linux/drivers/net/ethernet/intel/e1000/e1000_main.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36char e1000_driver_name[] = "e1000";
  37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  38#define DRV_VERSION "7.3.21-k8-NAPI"
  39const char e1000_driver_version[] = DRV_VERSION;
  40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  41
  42/* e1000_pci_tbl - PCI Device ID Table
  43 *
  44 * Last entry must be all 0s
  45 *
  46 * Macro expands to...
  47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  48 */
  49static const struct pci_device_id e1000_pci_tbl[] = {
  50        INTEL_E1000_ETHERNET_DEVICE(0x1000),
  51        INTEL_E1000_ETHERNET_DEVICE(0x1001),
  52        INTEL_E1000_ETHERNET_DEVICE(0x1004),
  53        INTEL_E1000_ETHERNET_DEVICE(0x1008),
  54        INTEL_E1000_ETHERNET_DEVICE(0x1009),
  55        INTEL_E1000_ETHERNET_DEVICE(0x100C),
  56        INTEL_E1000_ETHERNET_DEVICE(0x100D),
  57        INTEL_E1000_ETHERNET_DEVICE(0x100E),
  58        INTEL_E1000_ETHERNET_DEVICE(0x100F),
  59        INTEL_E1000_ETHERNET_DEVICE(0x1010),
  60        INTEL_E1000_ETHERNET_DEVICE(0x1011),
  61        INTEL_E1000_ETHERNET_DEVICE(0x1012),
  62        INTEL_E1000_ETHERNET_DEVICE(0x1013),
  63        INTEL_E1000_ETHERNET_DEVICE(0x1014),
  64        INTEL_E1000_ETHERNET_DEVICE(0x1015),
  65        INTEL_E1000_ETHERNET_DEVICE(0x1016),
  66        INTEL_E1000_ETHERNET_DEVICE(0x1017),
  67        INTEL_E1000_ETHERNET_DEVICE(0x1018),
  68        INTEL_E1000_ETHERNET_DEVICE(0x1019),
  69        INTEL_E1000_ETHERNET_DEVICE(0x101A),
  70        INTEL_E1000_ETHERNET_DEVICE(0x101D),
  71        INTEL_E1000_ETHERNET_DEVICE(0x101E),
  72        INTEL_E1000_ETHERNET_DEVICE(0x1026),
  73        INTEL_E1000_ETHERNET_DEVICE(0x1027),
  74        INTEL_E1000_ETHERNET_DEVICE(0x1028),
  75        INTEL_E1000_ETHERNET_DEVICE(0x1075),
  76        INTEL_E1000_ETHERNET_DEVICE(0x1076),
  77        INTEL_E1000_ETHERNET_DEVICE(0x1077),
  78        INTEL_E1000_ETHERNET_DEVICE(0x1078),
  79        INTEL_E1000_ETHERNET_DEVICE(0x1079),
  80        INTEL_E1000_ETHERNET_DEVICE(0x107A),
  81        INTEL_E1000_ETHERNET_DEVICE(0x107B),
  82        INTEL_E1000_ETHERNET_DEVICE(0x107C),
  83        INTEL_E1000_ETHERNET_DEVICE(0x108A),
  84        INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85        INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  86        INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  87        /* required last entry */
  88        {0,}
  89};
  90
  91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92
  93int e1000_up(struct e1000_adapter *adapter);
  94void e1000_down(struct e1000_adapter *adapter);
  95void e1000_reinit_locked(struct e1000_adapter *adapter);
  96void e1000_reset(struct e1000_adapter *adapter);
  97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 102                                    struct e1000_tx_ring *txdr);
 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 104                                    struct e1000_rx_ring *rxdr);
 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 106                                    struct e1000_tx_ring *tx_ring);
 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 108                                    struct e1000_rx_ring *rx_ring);
 109void e1000_update_stats(struct e1000_adapter *adapter);
 110
 111static int e1000_init_module(void);
 112static void e1000_exit_module(void);
 113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 114static void e1000_remove(struct pci_dev *pdev);
 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
 116static int e1000_sw_init(struct e1000_adapter *adapter);
 117static int e1000_open(struct net_device *netdev);
 118static int e1000_close(struct net_device *netdev);
 119static void e1000_configure_tx(struct e1000_adapter *adapter);
 120static void e1000_configure_rx(struct e1000_adapter *adapter);
 121static void e1000_setup_rctl(struct e1000_adapter *adapter);
 122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 125                                struct e1000_tx_ring *tx_ring);
 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 127                                struct e1000_rx_ring *rx_ring);
 128static void e1000_set_rx_mode(struct net_device *netdev);
 129static void e1000_update_phy_info_task(struct work_struct *work);
 130static void e1000_watchdog(struct work_struct *work);
 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 133                                    struct net_device *netdev);
 134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
 135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 136static int e1000_set_mac(struct net_device *netdev, void *p);
 137static irqreturn_t e1000_intr(int irq, void *data);
 138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 139                               struct e1000_tx_ring *tx_ring);
 140static int e1000_clean(struct napi_struct *napi, int budget);
 141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 142                               struct e1000_rx_ring *rx_ring,
 143                               int *work_done, int work_to_do);
 144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 145                                     struct e1000_rx_ring *rx_ring,
 146                                     int *work_done, int work_to_do);
 147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 148                                         struct e1000_rx_ring *rx_ring,
 149                                         int cleaned_count)
 150{
 151}
 152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 153                                   struct e1000_rx_ring *rx_ring,
 154                                   int cleaned_count);
 155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 156                                         struct e1000_rx_ring *rx_ring,
 157                                         int cleaned_count);
 158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 160                           int cmd);
 161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 163static void e1000_tx_timeout(struct net_device *dev);
 164static void e1000_reset_task(struct work_struct *work);
 165static void e1000_smartspeed(struct e1000_adapter *adapter);
 166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 167                                       struct sk_buff *skb);
 168
 169static bool e1000_vlan_used(struct e1000_adapter *adapter);
 170static void e1000_vlan_mode(struct net_device *netdev,
 171                            netdev_features_t features);
 172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 173                                     bool filter_on);
 174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 175                                 __be16 proto, u16 vid);
 176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 177                                  __be16 proto, u16 vid);
 178static void e1000_restore_vlan(struct e1000_adapter *adapter);
 179
 180#ifdef CONFIG_PM
 181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 182static int e1000_resume(struct pci_dev *pdev);
 183#endif
 184static void e1000_shutdown(struct pci_dev *pdev);
 185
 186#ifdef CONFIG_NET_POLL_CONTROLLER
 187/* for netdump / net console */
 188static void e1000_netpoll (struct net_device *netdev);
 189#endif
 190
 191#define COPYBREAK_DEFAULT 256
 192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 193module_param(copybreak, uint, 0644);
 194MODULE_PARM_DESC(copybreak,
 195        "Maximum size of packet that is copied to a new buffer on receive");
 196
 197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 198                                                pci_channel_state_t state);
 199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 200static void e1000_io_resume(struct pci_dev *pdev);
 201
 202static const struct pci_error_handlers e1000_err_handler = {
 203        .error_detected = e1000_io_error_detected,
 204        .slot_reset = e1000_io_slot_reset,
 205        .resume = e1000_io_resume,
 206};
 207
 208static struct pci_driver e1000_driver = {
 209        .name     = e1000_driver_name,
 210        .id_table = e1000_pci_tbl,
 211        .probe    = e1000_probe,
 212        .remove   = e1000_remove,
 213#ifdef CONFIG_PM
 214        /* Power Management Hooks */
 215        .suspend  = e1000_suspend,
 216        .resume   = e1000_resume,
 217#endif
 218        .shutdown = e1000_shutdown,
 219        .err_handler = &e1000_err_handler
 220};
 221
 222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 224MODULE_LICENSE("GPL");
 225MODULE_VERSION(DRV_VERSION);
 226
 227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 228static int debug = -1;
 229module_param(debug, int, 0);
 230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 231
 232/**
 233 * e1000_get_hw_dev - return device
 234 * used by hardware layer to print debugging information
 235 *
 236 **/
 237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 238{
 239        struct e1000_adapter *adapter = hw->back;
 240        return adapter->netdev;
 241}
 242
 243/**
 244 * e1000_init_module - Driver Registration Routine
 245 *
 246 * e1000_init_module is the first routine called when the driver is
 247 * loaded. All it does is register with the PCI subsystem.
 248 **/
 249static int __init e1000_init_module(void)
 250{
 251        int ret;
 252        pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 253
 254        pr_info("%s\n", e1000_copyright);
 255
 256        ret = pci_register_driver(&e1000_driver);
 257        if (copybreak != COPYBREAK_DEFAULT) {
 258                if (copybreak == 0)
 259                        pr_info("copybreak disabled\n");
 260                else
 261                        pr_info("copybreak enabled for "
 262                                   "packets <= %u bytes\n", copybreak);
 263        }
 264        return ret;
 265}
 266
 267module_init(e1000_init_module);
 268
 269/**
 270 * e1000_exit_module - Driver Exit Cleanup Routine
 271 *
 272 * e1000_exit_module is called just before the driver is removed
 273 * from memory.
 274 **/
 275static void __exit e1000_exit_module(void)
 276{
 277        pci_unregister_driver(&e1000_driver);
 278}
 279
 280module_exit(e1000_exit_module);
 281
 282static int e1000_request_irq(struct e1000_adapter *adapter)
 283{
 284        struct net_device *netdev = adapter->netdev;
 285        irq_handler_t handler = e1000_intr;
 286        int irq_flags = IRQF_SHARED;
 287        int err;
 288
 289        err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 290                          netdev);
 291        if (err) {
 292                e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 293        }
 294
 295        return err;
 296}
 297
 298static void e1000_free_irq(struct e1000_adapter *adapter)
 299{
 300        struct net_device *netdev = adapter->netdev;
 301
 302        free_irq(adapter->pdev->irq, netdev);
 303}
 304
 305/**
 306 * e1000_irq_disable - Mask off interrupt generation on the NIC
 307 * @adapter: board private structure
 308 **/
 309static void e1000_irq_disable(struct e1000_adapter *adapter)
 310{
 311        struct e1000_hw *hw = &adapter->hw;
 312
 313        ew32(IMC, ~0);
 314        E1000_WRITE_FLUSH();
 315        synchronize_irq(adapter->pdev->irq);
 316}
 317
 318/**
 319 * e1000_irq_enable - Enable default interrupt generation settings
 320 * @adapter: board private structure
 321 **/
 322static void e1000_irq_enable(struct e1000_adapter *adapter)
 323{
 324        struct e1000_hw *hw = &adapter->hw;
 325
 326        ew32(IMS, IMS_ENABLE_MASK);
 327        E1000_WRITE_FLUSH();
 328}
 329
 330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 331{
 332        struct e1000_hw *hw = &adapter->hw;
 333        struct net_device *netdev = adapter->netdev;
 334        u16 vid = hw->mng_cookie.vlan_id;
 335        u16 old_vid = adapter->mng_vlan_id;
 336
 337        if (!e1000_vlan_used(adapter))
 338                return;
 339
 340        if (!test_bit(vid, adapter->active_vlans)) {
 341                if (hw->mng_cookie.status &
 342                    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 343                        e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 344                        adapter->mng_vlan_id = vid;
 345                } else {
 346                        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 347                }
 348                if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 349                    (vid != old_vid) &&
 350                    !test_bit(old_vid, adapter->active_vlans))
 351                        e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 352                                               old_vid);
 353        } else {
 354                adapter->mng_vlan_id = vid;
 355        }
 356}
 357
 358static void e1000_init_manageability(struct e1000_adapter *adapter)
 359{
 360        struct e1000_hw *hw = &adapter->hw;
 361
 362        if (adapter->en_mng_pt) {
 363                u32 manc = er32(MANC);
 364
 365                /* disable hardware interception of ARP */
 366                manc &= ~(E1000_MANC_ARP_EN);
 367
 368                ew32(MANC, manc);
 369        }
 370}
 371
 372static void e1000_release_manageability(struct e1000_adapter *adapter)
 373{
 374        struct e1000_hw *hw = &adapter->hw;
 375
 376        if (adapter->en_mng_pt) {
 377                u32 manc = er32(MANC);
 378
 379                /* re-enable hardware interception of ARP */
 380                manc |= E1000_MANC_ARP_EN;
 381
 382                ew32(MANC, manc);
 383        }
 384}
 385
 386/**
 387 * e1000_configure - configure the hardware for RX and TX
 388 * @adapter = private board structure
 389 **/
 390static void e1000_configure(struct e1000_adapter *adapter)
 391{
 392        struct net_device *netdev = adapter->netdev;
 393        int i;
 394
 395        e1000_set_rx_mode(netdev);
 396
 397        e1000_restore_vlan(adapter);
 398        e1000_init_manageability(adapter);
 399
 400        e1000_configure_tx(adapter);
 401        e1000_setup_rctl(adapter);
 402        e1000_configure_rx(adapter);
 403        /* call E1000_DESC_UNUSED which always leaves
 404         * at least 1 descriptor unused to make sure
 405         * next_to_use != next_to_clean
 406         */
 407        for (i = 0; i < adapter->num_rx_queues; i++) {
 408                struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 409                adapter->alloc_rx_buf(adapter, ring,
 410                                      E1000_DESC_UNUSED(ring));
 411        }
 412}
 413
 414int e1000_up(struct e1000_adapter *adapter)
 415{
 416        struct e1000_hw *hw = &adapter->hw;
 417
 418        /* hardware has been reset, we need to reload some things */
 419        e1000_configure(adapter);
 420
 421        clear_bit(__E1000_DOWN, &adapter->flags);
 422
 423        napi_enable(&adapter->napi);
 424
 425        e1000_irq_enable(adapter);
 426
 427        netif_wake_queue(adapter->netdev);
 428
 429        /* fire a link change interrupt to start the watchdog */
 430        ew32(ICS, E1000_ICS_LSC);
 431        return 0;
 432}
 433
 434/**
 435 * e1000_power_up_phy - restore link in case the phy was powered down
 436 * @adapter: address of board private structure
 437 *
 438 * The phy may be powered down to save power and turn off link when the
 439 * driver is unloaded and wake on lan is not enabled (among others)
 440 * *** this routine MUST be followed by a call to e1000_reset ***
 441 **/
 442void e1000_power_up_phy(struct e1000_adapter *adapter)
 443{
 444        struct e1000_hw *hw = &adapter->hw;
 445        u16 mii_reg = 0;
 446
 447        /* Just clear the power down bit to wake the phy back up */
 448        if (hw->media_type == e1000_media_type_copper) {
 449                /* according to the manual, the phy will retain its
 450                 * settings across a power-down/up cycle
 451                 */
 452                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 453                mii_reg &= ~MII_CR_POWER_DOWN;
 454                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 455        }
 456}
 457
 458static void e1000_power_down_phy(struct e1000_adapter *adapter)
 459{
 460        struct e1000_hw *hw = &adapter->hw;
 461
 462        /* Power down the PHY so no link is implied when interface is down *
 463         * The PHY cannot be powered down if any of the following is true *
 464         * (a) WoL is enabled
 465         * (b) AMT is active
 466         * (c) SoL/IDER session is active
 467         */
 468        if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 469           hw->media_type == e1000_media_type_copper) {
 470                u16 mii_reg = 0;
 471
 472                switch (hw->mac_type) {
 473                case e1000_82540:
 474                case e1000_82545:
 475                case e1000_82545_rev_3:
 476                case e1000_82546:
 477                case e1000_ce4100:
 478                case e1000_82546_rev_3:
 479                case e1000_82541:
 480                case e1000_82541_rev_2:
 481                case e1000_82547:
 482                case e1000_82547_rev_2:
 483                        if (er32(MANC) & E1000_MANC_SMBUS_EN)
 484                                goto out;
 485                        break;
 486                default:
 487                        goto out;
 488                }
 489                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 490                mii_reg |= MII_CR_POWER_DOWN;
 491                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 492                msleep(1);
 493        }
 494out:
 495        return;
 496}
 497
 498static void e1000_down_and_stop(struct e1000_adapter *adapter)
 499{
 500        set_bit(__E1000_DOWN, &adapter->flags);
 501
 502        cancel_delayed_work_sync(&adapter->watchdog_task);
 503
 504        /*
 505         * Since the watchdog task can reschedule other tasks, we should cancel
 506         * it first, otherwise we can run into the situation when a work is
 507         * still running after the adapter has been turned down.
 508         */
 509
 510        cancel_delayed_work_sync(&adapter->phy_info_task);
 511        cancel_delayed_work_sync(&adapter->fifo_stall_task);
 512
 513        /* Only kill reset task if adapter is not resetting */
 514        if (!test_bit(__E1000_RESETTING, &adapter->flags))
 515                cancel_work_sync(&adapter->reset_task);
 516}
 517
 518void e1000_down(struct e1000_adapter *adapter)
 519{
 520        struct e1000_hw *hw = &adapter->hw;
 521        struct net_device *netdev = adapter->netdev;
 522        u32 rctl, tctl;
 523
 524        netif_carrier_off(netdev);
 525
 526        /* disable receives in the hardware */
 527        rctl = er32(RCTL);
 528        ew32(RCTL, rctl & ~E1000_RCTL_EN);
 529        /* flush and sleep below */
 530
 531        netif_tx_disable(netdev);
 532
 533        /* disable transmits in the hardware */
 534        tctl = er32(TCTL);
 535        tctl &= ~E1000_TCTL_EN;
 536        ew32(TCTL, tctl);
 537        /* flush both disables and wait for them to finish */
 538        E1000_WRITE_FLUSH();
 539        msleep(10);
 540
 541        napi_disable(&adapter->napi);
 542
 543        e1000_irq_disable(adapter);
 544
 545        /* Setting DOWN must be after irq_disable to prevent
 546         * a screaming interrupt.  Setting DOWN also prevents
 547         * tasks from rescheduling.
 548         */
 549        e1000_down_and_stop(adapter);
 550
 551        adapter->link_speed = 0;
 552        adapter->link_duplex = 0;
 553
 554        e1000_reset(adapter);
 555        e1000_clean_all_tx_rings(adapter);
 556        e1000_clean_all_rx_rings(adapter);
 557}
 558
 559void e1000_reinit_locked(struct e1000_adapter *adapter)
 560{
 561        WARN_ON(in_interrupt());
 562        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 563                msleep(1);
 564        e1000_down(adapter);
 565        e1000_up(adapter);
 566        clear_bit(__E1000_RESETTING, &adapter->flags);
 567}
 568
 569void e1000_reset(struct e1000_adapter *adapter)
 570{
 571        struct e1000_hw *hw = &adapter->hw;
 572        u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 573        bool legacy_pba_adjust = false;
 574        u16 hwm;
 575
 576        /* Repartition Pba for greater than 9k mtu
 577         * To take effect CTRL.RST is required.
 578         */
 579
 580        switch (hw->mac_type) {
 581        case e1000_82542_rev2_0:
 582        case e1000_82542_rev2_1:
 583        case e1000_82543:
 584        case e1000_82544:
 585        case e1000_82540:
 586        case e1000_82541:
 587        case e1000_82541_rev_2:
 588                legacy_pba_adjust = true;
 589                pba = E1000_PBA_48K;
 590                break;
 591        case e1000_82545:
 592        case e1000_82545_rev_3:
 593        case e1000_82546:
 594        case e1000_ce4100:
 595        case e1000_82546_rev_3:
 596                pba = E1000_PBA_48K;
 597                break;
 598        case e1000_82547:
 599        case e1000_82547_rev_2:
 600                legacy_pba_adjust = true;
 601                pba = E1000_PBA_30K;
 602                break;
 603        case e1000_undefined:
 604        case e1000_num_macs:
 605                break;
 606        }
 607
 608        if (legacy_pba_adjust) {
 609                if (hw->max_frame_size > E1000_RXBUFFER_8192)
 610                        pba -= 8; /* allocate more FIFO for Tx */
 611
 612                if (hw->mac_type == e1000_82547) {
 613                        adapter->tx_fifo_head = 0;
 614                        adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 615                        adapter->tx_fifo_size =
 616                                (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 617                        atomic_set(&adapter->tx_fifo_stall, 0);
 618                }
 619        } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 620                /* adjust PBA for jumbo frames */
 621                ew32(PBA, pba);
 622
 623                /* To maintain wire speed transmits, the Tx FIFO should be
 624                 * large enough to accommodate two full transmit packets,
 625                 * rounded up to the next 1KB and expressed in KB.  Likewise,
 626                 * the Rx FIFO should be large enough to accommodate at least
 627                 * one full receive packet and is similarly rounded up and
 628                 * expressed in KB.
