linux/drivers/net/ethernet/intel/igbvf/netdev.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) 82576 Virtual Function Linux driver
   4  Copyright(c) 2009 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, see <http://www.gnu.org/licenses/>.
  17
  18  The full GNU General Public License is included in this distribution in
  19  the file called "COPYING".
  20
  21  Contact Information:
  22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24
  25*******************************************************************************/
  26
  27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  28
  29#include <linux/module.h>
  30#include <linux/types.h>
  31#include <linux/init.h>
  32#include <linux/pci.h>
  33#include <linux/vmalloc.h>
  34#include <linux/pagemap.h>
  35#include <linux/delay.h>
  36#include <linux/netdevice.h>
  37#include <linux/tcp.h>
  38#include <linux/ipv6.h>
  39#include <linux/slab.h>
  40#include <net/checksum.h>
  41#include <net/ip6_checksum.h>
  42#include <linux/mii.h>
  43#include <linux/ethtool.h>
  44#include <linux/if_vlan.h>
  45#include <linux/prefetch.h>
  46
  47#include "igbvf.h"
  48
  49#define DRV_VERSION "2.0.2-k"
  50char igbvf_driver_name[] = "igbvf";
  51const char igbvf_driver_version[] = DRV_VERSION;
  52static const char igbvf_driver_string[] =
  53                  "Intel(R) Gigabit Virtual Function Network Driver";
  54static const char igbvf_copyright[] =
  55                  "Copyright (c) 2009 - 2012 Intel Corporation.";
  56
  57#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  58static int debug = -1;
  59module_param(debug, int, 0);
  60MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  61
  62static int igbvf_poll(struct napi_struct *napi, int budget);
  63static void igbvf_reset(struct igbvf_adapter *);
  64static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  65static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  66
  67static struct igbvf_info igbvf_vf_info = {
  68        .mac            = e1000_vfadapt,
  69        .flags          = 0,
  70        .pba            = 10,
  71        .init_ops       = e1000_init_function_pointers_vf,
  72};
  73
  74static struct igbvf_info igbvf_i350_vf_info = {
  75        .mac            = e1000_vfadapt_i350,
  76        .flags          = 0,
  77        .pba            = 10,
  78        .init_ops       = e1000_init_function_pointers_vf,
  79};
  80
  81static const struct igbvf_info *igbvf_info_tbl[] = {
  82        [board_vf]      = &igbvf_vf_info,
  83        [board_i350_vf] = &igbvf_i350_vf_info,
  84};
  85
  86/**
  87 * igbvf_desc_unused - calculate if we have unused descriptors
  88 * @rx_ring: address of receive ring structure
  89 **/
  90static int igbvf_desc_unused(struct igbvf_ring *ring)
  91{
  92        if (ring->next_to_clean > ring->next_to_use)
  93                return ring->next_to_clean - ring->next_to_use - 1;
  94
  95        return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  96}
  97
  98/**
  99 * igbvf_receive_skb - helper function to handle Rx indications
 100 * @adapter: board private structure
 101 * @status: descriptor status field as written by hardware
 102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 103 * @skb: pointer to sk_buff to be indicated to stack
 104 **/
 105static void igbvf_receive_skb(struct igbvf_adapter *adapter,
 106                              struct net_device *netdev,
 107                              struct sk_buff *skb,
 108                              u32 status, u16 vlan)
 109{
 110        u16 vid;
 111
 112        if (status & E1000_RXD_STAT_VP) {
 113                if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
 114                    (status & E1000_RXDEXT_STATERR_LB))
 115                        vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 116                else
 117                        vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 118                if (test_bit(vid, adapter->active_vlans))
 119                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 120        }
 121
 122        napi_gro_receive(&adapter->rx_ring->napi, skb);
 123}
 124
 125static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 126                                         u32 status_err, struct sk_buff *skb)
 127{
 128        skb_checksum_none_assert(skb);
 129
 130        /* Ignore Checksum bit is set or checksum is disabled through ethtool */
 131        if ((status_err & E1000_RXD_STAT_IXSM) ||
 132            (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 133                return;
 134
 135        /* TCP/UDP checksum error bit is set */
 136        if (status_err &
 137            (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 138                /* let the stack verify checksum errors */
 139                adapter->hw_csum_err++;
 140                return;
 141        }
 142
 143        /* It must be a TCP or UDP packet with a valid checksum */
