linux/drivers/md/raid5-cache.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 */
  14#include <linux/kernel.h>
  15#include <linux/wait.h>
  16#include <linux/blkdev.h>
  17#include <linux/slab.h>
  18#include <linux/raid/md_p.h>
  19#include <linux/crc32c.h>
  20#include <linux/random.h>
  21#include "md.h"
  22#include "raid5.h"
  23
  24/*
  25 * metadata/data stored in disk with 4k size unit (a block) regardless
  26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
  27 */
  28#define BLOCK_SECTORS (8)
  29
  30/*
  31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
  32 * recovery scans a very long log
  33 */
  34#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
  35#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
  36
  37/*
  38 * We only need 2 bios per I/O unit to make progress, but ensure we
  39 * have a few more available to not get too tight.
  40 */
  41#define R5L_POOL_SIZE   4
  42
  43struct r5l_log {
  44        struct md_rdev *rdev;
  45
  46        u32 uuid_checksum;
  47
  48        sector_t device_size;           /* log device size, round to
  49                                         * BLOCK_SECTORS */
  50        sector_t max_free_space;        /* reclaim run if free space is at
  51                                         * this size */
  52
  53        sector_t last_checkpoint;       /* log tail. where recovery scan
  54                                         * starts from */
  55        u64 last_cp_seq;                /* log tail sequence */
  56
  57        sector_t log_start;             /* log head. where new data appends */
  58        u64 seq;                        /* log head sequence */
  59
  60        sector_t next_checkpoint;
  61        u64 next_cp_seq;
  62
  63        struct mutex io_mutex;
  64        struct r5l_io_unit *current_io; /* current io_unit accepting new data */
  65
  66        spinlock_t io_list_lock;
  67        struct list_head running_ios;   /* io_units which are still running,
  68                                         * and have not yet been completely
  69                                         * written to the log */
  70        struct list_head io_end_ios;    /* io_units which have been completely
  71                                         * written to the log but not yet written
  72                                         * to the RAID */
  73        struct list_head flushing_ios;  /* io_units which are waiting for log
  74                                         * cache flush */
  75        struct list_head finished_ios;  /* io_units which settle down in log disk */
  76        struct bio flush_bio;
  77
  78        struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
  79
  80        struct kmem_cache *io_kc;
  81        mempool_t *io_pool;
  82        struct bio_set *bs;
  83        mempool_t *meta_pool;
  84
  85        struct md_thread *reclaim_thread;
  86        unsigned long reclaim_target;   /* number of space that need to be
  87                                         * reclaimed.  if it's 0, reclaim spaces
  88                                         * used by io_units which are in
  89                                         * IO_UNIT_STRIPE_END state (eg, reclaim
  90                                         * dones't wait for specific io_unit
  91                                         * switching to IO_UNIT_STRIPE_END
  92                                         * state) */
  93        wait_queue_head_t iounit_wait;
  94
  95        struct list_head no_space_stripes; /* pending stripes, log has no space */
  96        spinlock_t no_space_stripes_lock;
  97
  98        bool need_cache_flush;
  99        bool in_teardown;
 100};
 101
 102/*
 103 * an IO range starts from a meta data block and end at the next meta data
 104 * block. The io unit's the meta data block tracks data/parity followed it. io
 105 * unit is written to log disk with normal write, as we always flush log disk
 106 * first and then start move data to raid disks, there is no requirement to
 107 * write io unit with FLUSH/FUA
 108 */
 109struct r5l_io_unit {
 110        struct r5l_log *log;
 111
 112        struct page *meta_page; /* store meta block */
 113        int meta_offset;        /* current offset in meta_page */
 114
 115        struct bio *current_bio;/* current_bio accepting new data */
 116
 117        atomic_t pending_stripe;/* how many stripes not flushed to raid */
 118        u64 seq;                /* seq number of the metablock */
 119        sector_t log_start;     /* where the io_unit starts */
 120        sector_t log_end;       /* where the io_unit ends */
 121        struct list_head log_sibling; /* log->running_ios */
 122        struct list_head stripe_list; /* stripes added to the io_unit */
 123
 124        int state;
 125        bool need_split_bio;
 126};
 127
 128/* r5l_io_unit state */
 129enum r5l_io_unit_state {
 130        IO_UNIT_RUNNING = 0,    /* accepting new IO */
 131        IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
 132                                 * don't accepting new bio */
 133        IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
 134        IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
 135};
 136
 137static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
 138{
 139        start += inc;
 140        if (start >= log->device_size)
 141                start = start - log->device_size;
 142        return start;
 143}
 144
 145static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
 146                                  sector_t end)
 147{
 148        if (end >= start)
 149                return end - start;
 150        else
 151                return end + log->device_size - start;
 152}
 153
 154static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
 155{
 156        sector_t used_size;
 157
 158        used_size = r5l_ring_distance(log, log->last_checkpoint,
 159                                        log->log_start);
 160
 161        return log->device_size > used_size + size;