 629                 */
 630                pba = er32(PBA);
 631                /* upper 16 bits has Tx packet buffer allocation size in KB */
 632                tx_space = pba >> 16;
 633                /* lower 16 bits has Rx packet buffer allocation size in KB */
 634                pba &= 0xffff;
 635                /* the Tx fifo also stores 16 bytes of information about the Tx
 636                 * but don't include ethernet FCS because hardware appends it
 637                 */
 638                min_tx_space = (hw->max_frame_size +
 639                                sizeof(struct e1000_tx_desc) -
 640                                ETH_FCS_LEN) * 2;
 641                min_tx_space = ALIGN(min_tx_space, 1024);
 642                min_tx_space >>= 10;
 643                /* software strips receive CRC, so leave room for it */
 644                min_rx_space = hw->max_frame_size;
 645                min_rx_space = ALIGN(min_rx_space, 1024);
 646                min_rx_space >>= 10;
 647
 648                /* If current Tx allocation is less than the min Tx FIFO size,
 649                 * and the min Tx FIFO size is less than the current Rx FIFO
 650                 * allocation, take space away from current Rx allocation
 651                 */
 652                if (tx_space < min_tx_space &&
 653                    ((min_tx_space - tx_space) < pba)) {
 654                        pba = pba - (min_tx_space - tx_space);
 655
 656                        /* PCI/PCIx hardware has PBA alignment constraints */
 657                        switch (hw->mac_type) {
 658                        case e1000_82545 ... e1000_82546_rev_3:
 659                                pba &= ~(E1000_PBA_8K - 1);
 660                                break;
 661                        default:
 662                                break;
 663                        }
 664
 665                        /* if short on Rx space, Rx wins and must trump Tx
 666                         * adjustment or use Early Receive if available
 667                         */
 668                        if (pba < min_rx_space)
 669                                pba = min_rx_space;
 670                }
 671        }
 672
 673        ew32(PBA, pba);
 674
 675        /* flow control settings:
 676         * The high water mark must be low enough to fit one full frame
 677         * (or the size used for early receive) above it in the Rx FIFO.
 678         * Set it to the lower of:
 679         * - 90% of the Rx FIFO size, and
 680         * - the full Rx FIFO size minus the early receive size (for parts
 681         *   with ERT support assuming ERT set to E1000_ERT_2048), or
 682         * - the full Rx FIFO size minus one full frame
 683         */
 684        hwm = min(((pba << 10) * 9 / 10),
 685                  ((pba << 10) - hw->max_frame_size));
 686
 687        hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
 688        hw->fc_low_water = hw->fc_high_water - 8;
 689        hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 690        hw->fc_send_xon = 1;
 691        hw->fc = hw->original_fc;
 692
 693        /* Allow time for pending master requests to run */
 694        e1000_reset_hw(hw);
 695        if (hw->mac_type >= e1000_82544)
 696                ew32(WUC, 0);
 697
 698        if (e1000_init_hw(hw))
 699                e_dev_err("Hardware Error\n");
 700        e1000_update_mng_vlan(adapter);
 701
 702        /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 703        if (hw->mac_type >= e1000_82544 &&
 704            hw->autoneg == 1 &&
 705            hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 706                u32 ctrl = er32(CTRL);
 707                /* clear phy power management bit if we are in gig only mode,
 708                 * which if enabled will attempt negotiation to 100Mb, which
 709                 * can cause a loss of link at power off or driver unload
 710                 */
 711                ctrl &= ~E1000_CTRL_SWDPIN3;
 712                ew32(CTRL, ctrl);
 713        }
 714
 715        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 716        ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 717
 718        e1000_reset_adaptive(hw);
 719        e1000_phy_get_info(hw, &adapter->phy_info);
 720
 721        e1000_release_manageability(adapter);
 722}
 723
 724/* Dump the eeprom for users having checksum issues */
 725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 726{
 727        struct net_device *netdev = adapter->netdev;
 728        struct ethtool_eeprom eeprom;
 729        const struct ethtool_ops *ops = netdev->ethtool_ops;
 730        u8 *data;
 731        int i;
 732        u16 csum_old, csum_new = 0;
 733
 734        eeprom.len = ops->get_eeprom_len(netdev);
 735        eeprom.offset = 0;
 736
 737        data = kmalloc(eeprom.len, GFP_KERNEL);
 738        if (!data)
 739                return;
 740
 741        ops->get_eeprom(netdev, &eeprom, data);
 742
 743        csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 744                   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 745        for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 746                csum_new += data[i] + (data[i + 1] << 8);
 747        csum_new = EEPROM_SUM - csum_new;
 748
 749        pr_err("/*********************/\n");
 750        pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 751        pr_err("Calculated              : 0x%04x\n", csum_new);
 752
 753        pr_err("Offset    Values\n");
 754        pr_err("========  ======\n");
 755        print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 756
 757        pr_err("Include this output when contacting your support provider.\n");
 758        pr_err("This is not a software error! Something bad happened to\n");
 759        pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 760        pr_err("result in further problems, possibly loss of data,\n");
 761        pr_err("corruption or system hangs!\n");
 762        pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 763        pr_err("which is invalid and requires you to set the proper MAC\n");
 764        pr_err("address manually before continuing to enable this network\n");
 765        pr_err("device. Please inspect the EEPROM dump and report the\n");
 766        pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 767        pr_err("/*********************/\n");
 768
 769        kfree(data);
 770}
 771
 772/**
 773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 774 * @pdev: PCI device information struct
 775 *
 776 * Return true if an adapter needs ioport resources
 777 **/
 778static int e1000_is_need_ioport(struct pci_dev *pdev)
 779{
 780        switch (pdev->device) {
 781        case E1000_DEV_ID_82540EM:
 782        case E1000_DEV_ID_82540EM_LOM:
 783        case E1000_DEV_ID_82540EP:
 784        case E1000_DEV_ID_82540EP_LOM:
 785        case E1000_DEV_ID_82540EP_LP:
 786        case E1000_DEV_ID_82541EI:
 787        case E1000_DEV_ID_82541EI_MOBILE:
 788        case E1000_DEV_ID_82541ER:
 789        case E1000_DEV_ID_82541ER_LOM:
 790        case E1000_DEV_ID_82541GI:
 791        case E1000_DEV_ID_82541GI_LF:
 792        case E1000_DEV_ID_82541GI_MOBILE:
 793        case E1000_DEV_ID_82544EI_COPPER:
 794        case E1000_DEV_ID_82544EI_FIBER:
 795        case E1000_DEV_ID_82544GC_COPPER:
 796        case E1000_DEV_ID_82544GC_LOM:
 797        case E1000_DEV_ID_82545EM_COPPER:
 798        case E1000_DEV_ID_82545EM_FIBER:
 799        case E1000_DEV_ID_82546EB_COPPER:
 800        case E1000_DEV_ID_82546EB_FIBER:
 801        case E1000_DEV_ID_82546EB_QUAD_COPPER:
 802                return true;
 803        default:
 804                return false;
 805        }
 806}
 807
 808static netdev_features_t e1000_fix_features(struct net_device *netdev,
 809        netdev_features_t features)
 810{
 811        /* Since there is no support for separate Rx/Tx vlan accel
 812         * enable/disable make sure Tx flag is always in same state as Rx.
 813         */
 814        if (features & NETIF_F_HW_VLAN_CTAG_RX)
 815                features |= NETIF_F_HW_VLAN_CTAG_TX;
 816        else
 817                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 818
 819        return features;
 820}
 821
 822static int e1000_set_features(struct net_device *netdev,
 823        netdev_features_t features)
 824{
 825        struct e1000_adapter *adapter = netdev_priv(netdev);
 826        netdev_features_t changed = features ^ netdev->features;
 827
 828        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 829                e1000_vlan_mode(netdev, features);
 830
 831        if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 832                return 0;
 833
 834        netdev->features = features;
 835        adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 836
 837        if (netif_running(netdev))
 838                e1000_reinit_locked(adapter);
 839        else
 840                e1000_reset(adapter);
 841
 842        return 0;
 843}
 844
 845static const struct net_device_ops e1000_netdev_ops = {
 846        .ndo_open               = e1000_open,
 847        .ndo_stop               = e1000_close,
 848        .ndo_start_xmit         = e1000_xmit_frame,
 849        .ndo_get_stats          = e1000_get_stats,
 850        .ndo_set_rx_mode        = e1000_set_rx_mode,
 851        .ndo_set_mac_address    = e1000_set_mac,
 852        .ndo_tx_timeout         = e1000_tx_timeout,
 853        .ndo_change_mtu         = e1000_change_mtu,
 854        .ndo_do_ioctl           = e1000_ioctl,
 855        .ndo_validate_addr      = eth_validate_addr,
 856        .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
 857        .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
 858#ifdef CONFIG_NET_POLL_CONTROLLER
 859        .ndo_poll_controller    = e1000_netpoll,
 860#endif
 861        .ndo_fix_features       = e1000_fix_features,
 862        .ndo_set_features       = e1000_set_features,
 863};
 864
 865/**
 866 * e1000_init_hw_struct - initialize members of hw struct
 867 * @adapter: board private struct
 868 * @hw: structure used by e1000_hw.c
 869 *
 870 * Factors out initialization of the e1000_hw struct to its own function
 871 * that can be called very early at init (just after struct allocation).
 872 * Fields are initialized based on PCI device information and
 873 * OS network device settings (MTU size).
 874 * Returns negative error codes if MAC type setup fails.
 875 */
 876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 877                                struct e1000_hw *hw)
 878{
 879        struct pci_dev *pdev = adapter->pdev;
 880
 881        /* PCI config space info */
 882        hw->vendor_id = pdev->vendor;
 883        hw->device_id = pdev->device;
 884        hw->subsystem_vendor_id = pdev->subsystem_vendor;
 885        hw->subsystem_id = pdev->subsystem_device;
 886        hw->revision_id = pdev->revision;
 887
 888        pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 889
 890        hw->max_frame_size = adapter->netdev->mtu +
 891                             ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 892        hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 893
 894        /* identify the MAC */
 895        if (e1000_set_mac_type(hw)) {
 896                e_err(probe, "Unknown MAC Type\n");
 897                return -EIO;
 898        }
 899
 900        switch (hw->mac_type) {
 901        default:
 902                break;
 903        case e1000_82541:
 904        case e1000_82547:
 905        case e1000_82541_rev_2:
 906        case e1000_82547_rev_2:
 907                hw->phy_init_script = 1;
 908                break;
 909        }
 910
 911        e1000_set_media_type(hw);
 912        e1000_get_bus_info(hw);
 913
 914        hw->wait_autoneg_complete = false;
 915        hw->tbi_compatibility_en = true;
 916        hw->adaptive_ifs = true;
 917
 918        /* Copper options */
 919
 920        if (hw->media_type == e1000_media_type_copper) {
 921                hw->mdix = AUTO_ALL_MODES;
 922                hw->disable_polarity_correction = false;
 923                hw->master_slave = E1000_MASTER_SLAVE;
 924        }
 925
 926        return 0;
 927}
 928
 929/**
 930 * e1000_probe - Device Initialization Routine
 931 * @pdev: PCI device information struct
 932 * @ent: entry in e1000_pci_tbl
 933 *
 934 * Returns 0 on success, negative on failure
 935 *
 936 * e1000_probe initializes an adapter identified by a pci_dev structure.
 937 * The OS initialization, configuring of the adapter private structure,
 938 * and a hardware reset occur.
 939 **/
 940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 941{
 942        struct net_device *netdev;
 943        struct e1000_adapter *adapter;
 944        struct e1000_hw *hw;
 945
 946        static int cards_found;
 947        static int global_quad_port_a; /* global ksp3 port a indication */
 948        int i, err, pci_using_dac;
 949        u16 eeprom_data = 0;
 950        u16 tmp = 0;
 951        u16 eeprom_apme_mask = E1000_EEPROM_APME;
 952        int bars, need_ioport;
 953
 954        /* do not allocate ioport bars when not needed */
 955        need_ioport = e1000_is_need_ioport(pdev);
 956        if (need_ioport) {
 957                bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 958                err = pci_enable_device(pdev);
 959        } else {
 960                bars = pci_select_bars(pdev, IORESOURCE_MEM);
 961                err = pci_enable_device_mem(pdev);
 962        }
 963        if (err)
 964                return err;
 965
 966        err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 967        if (err)
 968                goto err_pci_reg;
 969
 970        pci_set_master(pdev);
 971        err = pci_save_state(pdev);
 972        if (err)
 973                goto err_alloc_etherdev;
 974
 975        err = -ENOMEM;
 976        netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 977        if (!netdev)
 978                goto err_alloc_etherdev;
 979
 980        SET_NETDEV_DEV(netdev, &pdev->dev);
 981
 982        pci_set_drvdata(pdev, netdev);
 983        adapter = netdev_priv(netdev);
 984        adapter->netdev = netdev;
 985        adapter->pdev = pdev;
 986        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 987        adapter->bars = bars;
 988        adapter->need_ioport = need_ioport;
 989
 990        hw = &adapter->hw;
 991        hw->back = adapter;
 992
 993        err = -EIO;
 994        hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 995        if (!hw->hw_addr)
 996                goto err_ioremap;
 997
 998        if (adapter->need_ioport) {
 999                for (i = BAR_1; i <= BAR_5; i++) {
1000                        if (pci_resource_len(pdev, i) == 0)
1001                                continue;
1002                        if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003                                hw->io_base = pci_resource_start(pdev, i);
1004                                break;
1005                        }
1006                }
1007        }
1008
1009        /* make ready for any if (hw->...) below */
1010        err = e1000_init_hw_struct(adapter, hw);
1011        if (err)
1012                goto err_sw_init;
1013
1014        /* there is a workaround being applied below that limits
1015         * 64-bit DMA addresses to 64-bit hardware.  There are some
1016         * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017         */
1018        pci_using_dac = 0;
1019        if ((hw->bus_type == e1000_bus_type_pcix) &&
1020            !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021                pci_using_dac = 1;
1022        } else {
1023                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024                if (err) {
1025                        pr_err("No usable DMA config, aborting\n");
1026                        goto err_dma;
1027                }
1028        }
1029
1030        netdev->netdev_ops = &e1000_netdev_ops;
1031        e1000_set_ethtool_ops(netdev);
1032        netdev->watchdog_timeo = 5 * HZ;
1033        netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037        adapter->bd_number = cards_found;
1038
1039        /* setup the private structure */
1040
1041        err = e1000_sw_init(adapter);
1042        if (err)
1043                goto err_sw_init;
1044
1045        err = -EIO;
1046        if (hw->mac_type == e1000_ce4100) {
1047                hw->ce4100_gbe_mdio_base_virt =
1048                                        ioremap(pci_resource_start(pdev, BAR_1),
1049                                                pci_resource_len(pdev, BAR_1));
1050
1051                if (!hw->ce4100_gbe_mdio_base_virt)
1052                        goto err_mdio_ioremap;
1053        }
1054
1055        if (hw->mac_type >= e1000_82543) {
1056                netdev->hw_features = NETIF_F_SG |
1057                                   NETIF_F_HW_CSUM |
1058                                   NETIF_F_HW_VLAN_CTAG_RX;
1059                netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060                                   NETIF_F_HW_VLAN_CTAG_FILTER;
1061        }
1062
1063        if ((hw->mac_type >= e1000_82544) &&
1064           (hw->mac_type != e1000_82547))
1065                netdev->hw_features |= NETIF_F_TSO;
1066
1067        netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069        netdev->features |= netdev->hw_features;
1070        netdev->hw_features |= (NETIF_F_RXCSUM |
1071                                NETIF_F_RXALL |
1072                                NETIF_F_RXFCS);
1073
1074        if (pci_using_dac) {
1075                netdev->features |= NETIF_F_HIGHDMA;
1076                netdev->vlan_features |= NETIF_F_HIGHDMA;
1077        }
1078
1079        netdev->vlan_features |= (NETIF_F_TSO |
1080                                  NETIF_F_HW_CSUM |
1081                                  NETIF_F_SG);
1082
1083        /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084        if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085            hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086                netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088        adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090        /* initialize eeprom parameters */
1091        if (e1000_init_eeprom_params(hw)) {
1092                e_err(probe, "EEPROM initialization failed\n");
1093                goto err_eeprom;
1094        }
1095
1096        /* before reading the EEPROM, reset the controller to
1097         * put the device in a known good starting state
1098         */
1099
1100        e1000_reset_hw(hw);
1101
1102        /* make sure the EEPROM is good */
1103        if (e1000_validate_eeprom_checksum(hw) < 0) {
1104                e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105                e1000_dump_eeprom(adapter);
1106                /* set MAC address to all zeroes to invalidate and temporary
1107                 * disable this device for the user. This blocks regular
1108                 * traffic while still permitting ethtool ioctls from reaching
1109                 * the hardware as well as allowing the user to run the
1110                 * interface after manually setting a hw addr using
1111                 * `ip set address`
1112                 */
1113                memset(hw->mac_addr, 0, netdev->addr_len);
1114        } else {
1115                /* copy the MAC address out of the EEPROM */
1116                if (e1000_read_mac_addr(hw))
1117                        e_err(probe, "EEPROM Read Error\n");
1118        }
1119        /* don't block initialization here due to bad MAC address */
1120        memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122        if (!is_valid_ether_addr(netdev->dev_addr))
1123                e_err(probe, "Invalid MAC Address\n");
1124
1125
1126        INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127        INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128                          e1000_82547_tx_fifo_stall_task);
1129        INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130        INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132        e1000_check_options(adapter);
1133
1134        /* Initial Wake on LAN setting
1135         * If APM wake is enabled in the EEPROM,
1136         * enable the ACPI Magic Packet filter
1137         */
1138
1139        switch (hw->mac_type) {
1140        case e1000_82542_rev2_0:
1141        case e1000_82542_rev2_1:
1142        case e1000_82543:
1143                break;
1144        case e1000_82544:
1145                e1000_read_eeprom(hw,
1146                        EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147                eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148                break;
1149        case e1000_82546:
1150        case e1000_82546_rev_3:
1151                if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1152                        e1000_read_eeprom(hw,
1153                                EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154                        break;
1155                }
1156                /* Fall Through */
1157        default:
1158                e1000_read_eeprom(hw,
1159                        EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160                break;
1161        }
1162        if (eeprom_data & eeprom_apme_mask)
1163                adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165        /* now that we have the eeprom settings, apply the special cases
1166         * where the eeprom may be wrong or the board simply won't support
1167         * wake on lan on a particular port
1168         */
1169        switch (pdev->device) {
1170        case E1000_DEV_ID_82546GB_PCIE:
1171                adapter->eeprom_wol = 0;
1172                break;
1173        case E1000_DEV_ID_82546EB_FIBER:
1174        case E1000_DEV_ID_82546GB_FIBER:
1175                /* Wake events only supported on port A for dual fiber
1176                 * regardless of eeprom setting
1177                 */
1178                if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179                        adapter->eeprom_wol = 0;
1180                break;
1181        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182                /* if quad port adapter, disable WoL on all but port A */
1183                if (global_quad_port_a != 0)
1184                        adapter->eeprom_wol = 0;
1185                else
1186                        adapter->quad_port_a = true;
1187                /* Reset for multiple quad port adapters */
1188                if (++global_quad_port_a == 4)
1189                        global_quad_port_a = 0;
1190                break;
1191        }
1192
1193        /* initialize the wol settings based on the eeprom settings */
1194        adapter->wol = adapter->eeprom_wol;
1195        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197        /* Auto detect PHY address */
1198        if (hw->mac_type == e1000_ce4100) {
1199                for (i = 0; i < 32; i++) {
1200                        hw->phy_addr = i;
1201                        e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202
1203                        if (tmp != 0 && tmp != 0xFF)
1204                                break;
1205                }
1206
1207                if (i >= 32)
1208                        goto err_eeprom;
1209        }
1210
1211        /* reset the hardware with the new settings */
1212        e1000_reset(adapter);
1213
1214        strcpy(netdev->name, "eth%d");
1215        err = register_netdev(netdev);
1216        if (err)
1217                goto err_register;
1218
1219        e1000_vlan_filter_on_off(adapter, false);
1220
1221        /* print bus type/speed/width info */
1222        e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223               ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224               ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225                (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226                (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227                (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228               ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229               netdev->dev_addr);
1230
1231        /* carrier off reporting is important to ethtool even BEFORE open */
1232        netif_carrier_off(netdev);
1233
1234        e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236        cards_found++;
1237        return 0;
1238
1239err_register:
1240err_eeprom:
1241        e1000_phy_hw_reset(hw);
1242
1243        if (hw->flash_address)
1244                iounmap(hw->flash_address);
1245        kfree(adapter->tx_ring);
1246        kfree(adapter->rx_ring);
1247err_dma:
1248err_sw_init:
1249err_mdio_ioremap:
1250        iounmap(hw->ce4100_gbe_mdio_base_virt);
1251        iounmap(hw->hw_addr);
1252err_ioremap:
1253        free_netdev(netdev);
1254err_alloc_etherdev:
1255        pci_release_selected_regions(pdev, bars);
1256err_pci_reg:
1257        pci_disable_device(pdev);
1258        return err;
1259}
1260
1261/**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. That could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
1270static void e1000_remove(struct pci_dev *pdev)
1271{
1272        struct net_device *netdev = pci_get_drvdata(pdev);
1273        struct e1000_adapter *adapter = netdev_priv(netdev);
1274        struct e1000_hw *hw = &adapter->hw;
1275
1276        e1000_down_and_stop(adapter);
1277        e1000_release_manageability(adapter);
1278
1279        unregister_netdev(netdev);
1280
1281        e1000_phy_hw_reset(hw);
1282
1283        kfree(adapter->tx_ring);
1284        kfree(adapter->rx_ring);
1285
1286        if (hw->mac_type == e1000_ce4100)
1287                iounmap(hw->ce4100_gbe_mdio_base_virt);
1288        iounmap(hw->hw_addr);
1289        if (hw->flash_address)
1290                iounmap(hw->flash_address);
1291        pci_release_selected_regions(pdev, adapter->bars);
1292
1293        free_netdev(netdev);
1294
1295        pci_disable_device(pdev);
1296}
1297
1298/**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1304 **/
1305static int e1000_sw_init(struct e1000_adapter *adapter)
1306{
1307        adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309        adapter->num_tx_queues = 1;
1310        adapter->num_rx_queues = 1;
1311
1312        if (e1000_alloc_queues(adapter)) {
1313                e_err(probe, "Unable to allocate memory for queues\n");
1314                return -ENOMEM;
1315        }
1316
1317        /* Explicitly disable IRQ since the NIC can be in any state. */
1318        e1000_irq_disable(adapter);
1319
1320        spin_lock_init(&adapter->stats_lock);
1321
1322        set_bit(__E1000_DOWN, &adapter->flags);
1323
1324        return 0;
1325}
1326
1327/**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1333 **/
1334static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335{
1336        adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337                                   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338        if (!adapter->tx_ring)
1339                return -ENOMEM;
1340
1341        adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342                                   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343        if (!adapter->rx_ring) {
1344                kfree(adapter->tx_ring);
1345                return -ENOMEM;
1346        }
1347
1348        return E1000_SUCCESS;
1349}
1350
1351/**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP).  At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
1360 * handler is registered with the OS, the watchdog task is started,
1361 * and the stack is notified that the interface is ready.