 144        if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 145                skb->ip_summed = CHECKSUM_UNNECESSARY;
 146
 147        adapter->hw_csum_good++;
 148}
 149
 150/**
 151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 152 * @rx_ring: address of ring structure to repopulate
 153 * @cleaned_count: number of buffers to repopulate
 154 **/
 155static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 156                                   int cleaned_count)
 157{
 158        struct igbvf_adapter *adapter = rx_ring->adapter;
 159        struct net_device *netdev = adapter->netdev;
 160        struct pci_dev *pdev = adapter->pdev;
 161        union e1000_adv_rx_desc *rx_desc;
 162        struct igbvf_buffer *buffer_info;
 163        struct sk_buff *skb;
 164        unsigned int i;
 165        int bufsz;
 166
 167        i = rx_ring->next_to_use;
 168        buffer_info = &rx_ring->buffer_info[i];
 169
 170        if (adapter->rx_ps_hdr_size)
 171                bufsz = adapter->rx_ps_hdr_size;
 172        else
 173                bufsz = adapter->rx_buffer_len;
 174
 175        while (cleaned_count--) {
 176                rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 177
 178                if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 179                        if (!buffer_info->page) {
 180                                buffer_info->page = alloc_page(GFP_ATOMIC);
 181                                if (!buffer_info->page) {
 182                                        adapter->alloc_rx_buff_failed++;
 183                                        goto no_buffers;
 184                                }
 185                                buffer_info->page_offset = 0;
 186                        } else {
 187                                buffer_info->page_offset ^= PAGE_SIZE / 2;
 188                        }
 189                        buffer_info->page_dma =
 190                                dma_map_page(&pdev->dev, buffer_info->page,
 191                                             buffer_info->page_offset,
 192                                             PAGE_SIZE / 2,
 193                                             DMA_FROM_DEVICE);
 194                        if (dma_mapping_error(&pdev->dev,
 195                                              buffer_info->page_dma)) {
 196                                __free_page(buffer_info->page);
 197                                buffer_info->page = NULL;
 198                                dev_err(&pdev->dev, "RX DMA map failed\n");
 199                                break;
 200                        }
 201                }
 202
 203                if (!buffer_info->skb) {
 204                        skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 205                        if (!skb) {
 206                                adapter->alloc_rx_buff_failed++;
 207                                goto no_buffers;
 208                        }
 209
 210                        buffer_info->skb = skb;
 211                        buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 212                                                          bufsz,
 213                                                          DMA_FROM_DEVICE);
 214                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 215                                dev_kfree_skb(buffer_info->skb);
 216                                buffer_info->skb = NULL;
 217                                dev_err(&pdev->dev, "RX DMA map failed\n");
 218                                goto no_buffers;
 219                        }
 220                }
 221                /* Refresh the desc even if buffer_addrs didn't change because
 222                 * each write-back erases this info.
 223                 */
 224                if (adapter->rx_ps_hdr_size) {
 225                        rx_desc->read.pkt_addr =
 226                             cpu_to_le64(buffer_info->page_dma);
 227                        rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 228                } else {
 229                        rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
 230                        rx_desc->read.hdr_addr = 0;
 231                }
 232
 233                i++;
 234                if (i == rx_ring->count)
 235                        i = 0;
 236                buffer_info = &rx_ring->buffer_info[i];
 237        }
 238
 239no_buffers:
 240        if (rx_ring->next_to_use != i) {
 241                rx_ring->next_to_use = i;
 242                if (i == 0)
 243                        i = (rx_ring->count - 1);
 244                else
 245                        i--;
 246
 247                /* Force memory writes to complete before letting h/w
 248                 * know there are new descriptors to fetch.  (Only
 249                 * applicable for weak-ordered memory model archs,
 250                 * such as IA-64).
