
1945                b->bi_private = r1_bio;
1946
1947                size = b->bi_iter.bi_size;
1948                for (j = 0; j < vcnt ; j++) {
1949                        struct bio_vec *bi;
1950                        bi = &b->bi_io_vec[j];
1951                        bi->bv_offset = 0;
1952                        if (size > PAGE_SIZE)
1953                                bi->bv_len = PAGE_SIZE;
1954                        else
1955                                bi->bv_len = size;
1956                        size -= PAGE_SIZE;
1957                }
1958        }
1959        for (primary = 0; primary < conf->raid_disks * 2; primary++)
1960                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1961                    !r1_bio->bios[primary]->bi_error) {
1962                        r1_bio->bios[primary]->bi_end_io = NULL;
1963                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1964                        break;
1965                }
1966        r1_bio->read_disk = primary;
1967        for (i = 0; i < conf->raid_disks * 2; i++) {
1968                int j;
1969                struct bio *pbio = r1_bio->bios[primary];
1970                struct bio *sbio = r1_bio->bios[i];
1971                int error = sbio->bi_error;
1972
1973                if (sbio->bi_end_io != end_sync_read)
1974                        continue;
1975                /* Now we can 'fixup' the error value */
1976                sbio->bi_error = 0;
1977
1978                if (!error) {
1979                        for (j = vcnt; j-- ; ) {
1980                                struct page *p, *s;
1981                                p = pbio->bi_io_vec[j].bv_page;
1982                                s = sbio->bi_io_vec[j].bv_page;
1983                                if (memcmp(page_address(p),
1984                                           page_address(s),
1985                                           sbio->bi_io_vec[j].bv_len))
1986                                        break;
1987                        }
1988                } else
1989                        j = 0;
1990                if (j >= 0)
1991                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1992                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1993                              && !error)) {
1994                        /* No need to write to this device. */
1995                        sbio->bi_end_io = NULL;
1996                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1997                        continue;
1998                }
1999
2000                bio_copy_data(sbio, pbio);
2001        }
2002}
2003
2004static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2005{
2006        struct r1conf *conf = mddev->private;
2007        int i;
2008        int disks = conf->raid_disks * 2;
2009        struct bio *bio, *wbio;
2010
2011        bio = r1_bio->bios[r1_bio->read_disk];
2012
2013        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2014                /* ouch - failed to read all of that. */
2015                if (!fix_sync_read_error(r1_bio))
2016                        return;
2017
2018        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2019                process_checks(r1_bio);
2020
2021        /*
2022         * schedule writes
2023         */
2024        atomic_set(&r1_bio->remaining, 1);
2025        for (i = 0; i < disks ; i++) {
2026                wbio = r1_bio->bios[i];
2027                if (wbio->bi_end_io == NULL ||
2028                    (wbio->bi_end_io == end_sync_read &&
2029                     (i == r1_bio->read_disk ||
2030                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2031                        continue;
2032
2033                wbio->bi_rw = WRITE;
2034                wbio->bi_end_io = end_sync_write;
2035                atomic_inc(&r1_bio->remaining);
2036                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2037
2038                generic_make_request(wbio);
2039        }
2040
2041        if (atomic_dec_and_test(&r1_bio->remaining)) {
2042                /* if we're here, all write(s) have completed, so clean up */
2043                int s = r1_bio->sectors;
2044                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045                    test_bit(R1BIO_WriteError, &r1_bio->state))
2046                        reschedule_retry(r1_bio);
2047                else {
2048                        put_buf(r1_bio);
2049                        md_done_sync(mddev, s, 1);
2050                }
2051        }
2052}
2053
2054/*
2055 * This is a kernel thread which:
2056 *
2057 *      1.      Retries failed read operations on working mirrors.
2058 *      2.      Updates the raid superblock when problems encounter.
2059 *      3.      Performs writes following reads for array synchronising.
2060 */
2061
2062static void fix_read_error(struct r1conf *conf, int read_disk,
2063                           sector_t sect, int sectors)
2064{
2065        struct mddev *mddev = conf->mddev;
2066        while(sectors) {
2067                int s = sectors;
2068                int d = read_disk;
2069                int success = 0;
2070                int start;
2071                struct md_rdev *rdev;
2072
2073                if (s > (PAGE_SIZE>>9))
2074                        s = PAGE_SIZE >> 9;
2075
2076                do {
2077                        /* Note: no rcu protection needed here
2078                         * as this is synchronous in the raid1d thread
2079                         * which is the thread that might remove
2080                         * a device.  If raid1d ever becomes multi-threaded....