 162}
 163
 164static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
 165                                    enum r5l_io_unit_state state)
 166{
 167        if (WARN_ON(io->state >= state))
 168                return;
 169        io->state = state;
 170}
 171
 172static void r5l_io_run_stripes(struct r5l_io_unit *io)
 173{
 174        struct stripe_head *sh, *next;
 175
 176        list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 177                list_del_init(&sh->log_list);
 178                set_bit(STRIPE_HANDLE, &sh->state);
 179                raid5_release_stripe(sh);
 180        }
 181}
 182
 183static void r5l_log_run_stripes(struct r5l_log *log)
 184{
 185        struct r5l_io_unit *io, *next;
 186
 187        assert_spin_locked(&log->io_list_lock);
 188
 189        list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 190                /* don't change list order */
 191                if (io->state < IO_UNIT_IO_END)
 192                        break;
 193
 194                list_move_tail(&io->log_sibling, &log->finished_ios);
 195                r5l_io_run_stripes(io);
 196        }
 197}
 198
 199static void r5l_move_to_end_ios(struct r5l_log *log)
 200{
 201        struct r5l_io_unit *io, *next;
 202
 203        assert_spin_locked(&log->io_list_lock);
 204
 205        list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 206                /* don't change list order */
 207                if (io->state < IO_UNIT_IO_END)
 208                        break;
 209                list_move_tail(&io->log_sibling, &log->io_end_ios);
 210        }
 211}
 212
 213static void r5l_log_endio(struct bio *bio)
 214{
 215        struct r5l_io_unit *io = bio->bi_private;
 216        struct r5l_log *log = io->log;
 217        unsigned long flags;
 218
 219        if (bio->bi_error)
 220                md_error(log->rdev->mddev, log->rdev);
 221
 222        bio_put(bio);
 223        mempool_free(io->meta_page, log->meta_pool);
 224
 225        spin_lock_irqsave(&log->io_list_lock, flags);
 226        __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
 227        if (log->need_cache_flush)
 228                r5l_move_to_end_ios(log);
 229        else
 230                r5l_log_run_stripes(log);
 231        spin_unlock_irqrestore(&log->io_list_lock, flags);
 232
 233        if (log->need_cache_flush)
 234                md_wakeup_thread(log->rdev->mddev->thread);
 235}
 236
 237static void r5l_submit_current_io(struct r5l_log *log)
 238{
 239        struct r5l_io_unit *io = log->current_io;
 240        struct r5l_meta_block *block;
 241        unsigned long flags;
 242        u32 crc;
 243
 244        if (!io)
 245                return;
 246
 247        block = page_address(io->meta_page);
 248        block->meta_size = cpu_to_le32(io->meta_offset);
 249        crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
 250        block->checksum = cpu_to_le32(crc);
 251
 252        log->current_io = NULL;
 253        spin_lock_irqsave(&log->io_list_lock, flags);
 254        __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
 255        spin_unlock_irqrestore(&log->io_list_lock, flags);
 256
 257        submit_bio(WRITE, io->current_bio);
 258}
 259
 260static struct bio *r5l_bio_alloc(struct r5l_log *log)
 261{
 262        struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
 263
 264        bio->bi_rw = WRITE;
 265        bio->bi_bdev = log->rdev->bdev;
 266        bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
 267
 268        return bio;
 269}
 270
 271static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
 272{
 273        log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
 274
 275        /*
 276         * If we filled up the log device start from the beginning again,
 277         * which will require a new bio.
 278         *
 279         * Note: for this to work properly the log size needs to me a multiple
 280         * of BLOCK_SECTORS.
 281         */
 282        if (log->log_start == 0)
 283                io->need_split_bio = true;
 284
 285        io->log_end = log->log_start;
 286}
 287
 288static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
 289{
 290        struct r5l_io_unit *io;
 291        struct r5l_meta_block *block;
 292
 293        io = mempool_alloc(log->io_pool, GFP_ATOMIC);
 294        if (!io)
 295                return NULL;
 296        memset(io, 0, sizeof(*io));
 297
 298        io->log = log;
 299        INIT_LIST_HEAD(&io->log_sibling);
 300        INIT_LIST_HEAD(&io->stripe_list);
 301        io->state = IO_UNIT_RUNNING;
 302
 303        io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
 304        block = page_address(io->meta_page);
 305        clear_page(block);
 306        block->magic = cpu_to_le32(R5LOG_MAGIC);
 307        block->version = R5LOG_VERSION;
 308        block->seq = cpu_to_le64(log->seq);
 309        block->position = cpu_to_le64(log->log_start);
 310
 311        io->log_start = log->log_start;
 312        io->meta_offset = sizeof(struct r5l_meta_block);
 313        io->seq = log->seq++;
 314
 315        io->current_bio = r5l_bio_alloc(log);
 316        io->current_bio->bi_end_io = r5l_log_endio;
 317        io->current_bio->bi_private = io;
 318        bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
 319
 320        r5_reserve_log_entry(log, io);
 321
 322        spin_lock_irq(&log->io_list_lock);
 323        list_add_tail(&io->log_sibling, &log->running_ios);
 324        spin_unlock_irq(&log->io_list_lock);
 325
 326        return io;
 327}
 328
 329static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
 330{
 331        if (log->current_io &&
 332            log->current_io->meta_offset + payload_size > PAGE_SIZE)
 333                r5l_submit_current_io(log);
 334
 335        if (!log->current_io) {
 336                log->current_io = r5l_new_meta(log);
 337                if (!log->current_io)
 338                        return -ENOMEM;
 339        }
 340
 341        return 0;