1362 **/
1363static int e1000_open(struct net_device *netdev)
1364{
1365        struct e1000_adapter *adapter = netdev_priv(netdev);
1366        struct e1000_hw *hw = &adapter->hw;
1367        int err;
1368
1369        /* disallow open during test */
1370        if (test_bit(__E1000_TESTING, &adapter->flags))
1371                return -EBUSY;
1372
1373        netif_carrier_off(netdev);
1374
1375        /* allocate transmit descriptors */
1376        err = e1000_setup_all_tx_resources(adapter);
1377        if (err)
1378                goto err_setup_tx;
1379
1380        /* allocate receive descriptors */
1381        err = e1000_setup_all_rx_resources(adapter);
1382        if (err)
1383                goto err_setup_rx;
1384
1385        e1000_power_up_phy(adapter);
1386
1387        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388        if ((hw->mng_cookie.status &
1389                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390                e1000_update_mng_vlan(adapter);
1391        }
1392
1393        /* before we allocate an interrupt, we must be ready to handle it.
1394         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395         * as soon as we call pci_request_irq, so we have to setup our
1396         * clean_rx handler before we do so.
1397         */
1398        e1000_configure(adapter);
1399
1400        err = e1000_request_irq(adapter);
1401        if (err)
1402                goto err_req_irq;
1403
1404        /* From here on the code is the same as e1000_up() */
1405        clear_bit(__E1000_DOWN, &adapter->flags);
1406
1407        napi_enable(&adapter->napi);
1408
1409        e1000_irq_enable(adapter);
1410
1411        netif_start_queue(netdev);
1412
1413        /* fire a link status change interrupt to start the watchdog */
1414        ew32(ICS, E1000_ICS_LSC);
1415
1416        return E1000_SUCCESS;
1417
1418err_req_irq:
1419        e1000_power_down_phy(adapter);
1420        e1000_free_all_rx_resources(adapter);
1421err_setup_rx:
1422        e1000_free_all_tx_resources(adapter);
1423err_setup_tx:
1424        e1000_reset(adapter);
1425
1426        return err;
1427}
1428
1429/**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS.  The hardware is still under the drivers control, but
1437 * needs to be disabled.  A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
1440static int e1000_close(struct net_device *netdev)
1441{
1442        struct e1000_adapter *adapter = netdev_priv(netdev);
1443        struct e1000_hw *hw = &adapter->hw;
1444        int count = E1000_CHECK_RESET_COUNT;
1445
1446        while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447                usleep_range(10000, 20000);
1448
1449        WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450        e1000_down(adapter);
1451        e1000_power_down_phy(adapter);
1452        e1000_free_irq(adapter);
1453
1454        e1000_free_all_tx_resources(adapter);
1455        e1000_free_all_rx_resources(adapter);
1456
1457        /* kill manageability vlan ID if supported, but not if a vlan with
1458         * the same ID is registered on the host OS (let 8021q kill it)
1459         */
1460        if ((hw->mng_cookie.status &
1461             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462            !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463                e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464                                       adapter->mng_vlan_id);
1465        }
1466
1467        return 0;
1468}
1469
1470/**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1475 **/
1476static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477                                  unsigned long len)
1478{
1479        struct e1000_hw *hw = &adapter->hw;
1480        unsigned long begin = (unsigned long)start;
1481        unsigned long end = begin + len;
1482
1483        /* First rev 82545 and 82546 need to not allow any memory
1484         * write location to cross 64k boundary due to errata 23
1485         */
1486        if (hw->mac_type == e1000_82545 ||
1487            hw->mac_type == e1000_ce4100 ||
1488            hw->mac_type == e1000_82546) {
1489                return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490        }
1491
1492        return true;
1493}
1494
1495/**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr:    tx descriptor ring (for a specific queue) to setup
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
1502static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503                                    struct e1000_tx_ring *txdr)
1504{
1505        struct pci_dev *pdev = adapter->pdev;
1506        int size;
1507
1508        size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509        txdr->buffer_info = vzalloc(size);
1510        if (!txdr->buffer_info)
1511                return -ENOMEM;
1512
1513        /* round up to nearest 4K */
1514
1515        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516        txdr->size = ALIGN(txdr->size, 4096);
1517
1518        txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519                                        GFP_KERNEL);
1520        if (!txdr->desc) {
1521setup_tx_desc_die:
1522                vfree(txdr->buffer_info);
1523                return -ENOMEM;
1524        }
1525
1526        /* Fix for errata 23, can't cross 64kB boundary */
1527        if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528                void *olddesc = txdr->desc;
1529                dma_addr_t olddma = txdr->dma;
1530                e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531                      txdr->size, txdr->desc);
1532                /* Try again, without freeing the previous */
1533                txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534                                                &txdr->dma, GFP_KERNEL);
1535                /* Failed allocation, critical failure */
1536                if (!txdr->desc) {
1537                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538                                          olddma);
1539                        goto setup_tx_desc_die;
1540                }
1541
1542                if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543                        /* give up */
1544                        dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545                                          txdr->dma);
1546                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547                                          olddma);
1548                        e_err(probe, "Unable to allocate aligned memory "
1549                              "for the transmit descriptor ring\n");
1550                        vfree(txdr->buffer_info);
1551                        return -ENOMEM;
1552                } else {
1553                        /* Free old allocation, new allocation was successful */
1554                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555                                          olddma);
1556                }
1557        }
1558        memset(txdr->desc, 0, txdr->size);
1559
1560        txdr->next_to_use = 0;
1561        txdr->next_to_clean = 0;
1562
1563        return 0;
1564}
1565
1566/**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 *                                (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574{
1575        int i, err = 0;
1576
1577        for (i = 0; i < adapter->num_tx_queues; i++) {
1578                err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579                if (err) {
1580                        e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581                        for (i-- ; i >= 0; i--)
1582                                e1000_free_tx_resources(adapter,
1583                                                        &adapter->tx_ring[i]);
1584                        break;
1585                }
1586        }
1587
1588        return err;
1589}
1590
1591/**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
1597static void e1000_configure_tx(struct e1000_adapter *adapter)
1598{
1599        u64 tdba;
1600        struct e1000_hw *hw = &adapter->hw;
1601        u32 tdlen, tctl, tipg;
1602        u32 ipgr1, ipgr2;
1603
1604        /* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606        switch (adapter->num_tx_queues) {
1607        case 1:
1608        default:
1609                tdba = adapter->tx_ring[0].dma;
1610                tdlen = adapter->tx_ring[0].count *
1611                        sizeof(struct e1000_tx_desc);
1612                ew32(TDLEN, tdlen);
1613                ew32(TDBAH, (tdba >> 32));
1614                ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615                ew32(TDT, 0);
1616                ew32(TDH, 0);
1617                adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618                                           E1000_TDH : E1000_82542_TDH);
1619                adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620                                           E1000_TDT : E1000_82542_TDT);
1621                break;
1622        }
1623
1624        /* Set the default values for the Tx Inter Packet Gap timer */
1625        if ((hw->media_type == e1000_media_type_fiber ||
1626             hw->media_type == e1000_media_type_internal_serdes))
1627                tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628        else
1629                tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631        switch (hw->mac_type) {
1632        case e1000_82542_rev2_0:
1633        case e1000_82542_rev2_1:
1634                tipg = DEFAULT_82542_TIPG_IPGT;
1635                ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636                ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637                break;
1638        default:
1639                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640                ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641                break;
1642        }
1643        tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644        tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645        ew32(TIPG, tipg);
1646
1647        /* Set the Tx Interrupt Delay register */
1648
1649        ew32(TIDV, adapter->tx_int_delay);
1650        if (hw->mac_type >= e1000_82540)
1651                ew32(TADV, adapter->tx_abs_int_delay);
1652
1653        /* Program the Transmit Control Register */
1654
1655        tctl = er32(TCTL);
1656        tctl &= ~E1000_TCTL_CT;
1657        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660        e1000_config_collision_dist(hw);
1661
1662        /* Setup Transmit Descriptor Settings for eop descriptor */
1663        adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665        /* only set IDE if we are delaying interrupts using the timers */
1666        if (adapter->tx_int_delay)
1667                adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669        if (hw->mac_type < e1000_82543)
1670                adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671        else
1672                adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674        /* Cache if we're 82544 running in PCI-X because we'll
1675         * need this to apply a workaround later in the send path.
1676         */
1677        if (hw->mac_type == e1000_82544 &&
1678            hw->bus_type == e1000_bus_type_pcix)
1679                adapter->pcix_82544 = true;
1680
1681        ew32(TCTL, tctl);
1682
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693                                    struct e1000_rx_ring *rxdr)
1694{
1695        struct pci_dev *pdev = adapter->pdev;
1696        int size, desc_len;
1697
1698        size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699        rxdr->buffer_info = vzalloc(size);
1700        if (!rxdr->buffer_info)
1701                return -ENOMEM;
1702
1703        desc_len = sizeof(struct e1000_rx_desc);
1704
1705        /* Round up to nearest 4K */
1706
1707        rxdr->size = rxdr->count * desc_len;
1708        rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710        rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711                                        GFP_KERNEL);
1712        if (!rxdr->desc) {
1713setup_rx_desc_die:
1714                vfree(rxdr->buffer_info);
1715                return -ENOMEM;
1716        }
1717
1718        /* Fix for errata 23, can't cross 64kB boundary */
1719        if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720                void *olddesc = rxdr->desc;
1721                dma_addr_t olddma = rxdr->dma;
1722                e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723                      rxdr->size, rxdr->desc);
1724                /* Try again, without freeing the previous */
1725                rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726                                                &rxdr->dma, GFP_KERNEL);
1727                /* Failed allocation, critical failure */
1728                if (!rxdr->desc) {
1729                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730                                          olddma);
1731                        goto setup_rx_desc_die;
1732                }
1733
1734                if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735                        /* give up */
1736                        dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737                                          rxdr->dma);
1738                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739                                          olddma);
1740                        e_err(probe, "Unable to allocate aligned memory for "
1741                              "the Rx descriptor ring\n");
1742                        goto setup_rx_desc_die;
1743                } else {
1744                        /* Free old allocation, new allocation was successful */
1745                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746                                          olddma);
1747                }
1748        }
1749        memset(rxdr->desc, 0, rxdr->size);
1750
1751        rxdr->next_to_clean = 0;
1752        rxdr->next_to_use = 0;
1753        rxdr->rx_skb_top = NULL;
1754
1755        return 0;
1756}
1757
1758/**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 *                                (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
1763 * Return 0 on success, negative on failure
1764 **/
1765int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766{
1767        int i, err = 0;
1768
1769        for (i = 0; i < adapter->num_rx_queues; i++) {
1770                err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771                if (err) {
1772                        e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773                        for (i-- ; i >= 0; i--)
1774                                e1000_free_rx_resources(adapter,
1775                                                        &adapter->rx_ring[i]);
1776                        break;
1777                }
1778        }
1779
1780        return err;
1781}
1782
1783/**
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1786 **/
1787static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788{
1789        struct e1000_hw *hw = &adapter->hw;
1790        u32 rctl;
1791
1792        rctl = er32(RCTL);
1793
1794        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796        rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797                E1000_RCTL_RDMTS_HALF |
1798                (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800        if (hw->tbi_compatibility_on == 1)
1801                rctl |= E1000_RCTL_SBP;
1802        else
1803                rctl &= ~E1000_RCTL_SBP;
1804
1805        if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806                rctl &= ~E1000_RCTL_LPE;
1807        else
1808                rctl |= E1000_RCTL_LPE;
1809
1810        /* Setup buffer sizes */
1811        rctl &= ~E1000_RCTL_SZ_4096;
1812        rctl |= E1000_RCTL_BSEX;
1813        switch (adapter->rx_buffer_len) {
1814        case E1000_RXBUFFER_2048:
1815        default:
1816                rctl |= E1000_RCTL_SZ_2048;
1817                rctl &= ~E1000_RCTL_BSEX;
1818                break;
1819        case E1000_RXBUFFER_4096:
1820                rctl |= E1000_RCTL_SZ_4096;
1821                break;
1822        case E1000_RXBUFFER_8192:
1823                rctl |= E1000_RCTL_SZ_8192;
1824                break;
1825        case E1000_RXBUFFER_16384:
1826                rctl |= E1000_RCTL_SZ_16384;
1827                break;
1828        }
1829
1830        /* This is useful for sniffing bad packets. */
1831        if (adapter->netdev->features & NETIF_F_RXALL) {
1832                /* UPE and MPE will be handled by normal PROMISC logic
1833                 * in e1000e_set_rx_mode
1834                 */
1835                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839                rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840                          E1000_RCTL_DPF | /* Allow filtered pause */
1841                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843                 * and that breaks VLANs.
1844                 */
1845        }
1846
1847        ew32(RCTL, rctl);
1848}
1849
1850/**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
1856static void e1000_configure_rx(struct e1000_adapter *adapter)
1857{
1858        u64 rdba;
1859        struct e1000_hw *hw = &adapter->hw;
1860        u32 rdlen, rctl, rxcsum;
1861
1862        if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863                rdlen = adapter->rx_ring[0].count *
1864                        sizeof(struct e1000_rx_desc);
1865                adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866                adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867        } else {
1868                rdlen = adapter->rx_ring[0].count *
1869                        sizeof(struct e1000_rx_desc);
1870                adapter->clean_rx = e1000_clean_rx_irq;
1871                adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872        }
1873
1874        /* disable receives while setting up the descriptors */
1875        rctl = er32(RCTL);
1876        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878        /* set the Receive Delay Timer Register */
1879        ew32(RDTR, adapter->rx_int_delay);
1880
1881        if (hw->mac_type >= e1000_82540) {
1882                ew32(RADV, adapter->rx_abs_int_delay);
1883                if (adapter->itr_setting != 0)
1884                        ew32(ITR, 1000000000 / (adapter->itr * 256));
1885        }
1886
1887        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888         * the Base and Length of the Rx Descriptor Ring
1889         */
1890        switch (adapter->num_rx_queues) {
1891        case 1:
1892        default:
1893                rdba = adapter->rx_ring[0].dma;
1894                ew32(RDLEN, rdlen);
1895                ew32(RDBAH, (rdba >> 32));
1896                ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897                ew32(RDT, 0);
1898                ew32(RDH, 0);
1899                adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900                                           E1000_RDH : E1000_82542_RDH);
1901                adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902                                           E1000_RDT : E1000_82542_RDT);
1903                break;
1904        }
1905
1906        /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907        if (hw->mac_type >= e1000_82543) {
1908                rxcsum = er32(RXCSUM);
1909                if (adapter->rx_csum)
1910                        rxcsum |= E1000_RXCSUM_TUOFL;
1911                else
1912                        /* don't need to clear IPPCSE as it defaults to 0 */
1913                        rxcsum &= ~E1000_RXCSUM_TUOFL;
1914                ew32(RXCSUM, rxcsum);
1915        }
1916
1917        /* Enable Receives */
1918        ew32(RCTL, rctl | E1000_RCTL_EN);
1919}
1920
1921/**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929                                    struct e1000_tx_ring *tx_ring)
1930{
1931        struct pci_dev *pdev = adapter->pdev;
1932
1933        e1000_clean_tx_ring(adapter, tx_ring);
1934
1935        vfree(tx_ring->buffer_info);
1936        tx_ring->buffer_info = NULL;
1937
1938        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939                          tx_ring->dma);
1940
1941        tx_ring->desc = NULL;
1942}
1943
1944/**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
1950void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951{
1952        int i;
1953
1954        for (i = 0; i < adapter->num_tx_queues; i++)
1955                e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956}
1957
1958static void
1959e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960                                 struct e1000_tx_buffer *buffer_info)
1961{
1962        if (buffer_info->dma) {
1963                if (buffer_info->mapped_as_page)
1964                        dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965                                       buffer_info->length, DMA_TO_DEVICE);
1966                else
1967                        dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968                                         buffer_info->length,
1969                                         DMA_TO_DEVICE);
1970                buffer_info->dma = 0;
1971        }
1972        if (buffer_info->skb) {
1973                dev_kfree_skb_any(buffer_info->skb);
1974                buffer_info->skb = NULL;
1975        }
1976        buffer_info->time_stamp = 0;
1977        /* buffer_info must be completely set up in the transmit path */
1978}
1979
1980/**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
1983 * @tx_ring: ring to be cleaned
1984 **/
1985static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986                                struct e1000_tx_ring *tx_ring)
1987{
1988        struct e1000_hw *hw = &adapter->hw;
1989        struct e1000_tx_buffer *buffer_info;
1990        unsigned long size;
1991        unsigned int i;
1992
1993        /* Free all the Tx ring sk_buffs */
1994
1995        for (i = 0; i < tx_ring->count; i++) {
1996                buffer_info = &tx_ring->buffer_info[i];
1997                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998        }
1999
2000        netdev_reset_queue(adapter->netdev);
2001        size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002        memset(tx_ring->buffer_info, 0, size);
2003
2004        /* Zero out the descriptor ring */
2005
2006        memset(tx_ring->desc, 0, tx_ring->size);
2007
2008        tx_ring->next_to_use = 0;
2009        tx_ring->next_to_clean = 0;
2010        tx_ring->last_tx_tso = false;
2011
2012        writel(0, hw->hw_addr + tx_ring->tdh);
2013        writel(0, hw->hw_addr + tx_ring->tdt);
2014}
2015
2016/**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
2020static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021{
2022        int i;
2023
2024        for (i = 0; i < adapter->num_tx_queues; i++)
2025                e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026}
2027
2028/**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
2031 * @rx_ring: ring to clean the resources from
2032 *
2033 * Free all receive software resources
2034 **/
2035static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036                                    struct e1000_rx_ring *rx_ring)
2037{
2038        struct pci_dev *pdev = adapter->pdev;
2039
2040        e1000_clean_rx_ring(adapter, rx_ring);
2041
2042        vfree(rx_ring->buffer_info);
2043        rx_ring->buffer_info = NULL;
2044
2045        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046                          rx_ring->dma);
2047
2048        rx_ring->desc = NULL;
2049}
2050
2051/**
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2054 *
2055 * Free all receive software resources
2056 **/
2057void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058{
2059        int i;
2060
2061        for (i = 0; i < adapter->num_rx_queues; i++)
2062                e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063}
2064
2065#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067{
2068        return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070}
2071
2072static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073{
2074        unsigned int len = e1000_frag_len(a);
2075        u8 *data = netdev_alloc_frag(len);
2076
2077        if (likely(data))
2078                data += E1000_HEADROOM;
2079        return data;
2080}
2081
2082/**
2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084 * @adapter: board private structure
2085 * @rx_ring: ring to free buffers from
2086 **/
2087static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088                                struct e1000_rx_ring *rx_ring)
2089{
2090        struct e1000_hw *hw = &adapter->hw;
2091        struct e1000_rx_buffer *buffer_info;
2092        struct pci_dev *pdev = adapter->pdev;
2093        unsigned long size;
2094        unsigned int i;
2095
2096        /* Free all the Rx netfrags */
2097        for (i = 0; i < rx_ring->count; i++) {
2098                buffer_info = &rx_ring->buffer_info[i];
2099                if (adapter->clean_rx == e1000_clean_rx_irq) {
2100                        if (buffer_info->dma)
2101                                dma_unmap_single(&pdev->dev, buffer_info->dma,
2102                                                 adapter->rx_buffer_len,
2103                                                 DMA_FROM_DEVICE);
2104                        if (buffer_info->rxbuf.data) {
2105                                skb_free_frag(buffer_info->rxbuf.data);
2106                                buffer_info->rxbuf.data = NULL;
2107                        }
2108                } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109                        if (buffer_info->dma)
2110                                dma_unmap_page(&pdev->dev, buffer_info->dma,
2111                                               adapter->rx_buffer_len,
2112                                               DMA_FROM_DEVICE);
2113                        if (buffer_info->rxbuf.page) {
2114                                put_page(buffer_info->rxbuf.page);
2115                                buffer_info->rxbuf.page = NULL;
2116                        }
2117                }
2118
2119                buffer_info->dma = 0;
2120        }
2121
2122        /* there also may be some cached data from a chained receive */
2123        napi_free_frags(&adapter->napi);
2124        rx_ring->rx_skb_top = NULL;
2125
2126        size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127        memset(rx_ring->buffer_info, 0, size);
2128
2129        /* Zero out the descriptor ring */
2130        memset(rx_ring->desc, 0, rx_ring->size);
2131
2132        rx_ring->next_to_clean = 0;
2133        rx_ring->next_to_use = 0;
2134
2135        writel(0, hw->hw_addr + rx_ring->rdh);
2136        writel(0, hw->hw_addr + rx_ring->rdt);
2137}
2138
2139/**
2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141 * @adapter: board private structure
2142 **/
2143static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144{
2145        int i;
2146
2147        for (i = 0; i < adapter->num_rx_queues; i++)
2148                e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149}
2150
2151/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152 * and memory write and invalidate disabled for certain operations
2153 */
2154static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155{
2156        struct e1000_hw *hw = &adapter->hw;
2157        struct net_device *netdev = adapter->netdev;
2158        u32 rctl;
2159
2160        e1000_pci_clear_mwi(hw);
2161
2162        rctl = er32(RCTL);
2163        rctl |= E1000_RCTL_RST;
2164        ew32(RCTL, rctl);
2165        E1000_WRITE_FLUSH();
2166        mdelay(5);
2167
2168        if (netif_running(netdev))
2169                e1000_clean_all_rx_rings(adapter);
2170}
2171
2172static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173{
2174        struct e1000_hw *hw = &adapter->hw;
2175        struct net_device *netdev = adapter->netdev;
2176        u32 rctl;
2177
2178        rctl = er32(RCTL);
2179        rctl &= ~E1000_RCTL_RST;
2180        ew32(RCTL, rctl);
2181        E1000_WRITE_FLUSH();
2182        mdelay(5);
2183
2184        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185                e1000_pci_set_mwi(hw);
2186
2187        if (netif_running(netdev)) {
2188                /* No need to loop, because 82542 supports only 1 queue */
2189                struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190                e1000_configure_rx(adapter);
2191                adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192        }
2193}
2194
2195/**
2196 * e1000_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2199 *
2200 * Returns 0 on success, negative on failure
2201 **/
2202static int e1000_set_mac(struct net_device *netdev, void *p)
2203{
2204        struct e1000_adapter *adapter = netdev_priv(netdev);
2205        struct e1000_hw *hw = &adapter->hw;
2206        struct sockaddr *addr = p;
2207
2208        if (!is_valid_ether_addr(addr->sa_data))
2209                return -EADDRNOTAVAIL;
2210
2211        /* 82542 2.0 needs to be in reset to write receive address registers */
2212
2213        if (hw->mac_type == e1000_82542_rev2_0)
2214                e1000_enter_82542_rst(adapter);
2215
2216        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217        memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218
2219        e1000_rar_set(hw, hw->mac_addr, 0);
2220
2221        if (hw->mac_type == e1000_82542_rev2_0)
2222                e1000_leave_82542_rst(adapter);
2223
2224        return 0;
2225}
2226
2227/**
2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229 * @netdev: network interface device structure
2230 *
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
2234 * promiscuous mode, and all-multi behavior.
