linux/drivers/net/ethernet/3com/3c59x.c
<<
>>
Prefs
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3        Written 1996-1999 by Donald Becker.
   4
   5        This software may be used and distributed according to the terms
   6        of the GNU General Public License, incorporated herein by reference.
   7
   8        This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9        Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10        and the EtherLink XL 3c900 and 3c905 cards.
  11
  12        Problem reports and questions should be directed to
  13        vortex@scyld.com
  14
  15        The author may be reached as becker@scyld.com, or C/O
  16        Scyld Computing Corporation
  17        410 Severn Ave., Suite 210
  18        Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME        "3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE    16
  39#define RX_RING_SIZE    32
  40#define PKT_BUF_SZ              1536                    /* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>                    /* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <asm/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] =
 106        DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132                                Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211        PCI_USES_MASTER=4,
 212};
 213
 214enum {  IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215        EEPROM_8BIT=0x10,       /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216        HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217        INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218        EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219        EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222        CH_3C590 = 0,
 223        CH_3C592,
 224        CH_3C597,
 225        CH_3C595_1,
 226        CH_3C595_2,
 227
 228        CH_3C595_3,
 229        CH_3C900_1,
 230        CH_3C900_2,
 231        CH_3C900_3,
 232        CH_3C900_4,
 233
 234        CH_3C900_5,
 235        CH_3C900B_FL,
 236        CH_3C905_1,
 237        CH_3C905_2,
 238        CH_3C905B_TX,
 239        CH_3C905B_1,
 240
 241        CH_3C905B_2,
 242        CH_3C905B_FX,
 243        CH_3C905C,
 244        CH_3C9202,
 245        CH_3C980,
 246        CH_3C9805,
 247
 248        CH_3CSOHO100_TX,
 249        CH_3C555,
 250        CH_3C556,
 251        CH_3C556B,
 252        CH_3C575,
 253
 254        CH_3C575_1,
 255        CH_3CCFE575,
 256        CH_3CCFE575CT,
 257        CH_3CCFE656,
 258        CH_3CCFEM656,
 259
 260        CH_3CCFEM656_1,
 261        CH_3C450,
 262        CH_3C920,
 263        CH_3C982A,
 264        CH_3C982B,
 265
 266        CH_905BT4,
 267        CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276        const char *name;
 277        int flags;
 278        int drv_flags;
 279        int io_size;
 280} vortex_info_tbl[] = {
 281        {"3c590 Vortex 10Mbps",
 282         PCI_USES_MASTER, IS_VORTEX, 32, },
 283        {"3c592 EISA 10Mbps Demon/Vortex",                                      /* AKPM: from Don's 3c59x_cb.c 0.49H */
 284         PCI_USES_MASTER, IS_VORTEX, 32, },
 285        {"3c597 EISA Fast Demon/Vortex",                                        /* AKPM: from Don's 3c59x_cb.c 0.49H */
 286         PCI_USES_MASTER, IS_VORTEX, 32, },
 287        {"3c595 Vortex 100baseTx",
 288         PCI_USES_MASTER, IS_VORTEX, 32, },
 289        {"3c595 Vortex 100baseT4",
 290         PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292        {"3c595 Vortex 100base-MII",
 293         PCI_USES_MASTER, IS_VORTEX, 32, },
 294        {"3c900 Boomerang 10baseT",
 295         PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296        {"3c900 Boomerang 10Mbps Combo",
 297         PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298        {"3c900 Cyclone 10Mbps TPO",                                            /* AKPM: from Don's 0.99M */
 299         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300        {"3c900 Cyclone 10Mbps Combo",
 301         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303        {"3c900 Cyclone 10Mbps TPC",                                            /* AKPM: from Don's 0.99M */
 304         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305        {"3c900B-FL Cyclone 10base-FL",
 306         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307        {"3c905 Boomerang 100baseTx",
 308         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309        {"3c905 Boomerang 100baseT4",
 310         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311        {"3C905B-TX Fast Etherlink XL PCI",
 312         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313        {"3c905B Cyclone 100baseTx",
 314         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316        {"3c905B Cyclone 10/100/BNC",
 317         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318        {"3c905B-FX Cyclone 100baseFx",
 319         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320        {"3c905C Tornado",
 321        PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322        {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323         PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324        {"3c980 Cyclone",
 325         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327        {"3c980C Python-T",
 328         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329        {"3cSOHO100-TX Hurricane",
 330         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331        {"3c555 Laptop Hurricane",
 332         PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333        {"3c556 Laptop Tornado",
 334         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335                                                                        HAS_HWCKSM, 128, },
 336        {"3c556B Laptop Hurricane",
 337         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338                                        WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340        {"3c575 [Megahertz] 10/100 LAN  CardBus",
 341        PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342        {"3c575 Boomerang CardBus",
 343         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344        {"3CCFE575BT Cyclone CardBus",
 345         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347        {"3CCFE575CT Tornado CardBus",
 348         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349                                                                        MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350        {"3CCFE656 Cyclone CardBus",
 351         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354        {"3CCFEM656B Cyclone+Winmodem CardBus",
 355         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357        {"3CXFEM656C Tornado+Winmodem CardBus",                 /* From pcmcia-cs-3.1.5 */
 358         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359                                                                        MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360        {"3c450 HomePNA Tornado",                                               /* AKPM: from Don's 0.99Q */
 361         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362        {"3c920 Tornado",
 363         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364        {"3c982 Hydra Dual Port A",
 365         PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367        {"3c982 Hydra Dual Port B",
 368         PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369        {"3c905B-T4",
 370         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371        {"3c920B-EMB-WNM Tornado",
 372         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374        {NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static const struct pci_device_id vortex_pci_tbl[] = {
 379        { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380        { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381        { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382        { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383        { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385        { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386        { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387        { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388        { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389        { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391        { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392        { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393        { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394        { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395        { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396        { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398        { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399        { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400        { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401        { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402        { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403        { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405        { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406        { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407        { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408        { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409        { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411        { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412        { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413        { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414        { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415        { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417        { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418        { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419        { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420        { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421        { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423        { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424        { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426        {0,}                                            /* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448        TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449        RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450        UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451        DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452        RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453        FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454        SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455        SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456        StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457        StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461        RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465        IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466        TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467        IntReq = 0x0040, StatsFull = 0x0080,
 468        DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469        DMAInProgress = 1<<11,                  /* DMA controller is still busy.*/
 470        CmdInProgress = 1<<12,                  /* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476        TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477        RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478        TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481        Wn0EepromCmd = 10,              /* Window 0: EEPROM command register. */
 482        Wn0EepromData = 12,             /* Window 0: EEPROM results register. */
 483        IntrStatus=0x0E,                /* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486        EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487        EEPROM_EWENB = 0x30,            /* Enable erasing/writing for 10 msec. */
 488        EEPROM_EWDIS = 0x00,            /* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492        PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493        EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494        NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495        DriverTune=13, Checksum=15};
 496
 497enum Window2 {                  /* Window 2. */
 498        Wn2_ResetOptions=12,
 499};
 500enum Window3 {                  /* Window 3: MAC/config bits. */
 501        Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)                                       \
 508        (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |   \
 509        (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)             BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)    BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)    BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)             BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)    BFEXT(v, 16, 2)
 516#define XCVR(v)                 BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)   BFEXT(v, 24, 1)
 518
 519enum Window4 {          /* Window 4: Xcvr/media bits. */
 520        Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523        Media_SQE = 0x0008,             /* Enable SQE error counting for AUI. */
 524        Media_10TP = 0x00C0,    /* Enable link beat and jabber for 10baseT. */
 525        Media_Lnk = 0x0080,             /* Enable just link beat for 100TX/100FX. */
 526        Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {                                  /* Window 7: Bus Master control. */
 529        Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530        Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534        PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535        TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG       0x80000000                      /* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE     0x00010000                      /* This packet has been downloaded */
 543struct boom_rx_desc {
 544        __le32 next;                                    /* Last entry points to 0.   */
 545        __le32 status;
 546        __le32 addr;                                    /* Up to 63 addr/len pairs possible. */
 547        __le32 length;                                  /* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551        RxDComplete=0x00008000, RxDError=0x4000,
 552        /* See boomerang_rx() for actual error bits */
 553        IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554        IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564        __le32 next;                                    /* Last entry points to 0.   */
 565        __le32 status;                                  /* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567        struct {
 568                __le32 addr;
 569                __le32 length;
 570        } frag[1+MAX_SKB_FRAGS];
 571#else
 572                __le32 addr;
 573                __le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579        CRCDisable=0x2000, TxDComplete=0x8000,
 580        AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581        TxIntrUploaded=0x80000000,              /* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588        unsigned long tx_deferred;
 589        unsigned long tx_max_collisions;
 590        unsigned long tx_multiple_collisions;
 591        unsigned long tx_single_collisions;
 592        unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596        /* The Rx and Tx rings should be quad-word-aligned. */
 597        struct boom_rx_desc* rx_ring;
 598        struct boom_tx_desc* tx_ring;
 599        dma_addr_t rx_ring_dma;
 600        dma_addr_t tx_ring_dma;
 601        /* The addresses of transmit- and receive-in-place skbuffs. */
 602        struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603        struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604        unsigned int cur_rx, cur_tx;            /* The next free ring entry */
 605        unsigned int dirty_rx, dirty_tx;        /* The ring entries to be free()ed. */
 606        struct vortex_extra_stats xstats;       /* NIC-specific extra stats */
 607        struct sk_buff *tx_skb;                         /* Packet being eaten by bus master ctrl.  */
 608        dma_addr_t tx_skb_dma;                          /* Allocated DMA address for bus master ctrl DMA.   */
 609
 610        /* PCI configuration space information. */
 611        struct device *gendev;
 612        void __iomem *ioaddr;                   /* IO address space */
 613        void __iomem *cb_fn_base;               /* CardBus function status addr space. */
 614
 615        /* Some values here only for performance evaluation and path-coverage */
 616        int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617        int card_idx;
 618
 619        /* The remainder are related to chip state, mostly media selection. */
 620        struct timer_list timer;                        /* Media selection timer. */
 621        struct timer_list rx_oom_timer;         /* Rx skb allocation retry timer */
 622        int options;                                            /* User-settable misc. driver options. */
 623        unsigned int media_override:4,          /* Passed-in media type. */
 624                default_media:4,                                /* Read from the EEPROM/Wn3_Config. */
 625                full_duplex:1, autoselect:1,
 626                bus_master:1,                                   /* Vortex can only do a fragment bus-m. */
 627                full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 628                flow_ctrl:1,                                    /* Use 802.3x flow control (PAUSE only) */
 629                partner_flow_ctrl:1,                    /* Partner supports flow control */
 630                has_nway:1,
 631                enable_wol:1,                                   /* Wake-on-LAN is enabled */
 632                pm_state_valid:1,                               /* pci_dev->saved_config_space has sane contents */
 633                open:1,
 634                medialock:1,
 635                large_frames:1,                 /* accept large frames */
 636                handling_irq:1;                 /* private in_irq indicator */
 637        /* {get|set}_wol operations are already serialized by rtnl.
 638         * no additional locking is required for the enable_wol and acpi_set_WOL()
 639         */
 640        int drv_flags;
 641        u16 status_enable;
 642        u16 intr_enable;
 643        u16 available_media;                            /* From Wn3_Options. */
 644        u16 capabilities, info1, info2;         /* Various, from EEPROM. */
 645        u16 advertising;                                        /* NWay media advertisement */
 646        unsigned char phys[2];                          /* MII device addresses. */
 647        u16 deferred;                                           /* Resend these interrupts when we
 648                                                                                 * bale from the ISR */
 649        u16 io_size;                                            /* Size of PCI region (for release_region) */
 650
 651        /* Serialises access to hardware other than MII and variables below.
 652         * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 653        spinlock_t lock;
 654
 655        spinlock_t mii_lock;            /* Serialises access to MII */
 656        struct mii_if_info mii;         /* MII lib hooks/info */
 657        spinlock_t window_lock;         /* Serialises access to windowed regs */
 658        int window;                     /* Register window */
 659};
 660
 661static void window_set(struct vortex_private *vp, int window)
 662{
 663        if (window != vp->window) {
 664                iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 665                vp->window = window;
 666        }
 667}
 668
 669#define DEFINE_WINDOW_IO(size)                                          \
 670static u ## size                                                        \
 671window_read ## size(struct vortex_private *vp, int window, int addr)    \
 672{                                                                       \
 673        unsigned long flags;                                            \
 674        u ## size ret;                                                  \
 675        spin_lock_irqsave(&vp->window_lock, flags);                     \
 676        window_set(vp, window);                                         \
 677        ret = ioread ## size(vp->ioaddr + addr);                        \
 678        spin_unlock_irqrestore(&vp->window_lock, flags);                \
 679        return ret;                                                     \
 680}                                                                       \
 681static void                                                             \
 682window_write ## size(struct vortex_private *vp, u ## size value,        \
 683                     int window, int addr)                              \
 684{                                                                       \
 685        unsigned long flags;                                            \
 686        spin_lock_irqsave(&vp->window_lock, flags);                     \
 687        window_set(vp, window);                                         \
 688        iowrite ## size(value, vp->ioaddr + addr);                      \
 689        spin_unlock_irqrestore(&vp->window_lock, flags);                \
 690}
 691DEFINE_WINDOW_IO(8)
 692DEFINE_WINDOW_IO(16)
 693DEFINE_WINDOW_IO(32)
 694
 695#ifdef CONFIG_PCI
 696#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
 697#else
 698#define DEVICE_PCI(dev) NULL
 699#endif
 700
 701#define VORTEX_PCI(vp)                                                  \
 702        ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 703
 704#ifdef CONFIG_EISA
 705#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 706#else
 707#define DEVICE_EISA(dev) NULL
 708#endif
 709
 710#define VORTEX_EISA(vp)                                                 \
 711        ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 712
 713/* The action to take with a media selection timer tick.