 342}
 343
 344static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
 345                                    sector_t location,
 346                                    u32 checksum1, u32 checksum2,
 347                                    bool checksum2_valid)
 348{
 349        struct r5l_io_unit *io = log->current_io;
 350        struct r5l_payload_data_parity *payload;
 351
 352        payload = page_address(io->meta_page) + io->meta_offset;
 353        payload->header.type = cpu_to_le16(type);
 354        payload->header.flags = cpu_to_le16(0);
 355        payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
 356                                    (PAGE_SHIFT - 9));
 357        payload->location = cpu_to_le64(location);
 358        payload->checksum[0] = cpu_to_le32(checksum1);
 359        if (checksum2_valid)
 360                payload->checksum[1] = cpu_to_le32(checksum2);
 361
 362        io->meta_offset += sizeof(struct r5l_payload_data_parity) +
 363                sizeof(__le32) * (1 + !!checksum2_valid);
 364}
 365
 366static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
 367{
 368        struct r5l_io_unit *io = log->current_io;
 369
 370        if (io->need_split_bio) {
 371                struct bio *prev = io->current_bio;
 372
 373                io->current_bio = r5l_bio_alloc(log);
 374                bio_chain(io->current_bio, prev);
 375
 376                submit_bio(WRITE, prev);
 377        }
 378
 379        if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
 380                BUG();
 381
 382        r5_reserve_log_entry(log, io);
 383}
 384
 385static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
 386                           int data_pages, int parity_pages)
 387{
 388        int i;
 389        int meta_size;
 390        int ret;
 391        struct r5l_io_unit *io;
 392
 393        meta_size =
 394                ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 395                 * data_pages) +
 396                sizeof(struct r5l_payload_data_parity) +
 397                sizeof(__le32) * parity_pages;
 398
 399        ret = r5l_get_meta(log, meta_size);
 400        if (ret)
 401                return ret;
 402
 403        io = log->current_io;
 404
 405        for (i = 0; i < sh->disks; i++) {
 406                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
 407                        continue;
 408                if (i == sh->pd_idx || i == sh->qd_idx)
 409                        continue;
 410                r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
 411                                        raid5_compute_blocknr(sh, i, 0),
 412                                        sh->dev[i].log_checksum, 0, false);
 413                r5l_append_payload_page(log, sh->dev[i].page);
 414        }
 415
 416        if (sh->qd_idx >= 0) {
 417                r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 418                                        sh->sector, sh->dev[sh->pd_idx].log_checksum,
 419                                        sh->dev[sh->qd_idx].log_checksum, true);
 420                r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 421                r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
 422        } else {
 423                r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 424                                        sh->sector, sh->dev[sh->pd_idx].log_checksum,
 425                                        0, false);
 426                r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 427        }
 428
 429        list_add_tail(&sh->log_list, &io->stripe_list);
 430        atomic_inc(&io->pending_stripe);
 431        sh->log_io = io;
 432
 433        return 0;
 434}
 435
 436static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
 437/*
 438 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 439 * data from log to raid disks), so we shouldn't wait for reclaim here
 440 */
 441int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
 442{
 443        int write_disks = 0;
 444        int data_pages, parity_pages;
 445        int meta_size;
 446        int reserve;
 447        int i;
 448        int ret = 0;
 449
 450        if (!log)
 451                return -EAGAIN;
 452        /* Don't support stripe batch */
 453        if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
 454            test_bit(STRIPE_SYNCING, &sh->state)) {
 455                /* the stripe is written to log, we start writing it to raid */
 456                clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 457                return -EAGAIN;
 458        }
 459
 460        for (i = 0; i < sh->disks; i++) {
 461                void *addr;
 462
 463                if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
 464                        continue;
 465                write_disks++;
 466                /* checksum is already calculated in last run */
 467                if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
 468                        continue;
 469                addr = kmap_atomic(sh->dev[i].page);
 470                sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
 471                                                    addr, PAGE_SIZE);
 472                kunmap_atomic(addr);
 473        }
 474        parity_pages = 1 + !!(sh->qd_idx >= 0);
 475        data_pages = write_disks - parity_pages;
 476
 477        meta_size =
 478                ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 479                 * data_pages) +
 480                sizeof(struct r5l_payload_data_parity) +
 481                sizeof(__le32) * parity_pages;
 482        /* Doesn't work with very big raid array */
 483        if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
 484                return -EINVAL;
 485
 486        set_bit(STRIPE_LOG_TRAPPED, &sh->state);
 487        /*
 488         * The stripe must enter state machine again to finish the write, so
 489         * don't delay.