2235 **/
2236static void e1000_set_rx_mode(struct net_device *netdev)
2237{
2238        struct e1000_adapter *adapter = netdev_priv(netdev);
2239        struct e1000_hw *hw = &adapter->hw;
2240        struct netdev_hw_addr *ha;
2241        bool use_uc = false;
2242        u32 rctl;
2243        u32 hash_value;
2244        int i, rar_entries = E1000_RAR_ENTRIES;
2245        int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246        u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
2248        if (!mcarray)
2249                return;
2250
2251        /* Check for Promiscuous and All Multicast modes */
2252
2253        rctl = er32(RCTL);
2254
2255        if (netdev->flags & IFF_PROMISC) {
2256                rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257                rctl &= ~E1000_RCTL_VFE;
2258        } else {
2259                if (netdev->flags & IFF_ALLMULTI)
2260                        rctl |= E1000_RCTL_MPE;
2261                else
2262                        rctl &= ~E1000_RCTL_MPE;
2263                /* Enable VLAN filter if there is a VLAN */
2264                if (e1000_vlan_used(adapter))
2265                        rctl |= E1000_RCTL_VFE;
2266        }
2267
2268        if (netdev_uc_count(netdev) > rar_entries - 1) {
2269                rctl |= E1000_RCTL_UPE;
2270        } else if (!(netdev->flags & IFF_PROMISC)) {
2271                rctl &= ~E1000_RCTL_UPE;
2272                use_uc = true;
2273        }
2274
2275        ew32(RCTL, rctl);
2276
2277        /* 82542 2.0 needs to be in reset to write receive address registers */
2278
2279        if (hw->mac_type == e1000_82542_rev2_0)
2280                e1000_enter_82542_rst(adapter);
2281
2282        /* load the first 14 addresses into the exact filters 1-14. Unicast
2283         * addresses take precedence to avoid disabling unicast filtering
2284         * when possible.
2285         *
2286         * RAR 0 is used for the station MAC address
2287         * if there are not 14 addresses, go ahead and clear the filters
2288         */
2289        i = 1;
2290        if (use_uc)
2291                netdev_for_each_uc_addr(ha, netdev) {
2292                        if (i == rar_entries)
2293                                break;
2294                        e1000_rar_set(hw, ha->addr, i++);
2295                }
2296
2297        netdev_for_each_mc_addr(ha, netdev) {
2298                if (i == rar_entries) {
2299                        /* load any remaining addresses into the hash table */
2300                        u32 hash_reg, hash_bit, mta;
2301                        hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302                        hash_reg = (hash_value >> 5) & 0x7F;
2303                        hash_bit = hash_value & 0x1F;
2304                        mta = (1 << hash_bit);
2305                        mcarray[hash_reg] |= mta;
2306                } else {
2307                        e1000_rar_set(hw, ha->addr, i++);
2308                }
2309        }
2310
2311        for (; i < rar_entries; i++) {
2312                E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313                E1000_WRITE_FLUSH();
2314                E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315                E1000_WRITE_FLUSH();
2316        }
2317
2318        /* write the hash table completely, write from bottom to avoid
2319         * both stupid write combining chipsets, and flushing each write
2320         */
2321        for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322                /* If we are on an 82544 has an errata where writing odd
2323                 * offsets overwrites the previous even offset, but writing
2324                 * backwards over the range solves the issue by always
2325                 * writing the odd offset first
2326                 */
2327                E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328        }
2329        E1000_WRITE_FLUSH();
2330
2331        if (hw->mac_type == e1000_82542_rev2_0)
2332                e1000_leave_82542_rst(adapter);
2333
2334        kfree(mcarray);
2335}
2336
2337/**
2338 * e1000_update_phy_info_task - get phy info
2339 * @work: work struct contained inside adapter struct
2340 *
2341 * Need to wait a few seconds after link up to get diagnostic information from
2342 * the phy
2343 */
2344static void e1000_update_phy_info_task(struct work_struct *work)
2345{
2346        struct e1000_adapter *adapter = container_of(work,
2347                                                     struct e1000_adapter,
2348                                                     phy_info_task.work);
2349
2350        e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351}
2352
2353/**
2354 * e1000_82547_tx_fifo_stall_task - task to complete work
2355 * @work: work struct contained inside adapter struct
2356 **/
2357static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358{
2359        struct e1000_adapter *adapter = container_of(work,
2360                                                     struct e1000_adapter,
2361                                                     fifo_stall_task.work);
2362        struct e1000_hw *hw = &adapter->hw;
2363        struct net_device *netdev = adapter->netdev;
2364        u32 tctl;
2365
2366        if (atomic_read(&adapter->tx_fifo_stall)) {
2367                if ((er32(TDT) == er32(TDH)) &&
2368                   (er32(TDFT) == er32(TDFH)) &&
2369                   (er32(TDFTS) == er32(TDFHS))) {
2370                        tctl = er32(TCTL);
2371                        ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372                        ew32(TDFT, adapter->tx_head_addr);
2373                        ew32(TDFH, adapter->tx_head_addr);
2374                        ew32(TDFTS, adapter->tx_head_addr);
2375                        ew32(TDFHS, adapter->tx_head_addr);
2376                        ew32(TCTL, tctl);
2377                        E1000_WRITE_FLUSH();
2378
2379                        adapter->tx_fifo_head = 0;
2380                        atomic_set(&adapter->tx_fifo_stall, 0);
2381                        netif_wake_queue(netdev);
2382                } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383                        schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384                }
2385        }
2386}
2387
2388bool e1000_has_link(struct e1000_adapter *adapter)
2389{
2390        struct e1000_hw *hw = &adapter->hw;
2391        bool link_active = false;
2392
2393        /* get_link_status is set on LSC (link status) interrupt or rx
2394         * sequence error interrupt (except on intel ce4100).
2395         * get_link_status will stay false until the
2396         * e1000_check_for_link establishes link for copper adapters
2397         * ONLY
2398         */
2399        switch (hw->media_type) {
2400        case e1000_media_type_copper:
2401                if (hw->mac_type == e1000_ce4100)
2402                        hw->get_link_status = 1;
2403                if (hw->get_link_status) {
2404                        e1000_check_for_link(hw);
2405                        link_active = !hw->get_link_status;
2406                } else {
2407                        link_active = true;
2408                }
2409                break;
2410        case e1000_media_type_fiber:
2411                e1000_check_for_link(hw);
2412                link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413                break;
2414        case e1000_media_type_internal_serdes:
2415                e1000_check_for_link(hw);
2416                link_active = hw->serdes_has_link;
2417                break;
2418        default:
2419                break;
2420        }
2421
2422        return link_active;
2423}
2424
2425/**
2426 * e1000_watchdog - work function
2427 * @work: work struct contained inside adapter struct
2428 **/
2429static void e1000_watchdog(struct work_struct *work)
2430{
2431        struct e1000_adapter *adapter = container_of(work,
2432                                                     struct e1000_adapter,
2433                                                     watchdog_task.work);
2434        struct e1000_hw *hw = &adapter->hw;
2435        struct net_device *netdev = adapter->netdev;
2436        struct e1000_tx_ring *txdr = adapter->tx_ring;
2437        u32 link, tctl;
2438
2439        link = e1000_has_link(adapter);
2440        if ((netif_carrier_ok(netdev)) && link)
2441                goto link_up;
2442
2443        if (link) {
2444                if (!netif_carrier_ok(netdev)) {
2445                        u32 ctrl;
2446                        bool txb2b = true;
2447                        /* update snapshot of PHY registers on LSC */
2448                        e1000_get_speed_and_duplex(hw,
2449                                                   &adapter->link_speed,
2450                                                   &adapter->link_duplex);
2451
2452                        ctrl = er32(CTRL);
2453                        pr_info("%s NIC Link is Up %d Mbps %s, "
2454                                "Flow Control: %s\n",
2455                                netdev->name,
2456                                adapter->link_speed,
2457                                adapter->link_duplex == FULL_DUPLEX ?
2458                                "Full Duplex" : "Half Duplex",
2459                                ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460                                E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461                                E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462                                E1000_CTRL_TFCE) ? "TX" : "None")));
2463
2464                        /* adjust timeout factor according to speed/duplex */
2465                        adapter->tx_timeout_factor = 1;
2466                        switch (adapter->link_speed) {
2467                        case SPEED_10:
2468                                txb2b = false;
2469                                adapter->tx_timeout_factor = 16;
2470                                break;
2471                        case SPEED_100:
2472                                txb2b = false;
2473                                /* maybe add some timeout factor ? */
2474                                break;
2475                        }
2476
2477                        /* enable transmits in the hardware */
2478                        tctl = er32(TCTL);
2479                        tctl |= E1000_TCTL_EN;
2480                        ew32(TCTL, tctl);
2481
2482                        netif_carrier_on(netdev);
2483                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2484                                schedule_delayed_work(&adapter->phy_info_task,
2485                                                      2 * HZ);
2486                        adapter->smartspeed = 0;
2487                }
2488        } else {
2489                if (netif_carrier_ok(netdev)) {
2490                        adapter->link_speed = 0;
2491                        adapter->link_duplex = 0;
2492                        pr_info("%s NIC Link is Down\n",
2493                                netdev->name);
2494                        netif_carrier_off(netdev);
2495
2496                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2497                                schedule_delayed_work(&adapter->phy_info_task,
2498                                                      2 * HZ);
2499                }
2500
2501                e1000_smartspeed(adapter);
2502        }
2503
2504link_up:
2505        e1000_update_stats(adapter);
2506
2507        hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508        adapter->tpt_old = adapter->stats.tpt;
2509        hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510        adapter->colc_old = adapter->stats.colc;
2511
2512        adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513        adapter->gorcl_old = adapter->stats.gorcl;
2514        adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515        adapter->gotcl_old = adapter->stats.gotcl;
2516
2517        e1000_update_adaptive(hw);
2518
2519        if (!netif_carrier_ok(netdev)) {
2520                if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521                        /* We've lost link, so the controller stops DMA,
2522                         * but we've got queued Tx work that's never going
2523                         * to get done, so reset controller to flush Tx.
2524                         * (Do the reset outside of interrupt context).
2525                         */
2526                        adapter->tx_timeout_count++;
2527                        schedule_work(&adapter->reset_task);
2528                        /* exit immediately since reset is imminent */
2529                        return;
2530                }
2531        }
2532
2533        /* Simple mode for Interrupt Throttle Rate (ITR) */
2534        if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535                /* Symmetric Tx/Rx gets a reduced ITR=2000;
2536                 * Total asymmetrical Tx or Rx gets ITR=8000;
2537                 * everyone else is between 2000-8000.
2538                 */
2539                u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540                u32 dif = (adapter->gotcl > adapter->gorcl ?
2541                            adapter->gotcl - adapter->gorcl :
2542                            adapter->gorcl - adapter->gotcl) / 10000;
2543                u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545                ew32(ITR, 1000000000 / (itr * 256));
2546        }
2547
2548        /* Cause software interrupt to ensure rx ring is cleaned */
2549        ew32(ICS, E1000_ICS_RXDMT0);
2550
2551        /* Force detection of hung controller every watchdog period */
2552        adapter->detect_tx_hung = true;
2553
2554        /* Reschedule the task */
2555        if (!test_bit(__E1000_DOWN, &adapter->flags))
2556                schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2557}
2558
2559enum latency_range {
2560        lowest_latency = 0,
2561        low_latency = 1,
2562        bulk_latency = 2,
2563        latency_invalid = 255
2564};
2565
2566/**
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2572 *
2573 *      Stores a new ITR value based on packets and byte
2574 *      counts during the last interrupt.  The advantage of per interrupt
2575 *      computation is faster updates and more accurate ITR for the current
2576 *      traffic pattern.  Constants in this function were computed
2577 *      based on theoretical maximum wire speed and thresholds were set based
2578 *      on testing data as well as attempting to minimize response time
2579 *      while increasing bulk throughput.
2580 *      this functionality is controlled by the InterruptThrottleRate module
2581 *      parameter (see e1000_param.c)
2582 **/
2583static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584                                     u16 itr_setting, int packets, int bytes)
2585{
2586        unsigned int retval = itr_setting;
2587        struct e1000_hw *hw = &adapter->hw;
2588
2589        if (unlikely(hw->mac_type < e1000_82540))
2590                goto update_itr_done;
2591
2592        if (packets == 0)
2593                goto update_itr_done;
2594
2595        switch (itr_setting) {
2596        case lowest_latency:
2597                /* jumbo frames get bulk treatment*/
2598                if (bytes/packets > 8000)
2599                        retval = bulk_latency;
2600                else if ((packets < 5) && (bytes > 512))
2601                        retval = low_latency;
2602                break;
2603        case low_latency:  /* 50 usec aka 20000 ints/s */
2604                if (bytes > 10000) {
2605                        /* jumbo frames need bulk latency setting */
2606                        if (bytes/packets > 8000)
2607                                retval = bulk_latency;
2608                        else if ((packets < 10) || ((bytes/packets) > 1200))
2609                                retval = bulk_latency;
2610                        else if ((packets > 35))
2611                                retval = lowest_latency;
2612                } else if (bytes/packets > 2000)
2613                        retval = bulk_latency;
2614                else if (packets <= 2 && bytes < 512)
2615                        retval = lowest_latency;
2616                break;
2617        case bulk_latency: /* 250 usec aka 4000 ints/s */
2618                if (bytes > 25000) {
2619                        if (packets > 35)
2620                                retval = low_latency;
2621                } else if (bytes < 6000) {
2622                        retval = low_latency;
2623                }
2624                break;
2625        }
2626
2627update_itr_done:
2628        return retval;
2629}
2630
2631static void e1000_set_itr(struct e1000_adapter *adapter)
2632{
2633        struct e1000_hw *hw = &adapter->hw;
2634        u16 current_itr;
2635        u32 new_itr = adapter->itr;
2636
2637        if (unlikely(hw->mac_type < e1000_82540))
2638                return;
2639
2640        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641        if (unlikely(adapter->link_speed != SPEED_1000)) {
2642                current_itr = 0;
2643                new_itr = 4000;
2644                goto set_itr_now;
2645        }
2646
2647        adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648                                           adapter->total_tx_packets,
2649                                           adapter->total_tx_bytes);
2650        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651        if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652                adapter->tx_itr = low_latency;
2653
2654        adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655                                           adapter->total_rx_packets,
2656                                           adapter->total_rx_bytes);
2657        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658        if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659                adapter->rx_itr = low_latency;
2660
2661        current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
2663        switch (current_itr) {
2664        /* counts and packets in update_itr are dependent on these numbers */
2665        case lowest_latency:
2666                new_itr = 70000;
2667                break;
2668        case low_latency:
2669                new_itr = 20000; /* aka hwitr = ~200 */
2670                break;
2671        case bulk_latency:
2672                new_itr = 4000;
2673                break;
2674        default:
2675                break;
2676        }
2677
2678set_itr_now:
2679        if (new_itr != adapter->itr) {
2680                /* this attempts to bias the interrupt rate towards Bulk
2681                 * by adding intermediate steps when interrupt rate is
2682                 * increasing
2683                 */
2684                new_itr = new_itr > adapter->itr ?