 714   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 715 */
 716enum xcvr_types {
 717        XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 718        XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 719};
 720
 721static const struct media_table {
 722        char *name;
 723        unsigned int media_bits:16,             /* Bits to set in Wn4_Media register. */
 724                mask:8,                                         /* The transceiver-present bit in Wn3_Config.*/
 725                next:8;                                         /* The media type to try next. */
 726        int wait;                                               /* Time before we check media status. */
 727} media_tbl[] = {
 728  {     "10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 729  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 730  { "undefined", 0,                     0x80, XCVR_10baseT, 10000},
 731  { "10base2",   0,                     0x10, XCVR_AUI,         (1*HZ)/10},
 732  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 733  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,             (14*HZ)/10},
 734  { "MII",               0,                     0x41, XCVR_10baseT, 3*HZ },
 735  { "undefined", 0,                     0x01, XCVR_10baseT, 10000},
 736  { "Autonegotiate", 0,         0x41, XCVR_10baseT, 3*HZ},
 737  { "MII-External",      0,             0x41, XCVR_10baseT, 3*HZ },
 738  { "Default",   0,                     0xFF, XCVR_10baseT, 10000},
 739};
 740
 741static struct {
 742        const char str[ETH_GSTRING_LEN];
 743} ethtool_stats_keys[] = {
 744        { "tx_deferred" },
 745        { "tx_max_collisions" },
 746        { "tx_multiple_collisions" },
 747        { "tx_single_collisions" },
 748        { "rx_bad_ssd" },
 749};
 750
 751/* number of ETHTOOL_GSTATS u64's */
 752#define VORTEX_NUM_STATS    5
 753
 754static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 755                                   int chip_idx, int card_idx);
 756static int vortex_up(struct net_device *dev);
 757static void vortex_down(struct net_device *dev, int final);
 758static int vortex_open(struct net_device *dev);
 759static void mdio_sync(struct vortex_private *vp, int bits);
 760static int mdio_read(struct net_device *dev, int phy_id, int location);
 761static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 762static void vortex_timer(unsigned long arg);
 763static void rx_oom_timer(unsigned long arg);
 764static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 765                                     struct net_device *dev);
 766static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 767                                        struct net_device *dev);
 768static int vortex_rx(struct net_device *dev);
 769static int boomerang_rx(struct net_device *dev);
 770static irqreturn_t vortex_interrupt(int irq, void *dev_id);
 771static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
 772static int vortex_close(struct net_device *dev);
 773static void dump_tx_ring(struct net_device *dev);
 774static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 775static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 776static void set_rx_mode(struct net_device *dev);
 777#ifdef CONFIG_PCI
 778static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 779#endif
 780static void vortex_tx_timeout(struct net_device *dev);
 781static void acpi_set_WOL(struct net_device *dev);
 782static const struct ethtool_ops vortex_ethtool_ops;
 783static void set_8021q_mode(struct net_device *dev, int enable);
 784
 785/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 786/* Option count limit only -- unlimited interfaces are supported. */
 787#define MAX_UNITS 8
 788static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 789static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 794static int global_options = -1;
 795static int global_full_duplex = -1;
 796static int global_enable_wol = -1;
 797static int global_use_mmio = -1;
 798
 799/* Variables to work-around the Compaq PCI BIOS32 problem. */
 800static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 801static struct net_device *compaq_net_device;
 802
 803static int vortex_cards_found;
 804
 805module_param(debug, int, 0);
 806module_param(global_options, int, 0);
 807module_param_array(options, int, NULL, 0);
 808module_param(global_full_duplex, int, 0);
 809module_param_array(full_duplex, int, NULL, 0);
 810module_param_array(hw_checksums, int, NULL, 0);
 811module_param_array(flow_ctrl, int, NULL, 0);
 812module_param(global_enable_wol, int, 0);
 813module_param_array(enable_wol, int, NULL, 0);
 814module_param(rx_copybreak, int, 0);
 815module_param(max_interrupt_work, int, 0);
 816module_param(compaq_ioaddr, int, 0);
 817module_param(compaq_irq, int, 0);
 818module_param(compaq_device_id, int, 0);
 819module_param(watchdog, int, 0);
 820module_param(global_use_mmio, int, 0);
 821module_param_array(use_mmio, int, NULL, 0);
 822MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 823MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 824MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 825MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 826MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 827MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 828MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 829MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 830MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 831MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 832MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 833MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 834MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 836MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 837MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 838MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 839
 840#ifdef CONFIG_NET_POLL_CONTROLLER
 841static void poll_vortex(struct net_device *dev)
 842{
 843        struct vortex_private *vp = netdev_priv(dev);
 844        unsigned long flags;
 845        local_irq_save(flags);
 846        (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
 847        local_irq_restore(flags);
 848}
 849#endif
 850
 851#ifdef CONFIG_PM
 852
 853static int vortex_suspend(struct device *dev)
 854{
 855        struct pci_dev *pdev = to_pci_dev(dev);
 856        struct net_device *ndev = pci_get_drvdata(pdev);
 857
 858        if (!ndev || !netif_running(ndev))
 859                return 0;
 860
 861        netif_device_detach(ndev);
 862        vortex_down(ndev, 1);
 863
 864        return 0;
 865}
 866
 867static int vortex_resume(struct device *dev)
 868{
 869        struct pci_dev *pdev = to_pci_dev(dev);
 870        struct net_device *ndev = pci_get_drvdata(pdev);
 871        int err;
 872
 873        if (!ndev || !netif_running(ndev))
 874                return 0;
 875
 876        err = vortex_up(ndev);
 877        if (err)
 878                return err;
 879
 880        netif_device_attach(ndev);
 881
 882        return 0;
 883}
 884
 885static const struct dev_pm_ops vortex_pm_ops = {
 886        .suspend = vortex_suspend,
 887        .resume = vortex_resume,
 888        .freeze = vortex_suspend,
 889        .thaw = vortex_resume,
 890        .poweroff = vortex_suspend,
 891        .restore = vortex_resume,
 892};
 893
 894#define VORTEX_PM_OPS (&vortex_pm_ops)
 895
 896#else /* !CONFIG_PM */
 897
 898#define VORTEX_PM_OPS NULL
 899
 900#endif /* !CONFIG_PM */
 901
 902#ifdef CONFIG_EISA
 903static struct eisa_device_id vortex_eisa_ids[] = {
 904        { "TCM5920", CH_3C592 },
 905        { "TCM5970", CH_3C597 },
 906        { "" }
 907};
 908MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 909
 910static int vortex_eisa_probe(struct device *device)
 911{
 912        void __iomem *ioaddr;
 913        struct eisa_device *edev;
 914
 915        edev = to_eisa_device(device);
 916
 917        if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 918                return -EBUSY;
 919
 920        ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 921
 922        if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 923                                          edev->id.driver_data, vortex_cards_found)) {
 924                release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 925                return -ENODEV;
 926        }
 927
 928        vortex_cards_found++;
 929
 930        return 0;
 931}
 932
 933static int vortex_eisa_remove(struct device *device)
 934{
 935        struct eisa_device *edev;
 936        struct net_device *dev;
 937        struct vortex_private *vp;
 938        void __iomem *ioaddr;
 939
 940        edev = to_eisa_device(device);
 941        dev = eisa_get_drvdata(edev);
 942
 943        if (!dev) {
 944                pr_err("vortex_eisa_remove called for Compaq device!\n");
 945                BUG();
 946        }
 947
 948        vp = netdev_priv(dev);
 949        ioaddr = vp->ioaddr;
 950
 951        unregister_netdev(dev);
 952        iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 953        release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 954
 955        free_netdev(dev);
 956        return 0;
 957}
 958
 959static struct eisa_driver vortex_eisa_driver = {
 960        .id_table = vortex_eisa_ids,
 961        .driver   = {
 962                .name    = "3c59x",
 963                .probe   = vortex_eisa_probe,
 964                .remove  = vortex_eisa_remove
 965        }
 966};
 967
 968#endif /* CONFIG_EISA */
 969
 970/* returns count found (>= 0), or negative on error */
 971static int __init vortex_eisa_init(void)
 972{
 973        int eisa_found = 0;
 974        int orig_cards_found = vortex_cards_found;
 975
 976#ifdef CONFIG_EISA
 977        int err;
 978
 979        err = eisa_driver_register (&vortex_eisa_driver);
 980        if (!err) {
 981                /*
 982                 * Because of the way EISA bus is probed, we cannot assume
 983                 * any device have been found when we exit from
 984                 * eisa_driver_register (the bus root driver may not be
 985                 * initialized yet). So we blindly assume something was
 986                 * found, and let the sysfs magic happened...
 987                 */
 988                eisa_found = 1;
 989        }
 990#endif
 991
 992        /* Special code to work-around the Compaq PCI BIOS32 problem. */
 993        if (compaq_ioaddr) {
 994                vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 995                              compaq_irq, compaq_device_id, vortex_cards_found++);
 996        }
 997
 998        return vortex_cards_found - orig_cards_found + eisa_found;
 999}
1000
1001/* returns count (>= 0), or negative on error */
1002static int vortex_init_one(struct pci_dev *pdev,
1003                           const struct pci_device_id *ent)
1004{
1005        int rc, unit, pci_bar;
1006        struct vortex_chip_info *vci;
1007        void __iomem *ioaddr;
1008
1009        /* wake up and enable device */
1010        rc = pci_enable_device(pdev);
1011        if (rc < 0)
1012                goto out;
1013
1014        rc = pci_request_regions(pdev, DRV_NAME);
1015        if (rc < 0)
1016                goto out_disable;
1017
1018        unit = vortex_cards_found;
1019
1020        if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021                /* Determine the default if the user didn't override us */
1022                vci = &vortex_info_tbl[ent->driver_data];
1023                pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024        } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025                pci_bar = use_mmio[unit] ? 1 : 0;
1026        else
1027                pci_bar = global_use_mmio ? 1 : 0;
1028
1029        ioaddr = pci_iomap(pdev, pci_bar, 0);
1030        if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031                ioaddr = pci_iomap(pdev, 0, 0);
1032        if (!ioaddr) {
1033                rc = -ENOMEM;
1034                goto out_release;
1035        }
1036
1037        rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038                           ent->driver_data, unit);
1039        if (rc < 0)
1040                goto out_iounmap;
1041
1042        vortex_cards_found++;
1043        goto out;
1044
1045out_iounmap:
1046        pci_iounmap(pdev, ioaddr);
1047out_release:
1048        pci_release_regions(pdev);
1049out_disable:
1050        pci_disable_device(pdev);
1051out:
1052        return rc;
1053}
1054
1055static const struct net_device_ops boomrang_netdev_ops = {
1056        .ndo_open               = vortex_open,
1057        .ndo_stop               = vortex_close,
1058        .ndo_start_xmit         = boomerang_start_xmit,
1059        .ndo_tx_timeout         = vortex_tx_timeout,
1060        .ndo_get_stats          = vortex_get_stats,
1061#ifdef CONFIG_PCI
1062        .ndo_do_ioctl           = vortex_ioctl,
1063#endif
1064        .ndo_set_rx_mode        = set_rx_mode,
1065        .ndo_change_mtu         = eth_change_mtu,
1066        .ndo_set_mac_address    = eth_mac_addr,
1067        .ndo_validate_addr      = eth_validate_addr,
1068#ifdef CONFIG_NET_POLL_CONTROLLER
1069        .ndo_poll_controller    = poll_vortex,
1070#endif
1071};
1072
1073static const struct net_device_ops vortex_netdev_ops = {
1074        .ndo_open               = vortex_open,
1075        .ndo_stop               = vortex_close,
1076        .ndo_start_xmit         = vortex_start_xmit,
1077        .ndo_tx_timeout         = vortex_tx_timeout,
1078        .ndo_get_stats          = vortex_get_stats,
1079#ifdef CONFIG_PCI
1080        .ndo_do_ioctl           = vortex_ioctl,
1081#endif
1082        .ndo_set_rx_mode        = set_rx_mode,
1083        .ndo_change_mtu         = eth_change_mtu,
1084        .ndo_set_mac_address    = eth_mac_addr,
1085        .ndo_validate_addr      = eth_validate_addr,
1086#ifdef CONFIG_NET_POLL_CONTROLLER
1087        .ndo_poll_controller    = poll_vortex,
1088#endif
1089};
1090
1091/*
1092 * Start up the PCI/EISA device which is described by *gendev.