2081                         */
2082                        sector_t first_bad;
2083                        int bad_sectors;
2084
2085                        rdev = conf->mirrors[d].rdev;
2086                        if (rdev &&
2087                            (test_bit(In_sync, &rdev->flags) ||
2088                             (!test_bit(Faulty, &rdev->flags) &&
2089                              rdev->recovery_offset >= sect + s)) &&
2090                            is_badblock(rdev, sect, s,
2091                                        &first_bad, &bad_sectors) == 0 &&
2092                            sync_page_io(rdev, sect, s<<9,
2093                                         conf->tmppage, READ, false))
2094                                success = 1;
2095                        else {
2096                                d++;
2097                                if (d == conf->raid_disks * 2)
2098                                        d = 0;
2099                        }
2100                } while (!success && d != read_disk);
2101
2102                if (!success) {
2103                        /* Cannot read from anywhere - mark it bad */
2104                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2105                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2106                                md_error(mddev, rdev);
2107                        break;
2108                }
2109                /* write it back and re-read */
2110                start = d;
2111                while (d != read_disk) {
2112                        if (d==0)
2113                                d = conf->raid_disks * 2;
2114                        d--;
2115                        rdev = conf->mirrors[d].rdev;
2116                        if (rdev &&
2117                            !test_bit(Faulty, &rdev->flags))
2118                                r1_sync_page_io(rdev, sect, s,
2119                                                conf->tmppage, WRITE);
2120                }
2121                d = start;
2122                while (d != read_disk) {
2123                        char b[BDEVNAME_SIZE];
2124                        if (d==0)
2125                                d = conf->raid_disks * 2;
2126                        d--;
2127                        rdev = conf->mirrors[d].rdev;
2128                        if (rdev &&
2129                            !test_bit(Faulty, &rdev->flags)) {
2130                                if (r1_sync_page_io(rdev, sect, s,
2131                                                    conf->tmppage, READ)) {
2132                                        atomic_add(s, &rdev->corrected_errors);
2133                                        printk(KERN_INFO
2134                                               "md/raid1:%s: read error corrected "
2135                                               "(%d sectors at %llu on %s)\n",
2136                                               mdname(mddev), s,
2137                                               (unsigned long long)(sect +
2138                                                   rdev->data_offset),
2139                                               bdevname(rdev->bdev, b));
2140                                }
2141                        }
2142                }
2143                sectors -= s;
2144                sect += s;
2145        }
2146}
2147
2148static int narrow_write_error(struct r1bio *r1_bio, int i)
2149{
2150        struct mddev *mddev = r1_bio->mddev;
2151        struct r1conf *conf = mddev->private;
2152        struct md_rdev *rdev = conf->mirrors[i].rdev;
2153
2154        /* bio has the data to be written to device 'i' where
2155         * we just recently had a write error.
2156         * We repeatedly clone the bio and trim down to one block,
2157         * then try the write.  Where the write fails we record
2158         * a bad block.
2159         * It is conceivable that the bio doesn't exactly align with
2160         * blocks.  We must handle this somehow.
2161         *
2162         * We currently own a reference on the rdev.
2163         */
2164
2165        int block_sectors;
2166        sector_t sector;
2167        int sectors;
2168        int sect_to_write = r1_bio->sectors;
2169        int ok = 1;
2170
2171        if (rdev->badblocks.shift < 0)
2172                return 0;
2173
2174        block_sectors = roundup(1 << rdev->badblocks.shift,
2175                                bdev_logical_block_size(rdev->bdev) >> 9);
2176        sector = r1_bio->sector;
2177        sectors = ((sector + block_sectors)
2178                   & ~(sector_t)(block_sectors - 1))
2179                - sector;
2180
2181        while (sect_to_write) {
2182                struct bio *wbio;
2183                if (sectors > sect_to_write)
2184                        sectors = sect_to_write;
2185                /* Write at 'sector' for 'sectors'*/
2186
2187                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2188                        unsigned vcnt = r1_bio->behind_page_count;
2189                        struct bio_vec *vec = r1_bio->behind_bvecs;
2190
2191                        while (!vec->bv_page) {
2192                                vec++;
2193                                vcnt--;
2194                        }
2195
2196                        wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2197                        memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2198
2199                        wbio->bi_vcnt = vcnt;
2200                } else {
2201                        wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2202                }
2203
2204                wbio->bi_rw = WRITE;
2205                wbio->bi_iter.bi_sector = r1_bio->sector;
2206                wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2207
2208                bio_trim(wbio, sector - r1_bio->sector, sectors);
2209                wbio->bi_iter.bi_sector += rdev->data_offset;
2210                wbio->bi_bdev = rdev->bdev;
2211                if (submit_bio_wait(WRITE, wbio) < 0)
2212                        /* failure! */
2213                        ok = rdev_set_badblocks(rdev, sector,
2214                                                sectors, 0)
2215                                && ok;
2216
2217                bio_put(wbio);
2218                sect_to_write -= sectors;
2219                sector += sectors;
2220                sectors = block_sectors;
2221        }
2222        return ok;
2223}
2224
2225static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2226{
2227        int m;
2228        int s = r1_bio->sectors;
2229        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2230                struct md_rdev *rdev = conf->mirrors[m].rdev;
2231                struct bio *bio = r1_bio->bios[m];
2232                if (bio->bi_end_io == NULL)
2233                        continue;
2234                if (!bio->bi_error &&
2235                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2236                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2237                }
2238                if (bio->bi_error &&
2239                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2240                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2241                                md_error(conf->mddev, rdev);
2242                }
2243        }
2244        put_buf(r1_bio);
2245        md_done_sync(conf->mddev, s, 1);
2246}
2247
2248static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2249{
2250        int m;
2251        bool fail = false;
2252        for (m = 0; m < conf->raid_disks * 2 ; m++)
2253                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2254                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2255                        rdev_clear_badblocks(rdev,
2256                                             r1_bio->sector,
2257                                             r1_bio->sectors, 0);
2258                        rdev_dec_pending(rdev, conf->mddev);
2259                } else if (r1_bio->bios[m] != NULL) {
2260                        /* This drive got a write error.  We need to
2261                         * narrow down and record precise write
2262                         * errors.