2685                          min(adapter->itr + (new_itr >> 2), new_itr) :
2686                          new_itr;
2687                adapter->itr = new_itr;
2688                ew32(ITR, 1000000000 / (new_itr * 256));
2689        }
2690}
2691
2692#define E1000_TX_FLAGS_CSUM             0x00000001
2693#define E1000_TX_FLAGS_VLAN             0x00000002
2694#define E1000_TX_FLAGS_TSO              0x00000004
2695#define E1000_TX_FLAGS_IPV4             0x00000008
2696#define E1000_TX_FLAGS_NO_FCS           0x00000010
2697#define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2698#define E1000_TX_FLAGS_VLAN_SHIFT       16
2699
2700static int e1000_tso(struct e1000_adapter *adapter,
2701                     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702                     __be16 protocol)
2703{
2704        struct e1000_context_desc *context_desc;
2705        struct e1000_tx_buffer *buffer_info;
2706        unsigned int i;
2707        u32 cmd_length = 0;
2708        u16 ipcse = 0, tucse, mss;
2709        u8 ipcss, ipcso, tucss, tucso, hdr_len;
2710
2711        if (skb_is_gso(skb)) {
2712                int err;
2713
2714                err = skb_cow_head(skb, 0);
2715                if (err < 0)
2716                        return err;
2717
2718                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719                mss = skb_shinfo(skb)->gso_size;
2720                if (protocol == htons(ETH_P_IP)) {
2721                        struct iphdr *iph = ip_hdr(skb);
2722                        iph->tot_len = 0;
2723                        iph->check = 0;
2724                        tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725                                                                 iph->daddr, 0,
2726                                                                 IPPROTO_TCP,
2727                                                                 0);
2728                        cmd_length = E1000_TXD_CMD_IP;
2729                        ipcse = skb_transport_offset(skb) - 1;
2730                } else if (skb_is_gso_v6(skb)) {
2731                        ipv6_hdr(skb)->payload_len = 0;
2732                        tcp_hdr(skb)->check =
2733                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734                                                 &ipv6_hdr(skb)->daddr,
2735                                                 0, IPPROTO_TCP, 0);
2736                        ipcse = 0;
2737                }
2738                ipcss = skb_network_offset(skb);
2739                ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740                tucss = skb_transport_offset(skb);
2741                tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742                tucse = 0;
2743
2744                cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745                               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746
2747                i = tx_ring->next_to_use;
2748                context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749                buffer_info = &tx_ring->buffer_info[i];
2750
2751                context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2752                context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2753                context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2754                context_desc->upper_setup.tcp_fields.tucss = tucss;
2755                context_desc->upper_setup.tcp_fields.tucso = tucso;
2756                context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757                context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2758                context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759                context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
2761                buffer_info->time_stamp = jiffies;
2762                buffer_info->next_to_watch = i;
2763
2764                if (++i == tx_ring->count)
2765                        i = 0;
2766
2767                tx_ring->next_to_use = i;
2768
2769                return true;
2770        }
2771        return false;
2772}
2773
2774static bool e1000_tx_csum(struct e1000_adapter *adapter,
2775                          struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2776                          __be16 protocol)
2777{
2778        struct e1000_context_desc *context_desc;
2779        struct e1000_tx_buffer *buffer_info;
2780        unsigned int i;
2781        u8 css;
2782        u32 cmd_len = E1000_TXD_CMD_DEXT;
2783
2784        if (skb->ip_summed != CHECKSUM_PARTIAL)
2785                return false;
2786
2787        switch (protocol) {
2788        case cpu_to_be16(ETH_P_IP):
2789                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790                        cmd_len |= E1000_TXD_CMD_TCP;
2791                break;
2792        case cpu_to_be16(ETH_P_IPV6):
2793                /* XXX not handling all IPV6 headers */
2794                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795                        cmd_len |= E1000_TXD_CMD_TCP;
2796                break;
2797        default:
2798                if (unlikely(net_ratelimit()))
2799                        e_warn(drv, "checksum_partial proto=%x!\n",
2800                               skb->protocol);
2801                break;
2802        }
2803
2804        css = skb_checksum_start_offset(skb);
2805
2806        i = tx_ring->next_to_use;
2807        buffer_info = &tx_ring->buffer_info[i];
2808        context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2809
2810        context_desc->lower_setup.ip_config = 0;
2811        context_desc->upper_setup.tcp_fields.tucss = css;
2812        context_desc->upper_setup.tcp_fields.tucso =
2813                css + skb->csum_offset;
2814        context_desc->upper_setup.tcp_fields.tucse = 0;
2815        context_desc->tcp_seg_setup.data = 0;
2816        context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2817
2818        buffer_info->time_stamp = jiffies;
2819        buffer_info->next_to_watch = i;
2820
2821        if (unlikely(++i == tx_ring->count))
2822                i = 0;
2823
2824        tx_ring->next_to_use = i;
2825
2826        return true;
2827}
2828
2829#define E1000_MAX_TXD_PWR       12
2830#define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2831
2832static int e1000_tx_map(struct e1000_adapter *adapter,
2833                        struct e1000_tx_ring *tx_ring,
2834                        struct sk_buff *skb, unsigned int first,
2835                        unsigned int max_per_txd, unsigned int nr_frags,
2836                        unsigned int mss)
2837{
2838        struct e1000_hw *hw = &adapter->hw;
2839        struct pci_dev *pdev = adapter->pdev;
2840        struct e1000_tx_buffer *buffer_info;
2841        unsigned int len = skb_headlen(skb);
2842        unsigned int offset = 0, size, count = 0, i;
2843        unsigned int f, bytecount, segs;
2844
2845        i = tx_ring->next_to_use;
2846
2847        while (len) {
2848                buffer_info = &tx_ring->buffer_info[i];
2849                size = min(len, max_per_txd);
2850                /* Workaround for Controller erratum --
2851                 * descriptor for non-tso packet in a linear SKB that follows a
2852                 * tso gets written back prematurely before the data is fully
2853                 * DMA'd to the controller
2854                 */
2855                if (!skb->data_len && tx_ring->last_tx_tso &&
2856                    !skb_is_gso(skb)) {
2857                        tx_ring->last_tx_tso = false;
2858                        size -= 4;
2859                }
2860
2861                /* Workaround for premature desc write-backs
2862                 * in TSO mode.  Append 4-byte sentinel desc
2863                 */
2864                if (unlikely(mss && !nr_frags && size == len && size > 8))
2865                        size -= 4;
2866                /* work-around for errata 10 and it applies
2867                 * to all controllers in PCI-X mode
2868                 * The fix is to make sure that the first descriptor of a
2869                 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870                 */
2871                if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2872                             (size > 2015) && count == 0))
2873                        size = 2015;
2874
2875                /* Workaround for potential 82544 hang in PCI-X.  Avoid
2876                 * terminating buffers within evenly-aligned dwords.
2877                 */
2878                if (unlikely(adapter->pcix_82544 &&
2879                   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2880                   size > 4))
2881                        size -= 4;
2882
2883                buffer_info->length = size;
2884                /* set time_stamp *before* dma to help avoid a possible race */
2885                buffer_info->time_stamp = jiffies;
2886                buffer_info->mapped_as_page = false;
2887                buffer_info->dma = dma_map_single(&pdev->dev,
2888                                                  skb->data + offset,
2889                                                  size, DMA_TO_DEVICE);
2890                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2891                        goto dma_error;
2892                buffer_info->next_to_watch = i;
2893
2894                len -= size;
2895                offset += size;
2896                count++;
2897                if (len) {
2898                        i++;
2899                        if (unlikely(i == tx_ring->count))
2900                                i = 0;
2901                }
2902        }
2903
2904        for (f = 0; f < nr_frags; f++) {
2905                const struct skb_frag_struct *frag;
2906
2907                frag = &skb_shinfo(skb)->frags[f];
2908                len = skb_frag_size(frag);
2909                offset = 0;
2910
2911                while (len) {
2912                        unsigned long bufend;
2913                        i++;
2914                        if (unlikely(i == tx_ring->count))
2915                                i = 0;
2916
2917                        buffer_info = &tx_ring->buffer_info[i];
2918                        size = min(len, max_per_txd);
2919                        /* Workaround for premature desc write-backs
2920                         * in TSO mode.  Append 4-byte sentinel desc
2921                         */
2922                        if (unlikely(mss && f == (nr_frags-1) &&
2923                            size == len && size > 8))
2924                                size -= 4;
2925                        /* Workaround for potential 82544 hang in PCI-X.
2926                         * Avoid terminating buffers within evenly-aligned
2927                         * dwords.
2928                         */
2929                        bufend = (unsigned long)
2930                                page_to_phys(skb_frag_page(frag));
2931                        bufend += offset + size - 1;
2932                        if (unlikely(adapter->pcix_82544 &&
2933                                     !(bufend & 4) &&
2934                                     size > 4))
2935                                size -= 4;
2936
2937                        buffer_info->length = size;
2938                        buffer_info->time_stamp = jiffies;
2939                        buffer_info->mapped_as_page = true;
2940                        buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941                                                offset, size, DMA_TO_DEVICE);
2942                        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2943                                goto dma_error;
2944                        buffer_info->next_to_watch = i;
2945
2946                        len -= size;
2947                        offset += size;
2948                        count++;
2949                }
2950        }
2951
2952        segs = skb_shinfo(skb)->gso_segs ?: 1;
2953        /* multiply data chunks by size of headers */
2954        bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2955
2956        tx_ring->buffer_info[i].skb = skb;
2957        tx_ring->buffer_info[i].segs = segs;
2958        tx_ring->buffer_info[i].bytecount = bytecount;
2959        tx_ring->buffer_info[first].next_to_watch = i;
2960
2961        return count;
2962
2963dma_error:
2964        dev_err(&pdev->dev, "TX DMA map failed\n");
2965        buffer_info->dma = 0;
2966        if (count)
2967                count--;
2968
2969        while (count--) {
2970                if (i == 0)
2971                        i += tx_ring->count;
2972                i--;
2973                buffer_info = &tx_ring->buffer_info[i];
2974                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2975        }
2976
2977        return 0;
2978}
2979
2980static void e1000_tx_queue(struct e1000_adapter *adapter,
2981                           struct e1000_tx_ring *tx_ring, int tx_flags,
2982                           int count)
2983{
2984        struct e1000_tx_desc *tx_desc = NULL;
2985        struct e1000_tx_buffer *buffer_info;
2986        u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2987        unsigned int i;
2988
2989        if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2990                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2991                             E1000_TXD_CMD_TSE;
2992                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993
2994                if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2995                        txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2996        }
2997
2998        if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2999                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001        }
3002
3003        if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3004                txd_lower |= E1000_TXD_CMD_VLE;
3005                txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3006        }
3007
3008        if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009                txd_lower &= ~(E1000_TXD_CMD_IFCS);
3010
3011        i = tx_ring->next_to_use;
3012
3013        while (count--) {
3014                buffer_info = &tx_ring->buffer_info[i];
3015                tx_desc = E1000_TX_DESC(*tx_ring, i);
3016                tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017                tx_desc->lower.data =
3018                        cpu_to_le32(txd_lower | buffer_info->length);
3019                tx_desc->upper.data = cpu_to_le32(txd_upper);
3020                if (unlikely(++i == tx_ring->count))
3021                        i = 0;
3022        }
3023
3024        tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026        /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027        if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028                tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
3030        /* Force memory writes to complete before letting h/w
3031         * know there are new descriptors to fetch.  (Only
3032         * applicable for weak-ordered memory model archs,
3033         * such as IA-64).
3034         */
3035        wmb();
3036
3037        tx_ring->next_to_use = i;
3038}
3039
3040/* 82547 workaround to avoid controller hang in half-duplex environment.
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3044 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
3046 */
3047
3048#define E1000_FIFO_HDR                  0x10
3049#define E1000_82547_PAD_LEN             0x3E0
3050
3051static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052                                       struct sk_buff *skb)
3053{
3054        u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055        u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056
3057        skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058
3059        if (adapter->link_duplex != HALF_DUPLEX)
3060                goto no_fifo_stall_required;
3061
3062        if (atomic_read(&adapter->tx_fifo_stall))
3063                return 1;
3064
3065        if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066                atomic_set(&adapter->tx_fifo_stall, 1);
3067                return 1;
3068        }
3069
3070no_fifo_stall_required:
3071        adapter->tx_fifo_head += skb_fifo_len;
3072        if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073                adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074        return 0;
3075}
3076
3077static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078{
3079        struct e1000_adapter *adapter = netdev_priv(netdev);
3080        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082        netif_stop_queue(netdev);
3083        /* Herbert's original patch had:
3084         *  smp_mb__after_netif_stop_queue();
3085         * but since that doesn't exist yet, just open code it.
3086         */
3087        smp_mb();
3088
3089        /* We need to check again in a case another CPU has just
3090         * made room available.
3091         */
3092        if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093                return -EBUSY;
3094
3095        /* A reprieve! */
3096        netif_start_queue(netdev);
3097        ++adapter->restart_queue;
3098        return 0;
3099}
3100
3101static int e1000_maybe_stop_tx(struct net_device *netdev,
3102                               struct e1000_tx_ring *tx_ring, int size)
3103{
3104        if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105                return 0;
3106        return __e1000_maybe_stop_tx(netdev, size);
3107}
3108
3109#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
3110static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111                                    struct net_device *netdev)
3112{
3113        struct e1000_adapter *adapter = netdev_priv(netdev);
3114        struct e1000_hw *hw = &adapter->hw;
3115        struct e1000_tx_ring *tx_ring;
3116        unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117        unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118        unsigned int tx_flags = 0;
3119        unsigned int len = skb_headlen(skb);
3120        unsigned int nr_frags;
3121        unsigned int mss;
3122        int count = 0;
3123        int tso;
3124        unsigned int f;
3125        __be16 protocol = vlan_get_protocol(skb);
3126
3127        /* This goes back to the question of how to logically map a Tx queue
3128         * to a flow.  Right now, performance is impacted slightly negatively
3129         * if using multiple Tx queues.  If the stack breaks away from a
3130         * single qdisc implementation, we can look at this again.
3131         */
3132        tx_ring = adapter->tx_ring;
3133
3134        /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135         * packets may get corrupted during padding by HW.
3136         * To WA this issue, pad all small packets manually.
3137         */
3138        if (eth_skb_pad(skb))
3139                return NETDEV_TX_OK;
3140
3141        mss = skb_shinfo(skb)->gso_size;
3142        /* The controller does a simple calculation to
3143         * make sure there is enough room in the FIFO before
3144         * initiating the DMA for each buffer.  The calc is:
3145         * 4 = ceil(buffer len/mss).  To make sure we don't
3146         * overrun the FIFO, adjust the max buffer len if mss
3147         * drops.
3148         */
3149        if (mss) {
3150                u8 hdr_len;
3151                max_per_txd = min(mss << 2, max_per_txd);
3152                max_txd_pwr = fls(max_per_txd) - 1;
3153
3154                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155                if (skb->data_len && hdr_len == len) {
3156                        switch (hw->mac_type) {
3157                                unsigned int pull_size;
3158                        case e1000_82544:
3159                                /* Make sure we have room to chop off 4 bytes,
3160                                 * and that the end alignment will work out to
3161                                 * this hardware's requirements
3162                                 * NOTE: this is a TSO only workaround
3163                                 * if end byte alignment not correct move us
3164                                 * into the next dword
3165                                 */
3166                                if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167                                    & 4)
3168                                        break;
3169                                /* fall through */
3170                                pull_size = min((unsigned int)4, skb->data_len);
3171                                if (!__pskb_pull_tail(skb, pull_size)) {
3172                                        e_err(drv, "__pskb_pull_tail "
3173                                              "failed.\n");
3174                                        dev_kfree_skb_any(skb);
3175                                        return NETDEV_TX_OK;
3176                                }
3177                                len = skb_headlen(skb);
3178                                break;
3179                        default:
3180                                /* do nothing */
3181                                break;
3182                        }
3183                }
3184        }
3185
3186        /* reserve a descriptor for the offload context */
3187        if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188                count++;
3189        count++;
3190
3191        /* Controller Erratum workaround */
3192        if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193                count++;
3194
3195        count += TXD_USE_COUNT(len, max_txd_pwr);
3196
3197        if (adapter->pcix_82544)
3198                count++;
3199
3200        /* work-around for errata 10 and it applies to all controllers
3201         * in PCI-X mode, so add one more descriptor to the count
3202         */
3203        if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204                        (len > 2015)))
3205                count++;
3206
3207        nr_frags = skb_shinfo(skb)->nr_frags;
3208        for (f = 0; f < nr_frags; f++)
3209                count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210                                       max_txd_pwr);
3211        if (adapter->pcix_82544)
3212                count += nr_frags;
3213
3214        /* need: count + 2 desc gap to keep tail from touching
3215         * head, otherwise try next time
3216         */
3217        if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218                return NETDEV_TX_BUSY;
3219
3220        if (unlikely((hw->mac_type == e1000_82547) &&
3221                     (e1000_82547_fifo_workaround(adapter, skb)))) {
3222                netif_stop_queue(netdev);
3223                if (!test_bit(__E1000_DOWN, &adapter->flags))
3224                        schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225                return NETDEV_TX_BUSY;
3226        }
3227
3228        if (skb_vlan_tag_present(skb)) {
3229                tx_flags |= E1000_TX_FLAGS_VLAN;
3230                tx_flags |= (skb_vlan_tag_get(skb) <<
3231                             E1000_TX_FLAGS_VLAN_SHIFT);
3232        }
3233
3234        first = tx_ring->next_to_use;
3235
3236        tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237        if (tso < 0) {
3238                dev_kfree_skb_any(skb);
3239                return NETDEV_TX_OK;
3240        }
3241
3242        if (likely(tso)) {
3243                if (likely(hw->mac_type != e1000_82544))
3244                        tx_ring->last_tx_tso = true;
3245                tx_flags |= E1000_TX_FLAGS_TSO;
3246        } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247                tx_flags |= E1000_TX_FLAGS_CSUM;
3248
3249        if (protocol == htons(ETH_P_IP))
3250                tx_flags |= E1000_TX_FLAGS_IPV4;
3251
3252        if (unlikely(skb->no_fcs))
3253                tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
3255        count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256                             nr_frags, mss);
3257
3258        if (count) {
3259                netdev_sent_queue(netdev, skb->len);
3260                skb_tx_timestamp(skb);
3261
3262                e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263                /* Make sure there is space in the ring for the next send. */
3264                e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3265
3266                if (!skb->xmit_more ||
3267                    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3268                        writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3269                        /* we need this if more than one processor can write to
3270                         * our tail at a time, it synchronizes IO on IA64/Altix
3271                         * systems
3272                         */
3273                        mmiowb();
3274                }
3275        } else {
3276                dev_kfree_skb_any(skb);
3277                tx_ring->buffer_info[first].time_stamp = 0;
3278                tx_ring->next_to_use = first;
3279        }
3280
3281        return NETDEV_TX_OK;
3282}
3283
3284#define NUM_REGS 38 /* 1 based count */
3285static void e1000_regdump(struct e1000_adapter *adapter)
3286{
3287        struct e1000_hw *hw = &adapter->hw;
3288        u32 regs[NUM_REGS];
3289        u32 *regs_buff = regs;
3290        int i = 0;
3291
3292        static const char * const reg_name[] = {
3293                "CTRL",  "STATUS",
3294                "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295                "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296                "TIDV", "TXDCTL", "TADV", "TARC0",
3297                "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3298                "TXDCTL1", "TARC1",
3299                "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300                "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301                "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3302        };
3303
3304        regs_buff[0]  = er32(CTRL);
3305        regs_buff[1]  = er32(STATUS);
3306
3307        regs_buff[2]  = er32(RCTL);
3308        regs_buff[3]  = er32(RDLEN);
3309        regs_buff[4]  = er32(RDH);
3310        regs_buff[5]  = er32(RDT);
3311        regs_buff[6]  = er32(RDTR);
3312
3313        regs_buff[7]  = er32(TCTL);
3314        regs_buff[8]  = er32(TDBAL);
3315        regs_buff[9]  = er32(TDBAH);
3316        regs_buff[10] = er32(TDLEN);
3317        regs_buff[11] = er32(TDH);
3318        regs_buff[12] = er32(TDT);
3319        regs_buff[13] = er32(TIDV);
3320        regs_buff[14] = er32(TXDCTL);
3321        regs_buff[15] = er32(TADV);
3322        regs_buff[16] = er32(TARC0);
3323
3324        regs_buff[17] = er32(TDBAL1);
3325        regs_buff[18] = er32(TDBAH1);
3326        regs_buff[19] = er32(TDLEN1);
3327        regs_buff[20] = er32(TDH1);
3328        regs_buff[21] = er32(TDT1);
3329        regs_buff[22] = er32(TXDCTL1);
3330        regs_buff[23] = er32(TARC1);
3331        regs_buff[24] = er32(CTRL_EXT);
3332        regs_buff[25] = er32(ERT);
3333        regs_buff[26] = er32(RDBAL0);
3334        regs_buff[27] = er32(RDBAH0);
3335        regs_buff[28] = er32(TDFH);
3336        regs_buff[29] = er32(TDFT);
3337        regs_buff[30] = er32(TDFHS);
3338        regs_buff[31] = er32(TDFTS);
3339        regs_buff[32] = er32(TDFPC);
3340        regs_buff[33] = er32(RDFH);
3341        regs_buff[34] = er32(RDFT);
3342        regs_buff[35] = er32(RDFHS);
3343        regs_buff[36] = er32(RDFTS);
3344        regs_buff[37] = er32(RDFPC);
3345
3346        pr_info("Register dump\n");
3347        for (i = 0; i < NUM_REGS; i++)
3348                pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3349}
3350
3351/*
3352 * e1000_dump: Print registers, tx ring and rx ring
3353 */
3354static void e1000_dump(struct e1000_adapter *adapter)
3355{
3356        /* this code doesn't handle multiple rings */
3357        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358        struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3359        int i;
3360
3361        if (!netif_msg_hw(adapter))
3362                return;
3363
3364        /* Print Registers */
3365        e1000_regdump(adapter);
3366
3367        /* transmit dump */
3368        pr_info("TX Desc ring0 dump\n");
3369
3370        /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3371         *
3372         * Legacy Transmit Descriptor
3373         *   +--------------------------------------------------------------+
3374         * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3375         *   +--------------------------------------------------------------+
3376         * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3377         *   +--------------------------------------------------------------+
3378         *   63       48 47        36 35    32 31     24 23    16 15        0
3379         *
3380         * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381         *   63      48 47    40 39       32 31             16 15    8 7      0
3382         *   +----------------------------------------------------------------+
3383         * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3384         *   +----------------------------------------------------------------+
3385         * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3386         *   +----------------------------------------------------------------+
3387         *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3388         *
3389         * Extended Data Descriptor (DTYP=0x1)
3390         *   +----------------------------------------------------------------+
3391         * 0 |                     Buffer Address [63:0]                      |
3392         *   +----------------------------------------------------------------+
3393         * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3394         *   +----------------------------------------------------------------+
3395         *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3396         */
3397        pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3398        pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399
3400        if (!netif_msg_tx_done(adapter))
3401                goto rx_ring_summary;
3402
3403        for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404                struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3405                struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3406                struct my_u { __le64 a; __le64 b; };
3407                struct my_u *u = (struct my_u *)tx_desc;
3408                const char *type;
3409
3410                if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3411                        type = "NTC/U";
3412                else if (i == tx_ring->next_to_use)
3413                        type = "NTU";
3414                else if (i == tx_ring->next_to_clean)
3415                        type = "NTC";
3416                else
3417                        type = "";
3418
3419                pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3420                        ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421                        le64_to_cpu(u->a), le64_to_cpu(u->b),
3422                        (u64)buffer_info->dma, buffer_info->length,
3423                        buffer_info->next_to_watch,
3424                        (u64)buffer_info->time_stamp, buffer_info->skb, type);
3425        }
3426
3427rx_ring_summary:
3428        /* receive dump */
3429        pr_info("\nRX Desc ring dump\n");
3430
3431        /* Legacy Receive Descriptor Format
3432         *
3433         * +-----------------------------------------------------+
3434         * |                Buffer Address [63:0]                |
3435         * +-----------------------------------------------------+
3436         * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437         * +-----------------------------------------------------+
3438         * 63       48 47    40 39      32 31         16 15      0
3439         */
3440        pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3441
3442        if (!netif_msg_rx_status(adapter))
3443                goto exit;
3444
3445        for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446                struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3447                struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3448                struct my_u { __le64 a; __le64 b; };
3449                struct my_u *u = (struct my_u *)rx_desc;
3450                const char *type;
3451
3452                if (i == rx_ring->next_to_use)
3453                        type = "NTU";
3454                else if (i == rx_ring->next_to_clean)
3455                        type = "NTC";
3456                else
3457                        type = "";
3458
3459                pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3460                        i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3461                        (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3462        } /* for */
3463
3464        /* dump the descriptor caches */
3465        /* rx */
3466        pr_info("Rx descriptor cache in 64bit format\n");
3467        for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3468                pr_info("R%04X: %08X|%08X %08X|%08X\n",
3469                        i,
3470                        readl(adapter->hw.hw_addr + i+4),
3471                        readl(adapter->hw.hw_addr + i),
3472                        readl(adapter->hw.hw_addr + i+12),
3473                        readl(adapter->hw.hw_addr + i+8));
3474        }
3475        /* tx */
3476        pr_info("Tx descriptor cache in 64bit format\n");
3477        for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3478                pr_info("T%04X: %08X|%08X %08X|%08X\n",
3479                        i,
3480                        readl(adapter->hw.hw_addr + i+4),
3481                        readl(adapter->hw.hw_addr + i),
3482                        readl(adapter->hw.hw_addr + i+12),
3483                        readl(adapter->hw.hw_addr + i+8));
3484        }
3485exit:
3486        return;
3487}
3488
3489/**
3490 * e1000_tx_timeout - Respond to a Tx Hang
3491 * @netdev: network interface device structure
3492 **/
3493static void e1000_tx_timeout(struct net_device *netdev)
3494{
3495        struct e1000_adapter *adapter = netdev_priv(netdev);
3496
3497        /* Do the reset outside of interrupt context */
3498        adapter->tx_timeout_count++;
3499        schedule_work(&adapter->reset_task);
3500}
3501
3502static void e1000_reset_task(struct work_struct *work)
3503{
3504        struct e1000_adapter *adapter =
3505                container_of(work, struct e1000_adapter, reset_task);
3506
3507        e_err(drv, "Reset adapter\n");
3508        e1000_reinit_locked(adapter);
3509}
3510
3511/**
3512 * e1000_get_stats - Get System Network Statistics
3513 * @netdev: network interface device structure
3514 *
3515 * Returns the address of the device statistics structure.