1093 * Return 0 on success.
1094 *
1095 * NOTE: pdev can be NULL, for the case of a Compaq device
1096 */
1097static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1098                         int chip_idx, int card_idx)
1099{
1100        struct vortex_private *vp;
1101        int option;
1102        unsigned int eeprom[0x40], checksum = 0;                /* EEPROM contents */
1103        int i, step;
1104        struct net_device *dev;
1105        static int printed_version;
1106        int retval, print_info;
1107        struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1108        const char *print_name = "3c59x";
1109        struct pci_dev *pdev = NULL;
1110        struct eisa_device *edev = NULL;
1111
1112        if (!printed_version) {
1113                pr_info("%s", version);
1114                printed_version = 1;
1115        }
1116
1117        if (gendev) {
1118                if ((pdev = DEVICE_PCI(gendev))) {
1119                        print_name = pci_name(pdev);
1120                }
1121
1122                if ((edev = DEVICE_EISA(gendev))) {
1123                        print_name = dev_name(&edev->dev);
1124                }
1125        }
1126
1127        dev = alloc_etherdev(sizeof(*vp));
1128        retval = -ENOMEM;
1129        if (!dev)
1130                goto out;
1131
1132        SET_NETDEV_DEV(dev, gendev);
1133        vp = netdev_priv(dev);
1134
1135        option = global_options;
1136
1137        /* The lower four bits are the media type. */
1138        if (dev->mem_start) {
1139                /*
1140                 * The 'options' param is passed in as the third arg to the
1141                 * LILO 'ether=' argument for non-modular use
1142                 */
1143                option = dev->mem_start;
1144        }
1145        else if (card_idx < MAX_UNITS) {
1146                if (options[card_idx] >= 0)
1147                        option = options[card_idx];
1148        }
1149
1150        if (option > 0) {
1151                if (option & 0x8000)
1152                        vortex_debug = 7;
1153                if (option & 0x4000)
1154                        vortex_debug = 2;
1155                if (option & 0x0400)
1156                        vp->enable_wol = 1;
1157        }
1158
1159        print_info = (vortex_debug > 1);
1160        if (print_info)
1161                pr_info("See Documentation/networking/vortex.txt\n");
1162
1163        pr_info("%s: 3Com %s %s at %p.\n",
1164               print_name,
1165               pdev ? "PCI" : "EISA",
1166               vci->name,
1167               ioaddr);
1168
1169        dev->base_addr = (unsigned long)ioaddr;
1170        dev->irq = irq;
1171        dev->mtu = mtu;
1172        vp->ioaddr = ioaddr;
1173        vp->large_frames = mtu > 1500;
1174        vp->drv_flags = vci->drv_flags;
1175        vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1176        vp->io_size = vci->io_size;
1177        vp->card_idx = card_idx;
1178        vp->window = -1;
1179
1180        /* module list only for Compaq device */
1181        if (gendev == NULL) {
1182                compaq_net_device = dev;
1183        }
1184
1185        /* PCI-only startup logic */
1186        if (pdev) {
1187                /* enable bus-mastering if necessary */
1188                if (vci->flags & PCI_USES_MASTER)
1189                        pci_set_master(pdev);
1190
1191                if (vci->drv_flags & IS_VORTEX) {
1192                        u8 pci_latency;
1193                        u8 new_latency = 248;
1194
1195                        /* Check the PCI latency value.  On the 3c590 series the latency timer
1196                           must be set to the maximum value to avoid data corruption that occurs
1197                           when the timer expires during a transfer.  This bug exists the Vortex
1198                           chip only. */
1199                        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200                        if (pci_latency < new_latency) {
1201                                pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202                                        print_name, pci_latency, new_latency);
1203                                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204                        }
1205                }
1206        }
1207
1208        spin_lock_init(&vp->lock);
1209        spin_lock_init(&vp->mii_lock);
1210        spin_lock_init(&vp->window_lock);
1211        vp->gendev = gendev;
1212        vp->mii.dev = dev;
1213        vp->mii.mdio_read = mdio_read;
1214        vp->mii.mdio_write = mdio_write;
1215        vp->mii.phy_id_mask = 0x1f;
1216        vp->mii.reg_num_mask = 0x1f;
1217
1218        /* Makes sure rings are at least 16 byte aligned. */
1219        vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220                                           + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221                                           &vp->rx_ring_dma);
1222        retval = -ENOMEM;
1223        if (!vp->rx_ring)
1224                goto free_device;
1225
1226        vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227        vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228
1229        /* if we are a PCI driver, we store info in pdev->driver_data
1230         * instead of a module list */
1231        if (pdev)
1232                pci_set_drvdata(pdev, dev);
1233        if (edev)
1234                eisa_set_drvdata(edev, dev);
1235
1236        vp->media_override = 7;
1237        if (option >= 0) {
1238                vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1239                if (vp->media_override != 7)
1240                        vp->medialock = 1;
1241                vp->full_duplex = (option & 0x200) ? 1 : 0;
1242                vp->bus_master = (option & 16) ? 1 : 0;
1243        }
1244
1245        if (global_full_duplex > 0)
1246                vp->full_duplex = 1;
1247        if (global_enable_wol > 0)
1248                vp->enable_wol = 1;
1249
1250        if (card_idx < MAX_UNITS) {
1251                if (full_duplex[card_idx] > 0)
1252                        vp->full_duplex = 1;
1253                if (flow_ctrl[card_idx] > 0)
1254                        vp->flow_ctrl = 1;
1255                if (enable_wol[card_idx] > 0)
1256                        vp->enable_wol = 1;
1257        }
1258
1259        vp->mii.force_media = vp->full_duplex;
1260        vp->options = option;
1261        /* Read the station address from the EEPROM. */
1262        {
1263                int base;
1264
1265                if (vci->drv_flags & EEPROM_8BIT)
1266                        base = 0x230;
1267                else if (vci->drv_flags & EEPROM_OFFSET)
1268                        base = EEPROM_Read + 0x30;
1269                else
1270                        base = EEPROM_Read;
1271
1272                for (i = 0; i < 0x40; i++) {
1273                        int timer;
1274                        window_write16(vp, base + i, 0, Wn0EepromCmd);
1275                        /* Pause for at least 162 us. for the read to take place. */
1276                        for (timer = 10; timer >= 0; timer--) {
1277                                udelay(162);
1278                                if ((window_read16(vp, 0, Wn0EepromCmd) &
1279                                     0x8000) == 0)
1280                                        break;
1281                        }
1282                        eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283                }
1284        }
1285        for (i = 0; i < 0x18; i++)
1286                checksum ^= eeprom[i];
1287        checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288        if (checksum != 0x00) {         /* Grrr, needless incompatible change 3Com. */
1289                while (i < 0x21)
1290                        checksum ^= eeprom[i++];
1291                checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292        }
1293        if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294                pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295        for (i = 0; i < 3; i++)
1296                ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297        if (print_info)
1298                pr_cont(" %pM", dev->dev_addr);
1299        /* Unfortunately an all zero eeprom passes the checksum and this
1300           gets found in the wild in failure cases. Crypto is hard 8) */
1301        if (!is_valid_ether_addr(dev->dev_addr)) {
1302                retval = -EINVAL;
1303                pr_err("*** EEPROM MAC address is invalid.\n");
1304                goto free_ring; /* With every pack */
1305        }
1306        for (i = 0; i < 6; i++)
1307                window_write8(vp, dev->dev_addr[i], 2, i);
1308
1309        if (print_info)
1310                pr_cont(", IRQ %d\n", dev->irq);
1311        /* Tell them about an invalid IRQ. */
1312        if (dev->irq <= 0 || dev->irq >= nr_irqs)
1313                pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1314                        dev->irq);
1315
1316        step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1317        if (print_info) {
1318                pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1319                        eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1320                        step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1321        }
1322
1323
1324        if (pdev && vci->drv_flags & HAS_CB_FNS) {
1325                unsigned short n;
1326
1327                vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1328                if (!vp->cb_fn_base) {
1329                        retval = -ENOMEM;
1330                        goto free_ring;
1331                }
1332
1333                if (print_info) {
1334                        pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1335                                print_name,
1336                                (unsigned long long)pci_resource_start(pdev, 2),
1337                                vp->cb_fn_base);
1338                }
1339
1340                n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1341                if (vp->drv_flags & INVERT_LED_PWR)
1342                        n |= 0x10;
1343                if (vp->drv_flags & INVERT_MII_PWR)
1344                        n |= 0x4000;
1345                window_write16(vp, n, 2, Wn2_ResetOptions);
1346                if (vp->drv_flags & WNO_XCVR_PWR) {
1347                        window_write16(vp, 0x0800, 0, 0);
1348                }
1349        }
1350
1351        /* Extract our information from the EEPROM data. */
1352        vp->info1 = eeprom[13];
1353        vp->info2 = eeprom[15];
1354        vp->capabilities = eeprom[16];
1355
1356        if (vp->info1 & 0x8000) {
1357                vp->full_duplex = 1;
1358                if (print_info)
1359                        pr_info("Full duplex capable\n");
1360        }
1361
1362        {
1363                static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1364                unsigned int config;
1365                vp->available_media = window_read16(vp, 3, Wn3_Options);
1366                if ((vp->available_media & 0xff) == 0)          /* Broken 3c916 */
1367                        vp->available_media = 0x40;
1368                config = window_read32(vp, 3, Wn3_Config);
1369                if (print_info) {
1370                        pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1371                                config, window_read16(vp, 3, Wn3_Options));
1372                        pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1373                                   8 << RAM_SIZE(config),
1374                                   RAM_WIDTH(config) ? "word" : "byte",
1375                                   ram_split[RAM_SPLIT(config)],
1376                                   AUTOSELECT(config) ? "autoselect/" : "",
1377                                   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1378                                   media_tbl[XCVR(config)].name);
1379                }
1380                vp->default_media = XCVR(config);
1381                if (vp->default_media == XCVR_NWAY)
1382                        vp->has_nway = 1;
1383                vp->autoselect = AUTOSELECT(config);
1384        }
1385
1386        if (vp->media_override != 7) {
1387                pr_info("%s:  Media override to transceiver type %d (%s).\n",
1388                                print_name, vp->media_override,
1389                                media_tbl[vp->media_override].name);
1390                dev->if_port = vp->media_override;
1391        } else
1392                dev->if_port = vp->default_media;
1393
1394        if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1395                dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1396                int phy, phy_idx = 0;
1397                mii_preamble_required++;
1398                if (vp->drv_flags & EXTRA_PREAMBLE)
1399                        mii_preamble_required++;
1400                mdio_sync(vp, 32);
1401                mdio_read(dev, 24, MII_BMSR);
1402                for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1403                        int mii_status, phyx;
1404
1405                        /*
1406                         * For the 3c905CX we look at index 24 first, because it bogusly
1407                         * reports an external PHY at all indices
1408                         */
1409                        if (phy == 0)
1410                                phyx = 24;
1411                        else if (phy <= 24)
1412                                phyx = phy - 1;
1413                        else
1414                                phyx = phy;
1415                        mii_status = mdio_read(dev, phyx, MII_BMSR);
1416                        if (mii_status  &&  mii_status != 0xffff) {
1417                                vp->phys[phy_idx++] = phyx;
1418                                if (print_info) {
1419                                        pr_info("  MII transceiver found at address %d, status %4x.\n",
1420                                                phyx, mii_status);
1421                                }
1422                                if ((mii_status & 0x0040) == 0)
1423                                        mii_preamble_required++;
1424                        }
1425                }
1426                mii_preamble_required--;
1427                if (phy_idx == 0) {
1428                        pr_warn("  ***WARNING*** No MII transceivers found!\n");
1429                        vp->phys[0] = 24;
1430                } else {
1431                        vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1432                        if (vp->full_duplex) {
1433                                /* Only advertise the FD media types. */
1434                                vp->advertising &= ~0x02A0;
1435                                mdio_write(dev, vp->phys[0], 4, vp->advertising);
1436                        }
1437                }
1438                vp->mii.phy_id = vp->phys[0];
1439        }
1440
1441        if (vp->capabilities & CapBusMaster) {
1442                vp->full_bus_master_tx = 1;
1443                if (print_info) {
1444                        pr_info("  Enabling bus-master transmits and %s receives.\n",
1445                        (vp->info2 & 1) ? "early" : "whole-frame" );
1446                }
1447                vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1448                vp->bus_master = 0;             /* AKPM: vortex only */
1449        }
1450
1451        /* The 3c59x-specific entries in the device structure. */
1452        if (vp->full_bus_master_tx) {
1453                dev->netdev_ops = &boomrang_netdev_ops;
1454                /* Actually, it still should work with iommu. */
1455                if (card_idx < MAX_UNITS &&
1456                    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1457                                hw_checksums[card_idx] == 1)) {
1458                        dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1459                }
1460        } else
1461                dev->netdev_ops =  &vortex_netdev_ops;
1462
1463        if (print_info) {
1464                pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1465                                print_name,
1466                                (dev->features & NETIF_F_SG) ? "en":"dis",
1467                                (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1468        }
1469
1470        dev->ethtool_ops = &vortex_ethtool_ops;
1471        dev->watchdog_timeo = (watchdog * HZ) / 1000;
1472
1473        if (pdev) {
1474                vp->pm_state_valid = 1;
1475                pci_save_state(pdev);
1476                acpi_set_WOL(dev);
1477        }
1478        retval = register_netdev(dev);
1479        if (retval == 0)
1480                return 0;
1481
1482free_ring:
1483        pci_free_consistent(pdev,
1484                                                sizeof(struct boom_rx_desc) * RX_RING_SIZE
1485                                                        + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1486                                                vp->rx_ring,
1487                                                vp->rx_ring_dma);
1488free_device:
1489        free_netdev(dev);
1490        pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1491out:
1492        return retval;
1493}
1494
1495static void
1496issue_and_wait(struct net_device *dev, int cmd)
1497{