2263                         */
2264                        fail = true;
2265                        if (!narrow_write_error(r1_bio, m)) {
2266                                md_error(conf->mddev,
2267                                         conf->mirrors[m].rdev);
2268                                /* an I/O failed, we can't clear the bitmap */
2269                                set_bit(R1BIO_Degraded, &r1_bio->state);
2270                        }
2271                        rdev_dec_pending(conf->mirrors[m].rdev,
2272                                         conf->mddev);
2273                }
2274        if (fail) {
2275                spin_lock_irq(&conf->device_lock);
2276                list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2277                spin_unlock_irq(&conf->device_lock);
2278                md_wakeup_thread(conf->mddev->thread);
2279        } else {
2280                if (test_bit(R1BIO_WriteError, &r1_bio->state))
2281                        close_write(r1_bio);
2282                raid_end_bio_io(r1_bio);
2283        }
2284}
2285
2286static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2287{
2288        int disk;
2289        int max_sectors;
2290        struct mddev *mddev = conf->mddev;
2291        struct bio *bio;
2292        char b[BDEVNAME_SIZE];
2293        struct md_rdev *rdev;
2294
2295        clear_bit(R1BIO_ReadError, &r1_bio->state);
2296        /* we got a read error. Maybe the drive is bad.  Maybe just
2297         * the block and we can fix it.
2298         * We freeze all other IO, and try reading the block from
2299         * other devices.  When we find one, we re-write
2300         * and check it that fixes the read error.
2301         * This is all done synchronously while the array is
2302         * frozen
2303         */
2304        if (mddev->ro == 0) {
2305                freeze_array(conf, 1);
2306                fix_read_error(conf, r1_bio->read_disk,
2307                               r1_bio->sector, r1_bio->sectors);
2308                unfreeze_array(conf);
2309        } else
2310                md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2311        rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2312
2313        bio = r1_bio->bios[r1_bio->read_disk];
2314        bdevname(bio->bi_bdev, b);
2315read_more:
2316        disk = read_balance(conf, r1_bio, &max_sectors);
2317        if (disk == -1) {
2318                printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2319                       " read error for block %llu\n",
2320                       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2321                raid_end_bio_io(r1_bio);
2322        } else {
2323                const unsigned long do_sync
2324                        = r1_bio->master_bio->bi_rw & REQ_SYNC;
2325                if (bio) {
2326                        r1_bio->bios[r1_bio->read_disk] =
2327                                mddev->ro ? IO_BLOCKED : NULL;
2328                        bio_put(bio);
2329                }
2330                r1_bio->read_disk = disk;
2331                bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2332                bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2333                         max_sectors);
2334                r1_bio->bios[r1_bio->read_disk] = bio;
2335                rdev = conf->mirrors[disk].rdev;
2336                printk_ratelimited(KERN_ERR
2337                                   "md/raid1:%s: redirecting sector %llu"
2338                                   " to other mirror: %s\n",
2339                                   mdname(mddev),
2340                                   (unsigned long long)r1_bio->sector,
2341                                   bdevname(rdev->bdev, b));
2342                bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2343                bio->bi_bdev = rdev->bdev;
2344                bio->bi_end_io = raid1_end_read_request;
2345                bio->bi_rw = READ | do_sync;
2346                bio->bi_private = r1_bio;
2347                if (max_sectors < r1_bio->sectors) {
2348                        /* Drat - have to split this up more */
2349                        struct bio *mbio = r1_bio->master_bio;
2350                        int sectors_handled = (r1_bio->sector + max_sectors
2351                                               - mbio->bi_iter.bi_sector);
2352                        r1_bio->sectors = max_sectors;
2353                        spin_lock_irq(&conf->device_lock);
2354                        if (mbio->bi_phys_segments == 0)
2355                                mbio->bi_phys_segments = 2;
2356                        else
2357                                mbio->bi_phys_segments++;
2358                        spin_unlock_irq(&conf->device_lock);
2359                        generic_make_request(bio);
2360                        bio = NULL;
2361
2362                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2363
2364                        r1_bio->master_bio = mbio;
2365                        r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2366                        r1_bio->state = 0;
2367                        set_bit(R1BIO_ReadError, &r1_bio->state);
2368                        r1_bio->mddev = mddev;
2369                        r1_bio->sector = mbio->bi_iter.bi_sector +
2370                                sectors_handled;
2371
2372                        goto read_more;
2373                } else
2374                        generic_make_request(bio);
2375        }
2376}
2377
2378static void raid1d(struct md_thread *thread)
2379{
2380        struct mddev *mddev = thread->mddev;
2381        struct r1bio *r1_bio;
2382        unsigned long flags;
2383        struct r1conf *conf = mddev->private;
2384        struct list_head *head = &conf->retry_list;
2385        struct blk_plug plug;
2386
2387        md_check_recovery(mddev);
2388
2389        if (!list_empty_careful(&conf->bio_end_io_list) &&
2390            !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2391                LIST_HEAD(tmp);
2392                spin_lock_irqsave(&conf->device_lock, flags);
2393                if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2394                        list_add(&tmp, &conf->bio_end_io_list);
2395                        list_del_init(&conf->bio_end_io_list);
2396                }
2397                spin_unlock_irqrestore(&conf->device_lock, flags);
2398                while (!list_empty(&tmp)) {
2399                        r1_bio = list_first_entry(&tmp, struct r1bio,