3516 * The statistics are actually updated from the watchdog.
3517 **/
3518static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3519{
3520        /* only return the current stats */
3521        return &netdev->stats;
3522}
3523
3524/**
3525 * e1000_change_mtu - Change the Maximum Transfer Unit
3526 * @netdev: network interface device structure
3527 * @new_mtu: new value for maximum frame size
3528 *
3529 * Returns 0 on success, negative on failure
3530 **/
3531static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3532{
3533        struct e1000_adapter *adapter = netdev_priv(netdev);
3534        struct e1000_hw *hw = &adapter->hw;
3535        int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3536
3537        if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3538            (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3539                e_err(probe, "Invalid MTU setting\n");
3540                return -EINVAL;
3541        }
3542
3543        /* Adapter-specific max frame size limits. */
3544        switch (hw->mac_type) {
3545        case e1000_undefined ... e1000_82542_rev2_1:
3546                if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3547                        e_err(probe, "Jumbo Frames not supported.\n");
3548                        return -EINVAL;
3549                }
3550                break;
3551        default:
3552                /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3553                break;
3554        }
3555
3556        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3557                msleep(1);
3558        /* e1000_down has a dependency on max_frame_size */
3559        hw->max_frame_size = max_frame;
3560        if (netif_running(netdev)) {
3561                /* prevent buffers from being reallocated */
3562                adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3563                e1000_down(adapter);
3564        }
3565
3566        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3567         * means we reserve 2 more, this pushes us to allocate from the next
3568         * larger slab size.
3569         * i.e. RXBUFFER_2048 --> size-4096 slab
3570         * however with the new *_jumbo_rx* routines, jumbo receives will use
3571         * fragmented skbs
3572         */
3573
3574        if (max_frame <= E1000_RXBUFFER_2048)
3575                adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3576        else
3577#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3578                adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3579#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3580                adapter->rx_buffer_len = PAGE_SIZE;
3581#endif
3582
3583        /* adjust allocation if LPE protects us, and we aren't using SBP */
3584        if (!hw->tbi_compatibility_on &&
3585            ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3586             (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3587                adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3588
3589        pr_info("%s changing MTU from %d to %d\n",
3590                netdev->name, netdev->mtu, new_mtu);
3591        netdev->mtu = new_mtu;
3592
3593        if (netif_running(netdev))
3594                e1000_up(adapter);
3595        else
3596                e1000_reset(adapter);
3597
3598        clear_bit(__E1000_RESETTING, &adapter->flags);
3599
3600        return 0;
3601}
3602
3603/**
3604 * e1000_update_stats - Update the board statistics counters
3605 * @adapter: board private structure
3606 **/
3607void e1000_update_stats(struct e1000_adapter *adapter)
3608{
3609        struct net_device *netdev = adapter->netdev;
3610        struct e1000_hw *hw = &adapter->hw;
3611        struct pci_dev *pdev = adapter->pdev;
3612        unsigned long flags;
3613        u16 phy_tmp;
3614
3615#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3616
3617        /* Prevent stats update while adapter is being reset, or if the pci
3618         * connection is down.
3619         */
3620        if (adapter->link_speed == 0)
3621                return;
3622        if (pci_channel_offline(pdev))
3623                return;
3624
3625        spin_lock_irqsave(&adapter->stats_lock, flags);
3626
3627        /* these counters are modified from e1000_tbi_adjust_stats,
3628         * called from the interrupt context, so they must only
3629         * be written while holding adapter->stats_lock
3630         */
3631
3632        adapter->stats.crcerrs += er32(CRCERRS);
3633        adapter->stats.gprc += er32(GPRC);
3634        adapter->stats.gorcl += er32(GORCL);
3635        adapter->stats.gorch += er32(GORCH);
3636        adapter->stats.bprc += er32(BPRC);
3637        adapter->stats.mprc += er32(MPRC);
3638        adapter->stats.roc += er32(ROC);
3639
3640        adapter->stats.prc64 += er32(PRC64);
3641        adapter->stats.prc127 += er32(PRC127);
3642        adapter->stats.prc255 += er32(PRC255);
3643        adapter->stats.prc511 += er32(PRC511);
3644        adapter->stats.prc1023 += er32(PRC1023);
3645        adapter->stats.prc1522 += er32(PRC1522);
3646
3647        adapter->stats.symerrs += er32(SYMERRS);
3648        adapter->stats.mpc += er32(MPC);
3649        adapter->stats.scc += er32(SCC);
3650        adapter->stats.ecol += er32(ECOL);
3651        adapter->stats.mcc += er32(MCC);
3652        adapter->stats.latecol += er32(LATECOL);
3653        adapter->stats.dc += er32(DC);
3654        adapter->stats.sec += er32(SEC);
3655        adapter->stats.rlec += er32(RLEC);
3656        adapter->stats.xonrxc += er32(XONRXC);
3657        adapter->stats.xontxc += er32(XONTXC);
3658        adapter->stats.xoffrxc += er32(XOFFRXC);
3659        adapter->stats.xofftxc += er32(XOFFTXC);
3660        adapter->stats.fcruc += er32(FCRUC);
3661        adapter->stats.gptc += er32(GPTC);
3662        adapter->stats.gotcl += er32(GOTCL);
3663        adapter->stats.gotch += er32(GOTCH);
3664        adapter->stats.rnbc += er32(RNBC);
3665        adapter->stats.ruc += er32(RUC);
3666        adapter->stats.rfc += er32(RFC);
3667        adapter->stats.rjc += er32(RJC);
3668        adapter->stats.torl += er32(TORL);
3669        adapter->stats.torh += er32(TORH);
3670        adapter->stats.totl += er32(TOTL);
3671        adapter->stats.toth += er32(TOTH);
3672        adapter->stats.tpr += er32(TPR);
3673
3674        adapter->stats.ptc64 += er32(PTC64);
3675        adapter->stats.ptc127 += er32(PTC127);
3676        adapter->stats.ptc255 += er32(PTC255);
3677        adapter->stats.ptc511 += er32(PTC511);
3678        adapter->stats.ptc1023 += er32(PTC1023);
3679        adapter->stats.ptc1522 += er32(PTC1522);
3680
3681        adapter->stats.mptc += er32(MPTC);
3682        adapter->stats.bptc += er32(BPTC);
3683
3684        /* used for adaptive IFS */
3685
3686        hw->tx_packet_delta = er32(TPT);
3687        adapter->stats.tpt += hw->tx_packet_delta;
3688        hw->collision_delta = er32(COLC);
3689        adapter->stats.colc += hw->collision_delta;
3690
3691        if (hw->mac_type >= e1000_82543) {
3692                adapter->stats.algnerrc += er32(ALGNERRC);
3693                adapter->stats.rxerrc += er32(RXERRC);
3694                adapter->stats.tncrs += er32(TNCRS);
3695                adapter->stats.cexterr += er32(CEXTERR);
3696                adapter->stats.tsctc += er32(TSCTC);
3697                adapter->stats.tsctfc += er32(TSCTFC);
3698        }
3699
3700        /* Fill out the OS statistics structure */
3701        netdev->stats.multicast = adapter->stats.mprc;
3702        netdev->stats.collisions = adapter->stats.colc;
3703
3704        /* Rx Errors */
3705
3706        /* RLEC on some newer hardware can be incorrect so build
3707         * our own version based on RUC and ROC
3708         */
3709        netdev->stats.rx_errors = adapter->stats.rxerrc +
3710                adapter->stats.crcerrs + adapter->stats.algnerrc +
3711                adapter->stats.ruc + adapter->stats.roc +
3712                adapter->stats.cexterr;
3713        adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3714        netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3715        netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3716        netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3717        netdev->stats.rx_missed_errors = adapter->stats.mpc;
3718
3719        /* Tx Errors */
3720        adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3721        netdev->stats.tx_errors = adapter->stats.txerrc;
3722        netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3723        netdev->stats.tx_window_errors = adapter->stats.latecol;
3724        netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3725        if (hw->bad_tx_carr_stats_fd &&
3726            adapter->link_duplex == FULL_DUPLEX) {
3727                netdev->stats.tx_carrier_errors = 0;
3728                adapter->stats.tncrs = 0;
3729        }
3730
3731        /* Tx Dropped needs to be maintained elsewhere */
3732
3733        /* Phy Stats */
3734        if (hw->media_type == e1000_media_type_copper) {
3735                if ((adapter->link_speed == SPEED_1000) &&
3736                   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3737                        phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3738                        adapter->phy_stats.idle_errors += phy_tmp;
3739                }
3740
3741                if ((hw->mac_type <= e1000_82546) &&
3742                   (hw->phy_type == e1000_phy_m88) &&
3743                   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3744                        adapter->phy_stats.receive_errors += phy_tmp;
3745        }
3746
3747        /* Management Stats */
3748        if (hw->has_smbus) {
3749                adapter->stats.mgptc += er32(MGTPTC);
3750                adapter->stats.mgprc += er32(MGTPRC);
3751                adapter->stats.mgpdc += er32(MGTPDC);
3752        }
3753
3754        spin_unlock_irqrestore(&adapter->stats_lock, flags);
3755}
3756
3757/**
3758 * e1000_intr - Interrupt Handler
3759 * @irq: interrupt number
3760 * @data: pointer to a network interface device structure
3761 **/
3762static irqreturn_t e1000_intr(int irq, void *data)
3763{
3764        struct net_device *netdev = data;
3765        struct e1000_adapter *adapter = netdev_priv(netdev);
3766        struct e1000_hw *hw = &adapter->hw;
3767        u32 icr = er32(ICR);
3768
3769        if (unlikely((!icr)))
3770                return IRQ_NONE;  /* Not our interrupt */
3771
3772        /* we might have caused the interrupt, but the above
3773         * read cleared it, and just in case the driver is
3774         * down there is nothing to do so return handled
3775         */
3776        if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3777                return IRQ_HANDLED;
3778
3779        if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3780                hw->get_link_status = 1;
3781                /* guard against interrupt when we're going down */
3782                if (!test_bit(__E1000_DOWN, &adapter->flags))
3783                        schedule_delayed_work(&adapter->watchdog_task, 1);
3784        }
3785
3786        /* disable interrupts, without the synchronize_irq bit */
3787        ew32(IMC, ~0);
3788        E1000_WRITE_FLUSH();
3789
3790        if (likely(napi_schedule_prep(&adapter->napi))) {
3791                adapter->total_tx_bytes = 0;
3792                adapter->total_tx_packets = 0;
3793                adapter->total_rx_bytes = 0;
3794                adapter->total_rx_packets = 0;
3795                __napi_schedule(&adapter->napi);
3796        } else {
3797                /* this really should not happen! if it does it is basically a
3798                 * bug, but not a hard error, so enable ints and continue
3799                 */
3800                if (!test_bit(__E1000_DOWN, &adapter->flags))
3801                        e1000_irq_enable(adapter);
3802        }
3803
3804        return IRQ_HANDLED;
3805}
3806
3807/**
3808 * e1000_clean - NAPI Rx polling callback
3809 * @adapter: board private structure
3810 **/
3811static int e1000_clean(struct napi_struct *napi, int budget)
3812{
3813        struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3814                                                     napi);
3815        int tx_clean_complete = 0, work_done = 0;
3816
3817        tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3818
3819        adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3820
3821        if (!tx_clean_complete)
3822                work_done = budget;
3823
3824        /* If budget not fully consumed, exit the polling mode */
3825        if (work_done < budget) {
3826                if (likely(adapter->itr_setting & 3))
3827                        e1000_set_itr(adapter);
3828                napi_complete_done(napi, work_done);
3829                if (!test_bit(__E1000_DOWN, &adapter->flags))
3830                        e1000_irq_enable(adapter);
3831        }
3832
3833        return work_done;
3834}
3835
3836/**
3837 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3838 * @adapter: board private structure
3839 **/
3840static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3841                               struct e1000_tx_ring *tx_ring)
3842{
3843        struct e1000_hw *hw = &adapter->hw;
3844        struct net_device *netdev = adapter->netdev;
3845        struct e1000_tx_desc *tx_desc, *eop_desc;
3846        struct e1000_tx_buffer *buffer_info;
3847        unsigned int i, eop;
3848        unsigned int count = 0;
3849        unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3850        unsigned int bytes_compl = 0, pkts_compl = 0;
3851
3852        i = tx_ring->next_to_clean;
3853        eop = tx_ring->buffer_info[i].next_to_watch;
3854        eop_desc = E1000_TX_DESC(*tx_ring, eop);
3855
3856        while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3857               (count < tx_ring->count)) {
3858                bool cleaned = false;
3859                dma_rmb();      /* read buffer_info after eop_desc */
3860                for ( ; !cleaned; count++) {
3861                        tx_desc = E1000_TX_DESC(*tx_ring, i);
3862                        buffer_info = &tx_ring->buffer_info[i];
3863                        cleaned = (i == eop);
3864
3865                        if (cleaned) {
3866                                total_tx_packets += buffer_info->segs;
3867                                total_tx_bytes += buffer_info->bytecount;
3868                                if (buffer_info->skb) {
3869                                        bytes_compl += buffer_info->skb->len;
3870                                        pkts_compl++;
3871                                }
3872
3873                        }
3874                        e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3875                        tx_desc->upper.data = 0;
3876
3877                        if (unlikely(++i == tx_ring->count))
3878                                i = 0;
3879                }
3880
3881                eop = tx_ring->buffer_info[i].next_to_watch;
3882                eop_desc = E1000_TX_DESC(*tx_ring, eop);
3883        }
3884
3885        /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3886         * which will reuse the cleaned buffers.
3887         */
3888        smp_store_release(&tx_ring->next_to_clean, i);
3889
3890        netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3891
3892#define TX_WAKE_THRESHOLD 32
3893        if (unlikely(count && netif_carrier_ok(netdev) &&
3894                     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3895                /* Make sure that anybody stopping the queue after this
3896                 * sees the new next_to_clean.
3897                 */
3898                smp_mb();
3899
3900                if (netif_queue_stopped(netdev) &&
3901                    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3902                        netif_wake_queue(netdev);
3903                        ++adapter->restart_queue;
3904                }
3905        }
3906
3907        if (adapter->detect_tx_hung) {
3908                /* Detect a transmit hang in hardware, this serializes the
3909                 * check with the clearing of time_stamp and movement of i
3910                 */
3911                adapter->detect_tx_hung = false;
3912                if (tx_ring->buffer_info[eop].time_stamp &&
3913                    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3914                               (adapter->tx_timeout_factor * HZ)) &&
3915                    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3916
3917                        /* detected Tx unit hang */
3918                        e_err(drv, "Detected Tx Unit Hang\n"
3919                              "  Tx Queue             <%lu>\n"
3920                              "  TDH                  <%x>\n"
3921                              "  TDT                  <%x>\n"
3922                              "  next_to_use          <%x>\n"
3923                              "  next_to_clean        <%x>\n"
3924                              "buffer_info[next_to_clean]\n"
3925                              "  time_stamp           <%lx>\n"
3926                              "  next_to_watch        <%x>\n"
3927                              "  jiffies              <%lx>\n"
3928                              "  next_to_watch.status <%x>\n",
3929                                (unsigned long)(tx_ring - adapter->tx_ring),
3930                                readl(hw->hw_addr + tx_ring->tdh),
3931                                readl(hw->hw_addr + tx_ring->tdt),
3932                                tx_ring->next_to_use,
3933                                tx_ring->next_to_clean,
3934                                tx_ring->buffer_info[eop].time_stamp,
3935                                eop,
3936                                jiffies,
3937                                eop_desc->upper.fields.status);
3938                        e1000_dump(adapter);
3939                        netif_stop_queue(netdev);
3940                }
3941        }
3942        adapter->total_tx_bytes += total_tx_bytes;
3943        adapter->total_tx_packets += total_tx_packets;
3944        netdev->stats.tx_bytes += total_tx_bytes;
3945        netdev->stats.tx_packets += total_tx_packets;
3946        return count < tx_ring->count;
3947}
3948
3949/**
3950 * e1000_rx_checksum - Receive Checksum Offload for 82543
3951 * @adapter:     board private structure
3952 * @status_err:  receive descriptor status and error fields
3953 * @csum:        receive descriptor csum field
3954 * @sk_buff:     socket buffer with received data
3955 **/
3956static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3957                              u32 csum, struct sk_buff *skb)
3958{
3959        struct e1000_hw *hw = &adapter->hw;
3960        u16 status = (u16)status_err;
3961        u8 errors = (u8)(status_err >> 24);
3962
3963        skb_checksum_none_assert(skb);
3964
3965        /* 82543 or newer only */
3966        if (unlikely(hw->mac_type < e1000_82543))
3967                return;
3968        /* Ignore Checksum bit is set */
3969        if (unlikely(status & E1000_RXD_STAT_IXSM))
3970                return;
3971        /* TCP/UDP checksum error bit is set */
3972        if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3973                /* let the stack verify checksum errors */
3974                adapter->hw_csum_err++;
3975                return;
3976        }
3977        /* TCP/UDP Checksum has not been calculated */
3978        if (!(status & E1000_RXD_STAT_TCPCS))
3979                return;
3980
3981        /* It must be a TCP or UDP packet with a valid checksum */
3982        if (likely(status & E1000_RXD_STAT_TCPCS)) {
3983                /* TCP checksum is good */
3984                skb->ip_summed = CHECKSUM_UNNECESSARY;
3985        }
3986        adapter->hw_csum_good++;
3987}
3988
3989/**
3990 * e1000_consume_page - helper function for jumbo Rx path
3991 **/
3992static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3993                               u16 length)
3994{
3995        bi->rxbuf.page = NULL;
3996        skb->len += length;
3997        skb->data_len += length;
3998        skb->truesize += PAGE_SIZE;
3999}
4000
4001/**
4002 * e1000_receive_skb - helper function to handle rx indications
4003 * @adapter: board private structure
4004 * @status: descriptor status field as written by hardware
4005 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4006 * @skb: pointer to sk_buff to be indicated to stack
4007 */
4008static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4009                              __le16 vlan, struct sk_buff *skb)
4010{
4011        skb->protocol = eth_type_trans(skb, adapter->netdev);
4012
4013        if (status & E1000_RXD_STAT_VP) {
4014                u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4015
4016                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4017        }
4018        napi_gro_receive(&adapter->napi, skb);
4019}
4020
4021/**
4022 * e1000_tbi_adjust_stats
4023 * @hw: Struct containing variables accessed by shared code
4024 * @frame_len: The length of the frame in question
4025 * @mac_addr: The Ethernet destination address of the frame in question
4026 *
4027 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4028 */
4029static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4030                                   struct e1000_hw_stats *stats,
4031                                   u32 frame_len, const u8 *mac_addr)
4032{
4033        u64 carry_bit;
4034
4035        /* First adjust the frame length. */
4036        frame_len--;
4037        /* We need to adjust the statistics counters, since the hardware
4038         * counters overcount this packet as a CRC error and undercount
4039         * the packet as a good packet
4040         */
4041        /* This packet should not be counted as a CRC error. */
4042        stats->crcerrs--;
4043        /* This packet does count as a Good Packet Received. */
4044        stats->gprc++;
4045
4046        /* Adjust the Good Octets received counters */
4047        carry_bit = 0x80000000 & stats->gorcl;
4048        stats->gorcl += frame_len;
4049        /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4050         * Received Count) was one before the addition,
4051         * AND it is zero after, then we lost the carry out,
4052         * need to add one to Gorch (Good Octets Received Count High).