 251                */
 252                wmb();
 253                writel(i, adapter->hw.hw_addr + rx_ring->tail);
 254        }
 255}
 256
 257/**
 258 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 259 * @adapter: board private structure
 260 *
 261 * the return value indicates whether actual cleaning was done, there
 262 * is no guarantee that everything was cleaned
 263 **/
 264static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 265                               int *work_done, int work_to_do)
 266{
 267        struct igbvf_ring *rx_ring = adapter->rx_ring;
 268        struct net_device *netdev = adapter->netdev;
 269        struct pci_dev *pdev = adapter->pdev;
 270        union e1000_adv_rx_desc *rx_desc, *next_rxd;
 271        struct igbvf_buffer *buffer_info, *next_buffer;
 272        struct sk_buff *skb;
 273        bool cleaned = false;
 274        int cleaned_count = 0;
 275        unsigned int total_bytes = 0, total_packets = 0;
 276        unsigned int i;
 277        u32 length, hlen, staterr;
 278
 279        i = rx_ring->next_to_clean;
 280        rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 281        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 282
 283        while (staterr & E1000_RXD_STAT_DD) {
 284                if (*work_done >= work_to_do)
 285                        break;
 286                (*work_done)++;
 287                rmb(); /* read descriptor and rx_buffer_info after status DD */
 288
 289                buffer_info = &rx_ring->buffer_info[i];
 290
 291                /* HW will not DMA in data larger than the given buffer, even
 292                 * if it parses the (NFS, of course) header to be larger.  In
 293                 * that case, it fills the header buffer and spills the rest
 294                 * into the page.
 295                 */
 296                hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
 297                       & E1000_RXDADV_HDRBUFLEN_MASK) >>
 298                       E1000_RXDADV_HDRBUFLEN_SHIFT;
 299                if (hlen > adapter->rx_ps_hdr_size)
 300                        hlen = adapter->rx_ps_hdr_size;
 301
 302                length = le16_to_cpu(rx_desc->wb.upper.length);
 303                cleaned = true;
 304                cleaned_count++;
 305
 306                skb = buffer_info->skb;
 307                prefetch(skb->data - NET_IP_ALIGN);
 308                buffer_info->skb = NULL;
 309                if (!adapter->rx_ps_hdr_size) {
 310                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 311                                         adapter->rx_buffer_len,
 312                                         DMA_FROM_DEVICE);
 313                        buffer_info->dma = 0;
 314                        skb_put(skb, length);
 315                        goto send_up;
 316                }
 317
 318                if (!skb_shinfo(skb)->nr_frags) {
 319                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 320                                         adapter->rx_ps_hdr_size,
 321                                         DMA_FROM_DEVICE);
 322                        buffer_info->dma = 0;
 323                        skb_put(skb, hlen);
 324                }
 325
 326                if (length) {
 327                        dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 328                                       PAGE_SIZE / 2,
 329                                       DMA_FROM_DEVICE);
 330                        buffer_info->page_dma = 0;
 331
 332                        skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 333                                           buffer_info->page,
 334                                           buffer_info->page_offset,
 335                                           length);
 336
 337                        if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 338                            (page_count(buffer_info->page) != 1))
 339                                buffer_info->page = NULL;
 340                        else
 341                                get_page(buffer_info->page);
 342
 343                        skb->len += length;
 344                        skb->data_len += length;
 345                        skb->truesize += PAGE_SIZE / 2;
 346                }
 347send_up:
 348                i++;
 349                if (i == rx_ring->count)
 350                        i = 0;
 351                next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 352                prefetch(next_rxd);
 353                next_buffer = &rx_ring->buffer_info[i];
 354
 355                if (!(staterr & E1000_RXD_STAT_EOP)) {
 356                        buffer_info->skb = next_buffer->skb;
 357                        buffer_info->dma = next_buffer->dma;
 358                        next_buffer->skb = skb;
 359                        next_buffer->dma = 0;
 360                        goto next_desc;