1498        struct vortex_private *vp = netdev_priv(dev);
1499        void __iomem *ioaddr = vp->ioaddr;
1500        int i;
1501
1502        iowrite16(cmd, ioaddr + EL3_CMD);
1503        for (i = 0; i < 2000; i++) {
1504                if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1505                        return;
1506        }
1507
1508        /* OK, that didn't work.  Do it the slow way.  One second */
1509        for (i = 0; i < 100000; i++) {
1510                if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1511                        if (vortex_debug > 1)
1512                                pr_info("%s: command 0x%04x took %d usecs\n",
1513                                           dev->name, cmd, i * 10);
1514                        return;
1515                }
1516                udelay(10);
1517        }
1518        pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1519                           dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1520}
1521
1522static void
1523vortex_set_duplex(struct net_device *dev)
1524{
1525        struct vortex_private *vp = netdev_priv(dev);
1526
1527        pr_info("%s:  setting %s-duplex.\n",
1528                dev->name, (vp->full_duplex) ? "full" : "half");
1529
1530        /* Set the full-duplex bit. */
1531        window_write16(vp,
1532                       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1533                       (vp->large_frames ? 0x40 : 0) |
1534                       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1535                        0x100 : 0),
1536                       3, Wn3_MAC_Ctrl);
1537}
1538
1539static void vortex_check_media(struct net_device *dev, unsigned int init)
1540{
1541        struct vortex_private *vp = netdev_priv(dev);
1542        unsigned int ok_to_print = 0;
1543
1544        if (vortex_debug > 3)
1545                ok_to_print = 1;
1546
1547        if (mii_check_media(&vp->mii, ok_to_print, init)) {
1548                vp->full_duplex = vp->mii.full_duplex;
1549                vortex_set_duplex(dev);
1550        } else if (init) {
1551                vortex_set_duplex(dev);
1552        }
1553}
1554
1555static int
1556vortex_up(struct net_device *dev)
1557{
1558        struct vortex_private *vp = netdev_priv(dev);
1559        void __iomem *ioaddr = vp->ioaddr;
1560        unsigned int config;
1561        int i, mii_reg1, mii_reg5, err = 0;
1562
1563        if (VORTEX_PCI(vp)) {
1564                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);    /* Go active */
1565                if (vp->pm_state_valid)
1566                        pci_restore_state(VORTEX_PCI(vp));
1567                err = pci_enable_device(VORTEX_PCI(vp));
1568                if (err) {
1569                        pr_warn("%s: Could not enable device\n", dev->name);
1570                        goto err_out;
1571                }
1572        }
1573
1574        /* Before initializing select the active media port. */
1575        config = window_read32(vp, 3, Wn3_Config);
1576
1577        if (vp->media_override != 7) {
1578                pr_info("%s: Media override to transceiver %d (%s).\n",
1579                           dev->name, vp->media_override,
1580                           media_tbl[vp->media_override].name);
1581                dev->if_port = vp->media_override;
1582        } else if (vp->autoselect) {
1583                if (vp->has_nway) {
1584                        if (vortex_debug > 1)
1585                                pr_info("%s: using NWAY device table, not %d\n",
1586                                                                dev->name, dev->if_port);
1587                        dev->if_port = XCVR_NWAY;
1588                } else {
1589                        /* Find first available media type, starting with 100baseTx. */
1590                        dev->if_port = XCVR_100baseTx;
1591                        while (! (vp->available_media & media_tbl[dev->if_port].mask))
1592                                dev->if_port = media_tbl[dev->if_port].next;
1593                        if (vortex_debug > 1)
1594                                pr_info("%s: first available media type: %s\n",
1595                                        dev->name, media_tbl[dev->if_port].name);
1596                }
1597        } else {
1598                dev->if_port = vp->default_media;
1599                if (vortex_debug > 1)
1600                        pr_info("%s: using default media %s\n",
1601                                dev->name, media_tbl[dev->if_port].name);
1602        }
1603
1604        init_timer(&vp->timer);
1605        vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1606        vp->timer.data = (unsigned long)dev;
1607        vp->timer.function = vortex_timer;              /* timer handler */
1608        add_timer(&vp->timer);
1609
1610        init_timer(&vp->rx_oom_timer);
1611        vp->rx_oom_timer.data = (unsigned long)dev;
1612        vp->rx_oom_timer.function = rx_oom_timer;
1613
1614        if (vortex_debug > 1)
1615                pr_debug("%s: Initial media type %s.\n",
1616                           dev->name, media_tbl[dev->if_port].name);
1617
1618        vp->full_duplex = vp->mii.force_media;
1619        config = BFINS(config, dev->if_port, 20, 4);
1620        if (vortex_debug > 6)
1621                pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1622        window_write32(vp, config, 3, Wn3_Config);
1623
1624        if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1625                mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1626                mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1627                vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1628                vp->mii.full_duplex = vp->full_duplex;
1629
1630                vortex_check_media(dev, 1);
1631        }
1632        else
1633                vortex_set_duplex(dev);
1634
1635        issue_and_wait(dev, TxReset);
1636        /*
1637         * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1638         */
1639        issue_and_wait(dev, RxReset|0x04);
1640
1641
1642        iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1643
1644        if (vortex_debug > 1) {
1645                pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1646                           dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1647        }
1648
1649        /* Set the station address and mask in window 2 each time opened. */
1650        for (i = 0; i < 6; i++)
1651                window_write8(vp, dev->dev_addr[i], 2, i);
1652        for (; i < 12; i+=2)
1653                window_write16(vp, 0, 2, i);
1654
1655        if (vp->cb_fn_base) {
1656                unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1657                if (vp->drv_flags & INVERT_LED_PWR)
1658                        n |= 0x10;
1659                if (vp->drv_flags & INVERT_MII_PWR)
1660                        n |= 0x4000;
1661                window_write16(vp, n, 2, Wn2_ResetOptions);
1662        }
1663
1664        if (dev->if_port == XCVR_10base2)
1665                /* Start the thinnet transceiver. We should really wait 50ms...*/
1666                iowrite16(StartCoax, ioaddr + EL3_CMD);
1667        if (dev->if_port != XCVR_NWAY) {
1668                window_write16(vp,
1669                               (window_read16(vp, 4, Wn4_Media) &
1670                                ~(Media_10TP|Media_SQE)) |
1671                               media_tbl[dev->if_port].media_bits,
1672                               4, Wn4_Media);
1673        }
1674
1675        /* Switch to the stats window, and clear all stats by reading. */
1676        iowrite16(StatsDisable, ioaddr + EL3_CMD);
1677        for (i = 0; i < 10; i++)
1678                window_read8(vp, 6, i);
1679        window_read16(vp, 6, 10);
1680        window_read16(vp, 6, 12);
1681        /* New: On the Vortex we must also clear the BadSSD counter. */
1682        window_read8(vp, 4, 12);
1683        /* ..and on the Boomerang we enable the extra statistics bits. */
1684        window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1685
1686        if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1687                vp->cur_rx = vp->dirty_rx = 0;
1688                /* Initialize the RxEarly register as recommended. */
1689                iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1690                iowrite32(0x0020, ioaddr + PktStatus);
1691                iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1692        }
1693        if (vp->full_bus_master_tx) {           /* Boomerang bus master Tx. */
1694                vp->cur_tx = vp->dirty_tx = 0;
1695                if (vp->drv_flags & IS_BOOMERANG)
1696                        iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1697                /* Clear the Rx, Tx rings. */
1698                for (i = 0; i < RX_RING_SIZE; i++)      /* AKPM: this is done in vortex_open, too */
1699                        vp->rx_ring[i].status = 0;
1700                for (i = 0; i < TX_RING_SIZE; i++)
1701                        vp->tx_skbuff[i] = NULL;
1702                iowrite32(0, ioaddr + DownListPtr);
1703        }
1704        /* Set receiver mode: presumably accept b-case and phys addr only. */
1705        set_rx_mode(dev);
1706        /* enable 802.1q tagged frames */
1707        set_8021q_mode(dev, 1);
1708        iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1709
1710        iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1711        iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1712        /* Allow status bits to be seen. */
1713        vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1714                (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1715                (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1716                (vp->bus_master ? DMADone : 0);
1717        vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1718                (vp->full_bus_master_rx ? 0 : RxComplete) |
1719                StatsFull | HostError | TxComplete | IntReq
1720                | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1721        iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1722        /* Ack all pending events, and set active indicator mask. */
1723        iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1724                 ioaddr + EL3_CMD);
1725        iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1726        if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
1727                iowrite32(0x8000, vp->cb_fn_base + 4);
1728        netif_start_queue (dev);
1729        netdev_reset_queue(dev);
1730err_out:
1731        return err;
1732}
1733
1734static int
1735vortex_open(struct net_device *dev)
1736{
1737        struct vortex_private *vp = netdev_priv(dev);
1738        int i;
1739        int retval;
1740
1741        /* Use the now-standard shared IRQ implementation. */
1742        if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1743                                boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1744                pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1745                goto err;
1746        }
1747
1748        if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1749                if (vortex_debug > 2)
1750                        pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1751                for (i = 0; i < RX_RING_SIZE; i++) {
1752                        struct sk_buff *skb;
1753                        vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1754                        vp->rx_ring[i].status = 0;      /* Clear complete bit. */
1755                        vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1756
1757                        skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1758                                                 GFP_KERNEL);
1759                        vp->rx_skbuff[i] = skb;
1760                        if (skb == NULL)
1761                                break;                  /* Bad news!  */
1762
1763                        skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1764                        vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1765                }
1766                if (i != RX_RING_SIZE) {
1767                        pr_emerg("%s: no memory for rx ring\n", dev->name);
1768                        retval = -ENOMEM;
1769                        goto err_free_skb;
1770                }
1771                /* Wrap the ring. */
1772                vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1773        }
1774
1775        retval = vortex_up(dev);
1776        if (!retval)
1777                goto out;
1778
1779err_free_skb:
1780        for (i = 0; i < RX_RING_SIZE; i++) {
1781                if (vp->rx_skbuff[i]) {
1782                        dev_kfree_skb(vp->rx_skbuff[i]);
1783                        vp->rx_skbuff[i] = NULL;
1784                }
1785        }
1786        free_irq(dev->irq, dev);
1787err:
1788        if (vortex_debug > 1)
1789                pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1790out:
1791        return retval;
1792}
1793
1794static void
1795vortex_timer(unsigned long data)
1796{
1797        struct net_device *dev = (struct net_device *)data;
1798        struct vortex_private *vp = netdev_priv(dev);
1799        void __iomem *ioaddr = vp->ioaddr;
1800        int next_tick = 60*HZ;
1801        int ok = 0;
1802        int media_status;
1803
1804        if (vortex_debug > 2) {
1805                pr_debug("%s: Media selection timer tick happened, %s.\n",
1806                           dev->name, media_tbl[dev->if_port].name);
1807                pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1808        }
1809
1810        media_status = window_read16(vp, 4, Wn4_Media);
1811        switch (dev->if_port) {
1812        case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1813                if (media_status & Media_LnkBeat) {
1814                        netif_carrier_on(dev);
1815                        ok = 1;
1816                        if (vortex_debug > 1)
1817                                pr_debug("%s: Media %s has link beat, %x.\n",
1818                                           dev->name, media_tbl[dev->if_port].name, media_status);
1819                } else {
1820                        netif_carrier_off(dev);
1821                        if (vortex_debug > 1) {
1822                                pr_debug("%s: Media %s has no link beat, %x.\n",
1823                                           dev->name, media_tbl[dev->if_port].name, media_status);
1824                        }
1825                }
1826                break;
1827        case XCVR_MII: case XCVR_NWAY:
1828                {
1829                        ok = 1;
1830                        vortex_check_media(dev, 0);
1831                }
1832                break;
1833          default:                                      /* Other media types handled by Tx timeouts. */
1834                if (vortex_debug > 1)
1835                  pr_debug("%s: Media %s has no indication, %x.\n",
1836                                 dev->name, media_tbl[dev->if_port].name, media_status);
1837                ok = 1;
1838        }
1839
1840        if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1841                next_tick = 5*HZ;
1842
1843        if (vp->medialock)
1844                goto leave_media_alone;
1845
1846        if (!ok) {
1847                unsigned int config;
1848
1849                spin_lock_irq(&vp->lock);
1850
1851                do {
1852                        dev->if_port = media_tbl[dev->if_port].next;
1853                } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1854                if (dev->if_port == XCVR_Default) { /* Go back to default. */
1855                  dev->if_port = vp->default_media;
1856                  if (vortex_debug > 1)
1857                        pr_debug("%s: Media selection failing, using default %s port.\n",
1858                                   dev->name, media_tbl[dev->if_port].name);
1859                } else {
1860                        if (vortex_debug > 1)
1861                                pr_debug("%s: Media selection failed, now trying %s port.\n",
1862                                           dev->name, media_tbl[dev->if_port].name);
1863                        next_tick = media_tbl[dev->if_port].wait;
1864                }
1865                window_write16(vp,
1866                               (media_status & ~(Media_10TP|Media_SQE)) |
1867                               media_tbl[dev->if_port].media_bits,
1868                               4, Wn4_Media);
1869
1870                config = window_read32(vp, 3, Wn3_Config);
1871                config = BFINS(config, dev->if_port, 20, 4);
1872                window_write32(vp, config, 3, Wn3_Config);
1873
1874                iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1875                         ioaddr + EL3_CMD);
1876                if (vortex_debug > 1)
1877                        pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1878                /* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1879
1880                spin_unlock_irq(&vp->lock);
1881        }
1882
1883leave_media_alone:
1884        if (vortex_debug > 2)
1885          pr_debug("%s: Media selection timer finished, %s.\n",
1886                         dev->name, media_tbl[dev->if_port].name);
1887
1888        mod_timer(&vp->timer, RUN_AT(next_tick));
1889        if (vp->deferred)