2400                                                  retry_list);
2401                        list_del(&r1_bio->retry_list);
2402                        if (mddev->degraded)
2403                                set_bit(R1BIO_Degraded, &r1_bio->state);
2404                        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2405                                close_write(r1_bio);
2406                        raid_end_bio_io(r1_bio);
2407                }
2408        }
2409
2410        blk_start_plug(&plug);
2411        for (;;) {
2412
2413                flush_pending_writes(conf);
2414
2415                spin_lock_irqsave(&conf->device_lock, flags);
2416                if (list_empty(head)) {
2417                        spin_unlock_irqrestore(&conf->device_lock, flags);
2418                        break;
2419                }
2420                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2421                list_del(head->prev);
2422                conf->nr_queued--;
2423                spin_unlock_irqrestore(&conf->device_lock, flags);
2424
2425                mddev = r1_bio->mddev;
2426                conf = mddev->private;
2427                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2428                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2429                            test_bit(R1BIO_WriteError, &r1_bio->state))
2430                                handle_sync_write_finished(conf, r1_bio);
2431                        else
2432                                sync_request_write(mddev, r1_bio);
2433                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434                           test_bit(R1BIO_WriteError, &r1_bio->state))
2435                        handle_write_finished(conf, r1_bio);
2436                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2437                        handle_read_error(conf, r1_bio);
2438                else
2439                        /* just a partial read to be scheduled from separate
2440                         * context
2441                         */
2442                        generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2443
2444                cond_resched();
2445                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2446                        md_check_recovery(mddev);
2447        }
2448        blk_finish_plug(&plug);
2449}
2450
2451static int init_resync(struct r1conf *conf)
2452{
2453        int buffs;
2454
2455        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2456        BUG_ON(conf->r1buf_pool);
2457        conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2458                                          conf->poolinfo);
2459        if (!conf->r1buf_pool)
2460                return -ENOMEM;
2461        conf->next_resync = 0;
2462        return 0;
2463}
2464
2465/*
2466 * perform a "sync" on one "block"
2467 *
2468 * We need to make sure that no normal I/O request - particularly write
2469 * requests - conflict with active sync requests.
2470 *
2471 * This is achieved by tracking pending requests and a 'barrier' concept
2472 * that can be installed to exclude normal IO requests.
2473 */
2474
2475static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2476                                   int *skipped)
2477{
2478        struct r1conf *conf = mddev->private;
2479        struct r1bio *r1_bio;
2480        struct bio *bio;
2481        sector_t max_sector, nr_sectors;
2482        int disk = -1;
2483        int i;
2484        int wonly = -1;
2485        int write_targets = 0, read_targets = 0;
2486        sector_t sync_blocks;
2487        int still_degraded = 0;
2488        int good_sectors = RESYNC_SECTORS;
2489        int min_bad = 0; /* number of sectors that are bad in all devices */
2490
2491        if (!conf->r1buf_pool)
2492                if (init_resync(conf))
2493                        return 0;
2494
2495        max_sector = mddev->dev_sectors;
2496        if (sector_nr >= max_sector) {
2497                /* If we aborted, we need to abort the
2498                 * sync on the 'current' bitmap chunk (there will
2499                 * only be one in raid1 resync.
2500                 * We can find the current addess in mddev->curr_resync
2501                 */
2502                if (mddev->curr_resync < max_sector) /* aborted */
2503                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2504                                                &sync_blocks, 1);
2505                else /* completed sync */
2506                        conf->fullsync = 0;
2507
2508                bitmap_close_sync(mddev->bitmap);
2509                close_sync(conf);
2510
2511                if (mddev_is_clustered(mddev)) {
2512                        conf->cluster_sync_low = 0;
2513                        conf->cluster_sync_high = 0;
2514                }
2515                return 0;
2516        }
2517
2518        if (mddev->bitmap == NULL &&
2519            mddev->recovery_cp == MaxSector &&
2520            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2521            conf->fullsync == 0) {
2522                *skipped = 1;
2523                return max_sector - sector_nr;
2524        }
2525        /* before building a request, check if we can skip these blocks..
2526         * This call the bitmap_start_sync doesn't actually record anything
2527         */
2528        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2529            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2530                /* We can skip this block, and probably several more */
2531                *skipped = 1;
2532                return sync_blocks;
2533        }
2534
2535        /* we are incrementing sector_nr below. To be safe, we check against
2536         * sector_nr + two times RESYNC_SECTORS
2537         */
2538
2539        bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2540                mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2541        r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2542
2543        raise_barrier(conf, sector_nr);
2544
2545        rcu_read_lock();
2546        /*
2547         * If we get a correctably read error during resync or recovery,
2548         * we might want to read from a different device.  So we
2549         * flag all drives that could conceivably be read from for READ,
2550         * and any others (which will be non-In_sync devices) for WRITE.
2551         * If a read fails, we try reading from something else for which READ
2552         * is OK.