 490         */
 491        clear_bit(STRIPE_DELAYED, &sh->state);
 492        atomic_inc(&sh->count);
 493
 494        mutex_lock(&log->io_mutex);
 495        /* meta + data */
 496        reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
 497        if (!r5l_has_free_space(log, reserve)) {
 498                spin_lock(&log->no_space_stripes_lock);
 499                list_add_tail(&sh->log_list, &log->no_space_stripes);
 500                spin_unlock(&log->no_space_stripes_lock);
 501
 502                r5l_wake_reclaim(log, reserve);
 503        } else {
 504                ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
 505                if (ret) {
 506                        spin_lock_irq(&log->io_list_lock);
 507                        list_add_tail(&sh->log_list, &log->no_mem_stripes);
 508                        spin_unlock_irq(&log->io_list_lock);
 509                }
 510        }
 511
 512        mutex_unlock(&log->io_mutex);
 513        return 0;
 514}
 515
 516void r5l_write_stripe_run(struct r5l_log *log)
 517{
 518        if (!log)
 519                return;
 520        mutex_lock(&log->io_mutex);
 521        r5l_submit_current_io(log);
 522        mutex_unlock(&log->io_mutex);
 523}
 524
 525int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
 526{
 527        if (!log)
 528                return -ENODEV;
 529        /*
 530         * we flush log disk cache first, then write stripe data to raid disks.
 531         * So if bio is finished, the log disk cache is flushed already. The
 532         * recovery guarantees we can recovery the bio from log disk, so we
 533         * don't need to flush again
 534         */
 535        if (bio->bi_iter.bi_size == 0) {
 536                bio_endio(bio);
 537                return 0;
 538        }
 539        bio->bi_rw &= ~REQ_FLUSH;
 540        return -EAGAIN;
 541}
 542
 543/* This will run after log space is reclaimed */
 544static void r5l_run_no_space_stripes(struct r5l_log *log)
 545{
 546        struct stripe_head *sh;
 547
 548        spin_lock(&log->no_space_stripes_lock);
 549        while (!list_empty(&log->no_space_stripes)) {
 550                sh = list_first_entry(&log->no_space_stripes,
 551                                      struct stripe_head, log_list);
 552                list_del_init(&sh->log_list);
 553                set_bit(STRIPE_HANDLE, &sh->state);
 554                raid5_release_stripe(sh);
 555        }
 556        spin_unlock(&log->no_space_stripes_lock);
 557}
 558
 559static sector_t r5l_reclaimable_space(struct r5l_log *log)
 560{
 561        return r5l_ring_distance(log, log->last_checkpoint,
 562                                 log->next_checkpoint);
 563}
 564
 565static void r5l_run_no_mem_stripe(struct r5l_log *log)
 566{
 567        struct stripe_head *sh;
 568
 569        assert_spin_locked(&log->io_list_lock);
 570
 571        if (!list_empty(&log->no_mem_stripes)) {
 572                sh = list_first_entry(&log->no_mem_stripes,
 573                                      struct stripe_head, log_list);
 574                list_del_init(&sh->log_list);
 575                set_bit(STRIPE_HANDLE, &sh->state);
 576                raid5_release_stripe(sh);
 577        }
 578}
 579
 580static bool r5l_complete_finished_ios(struct r5l_log *log)
 581{
 582        struct r5l_io_unit *io, *next;
 583        bool found = false;
 584
 585        assert_spin_locked(&log->io_list_lock);
 586
 587        list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
 588                /* don't change list order */
 589                if (io->state < IO_UNIT_STRIPE_END)
 590                        break;
 591
 592                log->next_checkpoint = io->log_start;
 593                log->next_cp_seq = io->seq;
 594
 595                list_del(&io->log_sibling);
 596                mempool_free(io, log->io_pool);
 597                r5l_run_no_mem_stripe(log);
 598
 599                found = true;
 600        }
 601
 602        return found;
 603}
 604
 605static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
 606{
 607        struct r5l_log *log = io->log;
 608        unsigned long flags;
 609
 610        spin_lock_irqsave(&log->io_list_lock, flags);
 611        __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
 612
 613        if (!r5l_complete_finished_ios(log)) {
 614                spin_unlock_irqrestore(&log->io_list_lock, flags);
 615                return;
 616        }
 617
 618        if (r5l_reclaimable_space(log) > log->max_free_space)
 619                r5l_wake_reclaim(log, 0);
 620
 621        spin_unlock_irqrestore(&log->io_list_lock, flags);
 622        wake_up(&log->iounit_wait);
 623}
 624
 625void r5l_stripe_write_finished(struct stripe_head *sh)
 626{
 627        struct r5l_io_unit *io;
 628
 629        io = sh->log_io;
 630        sh->log_io = NULL;
 631
 632        if (io && atomic_dec_and_test(&io->pending_stripe))
 633                __r5l_stripe_write_finished(io);
 634}
 635
 636static void r5l_log_flush_endio(struct bio *bio)
 637{
 638        struct r5l_log *log = container_of(bio, struct r5l_log,
 639                flush_bio);
 640        unsigned long flags;
 641        struct r5l_io_unit *io;
 642
 643        if (bio->bi_error)
 644                md_error(log->rdev->mddev, log->rdev);
 645
 646        spin_lock_irqsave(&log->io_list_lock, flags);
 647        list_for_each_entry(io, &log->flushing_ios, log_sibling)
 648                r5l_io_run_stripes(io);
 649        list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
 650        spin_unlock_irqrestore(&log->io_list_lock, flags);
 651}
 652
 653/*
 654 * Starting dispatch IO to raid.
 655 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
 656 * broken meta in the middle of a log causes recovery can't find meta at the
 657 * head of log. If operations require meta at the head persistent in log, we
 658 * must make sure meta before it persistent in log too. A case is:
 659 *
 660 * stripe data/parity is in log, we start write stripe to raid disks. stripe
 661 * data/parity must be persistent in log before we do the write to raid disks.