4053         * This could be simplified if all environments supported
4054         * 64-bit integers.
4055         */
4056        if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4057                stats->gorch++;
4058        /* Is this a broadcast or multicast?  Check broadcast first,
4059         * since the test for a multicast frame will test positive on
4060         * a broadcast frame.
4061         */
4062        if (is_broadcast_ether_addr(mac_addr))
4063                stats->bprc++;
4064        else if (is_multicast_ether_addr(mac_addr))
4065                stats->mprc++;
4066
4067        if (frame_len == hw->max_frame_size) {
4068                /* In this case, the hardware has overcounted the number of
4069                 * oversize frames.
4070                 */
4071                if (stats->roc > 0)
4072                        stats->roc--;
4073        }
4074
4075        /* Adjust the bin counters when the extra byte put the frame in the
4076         * wrong bin. Remember that the frame_len was adjusted above.
4077         */
4078        if (frame_len == 64) {
4079                stats->prc64++;
4080                stats->prc127--;
4081        } else if (frame_len == 127) {
4082                stats->prc127++;
4083                stats->prc255--;
4084        } else if (frame_len == 255) {
4085                stats->prc255++;
4086                stats->prc511--;
4087        } else if (frame_len == 511) {
4088                stats->prc511++;
4089                stats->prc1023--;
4090        } else if (frame_len == 1023) {
4091                stats->prc1023++;
4092                stats->prc1522--;
4093        } else if (frame_len == 1522) {
4094                stats->prc1522++;
4095        }
4096}
4097
4098static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4099                                    u8 status, u8 errors,
4100                                    u32 length, const u8 *data)
4101{
4102        struct e1000_hw *hw = &adapter->hw;
4103        u8 last_byte = *(data + length - 1);
4104
4105        if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4106                unsigned long irq_flags;
4107
4108                spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4109                e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4110                spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4111
4112                return true;
4113        }
4114
4115        return false;
4116}
4117
4118static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4119                                          unsigned int bufsz)
4120{
4121        struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4122
4123        if (unlikely(!skb))
4124                adapter->alloc_rx_buff_failed++;
4125        return skb;
4126}
4127
4128/**
4129 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4130 * @adapter: board private structure
4131 * @rx_ring: ring to clean
4132 * @work_done: amount of napi work completed this call
4133 * @work_to_do: max amount of work allowed for this call to do
4134 *
4135 * the return value indicates whether actual cleaning was done, there
4136 * is no guarantee that everything was cleaned
4137 */
4138static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4139                                     struct e1000_rx_ring *rx_ring,
4140                                     int *work_done, int work_to_do)
4141{
4142        struct net_device *netdev = adapter->netdev;
4143        struct pci_dev *pdev = adapter->pdev;
4144        struct e1000_rx_desc *rx_desc, *next_rxd;
4145        struct e1000_rx_buffer *buffer_info, *next_buffer;
4146        u32 length;
4147        unsigned int i;
4148        int cleaned_count = 0;
4149        bool cleaned = false;
4150        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4151
4152        i = rx_ring->next_to_clean;
4153        rx_desc = E1000_RX_DESC(*rx_ring, i);
4154        buffer_info = &rx_ring->buffer_info[i];
4155
4156        while (rx_desc->status & E1000_RXD_STAT_DD) {
4157                struct sk_buff *skb;
4158                u8 status;
4159
4160                if (*work_done >= work_to_do)
4161                        break;
4162                (*work_done)++;
4163                dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4164
4165                status = rx_desc->status;
4166
4167                if (++i == rx_ring->count)
4168                        i = 0;
4169
4170                next_rxd = E1000_RX_DESC(*rx_ring, i);
4171                prefetch(next_rxd);
4172
4173                next_buffer = &rx_ring->buffer_info[i];
4174
4175                cleaned = true;
4176                cleaned_count++;
4177                dma_unmap_page(&pdev->dev, buffer_info->dma,
4178                               adapter->rx_buffer_len, DMA_FROM_DEVICE);
4179                buffer_info->dma = 0;
4180
4181                length = le16_to_cpu(rx_desc->length);
4182
4183                /* errors is only valid for DD + EOP descriptors */
4184                if (unlikely((status & E1000_RXD_STAT_EOP) &&
4185                    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4186                        u8 *mapped = page_address(buffer_info->rxbuf.page);
4187
4188                        if (e1000_tbi_should_accept(adapter, status,
4189                                                    rx_desc->errors,
4190                                                    length, mapped)) {
4191                                length--;
4192                        } else if (netdev->features & NETIF_F_RXALL) {
4193                                goto process_skb;
4194                        } else {
4195                                /* an error means any chain goes out the window
4196                                 * too
4197                                 */
4198                                if (rx_ring->rx_skb_top)
4199                                        dev_kfree_skb(rx_ring->rx_skb_top);
4200                                rx_ring->rx_skb_top = NULL;
4201                                goto next_desc;
4202                        }
4203                }
4204
4205#define rxtop rx_ring->rx_skb_top
4206process_skb:
4207                if (!(status & E1000_RXD_STAT_EOP)) {
4208                        /* this descriptor is only the beginning (or middle) */
4209                        if (!rxtop) {
4210                                /* this is the beginning of a chain */
4211                                rxtop = napi_get_frags(&adapter->napi);
4212                                if (!rxtop)
4213                                        break;
4214
4215                                skb_fill_page_desc(rxtop, 0,
4216                                                   buffer_info->rxbuf.page,
4217                                                   0, length);
4218                        } else {
4219                                /* this is the middle of a chain */
4220                                skb_fill_page_desc(rxtop,
4221                                    skb_shinfo(rxtop)->nr_frags,
4222                                    buffer_info->rxbuf.page, 0, length);
4223                        }
4224                        e1000_consume_page(buffer_info, rxtop, length);
4225                        goto next_desc;
4226                } else {
4227                        if (rxtop) {
4228                                /* end of the chain */
4229                                skb_fill_page_desc(rxtop,
4230                                    skb_shinfo(rxtop)->nr_frags,
4231                                    buffer_info->rxbuf.page, 0, length);
4232                                skb = rxtop;
4233                                rxtop = NULL;
4234                                e1000_consume_page(buffer_info, skb, length);
4235                        } else {
4236                                struct page *p;
4237                                /* no chain, got EOP, this buf is the packet
4238                                 * copybreak to save the put_page/alloc_page
4239                                 */
4240                                p = buffer_info->rxbuf.page;
4241                                if (length <= copybreak) {
4242                                        u8 *vaddr;
4243
4244                                        if (likely(!(netdev->features & NETIF_F_RXFCS)))
4245                                                length -= 4;
4246                                        skb = e1000_alloc_rx_skb(adapter,
4247                                                                 length);
4248                                        if (!skb)
4249                                                break;
4250
4251                                        vaddr = kmap_atomic(p);
4252                                        memcpy(skb_tail_pointer(skb), vaddr,
4253                                               length);
4254                                        kunmap_atomic(vaddr);
4255                                        /* re-use the page, so don't erase
4256                                         * buffer_info->rxbuf.page
4257                                         */
4258                                        skb_put(skb, length);
4259                                        e1000_rx_checksum(adapter,
4260                                                          status | rx_desc->errors << 24,
4261                                                          le16_to_cpu(rx_desc->csum), skb);
4262
4263                                        total_rx_bytes += skb->len;
4264                                        total_rx_packets++;
4265
4266                                        e1000_receive_skb(adapter, status,
4267                                                          rx_desc->special, skb);
4268                                        goto next_desc;
4269                                } else {
4270                                        skb = napi_get_frags(&adapter->napi);
4271                                        if (!skb) {
4272                                                adapter->alloc_rx_buff_failed++;
4273                                                break;
4274                                        }
4275                                        skb_fill_page_desc(skb, 0, p, 0,
4276                                                           length);
4277                                        e1000_consume_page(buffer_info, skb,
4278                                                           length);
4279                                }
4280                        }
4281                }
4282
4283                /* Receive Checksum Offload XXX recompute due to CRC strip? */
4284                e1000_rx_checksum(adapter,
4285                                  (u32)(status) |
4286                                  ((u32)(rx_desc->errors) << 24),
4287                                  le16_to_cpu(rx_desc->csum), skb);
4288
4289                total_rx_bytes += (skb->len - 4); /* don't count FCS */
4290                if (likely(!(netdev->features & NETIF_F_RXFCS)))
4291                        pskb_trim(skb, skb->len - 4);
4292                total_rx_packets++;
4293
4294                if (status & E1000_RXD_STAT_VP) {
4295                        __le16 vlan = rx_desc->special;
4296                        u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4297
4298                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4299                }
4300
4301                napi_gro_frags(&adapter->napi);
4302
4303next_desc:
4304                rx_desc->status = 0;
4305
4306                /* return some buffers to hardware, one at a time is too slow */
4307                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4308                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4309                        cleaned_count = 0;
4310                }
4311
4312                /* use prefetched values */
4313                rx_desc = next_rxd;
4314                buffer_info = next_buffer;
4315        }
4316        rx_ring->next_to_clean = i;
4317
4318        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4319        if (cleaned_count)
4320                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4321
4322        adapter->total_rx_packets += total_rx_packets;
4323        adapter->total_rx_bytes += total_rx_bytes;
4324        netdev->stats.rx_bytes += total_rx_bytes;
4325        netdev->stats.rx_packets += total_rx_packets;
4326        return cleaned;
4327}
4328
4329/* this should improve performance for small packets with large amounts
4330 * of reassembly being done in the stack
4331 */
4332static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4333                                       struct e1000_rx_buffer *buffer_info,
4334                                       u32 length, const void *data)
4335{
4336        struct sk_buff *skb;
4337
4338        if (length > copybreak)
4339                return NULL;
4340
4341        skb = e1000_alloc_rx_skb(adapter, length);
4342        if (!skb)
4343                return NULL;
4344
4345        dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4346                                length, DMA_FROM_DEVICE);
4347
4348        memcpy(skb_put(skb, length), data, length);
4349
4350        return skb;
4351}
4352
4353/**
4354 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4355 * @adapter: board private structure
4356 * @rx_ring: ring to clean
4357 * @work_done: amount of napi work completed this call
4358 * @work_to_do: max amount of work allowed for this call to do
4359 */
4360static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4361                               struct e1000_rx_ring *rx_ring,
4362                               int *work_done, int work_to_do)
4363{
4364        struct net_device *netdev = adapter->netdev;
4365        struct pci_dev *pdev = adapter->pdev;
4366        struct e1000_rx_desc *rx_desc, *next_rxd;
4367        struct e1000_rx_buffer *buffer_info, *next_buffer;
4368        u32 length;
4369        unsigned int i;
4370        int cleaned_count = 0;
4371        bool cleaned = false;
4372        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4373
4374        i = rx_ring->next_to_clean;
4375        rx_desc = E1000_RX_DESC(*rx_ring, i);
4376        buffer_info = &rx_ring->buffer_info[i];
4377
4378        while (rx_desc->status & E1000_RXD_STAT_DD) {
4379                struct sk_buff *skb;
4380                u8 *data;
4381                u8 status;
4382
4383                if (*work_done >= work_to_do)
4384                        break;
4385                (*work_done)++;
4386                dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4387
4388                status = rx_desc->status;
4389                length = le16_to_cpu(rx_desc->length);
4390
4391                data = buffer_info->rxbuf.data;
4392                prefetch(data);
4393                skb = e1000_copybreak(adapter, buffer_info, length, data);
4394                if (!skb) {
4395                        unsigned int frag_len = e1000_frag_len(adapter);
4396
4397                        skb = build_skb(data - E1000_HEADROOM, frag_len);
4398                        if (!skb) {
4399                                adapter->alloc_rx_buff_failed++;
4400                                break;
4401                        }
4402
4403                        skb_reserve(skb, E1000_HEADROOM);
4404                        dma_unmap_single(&pdev->dev, buffer_info->dma,
4405                                         adapter->rx_buffer_len,
4406                                         DMA_FROM_DEVICE);
4407                        buffer_info->dma = 0;
4408                        buffer_info->rxbuf.data = NULL;
4409                }
4410
4411                if (++i == rx_ring->count)
4412                        i = 0;
4413
4414                next_rxd = E1000_RX_DESC(*rx_ring, i);
4415                prefetch(next_rxd);
4416
4417                next_buffer = &rx_ring->buffer_info[i];
4418
4419                cleaned = true;
4420                cleaned_count++;
4421
4422                /* !EOP means multiple descriptors were used to store a single
4423                 * packet, if thats the case we need to toss it.  In fact, we
4424                 * to toss every packet with the EOP bit clear and the next
4425                 * frame that _does_ have the EOP bit set, as it is by
4426                 * definition only a frame fragment
4427                 */
4428                if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4429                        adapter->discarding = true;
4430
4431                if (adapter->discarding) {
4432                        /* All receives must fit into a single buffer */
4433                        netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4434                        dev_kfree_skb(skb);
4435                        if (status & E1000_RXD_STAT_EOP)
4436                                adapter->discarding = false;
4437                        goto next_desc;
4438                }
4439
4440                if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4441                        if (e1000_tbi_should_accept(adapter, status,
4442                                                    rx_desc->errors,
4443                                                    length, data)) {
4444                                length--;
4445                        } else if (netdev->features & NETIF_F_RXALL) {
4446                                goto process_skb;
4447                        } else {
4448                                dev_kfree_skb(skb);
4449                                goto next_desc;
4450                        }
4451                }
4452
4453process_skb:
4454                total_rx_bytes += (length - 4); /* don't count FCS */
4455                total_rx_packets++;
4456
4457                if (likely(!(netdev->features & NETIF_F_RXFCS)))
4458                        /* adjust length to remove Ethernet CRC, this must be
4459                         * done after the TBI_ACCEPT workaround above
4460                         */
4461                        length -= 4;
4462
4463                if (buffer_info->rxbuf.data == NULL)
4464                        skb_put(skb, length);
4465                else /* copybreak skb */
4466                        skb_trim(skb, length);
4467
4468                /* Receive Checksum Offload */
4469                e1000_rx_checksum(adapter,
4470                                  (u32)(status) |
4471                                  ((u32)(rx_desc->errors) << 24),
4472                                  le16_to_cpu(rx_desc->csum), skb);
4473
4474                e1000_receive_skb(adapter, status, rx_desc->special, skb);
4475
4476next_desc:
4477                rx_desc->status = 0;
4478
4479                /* return some buffers to hardware, one at a time is too slow */
4480                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4481                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4482                        cleaned_count = 0;
4483                }
4484
4485                /* use prefetched values */
4486                rx_desc = next_rxd;
4487                buffer_info = next_buffer;
4488        }
4489        rx_ring->next_to_clean = i;
4490
4491        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4492        if (cleaned_count)
4493                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4494
4495        adapter->total_rx_packets += total_rx_packets;
4496        adapter->total_rx_bytes += total_rx_bytes;
4497        netdev->stats.rx_bytes += total_rx_bytes;
4498        netdev->stats.rx_packets += total_rx_packets;
4499        return cleaned;
4500}
4501
4502/**
4503 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4504 * @adapter: address of board private structure
4505 * @rx_ring: pointer to receive ring structure
4506 * @cleaned_count: number of buffers to allocate this pass
4507 **/
4508static void
4509e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4510                             struct e1000_rx_ring *rx_ring, int cleaned_count)
4511{
4512        struct pci_dev *pdev = adapter->pdev;
4513        struct e1000_rx_desc *rx_desc;
4514        struct e1000_rx_buffer *buffer_info;
4515        unsigned int i;
4516
4517        i = rx_ring->next_to_use;
4518        buffer_info = &rx_ring->buffer_info[i];
4519
4520        while (cleaned_count--) {
4521                /* allocate a new page if necessary */
4522                if (!buffer_info->rxbuf.page) {
4523                        buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4524                        if (unlikely(!buffer_info->rxbuf.page)) {
4525                                adapter->alloc_rx_buff_failed++;
4526                                break;
4527                        }
4528                }
4529
4530                if (!buffer_info->dma) {
4531                        buffer_info->dma = dma_map_page(&pdev->dev,
4532                                                        buffer_info->rxbuf.page, 0,
4533                                                        adapter->rx_buffer_len,
4534                                                        DMA_FROM_DEVICE);
4535                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4536                                put_page(buffer_info->rxbuf.page);
4537                                buffer_info->rxbuf.page = NULL;
4538                                buffer_info->dma = 0;
4539                                adapter->alloc_rx_buff_failed++;
4540                                break;
4541                        }
4542                }
4543
4544                rx_desc = E1000_RX_DESC(*rx_ring, i);
4545                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4546
4547                if (unlikely(++i == rx_ring->count))
4548                        i = 0;
4549                buffer_info = &rx_ring->buffer_info[i];
4550        }
4551
4552        if (likely(rx_ring->next_to_use != i)) {
4553                rx_ring->next_to_use = i;
4554                if (unlikely(i-- == 0))
4555                        i = (rx_ring->count - 1);
4556
4557                /* Force memory writes to complete before letting h/w
4558                 * know there are new descriptors to fetch.  (Only
4559                 * applicable for weak-ordered memory model archs,
4560                 * such as IA-64).
4561                 */
4562                wmb();
4563                writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4564        }
4565}
4566
4567/**
4568 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4569 * @adapter: address of board private structure
4570 **/
4571static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4572                                   struct e1000_rx_ring *rx_ring,
4573                                   int cleaned_count)
4574{
4575        struct e1000_hw *hw = &adapter->hw;
4576        struct pci_dev *pdev = adapter->pdev;
4577        struct e1000_rx_desc *rx_desc;
4578        struct e1000_rx_buffer *buffer_info;
4579        unsigned int i;
4580        unsigned int bufsz = adapter->rx_buffer_len;
4581
4582        i = rx_ring->next_to_use;
4583        buffer_info = &rx_ring->buffer_info[i];
4584
4585        while (cleaned_count--) {
4586                void *data;
4587
4588                if (buffer_info->rxbuf.data)
4589                        goto skip;
4590
4591                data = e1000_alloc_frag(adapter);
4592                if (!data) {
4593                        /* Better luck next round */
4594                        adapter->alloc_rx_buff_failed++;
4595                        break;
4596                }
4597
4598                /* Fix for errata 23, can't cross 64kB boundary */
4599                if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4600                        void *olddata = data;
4601                        e_err(rx_err, "skb align check failed: %u bytes at "
4602                              "%p\n", bufsz, data);
4603                        /* Try again, without freeing the previous */
4604                        data = e1000_alloc_frag(adapter);
4605                        /* Failed allocation, critical failure */
4606                        if (!data) {
4607                                skb_free_frag(olddata);
4608                                adapter->alloc_rx_buff_failed++;
4609                                break;
4610                        }
4611
4612                        if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4613                                /* give up */
4614                                skb_free_frag(data);
4615                                skb_free_frag(olddata);
4616                                adapter->alloc_rx_buff_failed++;
4617                                break;
4618                        }
4619
4620                        /* Use new allocation */
4621                        skb_free_frag(olddata);
4622                }
4623                buffer_info->dma = dma_map_single(&pdev->dev,
4624                                                  data,
4625                                                  adapter->rx_buffer_len,
4626                                                  DMA_FROM_DEVICE);
4627                if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4628                        skb_free_frag(data);
4629                        buffer_info->dma = 0;
4630                        adapter->alloc_rx_buff_failed++;
4631                        break;
4632                }
4633
4634                /* XXX if it was allocated cleanly it will never map to a
4635                 * boundary crossing
4636                 */
4637
4638                /* Fix for errata 23, can't cross 64kB boundary */
4639                if (!e1000_check_64k_bound(adapter,
4640                                        (void *)(unsigned long)buffer_info->dma,
4641                                        adapter->rx_buffer_len)) {
4642                        e_err(rx_err, "dma align check failed: %u bytes at "
4643                              "%p\n", adapter->rx_buffer_len,
4644                              (void *)(unsigned long)buffer_info->dma);
4645
4646                        dma_unmap_single(&pdev->dev, buffer_info->dma,
4647                                         adapter->rx_buffer_len,
4648                                         DMA_FROM_DEVICE);
4649
4650                        skb_free_frag(data);
4651                        buffer_info->rxbuf.data = NULL;
4652                        buffer_info->dma = 0;
4653
4654                        adapter->alloc_rx_buff_failed++;
4655                        break;
4656                }
4657                buffer_info->rxbuf.data = data;
4658 skip:
4659                rx_desc = E1000_RX_DESC(*rx_ring, i);
4660                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4661
4662                if (unlikely(++i == rx_ring->count))
4663                        i = 0;
4664                buffer_info = &rx_ring->buffer_info[i];
4665        }
4666
4667        if (likely(rx_ring->next_to_use != i)) {
4668                rx_ring->next_to_use = i;
4669                if (unlikely(i-- == 0))
4670                        i = (rx_ring->count - 1);
4671
4672                /* Force memory writes to complete before letting h/w
4673                 * know there are new descriptors to fetch.  (Only
4674                 * applicable for weak-ordered memory model archs,
4675                 * such as IA-64).