2553         */
2554
2555        r1_bio->mddev = mddev;
2556        r1_bio->sector = sector_nr;
2557        r1_bio->state = 0;
2558        set_bit(R1BIO_IsSync, &r1_bio->state);
2559
2560        for (i = 0; i < conf->raid_disks * 2; i++) {
2561                struct md_rdev *rdev;
2562                bio = r1_bio->bios[i];
2563                bio_reset(bio);
2564
2565                rdev = rcu_dereference(conf->mirrors[i].rdev);
2566                if (rdev == NULL ||
2567                    test_bit(Faulty, &rdev->flags)) {
2568                        if (i < conf->raid_disks)
2569                                still_degraded = 1;
2570                } else if (!test_bit(In_sync, &rdev->flags)) {
2571                        bio->bi_rw = WRITE;
2572                        bio->bi_end_io = end_sync_write;
2573                        write_targets ++;
2574                } else {
2575                        /* may need to read from here */
2576                        sector_t first_bad = MaxSector;
2577                        int bad_sectors;
2578
2579                        if (is_badblock(rdev, sector_nr, good_sectors,
2580                                        &first_bad, &bad_sectors)) {
2581                                if (first_bad > sector_nr)
2582                                        good_sectors = first_bad - sector_nr;
2583                                else {
2584                                        bad_sectors -= (sector_nr - first_bad);
2585                                        if (min_bad == 0 ||
2586                                            min_bad > bad_sectors)
2587                                                min_bad = bad_sectors;
2588                                }
2589                        }
2590                        if (sector_nr < first_bad) {
2591                                if (test_bit(WriteMostly, &rdev->flags)) {
2592                                        if (wonly < 0)
2593                                                wonly = i;
2594                                } else {
2595                                        if (disk < 0)
2596                                                disk = i;
2597                                }
2598                                bio->bi_rw = READ;
2599                                bio->bi_end_io = end_sync_read;
2600                                read_targets++;
2601                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604                                /*
2605                                 * The device is suitable for reading (InSync),
2606                                 * but has bad block(s) here. Let's try to correct them,
2607                                 * if we are doing resync or repair. Otherwise, leave
2608                                 * this device alone for this sync request.
2609                                 */
2610                                bio->bi_rw = WRITE;
2611                                bio->bi_end_io = end_sync_write;
2612                                write_targets++;
2613                        }
2614                }
2615                if (bio->bi_end_io) {
2616                        atomic_inc(&rdev->nr_pending);
2617                        bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2618                        bio->bi_bdev = rdev->bdev;
2619                        bio->bi_private = r1_bio;
2620                }
2621        }
2622        rcu_read_unlock();
2623        if (disk < 0)
2624                disk = wonly;
2625        r1_bio->read_disk = disk;
2626
2627        if (read_targets == 0 && min_bad > 0) {
2628                /* These sectors are bad on all InSync devices, so we
2629                 * need to mark them bad on all write targets
2630                 */
2631                int ok = 1;
2632                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2633                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2634                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2635                                ok = rdev_set_badblocks(rdev, sector_nr,
2636                                                        min_bad, 0
2637                                        ) && ok;
2638                        }
2639                set_bit(MD_CHANGE_DEVS, &mddev->flags);
2640                *skipped = 1;
2641                put_buf(r1_bio);
2642
2643                if (!ok) {
2644                        /* Cannot record the badblocks, so need to
2645                         * abort the resync.
2646                         * If there are multiple read targets, could just
2647                         * fail the really bad ones ???
2648                         */
2649                        conf->recovery_disabled = mddev->recovery_disabled;
2650                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2651                        return 0;
2652                } else
2653                        return min_bad;
2654
2655        }
2656        if (min_bad > 0 && min_bad < good_sectors) {
2657                /* only resync enough to reach the next bad->good
2658                 * transition */
2659                good_sectors = min_bad;
2660        }
2661
2662        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663                /* extra read targets are also write targets */
2664                write_targets += read_targets-1;
2665
2666        if (write_targets == 0 || read_targets == 0) {
2667                /* There is nowhere to write, so all non-sync
2668                 * drives must be failed - so we are finished
2669                 */
2670                sector_t rv;
2671                if (min_bad > 0)
2672                        max_sector = sector_nr + min_bad;
2673                rv = max_sector - sector_nr;
2674                *skipped = 1;
2675                put_buf(r1_bio);
2676                return rv;
2677        }
2678
2679        if (max_sector > mddev->resync_max)
2680                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2681        if (max_sector > sector_nr + good_sectors)
2682                max_sector = sector_nr + good_sectors;
2683        nr_sectors = 0;
2684        sync_blocks = 0;
2685        do {
2686                struct page *page;
2687                int len = PAGE_SIZE;
2688                if (sector_nr + (len>>9) > max_sector)
2689                        len = (max_sector - sector_nr) << 9;
2690                if (len == 0)
2691                        break;
2692                if (sync_blocks == 0) {
2693                        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2694                                               &sync_blocks, still_degraded) &&
2695                            !conf->fullsync &&
2696                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2697                                break;