 662 *
 663 * The solution is we restrictly maintain io_unit list order. In this case, we
 664 * only write stripes of an io_unit to raid disks till the io_unit is the first
 665 * one whose data/parity is in log.
 666 */
 667void r5l_flush_stripe_to_raid(struct r5l_log *log)
 668{
 669        bool do_flush;
 670
 671        if (!log || !log->need_cache_flush)
 672                return;
 673
 674        spin_lock_irq(&log->io_list_lock);
 675        /* flush bio is running */
 676        if (!list_empty(&log->flushing_ios)) {
 677                spin_unlock_irq(&log->io_list_lock);
 678                return;
 679        }
 680        list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
 681        do_flush = !list_empty(&log->flushing_ios);
 682        spin_unlock_irq(&log->io_list_lock);
 683
 684        if (!do_flush)
 685                return;
 686        bio_reset(&log->flush_bio);
 687        log->flush_bio.bi_bdev = log->rdev->bdev;
 688        log->flush_bio.bi_end_io = r5l_log_flush_endio;
 689        submit_bio(WRITE_FLUSH, &log->flush_bio);
 690}
 691
 692static void r5l_write_super(struct r5l_log *log, sector_t cp);
 693static void r5l_write_super_and_discard_space(struct r5l_log *log,
 694        sector_t end)
 695{
 696        struct block_device *bdev = log->rdev->bdev;
 697        struct mddev *mddev;
 698
 699        r5l_write_super(log, end);
 700
 701        if (!blk_queue_discard(bdev_get_queue(bdev)))
 702                return;
 703
 704        mddev = log->rdev->mddev;
 705        /*
 706         * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
 707         * wait for this thread to finish. This thread waits for
 708         * MD_CHANGE_PENDING clear, which is supposed to be done in
 709         * md_check_recovery(). md_check_recovery() tries to get
 710         * reconfig_mutex. Since r5l_quiesce already holds the mutex,
 711         * md_check_recovery() fails, so the PENDING never get cleared. The
 712         * in_teardown check workaround this issue.
 713         */
 714        if (!log->in_teardown) {
 715                set_bit(MD_CHANGE_DEVS, &mddev->flags);
 716                set_bit(MD_CHANGE_PENDING, &mddev->flags);
 717                md_wakeup_thread(mddev->thread);
 718                wait_event(mddev->sb_wait,
 719                        !test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
 720                        log->in_teardown);
 721                /*
 722                 * r5l_quiesce could run after in_teardown check and hold
 723                 * mutex first. Superblock might get updated twice.
 724                 */
 725                if (log->in_teardown)
 726                        md_update_sb(mddev, 1);
 727        } else {
 728                WARN_ON(!mddev_is_locked(mddev));
 729                md_update_sb(mddev, 1);
 730        }
 731
 732        /* discard IO error really doesn't matter, ignore it */
 733        if (log->last_checkpoint < end) {
 734                blkdev_issue_discard(bdev,
 735                                log->last_checkpoint + log->rdev->data_offset,
 736                                end - log->last_checkpoint, GFP_NOIO, 0);
 737        } else {
 738                blkdev_issue_discard(bdev,
 739                                log->last_checkpoint + log->rdev->data_offset,
 740                                log->device_size - log->last_checkpoint,
 741                                GFP_NOIO, 0);
 742                blkdev_issue_discard(bdev, log->rdev->data_offset, end,
 743                                GFP_NOIO, 0);
 744        }
 745}
 746
 747
 748static void r5l_do_reclaim(struct r5l_log *log)
 749{
 750        sector_t reclaim_target = xchg(&log->reclaim_target, 0);
 751        sector_t reclaimable;
 752        sector_t next_checkpoint;
 753        u64 next_cp_seq;
 754
 755        spin_lock_irq(&log->io_list_lock);
 756        /*
 757         * move proper io_unit to reclaim list. We should not change the order.