 361                }
 362
 363                if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 364                        dev_kfree_skb_irq(skb);
 365                        goto next_desc;
 366                }
 367
 368                total_bytes += skb->len;
 369                total_packets++;
 370
 371                igbvf_rx_checksum_adv(adapter, staterr, skb);
 372
 373                skb->protocol = eth_type_trans(skb, netdev);
 374
 375                igbvf_receive_skb(adapter, netdev, skb, staterr,
 376                                  rx_desc->wb.upper.vlan);
 377
 378next_desc:
 379                rx_desc->wb.upper.status_error = 0;
 380
 381                /* return some buffers to hardware, one at a time is too slow */
 382                if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 383                        igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 384                        cleaned_count = 0;
 385                }
 386
 387                /* use prefetched values */
 388                rx_desc = next_rxd;
 389                buffer_info = next_buffer;
 390
 391                staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 392        }
 393
 394        rx_ring->next_to_clean = i;
 395        cleaned_count = igbvf_desc_unused(rx_ring);
 396
 397        if (cleaned_count)
 398                igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 399
 400        adapter->total_rx_packets += total_packets;
 401        adapter->total_rx_bytes += total_bytes;
 402        adapter->net_stats.rx_bytes += total_bytes;
 403        adapter->net_stats.rx_packets += total_packets;
 404        return cleaned;
 405}
 406
 407static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 408                            struct igbvf_buffer *buffer_info)
 409{
 410        if (buffer_info->dma) {
 411                if (buffer_info->mapped_as_page)
 412                        dma_unmap_page(&adapter->pdev->dev,
 413                                       buffer_info->dma,
 414                                       buffer_info->length,
 415                                       DMA_TO_DEVICE);
 416                else
 417                        dma_unmap_single(&adapter->pdev->dev,
 418                                         buffer_info->dma,
 419                                         buffer_info->length,
 420                                         DMA_TO_DEVICE);
 421                buffer_info->dma = 0;
 422        }
 423        if (buffer_info->skb) {
 424                dev_kfree_skb_any(buffer_info->skb);
 425                buffer_info->skb = NULL;
 426        }
 427        buffer_info->time_stamp = 0;
 428}
 429
 430/**
 431 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 432 * @adapter: board private structure
 433 *
 434 * Return 0 on success, negative on failure
 435 **/
 436int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 437                             struct igbvf_ring *tx_ring)
 438{
 439        struct pci_dev *pdev = adapter->pdev;
 440        int size;
 441
 442        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 443        tx_ring->buffer_info = vzalloc(size);
 444        if (!tx_ring->buffer_info)
 445                goto err;
 446
 447        /* round up to nearest 4K */
 448        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 449        tx_ring->size = ALIGN(tx_ring->size, 4096);
 450
 451        tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 452                                           &tx_ring->dma, GFP_KERNEL);
 453        if (!tx_ring->desc)
 454                goto err;
 455
 456        tx_ring->adapter = adapter;
 457        tx_ring->next_to_use = 0;
 458        tx_ring->next_to_clean = 0;
 459
 460        return 0;
 461err:
 462        vfree(tx_ring->buffer_info);
 463        dev_err(&adapter->pdev->dev,
 464                "Unable to allocate memory for the transmit descriptor ring\n");
 465        return -ENOMEM;
 466}
 467
 468/**
 469 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 470 * @adapter: board private structure
 471 *
 472 * Returns 0 on success, negative on failure
 473 **/
 474int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 475                             struct igbvf_ring *rx_ring)
 476{
 477        struct pci_dev *pdev = adapter->pdev;
 478        int size, desc_len;
 479
 480        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 481        rx_ring->buffer_info = vzalloc(size);
 482        if (!rx_ring->buffer_info)
 483                goto err;
 484
 485        desc_len = sizeof(union e1000_adv_rx_desc);
 486
 487        /* Round up to nearest 4K */
 488        rx_ring->size = rx_ring->count * desc_len;
 489        rx_ring->size = ALIGN(rx_ring->size, 4096);
 490
 491        rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 492                                           &rx_ring->dma, GFP_KERNEL);