2698                        BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2699                        if ((len >> 9) > sync_blocks)
2700                                len = sync_blocks<<9;
2701                }
2702
2703                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2704                        bio = r1_bio->bios[i];
2705                        if (bio->bi_end_io) {
2706                                page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2707                                if (bio_add_page(bio, page, len, 0) == 0) {
2708                                        /* stop here */
2709                                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2710                                        while (i > 0) {
2711                                                i--;
2712                                                bio = r1_bio->bios[i];
2713                                                if (bio->bi_end_io==NULL)
2714                                                        continue;
2715                                                /* remove last page from this bio */
2716                                                bio->bi_vcnt--;
2717                                                bio->bi_iter.bi_size -= len;
2718                                                bio_clear_flag(bio, BIO_SEG_VALID);
2719                                        }
2720                                        goto bio_full;
2721                                }
2722                        }
2723                }
2724                nr_sectors += len>>9;
2725                sector_nr += len>>9;
2726                sync_blocks -= (len>>9);
2727        } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2728 bio_full:
2729        r1_bio->sectors = nr_sectors;
2730
2731        if (mddev_is_clustered(mddev) &&
2732                        conf->cluster_sync_high < sector_nr + nr_sectors) {
2733                conf->cluster_sync_low = mddev->curr_resync_completed;
2734                conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2735                /* Send resync message */
2736                md_cluster_ops->resync_info_update(mddev,
2737                                conf->cluster_sync_low,
2738                                conf->cluster_sync_high);
2739        }
2740
2741        /* For a user-requested sync, we read all readable devices and do a
2742         * compare
2743         */
2744        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2745                atomic_set(&r1_bio->remaining, read_targets);
2746                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2747                        bio = r1_bio->bios[i];
2748                        if (bio->bi_end_io == end_sync_read) {
2749                                read_targets--;
2750                                md_sync_acct(bio->bi_bdev, nr_sectors);
2751                                generic_make_request(bio);
2752                        }
2753                }
2754        } else {
2755                atomic_set(&r1_bio->remaining, 1);
2756                bio = r1_bio->bios[r1_bio->read_disk];
2757                md_sync_acct(bio->bi_bdev, nr_sectors);
2758                generic_make_request(bio);
2759
2760        }
2761        return nr_sectors;
2762}
2763
2764static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2765{
2766        if (sectors)
2767                return sectors;
2768
2769        return mddev->dev_sectors;
2770}
2771
2772static struct r1conf *setup_conf(struct mddev *mddev)
2773{
2774        struct r1conf *conf;
2775        int i;
2776        struct raid1_info *disk;
2777        struct md_rdev *rdev;
2778        int err = -ENOMEM;
2779
2780        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2781        if (!conf)
2782                goto abort;
2783
2784        conf->mirrors = kzalloc(sizeof(struct raid1_info)
2785                                * mddev->raid_disks * 2,
2786                                 GFP_KERNEL);
2787        if (!conf->mirrors)
2788                goto abort;
2789
2790        conf->tmppage = alloc_page(GFP_KERNEL);
2791        if (!conf->tmppage)
2792                goto abort;
2793
2794        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2795        if (!conf->poolinfo)
2796                goto abort;
2797        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2798        conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2799                                          r1bio_pool_free,
2800                                          conf->poolinfo);
2801        if (!conf->r1bio_pool)
2802                goto abort;
2803
2804        conf->poolinfo->mddev = mddev;
2805
2806        err = -EINVAL;
2807        spin_lock_init(&conf->device_lock);
2808        rdev_for_each(rdev, mddev) {
2809                struct request_queue *q;
2810                int disk_idx = rdev->raid_disk;
2811                if (disk_idx >= mddev->raid_disks
2812                    || disk_idx < 0)
2813                        continue;
2814                if (test_bit(Replacement, &rdev->flags))
2815                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
2816                else
2817                        disk = conf->mirrors + disk_idx;
2818
2819                if (disk->rdev)
2820                        goto abort;
2821                disk->rdev = rdev;
2822                q = bdev_get_queue(rdev->bdev);
2823
2824                disk->head_position = 0;
2825                disk->seq_start = MaxSector;
2826        }
2827        conf->raid_disks = mddev->raid_disks;
2828        conf->mddev = mddev;
2829        INIT_LIST_HEAD(&conf->retry_list);
2830        INIT_LIST_HEAD(&conf->bio_end_io_list);
2831
2832        spin_lock_init(&conf->resync_lock);
2833        init_waitqueue_head(&conf->wait_barrier);
2834
2835        bio_list_init(&conf->pending_bio_list);
2836        conf->pending_count = 0;
2837        conf->recovery_disabled = mddev->recovery_disabled - 1;
2838
2839        conf->start_next_window = MaxSector;
2840        conf->current_window_requests = conf->next_window_requests = 0;
2841
2842        err = -EIO;
2843        for (i = 0; i < conf->raid_disks * 2; i++) {
2844
2845                disk = conf->mirrors + i;
2846
2847                if (i < conf->raid_disks &&
2848                    disk[conf->raid_disks].rdev) {
2849                        /* This slot has a replacement. */
2850                        if (!disk->rdev) {
2851                                /* No original, just make the replacement
2852                                 * a recovering spare
2853                                 */
2854                                disk->rdev =
2855                                        disk[conf->raid_disks].rdev;
2856                                disk[conf->raid_disks].rdev = NULL;