1890                iowrite16(FakeIntr, ioaddr + EL3_CMD);
1891}
1892
1893static void vortex_tx_timeout(struct net_device *dev)
1894{
1895        struct vortex_private *vp = netdev_priv(dev);
1896        void __iomem *ioaddr = vp->ioaddr;
1897
1898        pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1899                   dev->name, ioread8(ioaddr + TxStatus),
1900                   ioread16(ioaddr + EL3_STATUS));
1901        pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1902                        window_read16(vp, 4, Wn4_NetDiag),
1903                        window_read16(vp, 4, Wn4_Media),
1904                        ioread32(ioaddr + PktStatus),
1905                        window_read16(vp, 4, Wn4_FIFODiag));
1906        /* Slight code bloat to be user friendly. */
1907        if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1908                pr_err("%s: Transmitter encountered 16 collisions --"
1909                           " network cable problem?\n", dev->name);
1910        if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1911                pr_err("%s: Interrupt posted but not delivered --"
1912                           " IRQ blocked by another device?\n", dev->name);
1913                /* Bad idea here.. but we might as well handle a few events. */
1914                {
1915                        /*
1916                         * Block interrupts because vortex_interrupt does a bare spin_lock()
1917                         */
1918                        unsigned long flags;
1919                        local_irq_save(flags);
1920                        if (vp->full_bus_master_tx)
1921                                boomerang_interrupt(dev->irq, dev);
1922                        else
1923                                vortex_interrupt(dev->irq, dev);
1924                        local_irq_restore(flags);
1925                }
1926        }
1927
1928        if (vortex_debug > 0)
1929                dump_tx_ring(dev);
1930
1931        issue_and_wait(dev, TxReset);
1932
1933        dev->stats.tx_errors++;
1934        if (vp->full_bus_master_tx) {
1935                pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1936                if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1937                        iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1938                                 ioaddr + DownListPtr);
1939                if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1940                        netif_wake_queue (dev);
1941                        netdev_reset_queue (dev);
1942                }
1943                if (vp->drv_flags & IS_BOOMERANG)
1944                        iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1945                iowrite16(DownUnstall, ioaddr + EL3_CMD);
1946        } else {
1947                dev->stats.tx_dropped++;
1948                netif_wake_queue(dev);
1949                netdev_reset_queue(dev);
1950        }
1951        /* Issue Tx Enable */
1952        iowrite16(TxEnable, ioaddr + EL3_CMD);
1953        dev->trans_start = jiffies; /* prevent tx timeout */
1954}
1955
1956/*
1957 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1958 * the cache impact.
1959 */
1960static void
1961vortex_error(struct net_device *dev, int status)
1962{
1963        struct vortex_private *vp = netdev_priv(dev);
1964        void __iomem *ioaddr = vp->ioaddr;
1965        int do_tx_reset = 0, reset_mask = 0;
1966        unsigned char tx_status = 0;
1967
1968        if (vortex_debug > 2) {
1969                pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1970        }
1971
1972        if (status & TxComplete) {                      /* Really "TxError" for us. */
1973                tx_status = ioread8(ioaddr + TxStatus);
1974                /* Presumably a tx-timeout. We must merely re-enable. */
1975                if (vortex_debug > 2 ||
1976                    (tx_status != 0x88 && vortex_debug > 0)) {
1977                        pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1978                                   dev->name, tx_status);
1979                        if (tx_status == 0x82) {
1980                                pr_err("Probably a duplex mismatch.  See "
1981                                                "Documentation/networking/vortex.txt\n");
1982                        }
1983                        dump_tx_ring(dev);
1984                }
1985                if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1986                if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1987                if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1988                iowrite8(0, ioaddr + TxStatus);
1989                if (tx_status & 0x30) {                 /* txJabber or txUnderrun */
1990                        do_tx_reset = 1;
1991                } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {      /* maxCollisions */
1992                        do_tx_reset = 1;
1993                        reset_mask = 0x0108;            /* Reset interface logic, but not download logic */
1994                } else {                                /* Merely re-enable the transmitter. */
1995                        iowrite16(TxEnable, ioaddr + EL3_CMD);
1996                }
1997        }
1998
1999        if (status & RxEarly)                           /* Rx early is unused. */
2000                iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2001
2002        if (status & StatsFull) {                       /* Empty statistics. */
2003                static int DoneDidThat;
2004                if (vortex_debug > 4)
2005                        pr_debug("%s: Updating stats.\n", dev->name);
2006                update_stats(ioaddr, dev);
2007                /* HACK: Disable statistics as an interrupt source. */
2008                /* This occurs when we have the wrong media type! */
2009                if (DoneDidThat == 0  &&
2010                        ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2011                        pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2012                                dev->name);
2013                        iowrite16(SetIntrEnb |
2014                                  (window_read16(vp, 5, 10) & ~StatsFull),
2015                                  ioaddr + EL3_CMD);
2016                        vp->intr_enable &= ~StatsFull;
2017                        DoneDidThat++;
2018                }
2019        }
2020        if (status & IntReq) {          /* Restore all interrupt sources.  */
2021                iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2022                iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2023        }
2024        if (status & HostError) {
2025                u16 fifo_diag;
2026                fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2027                pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2028                           dev->name, fifo_diag);
2029                /* Adapter failure requires Tx/Rx reset and reinit. */
2030                if (vp->full_bus_master_tx) {
2031                        int bus_status = ioread32(ioaddr + PktStatus);
2032                        /* 0x80000000 PCI master abort. */
2033                        /* 0x40000000 PCI target abort. */
2034                        if (vortex_debug)
2035                                pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2036
2037                        /* In this case, blow the card away */
2038                        /* Must not enter D3 or we can't legally issue the reset! */
2039                        vortex_down(dev, 0);
2040                        issue_and_wait(dev, TotalReset | 0xff);
2041                        vortex_up(dev);         /* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2042                } else if (fifo_diag & 0x0400)
2043                        do_tx_reset = 1;
2044                if (fifo_diag & 0x3000) {
2045                        /* Reset Rx fifo and upload logic */
2046                        issue_and_wait(dev, RxReset|0x07);
2047                        /* Set the Rx filter to the current state. */
2048                        set_rx_mode(dev);
2049                        /* enable 802.1q VLAN tagged frames */
2050                        set_8021q_mode(dev, 1);
2051                        iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2052                        iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2053                }
2054        }
2055
2056        if (do_tx_reset) {
2057                issue_and_wait(dev, TxReset|reset_mask);
2058                iowrite16(TxEnable, ioaddr + EL3_CMD);
2059                if (!vp->full_bus_master_tx)
2060                        netif_wake_queue(dev);
2061        }
2062}
2063
2064static netdev_tx_t
2065vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2066{
2067        struct vortex_private *vp = netdev_priv(dev);
2068        void __iomem *ioaddr = vp->ioaddr;
2069        int skblen = skb->len;
2070
2071        /* Put out the doubleword header... */
2072        iowrite32(skb->len, ioaddr + TX_FIFO);
2073        if (vp->bus_master) {
2074                /* Set the bus-master controller to transfer the packet. */
2075                int len = (skb->len + 3) & ~3;
2076                vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2077                                                PCI_DMA_TODEVICE);
2078                spin_lock_irq(&vp->window_lock);
2079                window_set(vp, 7);
2080                iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2081                iowrite16(len, ioaddr + Wn7_MasterLen);
2082                spin_unlock_irq(&vp->window_lock);
2083                vp->tx_skb = skb;
2084                skb_tx_timestamp(skb);
2085                iowrite16(StartDMADown, ioaddr + EL3_CMD);
2086                /* netif_wake_queue() will be called at the DMADone interrupt. */
2087        } else {
2088                /* ... and the packet rounded to a doubleword. */
2089                skb_tx_timestamp(skb);
2090                iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2091                dev_consume_skb_any (skb);
2092                if (ioread16(ioaddr + TxFree) > 1536) {
2093                        netif_start_queue (dev);        /* AKPM: redundant? */
2094                } else {
2095                        /* Interrupt us when the FIFO has room for max-sized packet. */
2096                        netif_stop_queue(dev);
2097                        iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2098                }
2099        }
2100
2101        netdev_sent_queue(dev, skblen);
2102
2103        /* Clear the Tx status stack. */
2104        {
2105                int tx_status;
2106                int i = 32;
2107
2108                while (--i > 0  &&      (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2109                        if (tx_status & 0x3C) {         /* A Tx-disabling error occurred.  */
2110                                if (vortex_debug > 2)
2111                                  pr_debug("%s: Tx error, status %2.2x.\n",
2112                                                 dev->name, tx_status);
2113                                if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2114                                if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2115                                if (tx_status & 0x30) {
2116                                        issue_and_wait(dev, TxReset);
2117                                }
2118                                iowrite16(TxEnable, ioaddr + EL3_CMD);
2119                        }
2120                        iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2121                }
2122        }
2123        return NETDEV_TX_OK;
2124}
2125
2126static netdev_tx_t
2127boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2128{
2129        struct vortex_private *vp = netdev_priv(dev);
2130        void __iomem *ioaddr = vp->ioaddr;
2131        /* Calculate the next Tx descriptor entry. */
2132        int entry = vp->cur_tx % TX_RING_SIZE;
2133        int skblen = skb->len;
2134        struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2135        unsigned long flags;
2136        dma_addr_t dma_addr;
2137
2138        if (vortex_debug > 6) {
2139                pr_debug("boomerang_start_xmit()\n");
2140                pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2141                           dev->name, vp->cur_tx);
2142        }
2143
2144        /*
2145         * We can't allow a recursion from our interrupt handler back into the
2146         * tx routine, as they take the same spin lock, and that causes
2147         * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2148         * a bit
2149         */
2150        if (vp->handling_irq)
2151                return NETDEV_TX_BUSY;
2152
2153        if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2154                if (vortex_debug > 0)
2155                        pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2156                                dev->name);
2157                netif_stop_queue(dev);
2158                return NETDEV_TX_BUSY;
2159        }
2160
2161        vp->tx_skbuff[entry] = skb;
2162
2163        vp->tx_ring[entry].next = 0;
2164#if DO_ZEROCOPY
2165        if (skb->ip_summed != CHECKSUM_PARTIAL)
2166                        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2167        else
2168                        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2169
2170        if (!skb_shinfo(skb)->nr_frags) {
2171                dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2172                                          PCI_DMA_TODEVICE);
2173                if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2174                        goto out_dma_err;
2175
2176                vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2177                vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2178        } else {
2179                int i;
2180
2181                dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2182                                          skb_headlen(skb), PCI_DMA_TODEVICE);
2183                if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2184                        goto out_dma_err;
2185
2186                vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2187                vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2188
2189                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2190                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2191
2192                        dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2193                                                    0,
2194                                                    frag->size,
2195                                                    DMA_TO_DEVICE);
2196                        if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2197                                for(i = i-1; i >= 0; i--)
2198                                        dma_unmap_page(&VORTEX_PCI(vp)->dev,
2199                                                       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2200                                                       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2201                                                       DMA_TO_DEVICE);
2202
2203                                pci_unmap_single(VORTEX_PCI(vp),
2204                                                 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2205                                                 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2206                                                 PCI_DMA_TODEVICE);
2207
2208                                goto out_dma_err;
2209                        }
2210
2211                        vp->tx_ring[entry].frag[i+1].addr =
2212                                                cpu_to_le32(dma_addr);
2213
2214                        if (i == skb_shinfo(skb)->nr_frags-1)
2215                                        vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2216                        else
2217                                        vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2218                }
2219        }
2220#else
2221        dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2222        if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2223                goto out_dma_err;
2224        vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2225        vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2226        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2227#endif
2228
2229        spin_lock_irqsave(&vp->lock, flags);
2230        /* Wait for the stall to complete. */
2231        issue_and_wait(dev, DownStall);
2232        prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2233        if (ioread32(ioaddr + DownListPtr) == 0) {
2234                iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2235                vp->queued_packet++;
2236        }
2237
2238        vp->cur_tx++;
2239        netdev_sent_queue(dev, skblen);
2240
2241        if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2242                netif_stop_queue (dev);
2243        } else {                                        /* Clear previous interrupt enable. */
2244#if defined(tx_interrupt_mitigation)
2245                /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2246                 * were selected, this would corrupt DN_COMPLETE. No?