 758         * reclaimable/unreclaimable io_unit can be mixed in the list, we
 759         * shouldn't reuse space of an unreclaimable io_unit
 760         */
 761        while (1) {
 762                reclaimable = r5l_reclaimable_space(log);
 763                if (reclaimable >= reclaim_target ||
 764                    (list_empty(&log->running_ios) &&
 765                     list_empty(&log->io_end_ios) &&
 766                     list_empty(&log->flushing_ios) &&
 767                     list_empty(&log->finished_ios)))
 768                        break;
 769
 770                md_wakeup_thread(log->rdev->mddev->thread);
 771                wait_event_lock_irq(log->iounit_wait,
 772                                    r5l_reclaimable_space(log) > reclaimable,
 773                                    log->io_list_lock);
 774        }
 775
 776        next_checkpoint = log->next_checkpoint;
 777        next_cp_seq = log->next_cp_seq;
 778        spin_unlock_irq(&log->io_list_lock);
 779
 780        BUG_ON(reclaimable < 0);
 781        if (reclaimable == 0)
 782                return;
 783
 784        /*
 785         * write_super will flush cache of each raid disk. We must write super
 786         * here, because the log area might be reused soon and we don't want to
 787         * confuse recovery
 788         */
 789        r5l_write_super_and_discard_space(log, next_checkpoint);
 790
 791        mutex_lock(&log->io_mutex);
 792        log->last_checkpoint = next_checkpoint;
 793        log->last_cp_seq = next_cp_seq;
 794        mutex_unlock(&log->io_mutex);
 795
 796        r5l_run_no_space_stripes(log);
 797}
 798
 799static void r5l_reclaim_thread(struct md_thread *thread)
 800{
 801        struct mddev *mddev = thread->mddev;
 802        struct r5conf *conf = mddev->private;
 803        struct r5l_log *log = conf->log;
 804
 805        if (!log)
 806                return;
 807        r5l_do_reclaim(log);
 808}
 809
 810static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
 811{
 812        unsigned long target;
 813        unsigned long new = (unsigned long)space; /* overflow in theory */
 814
 815        do {
 816                target = log->reclaim_target;
 817                if (new < target)
 818                        return;
 819        } while (cmpxchg(&log->reclaim_target, target, new) != target);
 820        md_wakeup_thread(log->reclaim_thread);
 821}
 822
 823void r5l_quiesce(struct r5l_log *log, int state)
 824{
 825        struct mddev *mddev;
 826        if (!log || state == 2)
 827                return;
 828        if (state == 0) {
 829                log->in_teardown = 0;
 830                /*
 831                 * This is a special case for hotadd. In suspend, the array has
 832                 * no journal. In resume, journal is initialized as well as the
 833                 * reclaim thread.
 834                 */
 835                if (log->reclaim_thread)
 836                        return;
 837                log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
 838                                        log->rdev->mddev, "reclaim");
 839        } else if (state == 1) {
 840                /*
 841                 * at this point all stripes are finished, so io_unit is at
 842                 * least in STRIPE_END state
 843                 */
 844                log->in_teardown = 1;
 845                /* make sure r5l_write_super_and_discard_space exits */
 846                mddev = log->rdev->mddev;
 847                wake_up(&mddev->sb_wait);
 848                r5l_wake_reclaim(log, -1L);
 849                md_unregister_thread(&log->reclaim_thread);
 850                r5l_do_reclaim(log);
 851        }
 852}
 853
 854bool r5l_log_disk_error(struct r5conf *conf)
 855{
 856        struct r5l_log *log;
 857        bool ret;
 858        /* don't allow write if journal disk is missing */
 859        rcu_read_lock();
 860        log = rcu_dereference(conf->log);
 861
 862        if (!log)
 863                ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
 864        else
 865                ret = test_bit(Faulty, &log->rdev->flags);
 866        rcu_read_unlock();
 867        return ret;
 868}
 869
 870struct r5l_recovery_ctx {
 871        struct page *meta_page;         /* current meta */
 872        sector_t meta_total_blocks;     /* total size of current meta and data */
 873        sector_t pos;                   /* recovery position */
 874        u64 seq;                        /* recovery position seq */
 875};
 876
 877static int r5l_read_meta_block(struct r5l_log *log,
 878                               struct r5l_recovery_ctx *ctx)
 879{
 880        struct page *page = ctx->meta_page;
 881        struct r5l_meta_block *mb;
 882        u32 crc, stored_crc;
 883
 884        if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
 885                return -EIO;
 886
 887        mb = page_address(page);
 888        stored_crc = le32_to_cpu(mb->checksum);
 889        mb->checksum = 0;
 890
 891        if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
 892            le64_to_cpu(mb->seq) != ctx->seq ||
 893            mb->version != R5LOG_VERSION ||
 894            le64_to_cpu(mb->position) != ctx->pos)
 895                return -EINVAL;
 896
 897        crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
 898        if (stored_crc != crc)
 899                return -EINVAL;
 900
 901        if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
 902                return -EINVAL;
 903
 904        ctx->meta_total_blocks = BLOCK_SECTORS;
 905
 906        return 0;
 907}
 908
 909static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
 910                                         struct r5l_recovery_ctx *ctx,
 911                                         sector_t stripe_sect,
 912                                         int *offset, sector_t *log_offset)
 913{
 914        struct r5conf *conf = log->rdev->mddev->private;
 915        struct stripe_head *sh;
 916        struct r5l_payload_data_parity *payload;
 917        int disk_index;
 918
 919        sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
 920        while (1) {
 921                payload = page_address(ctx->meta_page) + *offset;
 922
 923                if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
 924                        raid5_compute_sector(conf,
 925                                             le64_to_cpu(payload->location), 0,
 926                                             &disk_index, sh);
 927
 928                        sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
 929                                     sh->dev[disk_index].page, READ, false);
 930                        sh->dev[disk_index].log_checksum =
 931                                le32_to_cpu(payload->checksum[0]);
 932                        set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
 933                        ctx->meta_total_blocks += BLOCK_SECTORS;
 934                } else {