2857                        } else if (!test_bit(In_sync, &disk->rdev->flags))
2858                                /* Original is not in_sync - bad */
2859                                goto abort;
2860                }
2861
2862                if (!disk->rdev ||
2863                    !test_bit(In_sync, &disk->rdev->flags)) {
2864                        disk->head_position = 0;
2865                        if (disk->rdev &&
2866                            (disk->rdev->saved_raid_disk < 0))
2867                                conf->fullsync = 1;
2868                }
2869        }
2870
2871        err = -ENOMEM;
2872        conf->thread = md_register_thread(raid1d, mddev, "raid1");
2873        if (!conf->thread) {
2874                printk(KERN_ERR
2875                       "md/raid1:%s: couldn't allocate thread\n",
2876                       mdname(mddev));
2877                goto abort;
2878        }
2879
2880        return conf;
2881
2882 abort:
2883        if (conf) {
2884                mempool_destroy(conf->r1bio_pool);
2885                kfree(conf->mirrors);
2886                safe_put_page(conf->tmppage);
2887                kfree(conf->poolinfo);
2888                kfree(conf);
2889        }
2890        return ERR_PTR(err);
2891}
2892
2893static void raid1_free(struct mddev *mddev, void *priv);
2894static int raid1_run(struct mddev *mddev)
2895{
2896        struct r1conf *conf;
2897        int i;
2898        struct md_rdev *rdev;
2899        int ret;
2900        bool discard_supported = false;
2901
2902        if (mddev->level != 1) {
2903                printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2904                       mdname(mddev), mddev->level);
2905                return -EIO;
2906        }
2907        if (mddev->reshape_position != MaxSector) {
2908                printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2909                       mdname(mddev));
2910                return -EIO;
2911        }
2912        /*
2913         * copy the already verified devices into our private RAID1
2914         * bookkeeping area. [whatever we allocate in run(),
2915         * should be freed in raid1_free()]
2916         */
2917        if (mddev->private == NULL)
2918                conf = setup_conf(mddev);
2919        else
2920                conf = mddev->private;
2921
2922        if (IS_ERR(conf))
2923                return PTR_ERR(conf);
2924
2925        if (mddev->queue)
2926                blk_queue_max_write_same_sectors(mddev->queue, 0);
2927
2928        rdev_for_each(rdev, mddev) {
2929                if (!mddev->gendisk)
2930                        continue;
2931                disk_stack_limits(mddev->gendisk, rdev->bdev,
2932                                  rdev->data_offset << 9);
2933                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2934                        discard_supported = true;
2935        }
2936
2937        mddev->degraded = 0;
2938        for (i=0; i < conf->raid_disks; i++)
2939                if (conf->mirrors[i].rdev == NULL ||
2940                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2941                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2942                        mddev->degraded++;
2943
2944        if (conf->raid_disks - mddev->degraded == 1)
2945                mddev->recovery_cp = MaxSector;
2946
2947        if (mddev->recovery_cp != MaxSector)
2948                printk(KERN_NOTICE "md/raid1:%s: not clean"
2949                       " -- starting background reconstruction\n",
2950                       mdname(mddev));
2951        printk(KERN_INFO
2952                "md/raid1:%s: active with %d out of %d mirrors\n",
2953                mdname(mddev), mddev->raid_disks - mddev->degraded,
2954                mddev->raid_disks);
2955
2956        /*
2957         * Ok, everything is just fine now
2958         */
2959        mddev->thread = conf->thread;
2960        conf->thread = NULL;
2961        mddev->private = conf;
2962
2963        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2964
2965        if (mddev->queue) {
2966                if (discard_supported)
2967                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2968                                                mddev->queue);
2969                else
2970                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2971                                                  mddev->queue);
2972        }
2973
2974        ret =  md_integrity_register(mddev);
2975        if (ret) {
2976                md_unregister_thread(&mddev->thread);
2977                raid1_free(mddev, conf);
2978        }
2979        return ret;
2980}
2981
2982static void raid1_free(struct mddev *mddev, void *priv)
2983{
2984        struct r1conf *conf = priv;
2985
2986        mempool_destroy(conf->r1bio_pool);
2987        kfree(conf->mirrors);
2988        safe_put_page(conf->tmppage);
2989        kfree(conf->poolinfo);
2990        kfree(conf);
2991}
2992
2993static int raid1_resize(struct mddev *mddev, sector_t sectors)
2994{
2995        /* no resync is happening, and there is enough space
2996         * on all devices, so we can resize.
2997         * We need to make sure resync covers any new space.
2998         * If the array is shrinking we should possibly wait until
2999         * any io in the removed space completes, but it hardly seems
3000         * worth it.
3001         */
3002        sector_t newsize = raid1_size(mddev, sectors, 0);
3003        if (mddev->external_size &&
3004            mddev->array_sectors > newsize)
3005                return -EINVAL;
3006        if (mddev->bitmap) {
3007                int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3008                if (ret)
3009                        return ret;
3010        }
3011        md_set_array_sectors(mddev, newsize);
3012        set_capacity(mddev->gendisk, mddev->array_sectors);
3013        revalidate_disk(mddev->gendisk);
3014        if (sectors > mddev->dev_sectors &&
3015            mddev->recovery_cp > mddev->dev_sectors) {
3016                mddev->recovery_cp = mddev->dev_sectors;
3017                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3018        }
3019        mddev->dev_sectors = sectors;
3020        mddev->resync_max_sectors = sectors;
3021        return 0;
3022}
3023
3024static int raid1_reshape(struct mddev *mddev)
3025{
3026        /* We need to:
3027         * 1/ resize the r1bio_pool
3028         * 2/ resize conf->mirrors
3029         *
3030         * We allocate a new r1bio_pool if we can.
3031         * Then raise a device barrier and wait until all IO stops.
3032         * Then resize conf->mirrors and swap in the new r1bio pool.
3033         *
3034         * At the same time, we "pack" the devices so that all the missing
3035         * devices have the higher raid_disk numbers.