2247                 */
2248                prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2249#endif
2250        }
2251        skb_tx_timestamp(skb);
2252        iowrite16(DownUnstall, ioaddr + EL3_CMD);
2253        spin_unlock_irqrestore(&vp->lock, flags);
2254out:
2255        return NETDEV_TX_OK;
2256out_dma_err:
2257        dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2258        goto out;
2259}
2260
2261/* The interrupt handler does all of the Rx thread work and cleans up
2262   after the Tx thread. */
2263
2264/*
2265 * This is the ISR for the vortex series chips.
2266 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2267 */
2268
2269static irqreturn_t
2270vortex_interrupt(int irq, void *dev_id)
2271{
2272        struct net_device *dev = dev_id;
2273        struct vortex_private *vp = netdev_priv(dev);
2274        void __iomem *ioaddr;
2275        int status;
2276        int work_done = max_interrupt_work;
2277        int handled = 0;
2278        unsigned int bytes_compl = 0, pkts_compl = 0;
2279
2280        ioaddr = vp->ioaddr;
2281        spin_lock(&vp->lock);
2282
2283        status = ioread16(ioaddr + EL3_STATUS);
2284
2285        if (vortex_debug > 6)
2286                pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2287
2288        if ((status & IntLatch) == 0)
2289                goto handler_exit;              /* No interrupt: shared IRQs cause this */
2290        handled = 1;
2291
2292        if (status & IntReq) {
2293                status |= vp->deferred;
2294                vp->deferred = 0;
2295        }
2296
2297        if (status == 0xffff)           /* h/w no longer present (hotplug)? */
2298                goto handler_exit;
2299
2300        if (vortex_debug > 4)
2301                pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2302                           dev->name, status, ioread8(ioaddr + Timer));
2303
2304        spin_lock(&vp->window_lock);
2305        window_set(vp, 7);
2306
2307        do {
2308                if (vortex_debug > 5)
2309                                pr_debug("%s: In interrupt loop, status %4.4x.\n",
2310                                           dev->name, status);
2311                if (status & RxComplete)
2312                        vortex_rx(dev);
2313
2314                if (status & TxAvailable) {
2315                        if (vortex_debug > 5)
2316                                pr_debug("      TX room bit was handled.\n");
2317                        /* There's room in the FIFO for a full-sized packet. */
2318                        iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2319                        netif_wake_queue (dev);
2320                }
2321
2322                if (status & DMADone) {
2323                        if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2324                                iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2325                                pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2326                                pkts_compl++;
2327                                bytes_compl += vp->tx_skb->len;
2328                                dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2329                                if (ioread16(ioaddr + TxFree) > 1536) {
2330                                        /*
2331                                         * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2332                                         * insufficient FIFO room, the TxAvailable test will succeed and call
2333                                         * netif_wake_queue()
2334                                         */
2335                                        netif_wake_queue(dev);
2336                                } else { /* Interrupt when FIFO has room for max-sized packet. */
2337                                        iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2338                                        netif_stop_queue(dev);
2339                                }
2340                        }
2341                }
2342                /* Check for all uncommon interrupts at once. */
2343                if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2344                        if (status == 0xffff)
2345                                break;
2346                        if (status & RxEarly)
2347                                vortex_rx(dev);
2348                        spin_unlock(&vp->window_lock);
2349                        vortex_error(dev, status);
2350                        spin_lock(&vp->window_lock);
2351                        window_set(vp, 7);
2352                }
2353
2354                if (--work_done < 0) {
2355                        pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2356                                dev->name, status);
2357                        /* Disable all pending interrupts. */
2358                        do {
2359                                vp->deferred |= status;
2360                                iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2361                                         ioaddr + EL3_CMD);
2362                                iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2363                        } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2364                        /* The timer will reenable interrupts. */
2365                        mod_timer(&vp->timer, jiffies + 1*HZ);
2366                        break;
2367                }
2368                /* Acknowledge the IRQ. */
2369                iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2370        } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2371
2372        netdev_completed_queue(dev, pkts_compl, bytes_compl);
2373        spin_unlock(&vp->window_lock);
2374
2375        if (vortex_debug > 4)
2376                pr_debug("%s: exiting interrupt, status %4.4x.\n",
2377                           dev->name, status);
2378handler_exit:
2379        spin_unlock(&vp->lock);
2380        return IRQ_RETVAL(handled);
2381}
2382
2383/*
2384 * This is the ISR for the boomerang series chips.
2385 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2386 */
2387
2388static irqreturn_t
2389boomerang_interrupt(int irq, void *dev_id)
2390{
2391        struct net_device *dev = dev_id;
2392        struct vortex_private *vp = netdev_priv(dev);
2393        void __iomem *ioaddr;
2394        int status;
2395        int work_done = max_interrupt_work;
2396        int handled = 0;
2397        unsigned int bytes_compl = 0, pkts_compl = 0;
2398
2399        ioaddr = vp->ioaddr;
2400
2401
2402        /*
2403         * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2404         * and boomerang_start_xmit
2405         */
2406        spin_lock(&vp->lock);
2407        vp->handling_irq = 1;
2408
2409        status = ioread16(ioaddr + EL3_STATUS);
2410
2411        if (vortex_debug > 6)
2412                pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2413
2414        if ((status & IntLatch) == 0)
2415                goto handler_exit;              /* No interrupt: shared IRQs can cause this */
2416        handled = 1;
2417
2418        if (status == 0xffff) {         /* h/w no longer present (hotplug)? */
2419                if (vortex_debug > 1)
2420                        pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2421                goto handler_exit;
2422        }
2423
2424        if (status & IntReq) {
2425                status |= vp->deferred;
2426                vp->deferred = 0;
2427        }
2428
2429        if (vortex_debug > 4)
2430                pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2431                           dev->name, status, ioread8(ioaddr + Timer));
2432        do {
2433                if (vortex_debug > 5)
2434                                pr_debug("%s: In interrupt loop, status %4.4x.\n",
2435                                           dev->name, status);
2436                if (status & UpComplete) {
2437                        iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2438                        if (vortex_debug > 5)
2439                                pr_debug("boomerang_interrupt->boomerang_rx\n");
2440                        boomerang_rx(dev);
2441                }
2442
2443                if (status & DownComplete) {
2444                        unsigned int dirty_tx = vp->dirty_tx;
2445
2446                        iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2447                        while (vp->cur_tx - dirty_tx > 0) {
2448                                int entry = dirty_tx % TX_RING_SIZE;
2449#if 1   /* AKPM: the latter is faster, but cyclone-only */
2450                                if (ioread32(ioaddr + DownListPtr) ==
2451                                        vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2452                                        break;                  /* It still hasn't been processed. */
2453#else
2454                                if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2455                                        break;                  /* It still hasn't been processed. */
2456#endif
2457
2458                                if (vp->tx_skbuff[entry]) {
2459                                        struct sk_buff *skb = vp->tx_skbuff[entry];
2460#if DO_ZEROCOPY
2461                                        int i;
2462                                        pci_unmap_single(VORTEX_PCI(vp),
2463                                                        le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2464                                                        le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2465                                                        PCI_DMA_TODEVICE);
2466
2467                                        for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2468                                                        pci_unmap_page(VORTEX_PCI(vp),
2469                                                                                         le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2470                                                                                         le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2471                                                                                         PCI_DMA_TODEVICE);
2472#else
2473                                        pci_unmap_single(VORTEX_PCI(vp),
2474                                                le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2475#endif
2476                                        pkts_compl++;
2477                                        bytes_compl += skb->len;
2478                                        dev_kfree_skb_irq(skb);
2479                                        vp->tx_skbuff[entry] = NULL;
2480                                } else {
2481                                        pr_debug("boomerang_interrupt: no skb!\n");
2482                                }
2483                                /* dev->stats.tx_packets++;  Counted below. */
2484                                dirty_tx++;
2485                        }
2486                        vp->dirty_tx = dirty_tx;
2487                        if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2488                                if (vortex_debug > 6)
2489                                        pr_debug("boomerang_interrupt: wake queue\n");
2490                                netif_wake_queue (dev);
2491                        }
2492                }
2493
2494                /* Check for all uncommon interrupts at once. */
2495                if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2496                        vortex_error(dev, status);
2497
2498                if (--work_done < 0) {
2499                        pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2500                                dev->name, status);
2501                        /* Disable all pending interrupts. */
2502                        do {
2503                                vp->deferred |= status;
2504                                iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2505                                         ioaddr + EL3_CMD);
2506                                iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2507                        } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2508                        /* The timer will reenable interrupts. */
2509                        mod_timer(&vp->timer, jiffies + 1*HZ);
2510                        break;
2511                }
2512                /* Acknowledge the IRQ. */
2513                iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2514                if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
2515                        iowrite32(0x8000, vp->cb_fn_base + 4);
2516
2517        } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2518        netdev_completed_queue(dev, pkts_compl, bytes_compl);
2519
2520        if (vortex_debug > 4)
2521                pr_debug("%s: exiting interrupt, status %4.4x.\n",
2522                           dev->name, status);
2523handler_exit:
2524        vp->handling_irq = 0;
2525        spin_unlock(&vp->lock);
2526        return IRQ_RETVAL(handled);
2527}
2528
2529static int vortex_rx(struct net_device *dev)
2530{
2531        struct vortex_private *vp = netdev_priv(dev);
2532        void __iomem *ioaddr = vp->ioaddr;
2533        int i;
2534        short rx_status;
2535
2536        if (vortex_debug > 5)
2537                pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2538                           ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2539        while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2540                if (rx_status & 0x4000) { /* Error, update stats. */
2541                        unsigned char rx_error = ioread8(ioaddr + RxErrors);
2542                        if (vortex_debug > 2)
2543                                pr_debug(" Rx error: status %2.2x.\n", rx_error);
2544                        dev->stats.rx_errors++;
2545                        if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2546                        if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2547                        if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2548                        if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2549                        if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2550                } else {
2551                        /* The packet length: up to 4.5K!. */
2552                        int pkt_len = rx_status & 0x1fff;
2553                        struct sk_buff *skb;
2554
2555                        skb = netdev_alloc_skb(dev, pkt_len + 5);
2556                        if (vortex_debug > 4)
2557                                pr_debug("Receiving packet size %d status %4.4x.\n",
2558                                           pkt_len, rx_status);
2559                        if (skb != NULL) {
2560                                skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2561                                /* 'skb_put()' points to the start of sk_buff data area. */
2562                                if (vp->bus_master &&
2563                                        ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2564                                        dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2565                                                                           pkt_len, PCI_DMA_FROMDEVICE);
2566                                        iowrite32(dma, ioaddr + Wn7_MasterAddr);
2567                                        iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2568                                        iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2569                                        while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2570                                                ;
2571                                        pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2572                                } else {
2573                                        ioread32_rep(ioaddr + RX_FIFO,
2574                                                     skb_put(skb, pkt_len),
2575                                                     (pkt_len + 3) >> 2);
2576                                }
2577                                iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2578                                skb->protocol = eth_type_trans(skb, dev);
2579                                netif_rx(skb);
2580                                dev->stats.rx_packets++;
2581                                /* Wait a limited time to go to next packet. */
2582                                for (i = 200; i >= 0; i--)
2583                                        if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2584                                                break;
2585                                continue;
2586                        } else if (vortex_debug > 0)
2587                                pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2588                                        dev->name, pkt_len);
2589                        dev->stats.rx_dropped++;
2590                }
2591                issue_and_wait(dev, RxDiscard);
2592        }
2593
2594        return 0;
2595}
2596
2597static int
2598boomerang_rx(struct net_device *dev)
2599{
2600        struct vortex_private *vp = netdev_priv(dev);
2601        int entry = vp->cur_rx % RX_RING_SIZE;
2602        void __iomem *ioaddr = vp->ioaddr;
2603        int rx_status;
2604        int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2605
2606        if (vortex_debug > 5)
2607                pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2608
2609        while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2610                if (--rx_work_limit < 0)
2611                        break;
2612                if (rx_status & RxDError) { /* Error, update stats. */
2613                        unsigned char rx_error = rx_status >> 16;
2614                        if (vortex_debug > 2)
2615                                pr_debug(" Rx error: status %2.2x.\n", rx_error);
2616                        dev->stats.rx_errors++;
2617                        if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2618                        if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2619                        if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2620                        if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2621                        if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2622                } else {
2623                        /* The packet length: up to 4.5K!. */
2624                        int pkt_len = rx_status & 0x1fff;
2625                        struct sk_buff *skb;
2626                        dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2627
2628                        if (vortex_debug > 4)
2629                                pr_debug("Receiving packet size %d status %4.4x.\n",
2630                                           pkt_len, rx_status);
2631
2632                        /* Check if the packet is long enough to just accept without
2633                           copying to a properly sized skbuff. */
2634                        if (pkt_len < rx_copybreak &&
2635                            (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2636                                skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2637                                pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2638                                /* 'skb_put()' points to the start of sk_buff data area. */
2639                                memcpy(skb_put(skb, pkt_len),
2640                                           vp->rx_skbuff[entry]->data,
2641                                           pkt_len);
2642                                pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2643                                vp->rx_copy++;
2644                        } else {
2645                                /* Pass up the skbuff already on the Rx ring. */
2646                                skb = vp->rx_skbuff[entry];
2647                                vp->rx_skbuff[entry] = NULL;
2648                                skb_put(skb, pkt_len);
2649                                pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2650                                vp->rx_nocopy++;
2651                        }
2652                        skb->protocol = eth_type_trans(skb, dev);
2653                        {                                       /* Use hardware checksum info. */
2654                                int csum_bits = rx_status & 0xee000000;
2655                                if (csum_bits &&
2656                                        (csum_bits == (IPChksumValid | TCPChksumValid) ||
2657                                         csum_bits == (IPChksumValid | UDPChksumValid))) {
2658                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2659                                        vp->rx_csumhits++;
2660                                }
2661                        }
2662                        netif_rx(skb);
2663                        dev->stats.rx_packets++;
2664                }
2665                entry = (++vp->cur_rx) % RX_RING_SIZE;
2666        }
2667        /* Refill the Rx ring buffers. */
2668        for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2669                struct sk_buff *skb;
2670                entry = vp->dirty_rx % RX_RING_SIZE;
2671                if (vp->rx_skbuff[entry] == NULL) {
2672                        skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2673                        if (skb == NULL) {
2674                                static unsigned long last_jif;
2675                                if (time_after(jiffies, last_jif + 10 * HZ)) {
2676                                        pr_warn("%s: memory shortage\n",
2677                                                dev->name);
2678                                        last_jif = jiffies;
2679                                }
2680                                if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2681                                        mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2682                                break;                  /* Bad news!  */
2683                        }
2684
2685                        vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2686                        vp->rx_skbuff[entry] = skb;
2687                }
2688                vp->rx_ring[entry].status = 0;  /* Clear complete bit. */
2689                iowrite16(UpUnstall, ioaddr + EL3_CMD);
2690        }
2691        return 0;
2692}
2693
2694/*
2695 * If we've hit a total OOM refilling the Rx ring we poll once a second
2696 * for some memory.  Otherwise there is no way to restart the rx process.