 493        if (!rx_ring->desc)
 494                goto err;
 495
 496        rx_ring->next_to_clean = 0;
 497        rx_ring->next_to_use = 0;
 498
 499        rx_ring->adapter = adapter;
 500
 501        return 0;
 502
 503err:
 504        vfree(rx_ring->buffer_info);
 505        rx_ring->buffer_info = NULL;
 506        dev_err(&adapter->pdev->dev,
 507                "Unable to allocate memory for the receive descriptor ring\n");
 508        return -ENOMEM;
 509}
 510
 511/**
 512 * igbvf_clean_tx_ring - Free Tx Buffers
 513 * @tx_ring: ring to be cleaned
 514 **/
 515static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 516{
 517        struct igbvf_adapter *adapter = tx_ring->adapter;
 518        struct igbvf_buffer *buffer_info;
 519        unsigned long size;
 520        unsigned int i;
 521
 522        if (!tx_ring->buffer_info)
 523                return;
 524
 525        /* Free all the Tx ring sk_buffs */
 526        for (i = 0; i < tx_ring->count; i++) {
 527                buffer_info = &tx_ring->buffer_info[i];
 528                igbvf_put_txbuf(adapter, buffer_info);
 529        }
 530
 531        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 532        memset(tx_ring->buffer_info, 0, size);
 533
 534        /* Zero out the descriptor ring */
 535        memset(tx_ring->desc, 0, tx_ring->size);
 536
 537        tx_ring->next_to_use = 0;
 538        tx_ring->next_to_clean = 0;
 539
 540        writel(0, adapter->hw.hw_addr + tx_ring->head);
 541        writel(0, adapter->hw.hw_addr + tx_ring->tail);
 542}
 543
 544/**
 545 * igbvf_free_tx_resources - Free Tx Resources per Queue
 546 * @tx_ring: ring to free resources from
 547 *
 548 * Free all transmit software resources
 549 **/
 550void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 551{
 552        struct pci_dev *pdev = tx_ring->adapter->pdev;
 553
 554        igbvf_clean_tx_ring(tx_ring);
 555
 556        vfree(tx_ring->buffer_info);
 557        tx_ring->buffer_info = NULL;
 558
 559        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 560                          tx_ring->dma);
 561
 562        tx_ring->desc = NULL;
 563}
 564
 565/**
 566 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 567 * @adapter: board private structure
 568 **/
 569static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 570{
 571        struct igbvf_adapter *adapter = rx_ring->adapter;
 572        struct igbvf_buffer *buffer_info;
 573        struct pci_dev *pdev = adapter->pdev;
 574        unsigned long size;
 575        unsigned int i;
 576
 577        if (!rx_ring->buffer_info)
 578                return;
 579
 580        /* Free all the Rx ring sk_buffs */
 581        for (i = 0; i < rx_ring->count; i++) {
 582                buffer_info = &rx_ring->buffer_info[i];
 583                if (buffer_info->dma) {
 584                        if (adapter->rx_ps_hdr_size) {
 585                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 586                                                 adapter->rx_ps_hdr_size,
 587                                                 DMA_FROM_DEVICE);
 588                        } else {
 589                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 590                                                 adapter->rx_buffer_len,
 591                                                 DMA_FROM_DEVICE);
 592                        }
 593                        buffer_info->dma = 0;
 594                }
 595
 596                if (buffer_info->skb) {
 597                        dev_kfree_skb(buffer_info->skb);
 598                        buffer_info->skb = NULL;
 599                }
 600
 601                if (buffer_info->page) {
 602                        if (buffer_info->page_dma)
 603                                dma_unmap_page(&pdev->dev,
 604                                               buffer_info->page_dma,
 605                                               PAGE_SIZE / 2,
 606                                               DMA_FROM_DEVICE);
 607                        put_page(buffer_info->page);
 608                        buffer_info->page = NULL;
 609                        buffer_info->page_dma = 0;
 610                        buffer_info->page_offset = 0;
 611                }
 612        }
 613
 614        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 615        memset(rx_ring->buffer_info, 0, size);
 616
 617        /* Zero out the descriptor ring */
 618        memset(rx_ring->desc, 0, rx_ring->size);
 619
 620        rx_ring->next_to_clean = 0;
 621        rx_ring->next_to_use = 0;
 622
 623        writel(0, adapter->hw.hw_addr + rx_ring->head);
 624        writel(0, adapter->hw.hw_addr + rx_ring->tail);
 625}
 626
 627/**
 628 * igbvf_free_rx_resources - Free Rx Resources
 629 * @rx_ring: ring to clean the resources from
 630 *
 631 * Free all receive software resources
 632 **/
 633
 634void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 635{