 935                        disk_index = sh->pd_idx;
 936                        sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
 937                                     sh->dev[disk_index].page, READ, false);
 938                        sh->dev[disk_index].log_checksum =
 939                                le32_to_cpu(payload->checksum[0]);
 940                        set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
 941
 942                        if (sh->qd_idx >= 0) {
 943                                disk_index = sh->qd_idx;
 944                                sync_page_io(log->rdev,
 945                                             r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
 946                                             PAGE_SIZE, sh->dev[disk_index].page,
 947                                             READ, false);
 948                                sh->dev[disk_index].log_checksum =
 949                                        le32_to_cpu(payload->checksum[1]);
 950                                set_bit(R5_Wantwrite,
 951                                        &sh->dev[disk_index].flags);
 952                        }
 953                        ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
 954                }
 955
 956                *log_offset = r5l_ring_add(log, *log_offset,
 957                                           le32_to_cpu(payload->size));
 958                *offset += sizeof(struct r5l_payload_data_parity) +
 959                        sizeof(__le32) *
 960                        (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
 961                if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
 962                        break;
 963        }
 964
 965        for (disk_index = 0; disk_index < sh->disks; disk_index++) {
 966                void *addr;
 967                u32 checksum;
 968
 969                if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
 970                        continue;
 971                addr = kmap_atomic(sh->dev[disk_index].page);
 972                checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
 973                kunmap_atomic(addr);
 974                if (checksum != sh->dev[disk_index].log_checksum)
 975                        goto error;
 976        }
 977
 978        for (disk_index = 0; disk_index < sh->disks; disk_index++) {
 979                struct md_rdev *rdev, *rrdev;
 980
 981                if (!test_and_clear_bit(R5_Wantwrite,
 982                                        &sh->dev[disk_index].flags))
 983                        continue;
 984
 985                /* in case device is broken */
 986                rdev = rcu_dereference(conf->disks[disk_index].rdev);
 987                if (rdev)
 988                        sync_page_io(rdev, stripe_sect, PAGE_SIZE,
 989                                     sh->dev[disk_index].page, WRITE, false);
 990                rrdev = rcu_dereference(conf->disks[disk_index].replacement);
 991                if (rrdev)
 992                        sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
 993                                     sh->dev[disk_index].page, WRITE, false);
 994        }
 995        raid5_release_stripe(sh);
 996        return 0;
 997
 998error:
 999        for (disk_index = 0; disk_index < sh->disks; disk_index++)
1000                sh->dev[disk_index].flags = 0;
1001        raid5_release_stripe(sh);
1002        return -EINVAL;
1003}
1004
1005static int r5l_recovery_flush_one_meta(struct r5l_log *log,
1006                                       struct r5l_recovery_ctx *ctx)
1007{
1008        struct r5conf *conf = log->rdev->mddev->private;
1009        struct r5l_payload_data_parity *payload;
1010        struct r5l_meta_block *mb;
1011        int offset;
1012        sector_t log_offset;
1013        sector_t stripe_sector;
1014
1015        mb = page_address(ctx->meta_page);
1016        offset = sizeof(struct r5l_meta_block);
1017        log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1018
1019        while (offset < le32_to_cpu(mb->meta_size)) {
1020                int dd;
1021
1022                payload = (void *)mb + offset;
1023                stripe_sector = raid5_compute_sector(conf,
1024                                                     le64_to_cpu(payload->location), 0, &dd, NULL);
1025                if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
1026                                                  &offset, &log_offset))
1027                        return -EINVAL;
1028        }
1029        return 0;
1030}
1031
1032/* copy data/parity from log to raid disks */
1033static void r5l_recovery_flush_log(struct r5l_log *log,
1034                                   struct r5l_recovery_ctx *ctx)
1035{
1036        while (1) {
1037                if (r5l_read_meta_block(log, ctx))
1038                        return;
1039                if (r5l_recovery_flush_one_meta(log, ctx))
1040                        return;
1041                ctx->seq++;
1042                ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1043        }
1044}
1045
1046static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1047                                          u64 seq)
1048{
1049        struct page *page;
1050        struct r5l_meta_block *mb;
1051        u32 crc;
1052
1053        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1054        if (!page)
1055                return -ENOMEM;
1056        mb = page_address(page);
1057        mb->magic = cpu_to_le32(R5LOG_MAGIC);
1058        mb->version = R5LOG_VERSION;
1059        mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1060        mb->seq = cpu_to_le64(seq);
1061        mb->position = cpu_to_le64(pos);
1062        crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1063        mb->checksum = cpu_to_le32(crc);
1064
1065        if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
1066                __free_page(page);
1067                return -EIO;
1068        }
1069        __free_page(page);
1070        return 0;
1071}
1072
1073static int r5l_recovery_log(struct r5l_log *log)
1074{
1075        struct r5l_recovery_ctx ctx;
1076
1077        ctx.pos = log->last_checkpoint;
1078        ctx.seq = log->last_cp_seq;
1079        ctx.meta_page = alloc_page(GFP_KERNEL);
1080        if (!ctx.meta_page)
1081                return -ENOMEM;
1082
1083        r5l_recovery_flush_log(log, &ctx);
1084        __free_page(ctx.meta_page);
1085
1086        /*
1087         * we did a recovery. Now ctx.pos points to an invalid meta block. New
1088         * log will start here. but we can't let superblock point to last valid
1089         * meta block. The log might looks like:
1090         * | meta 1| meta 2| meta 3|
1091         * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1092         * superblock points to meta 1, we write a new valid meta 2n.  if crash
1093         * happens again, new recovery will start from meta 1. Since meta 2n is
1094         * valid now, recovery will think meta 3 is valid, which is wrong.