2697 */
2698static void
2699rx_oom_timer(unsigned long arg)
2700{
2701        struct net_device *dev = (struct net_device *)arg;
2702        struct vortex_private *vp = netdev_priv(dev);
2703
2704        spin_lock_irq(&vp->lock);
2705        if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)        /* This test is redundant, but makes me feel good */
2706                boomerang_rx(dev);
2707        if (vortex_debug > 1) {
2708                pr_debug("%s: rx_oom_timer %s\n", dev->name,
2709                        ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2710        }
2711        spin_unlock_irq(&vp->lock);
2712}
2713
2714static void
2715vortex_down(struct net_device *dev, int final_down)
2716{
2717        struct vortex_private *vp = netdev_priv(dev);
2718        void __iomem *ioaddr = vp->ioaddr;
2719
2720        netdev_reset_queue(dev);
2721        netif_stop_queue(dev);
2722
2723        del_timer_sync(&vp->rx_oom_timer);
2724        del_timer_sync(&vp->timer);
2725
2726        /* Turn off statistics ASAP.  We update dev->stats below. */
2727        iowrite16(StatsDisable, ioaddr + EL3_CMD);
2728
2729        /* Disable the receiver and transmitter. */
2730        iowrite16(RxDisable, ioaddr + EL3_CMD);
2731        iowrite16(TxDisable, ioaddr + EL3_CMD);
2732
2733        /* Disable receiving 802.1q tagged frames */
2734        set_8021q_mode(dev, 0);
2735
2736        if (dev->if_port == XCVR_10base2)
2737                /* Turn off thinnet power.  Green! */
2738                iowrite16(StopCoax, ioaddr + EL3_CMD);
2739
2740        iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2741
2742        update_stats(ioaddr, dev);
2743        if (vp->full_bus_master_rx)
2744                iowrite32(0, ioaddr + UpListPtr);
2745        if (vp->full_bus_master_tx)
2746                iowrite32(0, ioaddr + DownListPtr);
2747
2748        if (final_down && VORTEX_PCI(vp)) {
2749                vp->pm_state_valid = 1;
2750                pci_save_state(VORTEX_PCI(vp));
2751                acpi_set_WOL(dev);
2752        }
2753}
2754
2755static int
2756vortex_close(struct net_device *dev)
2757{
2758        struct vortex_private *vp = netdev_priv(dev);
2759        void __iomem *ioaddr = vp->ioaddr;
2760        int i;
2761
2762        if (netif_device_present(dev))
2763                vortex_down(dev, 1);
2764
2765        if (vortex_debug > 1) {
2766                pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2767                           dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2768                pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2769                           " tx_queued %d Rx pre-checksummed %d.\n",
2770                           dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2771        }
2772
2773#if DO_ZEROCOPY
2774        if (vp->rx_csumhits &&
2775            (vp->drv_flags & HAS_HWCKSM) == 0 &&
2776            (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2777                pr_warn("%s supports hardware checksums, and we're not using them!\n",
2778                        dev->name);
2779        }
2780#endif
2781
2782        free_irq(dev->irq, dev);
2783
2784        if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2785                for (i = 0; i < RX_RING_SIZE; i++)
2786                        if (vp->rx_skbuff[i]) {
2787                                pci_unmap_single(       VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2788                                                                        PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2789                                dev_kfree_skb(vp->rx_skbuff[i]);
2790                                vp->rx_skbuff[i] = NULL;
2791                        }
2792        }
2793        if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2794                for (i = 0; i < TX_RING_SIZE; i++) {
2795                        if (vp->tx_skbuff[i]) {
2796                                struct sk_buff *skb = vp->tx_skbuff[i];
2797#if DO_ZEROCOPY
2798                                int k;
2799
2800                                for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2801                                                pci_unmap_single(VORTEX_PCI(vp),
2802                                                                                 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2803                                                                                 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2804                                                                                 PCI_DMA_TODEVICE);
2805#else
2806                                pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2807#endif
2808                                dev_kfree_skb(skb);
2809                                vp->tx_skbuff[i] = NULL;
2810                        }
2811                }
2812        }
2813
2814        return 0;
2815}
2816
2817static void
2818dump_tx_ring(struct net_device *dev)
2819{
2820        if (vortex_debug > 0) {
2821        struct vortex_private *vp = netdev_priv(dev);
2822                void __iomem *ioaddr = vp->ioaddr;
2823
2824                if (vp->full_bus_master_tx) {
2825                        int i;
2826                        int stalled = ioread32(ioaddr + PktStatus) & 0x04;      /* Possible racy. But it's only debug stuff */
2827
2828                        pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2829                                        vp->full_bus_master_tx,
2830                                        vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2831                                        vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2832                        pr_err("  Transmit list %8.8x vs. %p.\n",
2833                                   ioread32(ioaddr + DownListPtr),
2834                                   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2835                        issue_and_wait(dev, DownStall);
2836                        for (i = 0; i < TX_RING_SIZE; i++) {
2837                                unsigned int length;
2838
2839#if DO_ZEROCOPY
2840                                length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2841#else
2842                                length = le32_to_cpu(vp->tx_ring[i].length);
2843#endif
2844                                pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2845                                           i, &vp->tx_ring[i], length,
2846                                           le32_to_cpu(vp->tx_ring[i].status));
2847                        }
2848                        if (!stalled)
2849                                iowrite16(DownUnstall, ioaddr + EL3_CMD);
2850                }
2851        }
2852}
2853
2854static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2855{
2856        struct vortex_private *vp = netdev_priv(dev);
2857        void __iomem *ioaddr = vp->ioaddr;
2858        unsigned long flags;
2859
2860        if (netif_device_present(dev)) {        /* AKPM: Used to be netif_running */
2861                spin_lock_irqsave (&vp->lock, flags);
2862                update_stats(ioaddr, dev);
2863                spin_unlock_irqrestore (&vp->lock, flags);
2864        }
2865        return &dev->stats;
2866}
2867
2868/*  Update statistics.
2869        Unlike with the EL3 we need not worry about interrupts changing
2870        the window setting from underneath us, but we must still guard
2871        against a race condition with a StatsUpdate interrupt updating the
2872        table.  This is done by checking that the ASM (!) code generated uses
2873        atomic updates with '+='.
2874        */
2875static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2876{
2877        struct vortex_private *vp = netdev_priv(dev);
2878
2879        /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2880        /* Switch to the stats window, and read everything. */
2881        dev->stats.tx_carrier_errors            += window_read8(vp, 6, 0);
2882        dev->stats.tx_heartbeat_errors          += window_read8(vp, 6, 1);
2883        dev->stats.tx_window_errors             += window_read8(vp, 6, 4);
2884        dev->stats.rx_fifo_errors               += window_read8(vp, 6, 5);
2885        dev->stats.tx_packets                   += window_read8(vp, 6, 6);
2886        dev->stats.tx_packets                   += (window_read8(vp, 6, 9) &
2887                                                    0x30) << 4;
2888        /* Rx packets   */                      window_read8(vp, 6, 7);   /* Must read to clear */
2889        /* Don't bother with register 9, an extension of registers 6&7.