3036         */
3037        mempool_t *newpool, *oldpool;
3038        struct pool_info *newpoolinfo;
3039        struct raid1_info *newmirrors;
3040        struct r1conf *conf = mddev->private;
3041        int cnt, raid_disks;
3042        unsigned long flags;
3043        int d, d2, err;
3044
3045        /* Cannot change chunk_size, layout, or level */
3046        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3047            mddev->layout != mddev->new_layout ||
3048            mddev->level != mddev->new_level) {
3049                mddev->new_chunk_sectors = mddev->chunk_sectors;
3050                mddev->new_layout = mddev->layout;
3051                mddev->new_level = mddev->level;
3052                return -EINVAL;
3053        }
3054
3055        if (!mddev_is_clustered(mddev)) {
3056                err = md_allow_write(mddev);
3057                if (err)
3058                        return err;
3059        }
3060
3061        raid_disks = mddev->raid_disks + mddev->delta_disks;
3062
3063        if (raid_disks < conf->raid_disks) {
3064                cnt=0;
3065                for (d= 0; d < conf->raid_disks; d++)
3066                        if (conf->mirrors[d].rdev)
3067                                cnt++;
3068                if (cnt > raid_disks)
3069                        return -EBUSY;
3070        }
3071
3072        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3073        if (!newpoolinfo)
3074                return -ENOMEM;
3075        newpoolinfo->mddev = mddev;
3076        newpoolinfo->raid_disks = raid_disks * 2;
3077
3078        newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3079                                 r1bio_pool_free, newpoolinfo);
3080        if (!newpool) {
3081                kfree(newpoolinfo);
3082                return -ENOMEM;
3083        }
3084        newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3085                             GFP_KERNEL);
3086        if (!newmirrors) {
3087                kfree(newpoolinfo);
3088                mempool_destroy(newpool);
3089                return -ENOMEM;
3090        }
3091
3092        freeze_array(conf, 0);
3093
3094        /* ok, everything is stopped */
3095        oldpool = conf->r1bio_pool;
3096        conf->r1bio_pool = newpool;
3097
3098        for (d = d2 = 0; d < conf->raid_disks; d++) {
3099                struct md_rdev *rdev = conf->mirrors[d].rdev;
3100                if (rdev && rdev->raid_disk != d2) {
3101                        sysfs_unlink_rdev(mddev, rdev);
3102                        rdev->raid_disk = d2;
3103                        sysfs_unlink_rdev(mddev, rdev);
3104                        if (sysfs_link_rdev(mddev, rdev))
3105                                printk(KERN_WARNING
3106                                       "md/raid1:%s: cannot register rd%d\n",
3107                                       mdname(mddev), rdev->raid_disk);
3108                }
3109                if (rdev)
3110                        newmirrors[d2++].rdev = rdev;
3111        }
3112        kfree(conf->mirrors);
3113        conf->mirrors = newmirrors;
3114        kfree(conf->poolinfo);
3115        conf->poolinfo = newpoolinfo;
3116
3117        spin_lock_irqsave(&conf->device_lock, flags);
3118        mddev->degraded += (raid_disks - conf->raid_disks);
3119        spin_unlock_irqrestore(&conf->device_lock, flags);
3120        conf->raid_disks = mddev->raid_disks = raid_disks;
3121        mddev->delta_disks = 0;
3122
3123        unfreeze_array(conf);
3124
3125        set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3126        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3127        md_wakeup_thread(mddev->thread);
3128
3129        mempool_destroy(oldpool);
3130        return 0;
3131}
3132
3133static void raid1_quiesce(struct mddev *mddev, int state)
3134{
3135        struct r1conf *conf = mddev->private;
3136
3137        switch(state) {
3138        case 2: /* wake for suspend */
3139                wake_up(&conf->wait_barrier);
3140                break;
3141        case 1:
3142                freeze_array(conf, 0);
3143                break;
3144        case 0:
3145                unfreeze_array(conf);
3146                break;
3147        }
3148}
3149
3150static void *raid1_takeover(struct mddev *mddev)
3151{
3152        /* raid1 can take over:
3153         *  raid5 with 2 devices, any layout or chunk size
3154         */
3155        if (mddev->level == 5 && mddev->raid_disks == 2) {
3156                struct r1conf *conf;
3157                mddev->new_level = 1;
3158                mddev->new_layout = 0;
3159                mddev->new_chunk_sectors = 0;
3160                conf = setup_conf(mddev);
3161                if (!IS_ERR(conf))
3162                        /* Array must appear to be quiesced */
3163                        conf->array_frozen = 1;
3164                return conf;
3165        }
3166        return ERR_PTR(-EINVAL);
3167}
3168
3169static struct md_personality raid1_personality =
3170{
3171        .name           = "raid1",
3172        .level          = 1,
3173        .owner          = THIS_MODULE,
3174        .make_request   = raid1_make_request,
3175        .run            = raid1_run,
3176        .free           = raid1_free,
3177        .status         = raid1_status,
3178        .error_handler  = raid1_error,
3179        .hot_add_disk   = raid1_add_disk,
3180        .hot_remove_disk= raid1_remove_disk,
3181        .spare_active   = raid1_spare_active,
3182        .sync_request   = raid1_sync_request,
3183        .resize         = raid1_resize,
3184        .size           = raid1_size,
3185        .check_reshape  = raid1_reshape,
3186        .quiesce        = raid1_quiesce,
3187        .takeover       = raid1_takeover,
3188        .congested      = raid1_congested,
3189};
3190
3191static int __init raid_init(void)
3192{
3193        return register_md_personality(&raid1_personality);
3194}
3195
3196static void raid_exit(void)
3197{
3198        unregister_md_personality(&raid1_personality);
3199}
3200
3201module_init(raid_init);
3202module_exit(raid_exit);
3203MODULE_LICENSE("GPL");
3204MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3205MODULE_ALIAS("md-personality-3"); /* RAID1 */
3206MODULE_ALIAS("md-raid1");
3207MODULE_ALIAS("md-level-1");
3208
3209module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3210