 636        struct pci_dev *pdev = rx_ring->adapter->pdev;
 637
 638        igbvf_clean_rx_ring(rx_ring);
 639
 640        vfree(rx_ring->buffer_info);
 641        rx_ring->buffer_info = NULL;
 642
 643        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 644                          rx_ring->dma);
 645        rx_ring->desc = NULL;
 646}
 647
 648/**
 649 * igbvf_update_itr - update the dynamic ITR value based on statistics
 650 * @adapter: pointer to adapter
 651 * @itr_setting: current adapter->itr
 652 * @packets: the number of packets during this measurement interval
 653 * @bytes: the number of bytes during this measurement interval
 654 *
 655 * Stores a new ITR value based on packets and byte counts during the last
 656 * interrupt.  The advantage of per interrupt computation is faster updates
 657 * and more accurate ITR for the current traffic pattern.  Constants in this
 658 * function were computed based on theoretical maximum wire speed and thresholds
 659 * were set based on testing data as well as attempting to minimize response
 660 * time while increasing bulk throughput.
 661 **/
 662static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
 663                                           enum latency_range itr_setting,
 664                                           int packets, int bytes)
 665{
 666        enum latency_range retval = itr_setting;
 667
 668        if (packets == 0)
 669                goto update_itr_done;
 670
 671        switch (itr_setting) {
 672        case lowest_latency:
 673                /* handle TSO and jumbo frames */
 674                if (bytes/packets > 8000)
 675                        retval = bulk_latency;
 676                else if ((packets < 5) && (bytes > 512))
 677                        retval = low_latency;
 678                break;
 679        case low_latency:  /* 50 usec aka 20000 ints/s */
 680                if (bytes > 10000) {
 681                        /* this if handles the TSO accounting */
 682                        if (bytes/packets > 8000)
 683                                retval = bulk_latency;
 684                        else if ((packets < 10) || ((bytes/packets) > 1200))
 685                                retval = bulk_latency;
 686                        else if ((packets > 35))
 687                                retval = lowest_latency;
 688                } else if (bytes/packets > 2000) {
 689                        retval = bulk_latency;
 690                } else if (packets <= 2 && bytes < 512) {
 691                        retval = lowest_latency;
 692                }
 693                break;
 694        case bulk_latency: /* 250 usec aka 4000 ints/s */
 695                if (bytes > 25000) {
 696                        if (packets > 35)
 697                                retval = low_latency;
 698                } else if (bytes < 6000) {
 699                        retval = low_latency;
 700                }
 701                break;
 702        default:
 703                break;
 704        }
 705
 706update_itr_done:
 707        return retval;
 708}
 709
 710static int igbvf_range_to_itr(enum latency_range current_range)
 711{
 712        int new_itr;
 713
 714        switch (current_range) {
 715        /* counts and packets in update_itr are dependent on these numbers */
 716        case lowest_latency:
 717                new_itr = IGBVF_70K_ITR;
 718                break;
 719        case low_latency:
 720                new_itr = IGBVF_20K_ITR;
 721                break;
 722        case bulk_latency:
 723                new_itr = IGBVF_4K_ITR;
 724                break;
 725        default:
 726                new_itr = IGBVF_START_ITR;
 727                break;
 728        }
 729        return new_itr;
 730}
 731
 732static void igbvf_set_itr(struct igbvf_adapter *adapter)
 733{
 734        u32 new_itr;
 735
 736        adapter->tx_ring->itr_range =
 737                        igbvf_update_itr(adapter,
 738                                         adapter->tx_ring->itr_val,
 739                                         adapter->total_tx_packets,
 740                                         adapter->total_tx_bytes);
 741
 742        /* conservative mode (itr 3) eliminates the lowest_latency setting */
 743        if (adapter->requested_itr == 3 &&
 744            adapter->tx_ring->itr_range == lowest_latency)
 745                adapter->tx_ring->itr_range = low_latency;
 746
 747        new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
 748
 749        if (new_itr != adapter->tx_ring->itr_val) {
 750                u32 current_itr = adapter->tx_ring->itr_val;
 751                /* this attempts to bias the interrupt rate towards Bulk
 752                 * by adding intermediate steps when interrupt rate is
 753                 * increasing
 754                 */
 755                new_itr = new_itr > current_itr ?