4676                 */
4677                wmb();
4678                writel(i, hw->hw_addr + rx_ring->rdt);
4679        }
4680}
4681
4682/**
4683 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4684 * @adapter:
4685 **/
4686static void e1000_smartspeed(struct e1000_adapter *adapter)
4687{
4688        struct e1000_hw *hw = &adapter->hw;
4689        u16 phy_status;
4690        u16 phy_ctrl;
4691
4692        if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4693           !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4694                return;
4695
4696        if (adapter->smartspeed == 0) {
4697                /* If Master/Slave config fault is asserted twice,
4698                 * we assume back-to-back
4699                 */
4700                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4701                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4702                        return;
4703                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4704                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4705                        return;
4706                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4707                if (phy_ctrl & CR_1000T_MS_ENABLE) {
4708                        phy_ctrl &= ~CR_1000T_MS_ENABLE;
4709                        e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4710                                            phy_ctrl);
4711                        adapter->smartspeed++;
4712                        if (!e1000_phy_setup_autoneg(hw) &&
4713                           !e1000_read_phy_reg(hw, PHY_CTRL,
4714                                               &phy_ctrl)) {
4715                                phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4716                                             MII_CR_RESTART_AUTO_NEG);
4717                                e1000_write_phy_reg(hw, PHY_CTRL,
4718                                                    phy_ctrl);
4719                        }
4720                }
4721                return;
4722        } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4723                /* If still no link, perhaps using 2/3 pair cable */
4724                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4725                phy_ctrl |= CR_1000T_MS_ENABLE;
4726                e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4727                if (!e1000_phy_setup_autoneg(hw) &&
4728                   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4729                        phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4730                                     MII_CR_RESTART_AUTO_NEG);
4731                        e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4732                }
4733        }
4734        /* Restart process after E1000_SMARTSPEED_MAX iterations */
4735        if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4736                adapter->smartspeed = 0;
4737}
4738
4739/**
4740 * e1000_ioctl -
4741 * @netdev:
4742 * @ifreq:
4743 * @cmd:
4744 **/
4745static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4746{
4747        switch (cmd) {
4748        case SIOCGMIIPHY:
4749        case SIOCGMIIREG:
4750        case SIOCSMIIREG:
4751                return e1000_mii_ioctl(netdev, ifr, cmd);
4752        default:
4753                return -EOPNOTSUPP;
4754        }
4755}
4756
4757/**
4758 * e1000_mii_ioctl -
4759 * @netdev:
4760 * @ifreq:
4761 * @cmd:
4762 **/
4763static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4764                           int cmd)
4765{
4766        struct e1000_adapter *adapter = netdev_priv(netdev);
4767        struct e1000_hw *hw = &adapter->hw;
4768        struct mii_ioctl_data *data = if_mii(ifr);
4769        int retval;
4770        u16 mii_reg;
4771        unsigned long flags;
4772
4773        if (hw->media_type != e1000_media_type_copper)
4774                return -EOPNOTSUPP;
4775
4776        switch (cmd) {
4777        case SIOCGMIIPHY:
4778                data->phy_id = hw->phy_addr;
4779                break;
4780        case SIOCGMIIREG:
4781                spin_lock_irqsave(&adapter->stats_lock, flags);
4782                if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4783                                   &data->val_out)) {
4784                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4785                        return -EIO;
4786                }
4787                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4788                break;
4789        case SIOCSMIIREG:
4790                if (data->reg_num & ~(0x1F))
4791                        return -EFAULT;
4792                mii_reg = data->val_in;
4793                spin_lock_irqsave(&adapter->stats_lock, flags);
4794                if (e1000_write_phy_reg(hw, data->reg_num,
4795                                        mii_reg)) {
4796                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4797                        return -EIO;
4798                }
4799                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4800                if (hw->media_type == e1000_media_type_copper) {
4801                        switch (data->reg_num) {
4802                        case PHY_CTRL:
4803                                if (mii_reg & MII_CR_POWER_DOWN)
4804                                        break;
4805                                if (mii_reg & MII_CR_AUTO_NEG_EN) {
4806                                        hw->autoneg = 1;
4807                                        hw->autoneg_advertised = 0x2F;
4808                                } else {
4809                                        u32 speed;
4810                                        if (mii_reg & 0x40)
4811                                                speed = SPEED_1000;
4812                                        else if (mii_reg & 0x2000)
4813                                                speed = SPEED_100;
4814                                        else
4815                                                speed = SPEED_10;
4816                                        retval = e1000_set_spd_dplx(
4817                                                adapter, speed,
4818                                                ((mii_reg & 0x100)
4819                                                 ? DUPLEX_FULL :
4820                                                 DUPLEX_HALF));
4821                                        if (retval)
4822                                                return retval;
4823                                }
4824                                if (netif_running(adapter->netdev))
4825                                        e1000_reinit_locked(adapter);
4826                                else
4827                                        e1000_reset(adapter);
4828                                break;
4829                        case M88E1000_PHY_SPEC_CTRL:
4830                        case M88E1000_EXT_PHY_SPEC_CTRL:
4831                                if (e1000_phy_reset(hw))
4832                                        return -EIO;
4833                                break;
4834                        }
4835                } else {
4836                        switch (data->reg_num) {
4837                        case PHY_CTRL:
4838                                if (mii_reg & MII_CR_POWER_DOWN)
4839                                        break;
4840                                if (netif_running(adapter->netdev))
4841                                        e1000_reinit_locked(adapter);
4842                                else
4843                                        e1000_reset(adapter);
4844                                break;
4845                        }
4846                }
4847                break;
4848        default:
4849                return -EOPNOTSUPP;
4850        }
4851        return E1000_SUCCESS;
4852}
4853
4854void e1000_pci_set_mwi(struct e1000_hw *hw)
4855{
4856        struct e1000_adapter *adapter = hw->back;
4857        int ret_val = pci_set_mwi(adapter->pdev);
4858
4859        if (ret_val)
4860                e_err(probe, "Error in setting MWI\n");
4861}
4862
4863void e1000_pci_clear_mwi(struct e1000_hw *hw)
4864{
4865        struct e1000_adapter *adapter = hw->back;
4866
4867        pci_clear_mwi(adapter->pdev);
4868}
4869
4870int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4871{
4872        struct e1000_adapter *adapter = hw->back;
4873        return pcix_get_mmrbc(adapter->pdev);
4874}
4875
4876void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4877{
4878        struct e1000_adapter *adapter = hw->back;
4879        pcix_set_mmrbc(adapter->pdev, mmrbc);
4880}
4881
4882void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4883{
4884        outl(value, port);
4885}
4886
4887static bool e1000_vlan_used(struct e1000_adapter *adapter)
4888{
4889        u16 vid;
4890
4891        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4892                return true;
4893        return false;
4894}
4895
4896static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4897                              netdev_features_t features)
4898{
4899        struct e1000_hw *hw = &adapter->hw;
4900        u32 ctrl;
4901
4902        ctrl = er32(CTRL);
4903        if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4904                /* enable VLAN tag insert/strip */
4905                ctrl |= E1000_CTRL_VME;
4906        } else {
4907                /* disable VLAN tag insert/strip */
4908                ctrl &= ~E1000_CTRL_VME;
4909        }
4910        ew32(CTRL, ctrl);
4911}
4912static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4913                                     bool filter_on)
4914{
4915        struct e1000_hw *hw = &adapter->hw;
4916        u32 rctl;
4917
4918        if (!test_bit(__E1000_DOWN, &adapter->flags))
4919                e1000_irq_disable(adapter);
4920
4921        __e1000_vlan_mode(adapter, adapter->netdev->features);
4922        if (filter_on) {
4923                /* enable VLAN receive filtering */
4924                rctl = er32(RCTL);
4925                rctl &= ~E1000_RCTL_CFIEN;
4926                if (!(adapter->netdev->flags & IFF_PROMISC))
4927                        rctl |= E1000_RCTL_VFE;
4928                ew32(RCTL, rctl);
4929                e1000_update_mng_vlan(adapter);
4930        } else {
4931                /* disable VLAN receive filtering */
4932                rctl = er32(RCTL);
4933                rctl &= ~E1000_RCTL_VFE;
4934                ew32(RCTL, rctl);
4935        }
4936
4937        if (!test_bit(__E1000_DOWN, &adapter->flags))
4938                e1000_irq_enable(adapter);
4939}
4940
4941static void e1000_vlan_mode(struct net_device *netdev,
4942                            netdev_features_t features)
4943{
4944        struct e1000_adapter *adapter = netdev_priv(netdev);
4945
4946        if (!test_bit(__E1000_DOWN, &adapter->flags))
4947                e1000_irq_disable(adapter);
4948
4949        __e1000_vlan_mode(adapter, features);
4950
4951        if (!test_bit(__E1000_DOWN, &adapter->flags))
4952                e1000_irq_enable(adapter);
4953}
4954
4955static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4956                                 __be16 proto, u16 vid)
4957{
4958        struct e1000_adapter *adapter = netdev_priv(netdev);
4959        struct e1000_hw *hw = &adapter->hw;
4960        u32 vfta, index;
4961
4962        if ((hw->mng_cookie.status &
4963             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4964            (vid == adapter->mng_vlan_id))
4965                return 0;
4966
4967        if (!e1000_vlan_used(adapter))
4968                e1000_vlan_filter_on_off(adapter, true);
4969
4970        /* add VID to filter table */
4971        index = (vid >> 5) & 0x7F;
4972        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4973        vfta |= (1 << (vid & 0x1F));
4974        e1000_write_vfta(hw, index, vfta);
4975
4976        set_bit(vid, adapter->active_vlans);
4977
4978        return 0;
4979}
4980
4981static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4982                                  __be16 proto, u16 vid)
4983{
4984        struct e1000_adapter *adapter = netdev_priv(netdev);
4985        struct e1000_hw *hw = &adapter->hw;
4986        u32 vfta, index;
4987
4988        if (!test_bit(__E1000_DOWN, &adapter->flags))
4989                e1000_irq_disable(adapter);
4990        if (!test_bit(__E1000_DOWN, &adapter->flags))
4991                e1000_irq_enable(adapter);
4992
4993        /* remove VID from filter table */
4994        index = (vid >> 5) & 0x7F;
4995        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4996        vfta &= ~(1 << (vid & 0x1F));
4997        e1000_write_vfta(hw, index, vfta);
4998
4999        clear_bit(vid, adapter->active_vlans);
5000
5001        if (!e1000_vlan_used(adapter))
5002                e1000_vlan_filter_on_off(adapter, false);
5003
5004        return 0;
5005}
5006
5007static void e1000_restore_vlan(struct e1000_adapter *adapter)
5008{
5009        u16 vid;
5010
5011        if (!e1000_vlan_used(adapter))
5012                return;
5013
5014        e1000_vlan_filter_on_off(adapter, true);
5015        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5016                e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5017}
5018
5019int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5020{
5021        struct e1000_hw *hw = &adapter->hw;
5022
5023        hw->autoneg = 0;
5024
5025        /* Make sure dplx is at most 1 bit and lsb of speed is not set
5026         * for the switch() below to work
5027         */
5028        if ((spd & 1) || (dplx & ~1))
5029                goto err_inval;
5030
5031        /* Fiber NICs only allow 1000 gbps Full duplex */
5032        if ((hw->media_type == e1000_media_type_fiber) &&
5033            spd != SPEED_1000 &&
5034            dplx != DUPLEX_FULL)
5035                goto err_inval;
5036
5037        switch (spd + dplx) {
5038        case SPEED_10 + DUPLEX_HALF:
5039                hw->forced_speed_duplex = e1000_10_half;
5040                break;
5041        case SPEED_10 + DUPLEX_FULL:
5042                hw->forced_speed_duplex = e1000_10_full;
5043                break;
5044        case SPEED_100 + DUPLEX_HALF:
5045                hw->forced_speed_duplex = e1000_100_half;
5046                break;
5047        case SPEED_100 + DUPLEX_FULL:
5048                hw->forced_speed_duplex = e1000_100_full;
5049                break;
5050        case SPEED_1000 + DUPLEX_FULL:
5051                hw->autoneg = 1;
5052                hw->autoneg_advertised = ADVERTISE_1000_FULL;
5053                break;
5054        case SPEED_1000 + DUPLEX_HALF: /* not supported */
5055        default:
5056                goto err_inval;
5057        }
5058
5059        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5060        hw->mdix = AUTO_ALL_MODES;
5061
5062        return 0;
5063
5064err_inval:
5065        e_err(probe, "Unsupported Speed/Duplex configuration\n");
5066        return -EINVAL;
5067}
5068
5069static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5070{
5071        struct net_device *netdev = pci_get_drvdata(pdev);
5072        struct e1000_adapter *adapter = netdev_priv(netdev);
5073        struct e1000_hw *hw = &adapter->hw;
5074        u32 ctrl, ctrl_ext, rctl, status;
5075        u32 wufc = adapter->wol;
5076#ifdef CONFIG_PM
5077        int retval = 0;
5078#endif
5079
5080        netif_device_detach(netdev);
5081
5082        if (netif_running(netdev)) {
5083                int count = E1000_CHECK_RESET_COUNT;
5084
5085                while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5086                        usleep_range(10000, 20000);
5087
5088                WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5089                e1000_down(adapter);
5090        }
5091
5092#ifdef CONFIG_PM
5093        retval = pci_save_state(pdev);
5094        if (retval)
5095                return retval;
5096#endif
5097
5098        status = er32(STATUS);
5099        if (status & E1000_STATUS_LU)
5100                wufc &= ~E1000_WUFC_LNKC;
5101
5102        if (wufc) {
5103                e1000_setup_rctl(adapter);
5104                e1000_set_rx_mode(netdev);
5105
5106                rctl = er32(RCTL);
5107
5108                /* turn on all-multi mode if wake on multicast is enabled */
5109                if (wufc & E1000_WUFC_MC)
5110                        rctl |= E1000_RCTL_MPE;
5111
5112                /* enable receives in the hardware */
5113                ew32(RCTL, rctl | E1000_RCTL_EN);
5114
5115                if (hw->mac_type >= e1000_82540) {
5116                        ctrl = er32(CTRL);
5117                        /* advertise wake from D3Cold */
5118                        #define E1000_CTRL_ADVD3WUC 0x00100000
5119                        /* phy power management enable */
5120                        #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5121                        ctrl |= E1000_CTRL_ADVD3WUC |
5122                                E1000_CTRL_EN_PHY_PWR_MGMT;
5123                        ew32(CTRL, ctrl);
5124                }
5125
5126                if (hw->media_type == e1000_media_type_fiber ||
5127                    hw->media_type == e1000_media_type_internal_serdes) {
5128                        /* keep the laser running in D3 */
5129                        ctrl_ext = er32(CTRL_EXT);
5130                        ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5131                        ew32(CTRL_EXT, ctrl_ext);
5132                }
5133
5134                ew32(WUC, E1000_WUC_PME_EN);
5135                ew32(WUFC, wufc);
5136        } else {
5137                ew32(WUC, 0);
5138                ew32(WUFC, 0);
5139        }
5140
5141        e1000_release_manageability(adapter);
5142
5143        *enable_wake = !!wufc;
5144
5145        /* make sure adapter isn't asleep if manageability is enabled */
5146        if (adapter->en_mng_pt)
5147                *enable_wake = true;
5148
5149        if (netif_running(netdev))
5150                e1000_free_irq(adapter);
5151
5152        pci_disable_device(pdev);
5153
5154        return 0;
5155}
5156
5157#ifdef CONFIG_PM
5158static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5159{
5160        int retval;
5161        bool wake;
5162
5163        retval = __e1000_shutdown(pdev, &wake);
5164        if (retval)
5165                return retval;
5166
5167        if (wake) {
5168                pci_prepare_to_sleep(pdev);
5169        } else {
5170                pci_wake_from_d3(pdev, false);
5171                pci_set_power_state(pdev, PCI_D3hot);
5172        }
5173
5174        return 0;
5175}
5176
5177static int e1000_resume(struct pci_dev *pdev)
5178{
5179        struct net_device *netdev = pci_get_drvdata(pdev);
5180        struct e1000_adapter *adapter = netdev_priv(netdev);
5181        struct e1000_hw *hw = &adapter->hw;
5182        u32 err;
5183
5184        pci_set_power_state(pdev, PCI_D0);
5185        pci_restore_state(pdev);
5186        pci_save_state(pdev);
5187
5188        if (adapter->need_ioport)
5189                err = pci_enable_device(pdev);
5190        else
5191                err = pci_enable_device_mem(pdev);
5192        if (err) {
5193                pr_err("Cannot enable PCI device from suspend\n");
5194                return err;
5195        }
5196        pci_set_master(pdev);
5197
5198        pci_enable_wake(pdev, PCI_D3hot, 0);
5199        pci_enable_wake(pdev, PCI_D3cold, 0);
5200
5201        if (netif_running(netdev)) {
5202                err = e1000_request_irq(adapter);
5203                if (err)
5204                        return err;
5205        }
5206
5207        e1000_power_up_phy(adapter);
5208        e1000_reset(adapter);
5209        ew32(WUS, ~0);
5210
5211        e1000_init_manageability(adapter);
5212
5213        if (netif_running(netdev))
5214                e1000_up(adapter);
5215
5216        netif_device_attach(netdev);
5217
5218        return 0;
5219}
5220#endif
5221
5222static void e1000_shutdown(struct pci_dev *pdev)
5223{
5224        bool wake;
5225
5226        __e1000_shutdown(pdev, &wake);
5227
5228        if (system_state == SYSTEM_POWER_OFF) {
5229                pci_wake_from_d3(pdev, wake);
5230                pci_set_power_state(pdev, PCI_D3hot);
5231        }
5232}
5233
5234#ifdef CONFIG_NET_POLL_CONTROLLER
5235/* Polling 'interrupt' - used by things like netconsole to send skbs
5236 * without having to re-enable interrupts. It's not called while
5237 * the interrupt routine is executing.
5238 */
5239static void e1000_netpoll(struct net_device *netdev)
5240{
5241        struct e1000_adapter *adapter = netdev_priv(netdev);
5242
5243        disable_irq(adapter->pdev->irq);
5244        e1000_intr(adapter->pdev->irq, netdev);
5245        enable_irq(adapter->pdev->irq);
5246}
5247#endif
5248
5249/**
5250 * e1000_io_error_detected - called when PCI error is detected
5251 * @pdev: Pointer to PCI device
5252 * @state: The current pci connection state
5253 *
5254 * This function is called after a PCI bus error affecting
5255 * this device has been detected.
5256 */
5257static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5258                                                pci_channel_state_t state)
5259{
5260        struct net_device *netdev = pci_get_drvdata(pdev);
5261        struct e1000_adapter *adapter = netdev_priv(netdev);
5262
5263        netif_device_detach(netdev);
5264
5265        if (state == pci_channel_io_perm_failure)
5266                return PCI_ERS_RESULT_DISCONNECT;
5267
5268        if (netif_running(netdev))
5269                e1000_down(adapter);
5270        pci_disable_device(pdev);
5271
5272        /* Request a slot slot reset. */
5273        return PCI_ERS_RESULT_NEED_RESET;
5274}
5275
5276/**
5277 * e1000_io_slot_reset - called after the pci bus has been reset.
5278 * @pdev: Pointer to PCI device
5279 *
5280 * Restart the card from scratch, as if from a cold-boot. Implementation
5281 * resembles the first-half of the e1000_resume routine.
5282 */
5283static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5284{
5285        struct net_device *netdev = pci_get_drvdata(pdev);
5286        struct e1000_adapter *adapter = netdev_priv(netdev);
5287        struct e1000_hw *hw = &adapter->hw;
5288        int err;
5289
5290        if (adapter->need_ioport)
5291                err = pci_enable_device(pdev);
5292        else
5293                err = pci_enable_device_mem(pdev);
5294        if (err) {
5295                pr_err("Cannot re-enable PCI device after reset.\n");
5296                return PCI_ERS_RESULT_DISCONNECT;
5297        }
5298        pci_set_master(pdev);
5299
5300        pci_enable_wake(pdev, PCI_D3hot, 0);
5301        pci_enable_wake(pdev, PCI_D3cold, 0);
5302
5303        e1000_reset(adapter);
5304        ew32(WUS, ~0);
5305
5306        return PCI_ERS_RESULT_RECOVERED;
5307}
5308
5309/**
5310 * e1000_io_resume - called when traffic can start flowing again.
5311 * @pdev: Pointer to PCI device
5312 *
5313 * This callback is called when the error recovery driver tells us that
5314 * its OK to resume normal operation. Implementation resembles the
5315 * second-half of the e1000_resume routine.
5316 */
5317static void e1000_io_resume(struct pci_dev *pdev)
5318{
5319        struct net_device *netdev = pci_get_drvdata(pdev);
5320        struct e1000_adapter *adapter = netdev_priv(netdev);
5321
5322        e1000_init_manageability(adapter);
5323
5324        if (netif_running(netdev)) {
5325                if (e1000_up(adapter)) {
5326                        pr_info("can't bring device back up after reset\n");
5327                        return;
5328                }
5329        }
5330
5331        netif_device_attach(netdev);
5332}
5333
5334/* e1000_main.c */
5335