1095         * The solution is we create a new meta in meta2 with its seq == meta
1096         * 1's seq + 10 and let superblock points to meta2. The same recovery will
1097         * not think meta 3 is a valid meta, because its seq doesn't match
1098         */
1099        if (ctx.seq > log->last_cp_seq + 1) {
1100                int ret;
1101
1102                ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1103                if (ret)
1104                        return ret;
1105                log->seq = ctx.seq + 11;
1106                log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1107                r5l_write_super(log, ctx.pos);
1108        } else {
1109                log->log_start = ctx.pos;
1110                log->seq = ctx.seq;
1111        }
1112        return 0;
1113}
1114
1115static void r5l_write_super(struct r5l_log *log, sector_t cp)
1116{
1117        struct mddev *mddev = log->rdev->mddev;
1118
1119        log->rdev->journal_tail = cp;
1120        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1121}
1122
1123static int r5l_load_log(struct r5l_log *log)
1124{
1125        struct md_rdev *rdev = log->rdev;
1126        struct page *page;
1127        struct r5l_meta_block *mb;
1128        sector_t cp = log->rdev->journal_tail;
1129        u32 stored_crc, expected_crc;
1130        bool create_super = false;
1131        int ret;
1132
1133        /* Make sure it's valid */
1134        if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1135                cp = 0;
1136        page = alloc_page(GFP_KERNEL);
1137        if (!page)
1138                return -ENOMEM;
1139
1140        if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1141                ret = -EIO;
1142                goto ioerr;
1143        }
1144        mb = page_address(page);
1145
1146        if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1147            mb->version != R5LOG_VERSION) {
1148                create_super = true;
1149                goto create;
1150        }
1151        stored_crc = le32_to_cpu(mb->checksum);
1152        mb->checksum = 0;
1153        expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1154        if (stored_crc != expected_crc) {
1155                create_super = true;
1156                goto create;
1157        }
1158        if (le64_to_cpu(mb->position) != cp) {
1159                create_super = true;
1160                goto create;
1161        }
1162create:
1163        if (create_super) {
1164                log->last_cp_seq = prandom_u32();
1165                cp = 0;
1166                /*
1167                 * Make sure super points to correct address. Log might have
1168                 * data very soon. If super hasn't correct log tail address,
1169                 * recovery can't find the log
1170                 */
1171                r5l_write_super(log, cp);
1172        } else
1173                log->last_cp_seq = le64_to_cpu(mb->seq);
1174
1175        log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1176        log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1177        if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1178                log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1179        log->last_checkpoint = cp;
1180
1181        __free_page(page);
1182
1183        return r5l_recovery_log(log);
1184ioerr:
1185        __free_page(page);
1186        return ret;
1187}
1188
1189int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1190{
1191        struct r5l_log *log;
1192
1193        if (PAGE_SIZE != 4096)
1194                return -EINVAL;
1195        log = kzalloc(sizeof(*log), GFP_KERNEL);
1196        if (!log)
1197                return -ENOMEM;
1198        log->rdev = rdev;
1199
1200        log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1201
1202        log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1203                                       sizeof(rdev->mddev->uuid));
1204
1205        mutex_init(&log->io_mutex);
1206
1207        spin_lock_init(&log->io_list_lock);
1208        INIT_LIST_HEAD(&log->running_ios);
1209        INIT_LIST_HEAD(&log->io_end_ios);
1210        INIT_LIST_HEAD(&log->flushing_ios);
1211        INIT_LIST_HEAD(&log->finished_ios);
1212        bio_init(&log->flush_bio);
1213
1214        log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1215        if (!log->io_kc)
1216                goto io_kc;
1217
1218        log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
1219        if (!log->io_pool)
1220                goto io_pool;
1221
1222        log->bs = bioset_create(R5L_POOL_SIZE, 0);
1223        if (!log->bs)
1224                goto io_bs;
1225
1226        log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
1227        if (!log->meta_pool)
1228                goto out_mempool;
1229
1230        log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1231                                                 log->rdev->mddev, "reclaim");
1232        if (!log->reclaim_thread)
1233                goto reclaim_thread;
1234        init_waitqueue_head(&log->iounit_wait);
1235
1236        INIT_LIST_HEAD(&log->no_mem_stripes);
1237
1238        INIT_LIST_HEAD(&log->no_space_stripes);
1239        spin_lock_init(&log->no_space_stripes_lock);
1240
1241        if (r5l_load_log(log))
1242                goto error;
1243
1244        rcu_assign_pointer(conf->log, log);
1245        set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1246        return 0;
1247
1248error:
1249        md_unregister_thread(&log->reclaim_thread);
1250reclaim_thread:
1251        mempool_destroy(log->meta_pool);
1252out_mempool:
1253        bioset_free(log->bs);
1254io_bs:
1255        mempool_destroy(log->io_pool);
1256io_pool:
1257        kmem_cache_destroy(log->io_kc);
1258io_kc:
1259        kfree(log);
1260        return -EINVAL;
1261}
1262
1263void r5l_exit_log(struct r5l_log *log)
1264{
1265        md_unregister_thread(&log->reclaim_thread);
1266        mempool_destroy(log->meta_pool);
1267        bioset_free(log->bs);
1268        mempool_destroy(log->io_pool);
1269        kmem_cache_destroy(log->io_kc);
1270        kfree(log);
1271}
1272