2890           If we do use the 6&7 values the atomic update assumption above
2891           is invalid. */
2892        dev->stats.rx_bytes                     += window_read16(vp, 6, 10);
2893        dev->stats.tx_bytes                     += window_read16(vp, 6, 12);
2894        /* Extra stats for get_ethtool_stats() */
2895        vp->xstats.tx_multiple_collisions       += window_read8(vp, 6, 2);
2896        vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2897        vp->xstats.tx_deferred                  += window_read8(vp, 6, 8);
2898        vp->xstats.rx_bad_ssd                   += window_read8(vp, 4, 12);
2899
2900        dev->stats.collisions = vp->xstats.tx_multiple_collisions
2901                + vp->xstats.tx_single_collisions
2902                + vp->xstats.tx_max_collisions;
2903
2904        {
2905                u8 up = window_read8(vp, 4, 13);
2906                dev->stats.rx_bytes += (up & 0x0f) << 16;
2907                dev->stats.tx_bytes += (up & 0xf0) << 12;
2908        }
2909}
2910
2911static int vortex_nway_reset(struct net_device *dev)
2912{
2913        struct vortex_private *vp = netdev_priv(dev);
2914
2915        return mii_nway_restart(&vp->mii);
2916}
2917
2918static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2919{
2920        struct vortex_private *vp = netdev_priv(dev);
2921
2922        return mii_ethtool_gset(&vp->mii, cmd);
2923}
2924
2925static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2926{
2927        struct vortex_private *vp = netdev_priv(dev);
2928
2929        return mii_ethtool_sset(&vp->mii, cmd);
2930}
2931
2932static u32 vortex_get_msglevel(struct net_device *dev)
2933{
2934        return vortex_debug;
2935}
2936
2937static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2938{
2939        vortex_debug = dbg;
2940}
2941
2942static int vortex_get_sset_count(struct net_device *dev, int sset)
2943{
2944        switch (sset) {
2945        case ETH_SS_STATS:
2946                return VORTEX_NUM_STATS;
2947        default:
2948                return -EOPNOTSUPP;
2949        }
2950}
2951
2952static void vortex_get_ethtool_stats(struct net_device *dev,
2953        struct ethtool_stats *stats, u64 *data)
2954{
2955        struct vortex_private *vp = netdev_priv(dev);
2956        void __iomem *ioaddr = vp->ioaddr;
2957        unsigned long flags;
2958
2959        spin_lock_irqsave(&vp->lock, flags);
2960        update_stats(ioaddr, dev);
2961        spin_unlock_irqrestore(&vp->lock, flags);
2962
2963        data[0] = vp->xstats.tx_deferred;
2964        data[1] = vp->xstats.tx_max_collisions;
2965        data[2] = vp->xstats.tx_multiple_collisions;
2966        data[3] = vp->xstats.tx_single_collisions;
2967        data[4] = vp->xstats.rx_bad_ssd;
2968}
2969
2970
2971static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2972{
2973        switch (stringset) {
2974        case ETH_SS_STATS:
2975                memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2976                break;
2977        default:
2978                WARN_ON(1);
2979                break;
2980        }
2981}
2982
2983static void vortex_get_drvinfo(struct net_device *dev,
2984                                        struct ethtool_drvinfo *info)
2985{
2986        struct vortex_private *vp = netdev_priv(dev);
2987
2988        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2989        if (VORTEX_PCI(vp)) {
2990                strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2991                        sizeof(info->bus_info));
2992        } else {
2993                if (VORTEX_EISA(vp))
2994                        strlcpy(info->bus_info, dev_name(vp->gendev),
2995                                sizeof(info->bus_info));
2996                else
2997                        snprintf(info->bus_info, sizeof(info->bus_info),
2998                                "EISA 0x%lx %d", dev->base_addr, dev->irq);
2999        }
3000}
3001
3002static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3003{
3004        struct vortex_private *vp = netdev_priv(dev);
3005
3006        if (!VORTEX_PCI(vp))
3007                return;
3008
3009        wol->supported = WAKE_MAGIC;
3010
3011        wol->wolopts = 0;
3012        if (vp->enable_wol)
3013                wol->wolopts |= WAKE_MAGIC;
3014}
3015
3016static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3017{
3018        struct vortex_private *vp = netdev_priv(dev);
3019
3020        if (!VORTEX_PCI(vp))
3021                return -EOPNOTSUPP;
3022
3023        if (wol->wolopts & ~WAKE_MAGIC)
3024                return -EINVAL;
3025
3026        if (wol->wolopts & WAKE_MAGIC)
3027                vp->enable_wol = 1;
3028        else
3029                vp->enable_wol = 0;
3030        acpi_set_WOL(dev);
3031
3032        return 0;
3033}
3034
3035static const struct ethtool_ops vortex_ethtool_ops = {
3036        .get_drvinfo            = vortex_get_drvinfo,
3037        .get_strings            = vortex_get_strings,
3038        .get_msglevel           = vortex_get_msglevel,
3039        .set_msglevel           = vortex_set_msglevel,
3040        .get_ethtool_stats      = vortex_get_ethtool_stats,
3041        .get_sset_count         = vortex_get_sset_count,
3042        .get_settings           = vortex_get_settings,
3043        .set_settings           = vortex_set_settings,
3044        .get_link               = ethtool_op_get_link,
3045        .nway_reset             = vortex_nway_reset,
3046        .get_wol                = vortex_get_wol,
3047        .set_wol                = vortex_set_wol,
3048        .get_ts_info            = ethtool_op_get_ts_info,
3049};
3050
3051#ifdef CONFIG_PCI
3052/*
3053 *      Must power the device up to do MDIO operations
3054 */
3055static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3056{
3057        int err;
3058        struct vortex_private *vp = netdev_priv(dev);
3059        pci_power_t state = 0;
3060
3061        if(VORTEX_PCI(vp))
3062                state = VORTEX_PCI(vp)->current_state;
3063
3064        /* The kernel core really should have pci_get_power_state() */
3065
3066        if(state != 0)
3067                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3068        err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3069        if(state != 0)
3070                pci_set_power_state(VORTEX_PCI(vp), state);
3071
3072        return err;
3073}
3074#endif
3075
3076
3077/* Pre-Cyclone chips have no documented multicast filter, so the only
3078   multicast setting is to receive all multicast frames.  At least
3079   the chip has a very clean way to set the mode, unlike many others. */
3080static void set_rx_mode(struct net_device *dev)
3081{
3082        struct vortex_private *vp = netdev_priv(dev);
3083        void __iomem *ioaddr = vp->ioaddr;
3084        int new_mode;
3085
3086        if (dev->flags & IFF_PROMISC) {
3087                if (vortex_debug > 3)
3088                        pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3089                new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3090        } else  if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3091                new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3092        } else
3093                new_mode = SetRxFilter | RxStation | RxBroadcast;
3094
3095        iowrite16(new_mode, ioaddr + EL3_CMD);
3096}
3097
3098#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3099/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3100   Note that this must be done after each RxReset due to some backwards
3101   compatibility logic in the Cyclone and Tornado ASICs */
3102
3103/* The Ethernet Type used for 802.1q tagged frames */
3104#define VLAN_ETHER_TYPE 0x8100
3105
3106static void set_8021q_mode(struct net_device *dev, int enable)
3107{
3108        struct vortex_private *vp = netdev_priv(dev);
3109        int mac_ctrl;
3110
3111        if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3112                /* cyclone and tornado chipsets can recognize 802.1q
3113                 * tagged frames and treat them correctly */
3114
3115                int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3116                if (enable)
3117                        max_pkt_size += 4;      /* 802.1Q VLAN tag */
3118
3119                window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3120
3121                /* set VlanEtherType to let the hardware checksumming
3122                   treat tagged frames correctly */
3123                window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3124        } else {
3125                /* on older cards we have to enable large frames */
3126
3127                vp->large_frames = dev->mtu > 1500 || enable;
3128
3129                mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3130                if (vp->large_frames)
3131                        mac_ctrl |= 0x40;
3132                else
3133                        mac_ctrl &= ~0x40;
3134                window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3135        }
3136}
3137#else
3138
3139static void set_8021q_mode(struct net_device *dev, int enable)
3140{
3141}
3142
3143
3144#endif
3145
3146/* MII transceiver control section.
3147   Read and write the MII registers using software-generated serial
3148   MDIO protocol.  See the MII specifications or DP83840A data sheet
3149   for details. */
3150
3151/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3152   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3153   "overclocking" issues. */
3154static void mdio_delay(struct vortex_private *vp)
3155{
3156        window_read32(vp, 4, Wn4_PhysicalMgmt);
3157}
3158
3159#define MDIO_SHIFT_CLK  0x01
3160#define MDIO_DIR_WRITE  0x04
3161#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3162#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3163#define MDIO_DATA_READ  0x02
3164#define MDIO_ENB_IN             0x00
3165
3166/* Generate the preamble required for initial synchronization and
3167   a few older transceivers. */
3168static void mdio_sync(struct vortex_private *vp, int bits)
3169{
3170        /* Establish sync by sending at least 32 logic ones. */
3171        while (-- bits >= 0) {
3172                window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3173                mdio_delay(vp);
3174                window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3175                               4, Wn4_PhysicalMgmt);
3176                mdio_delay(vp);
3177        }
3178}
3179
3180static int mdio_read(struct net_device *dev, int phy_id, int location)
3181{
3182        int i;
3183        struct vortex_private *vp = netdev_priv(dev);
3184        int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3185        unsigned int retval = 0;
3186
3187        spin_lock_bh(&vp->mii_lock);
3188
3189        if (mii_preamble_required)
3190                mdio_sync(vp, 32);
3191
3192        /* Shift the read command bits out. */
3193        for (i = 14; i >= 0; i--) {
3194                int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3195                window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3196                mdio_delay(vp);
3197                window_write16(vp, dataval | MDIO_SHIFT_CLK,
3198                               4, Wn4_PhysicalMgmt);
3199                mdio_delay(vp);
3200        }
3201        /* Read the two transition, 16 data, and wire-idle bits. */
3202        for (i = 19; i > 0; i--) {
3203                window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3204                mdio_delay(vp);
3205                retval = (retval << 1) |
3206                        ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3207                          MDIO_DATA_READ) ? 1 : 0);
3208                window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3209                               4, Wn4_PhysicalMgmt);
3210                mdio_delay(vp);
3211        }
3212
3213        spin_unlock_bh(&vp->mii_lock);
3214
3215        return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3216}
3217
3218static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3219{
3220        struct vortex_private *vp = netdev_priv(dev);
3221        int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3222        int i;
3223
3224        spin_lock_bh(&vp->mii_lock);
3225
3226        if (mii_preamble_required)
3227                mdio_sync(vp, 32);
3228
3229        /* Shift the command bits out. */
3230        for (i = 31; i >= 0; i--) {
3231                int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3232                window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3233                mdio_delay(vp);
3234                window_write16(vp, dataval | MDIO_SHIFT_CLK,
3235                               4, Wn4_PhysicalMgmt);
3236                mdio_delay(vp);
3237        }
3238        /* Leave the interface idle. */
3239        for (i = 1; i >= 0; i--) {
3240                window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3241                mdio_delay(vp);
3242                window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3243                               4, Wn4_PhysicalMgmt);
3244                mdio_delay(vp);
3245        }
3246
3247        spin_unlock_bh(&vp->mii_lock);
3248}
3249
3250/* ACPI: Advanced Configuration and Power Interface. */
3251/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3252static void acpi_set_WOL(struct net_device *dev)
3253{
3254        struct vortex_private *vp = netdev_priv(dev);
3255        void __iomem *ioaddr = vp->ioaddr;
3256
3257        device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3258
3259        if (vp->enable_wol) {
3260                /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3261                window_write16(vp, 2, 7, 0x0c);
3262                /* The RxFilter must accept the WOL frames. */
3263                iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3264                iowrite16(RxEnable, ioaddr + EL3_CMD);
3265
3266                if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3267                        pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3268
3269                        vp->enable_wol = 0;
3270                        return;
3271                }
3272
3273                if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3274                        return;
3275
3276                /* Change the power state to D3; RxEnable doesn't take effect. */
3277                pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3278        }
3279}
3280
3281
3282static void vortex_remove_one(struct pci_dev *pdev)
3283{
3284        struct net_device *dev = pci_get_drvdata(pdev);
3285        struct vortex_private *vp;
3286
3287        if (!dev) {
3288                pr_err("vortex_remove_one called for Compaq device!\n");
3289                BUG();
3290        }
3291
3292        vp = netdev_priv(dev);
3293
3294        if (vp->cb_fn_base)
3295                pci_iounmap(pdev, vp->cb_fn_base);
3296
3297        unregister_netdev(dev);
3298
3299        pci_set_power_state(pdev, PCI_D0);      /* Go active */
3300        if (vp->pm_state_valid)
3301                pci_restore_state(pdev);
3302        pci_disable_device(pdev);
3303
3304        /* Should really use issue_and_wait() here */
3305        iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3306             vp->ioaddr + EL3_CMD);
3307
3308        pci_iounmap(pdev, vp->ioaddr);
3309
3310        pci_free_consistent(pdev,
3311                                                sizeof(struct boom_rx_desc) * RX_RING_SIZE
3312                                                        + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3313                                                vp->rx_ring,
3314                                                vp->rx_ring_dma);
3315
3316        pci_release_regions(pdev);
3317
3318        free_netdev(dev);
3319}
3320
3321
3322static struct pci_driver vortex_driver = {
3323        .name           = "3c59x",
3324        .probe          = vortex_init_one,
3325        .remove         = vortex_remove_one,
3326        .id_table       = vortex_pci_tbl,
3327        .driver.pm      = VORTEX_PM_OPS,
3328};
3329
3330
3331static int vortex_have_pci;
3332static int vortex_have_eisa;
3333
3334
3335static int __init vortex_init(void)
3336{
3337        int pci_rc, eisa_rc;
3338
3339        pci_rc = pci_register_driver(&vortex_driver);
3340        eisa_rc = vortex_eisa_init();
3341
3342        if (pci_rc == 0)
3343                vortex_have_pci = 1;
3344        if (eisa_rc > 0)
3345                vortex_have_eisa = 1;
3346
3347        return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3348}
3349
3350
3351static void __exit vortex_eisa_cleanup(void)
3352{
3353        void __iomem *ioaddr;
3354
3355#ifdef CONFIG_EISA
3356        /* Take care of the EISA devices */
3357        eisa_driver_unregister(&vortex_eisa_driver);
3358#endif
3359
3360        if (compaq_net_device) {
3361                ioaddr = ioport_map(compaq_net_device->base_addr,
3362                                    VORTEX_TOTAL_SIZE);
3363
3364                unregister_netdev(compaq_net_device);
3365                iowrite16(TotalReset, ioaddr + EL3_CMD);
3366                release_region(compaq_net_device->base_addr,
3367                               VORTEX_TOTAL_SIZE);
3368
3369                free_netdev(compaq_net_device);
3370        }
3371}
3372
3373
3374static void __exit vortex_cleanup(void)
3375{
3376        if (vortex_have_pci)
3377                pci_unregister_driver(&vortex_driver);
3378        if (vortex_have_eisa)
3379                vortex_eisa_cleanup();
3380}
3381
3382
3383module_init(vortex_init);
3384module_exit(vortex_cleanup);
3385