 756                          min(current_itr + (new_itr >> 2), new_itr) :
 757                          new_itr;
 758                adapter->tx_ring->itr_val = new_itr;
 759
 760                adapter->tx_ring->set_itr = 1;
 761        }
 762
 763        adapter->rx_ring->itr_range =
 764                        igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
 765                                         adapter->total_rx_packets,
 766                                         adapter->total_rx_bytes);
 767        if (adapter->requested_itr == 3 &&
 768            adapter->rx_ring->itr_range == lowest_latency)
 769                adapter->rx_ring->itr_range = low_latency;
 770
 771        new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
 772
 773        if (new_itr != adapter->rx_ring->itr_val) {
 774                u32 current_itr = adapter->rx_ring->itr_val;
 775
 776                new_itr = new_itr > current_itr ?
 777                          min(current_itr + (new_itr >> 2), new_itr) :
 778                          new_itr;
 779                adapter->rx_ring->itr_val = new_itr;
 780
 781                adapter->rx_ring->set_itr = 1;
 782        }
 783}
 784
 785/**
 786 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 787 * @adapter: board private structure
 788 *
 789 * returns true if ring is completely cleaned
 790 **/
 791static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 792{
 793        struct igbvf_adapter *adapter = tx_ring->adapter;
 794        struct net_device *netdev = adapter->netdev;
 795        struct igbvf_buffer *buffer_info;
 796        struct sk_buff *skb;
 797        union e1000_adv_tx_desc *tx_desc, *eop_desc;
 798        unsigned int total_bytes = 0, total_packets = 0;
 799        unsigned int i, count = 0;
 800        bool cleaned = false;
 801
 802        i = tx_ring->next_to_clean;
 803        buffer_info = &tx_ring->buffer_info[i];
 804        eop_desc = buffer_info->next_to_watch;
 805
 806        do {
 807                /* if next_to_watch is not set then there is no work pending */
 808                if (!eop_desc)
 809                        break;
 810
 811                /* prevent any other reads prior to eop_desc */
 812                read_barrier_depends();
 813
 814                /* if DD is not set pending work has not been completed */
 815                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 816                        break;
 817
 818                /* clear next_to_watch to prevent false hangs */
 819                buffer_info->next_to_watch = NULL;
 820
 821                for (cleaned = false; !cleaned; count++) {
 822                        tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 823                        cleaned = (tx_desc == eop_desc);
 824                        skb = buffer_info->skb;
 825
 826                        if (skb) {
 827                                unsigned int segs, bytecount;
 828
 829                                /* gso_segs is currently only valid for tcp */
 830                                segs = skb_shinfo(skb)->gso_segs ?: 1;
 831                                /* multiply data chunks by size of headers */
 832                                bytecount = ((segs - 1) * skb_headlen(skb)) +
 833                                            skb->len;
 834                                total_packets += segs;
 835                                total_bytes += bytecount;
 836                        }
 837
 838                        igbvf_put_txbuf(adapter, buffer_info);
 839                        tx_desc->wb.status = 0;
 840
 841                        i++;
 842                        if (i == tx_ring->count)
 843                                i = 0;
 844
 845                        buffer_info = &tx_ring->buffer_info[i];
 846                }
 847
 848                eop_desc = buffer_info->next_to_watch;
 849        } while (count < tx_ring->count);
 850
 851        tx_ring->next_to_clean = i;
 852
 853        if (unlikely(count && netif_carrier_ok(netdev) &&
 854            igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 855                /* Make sure that anybody stopping the queue after this
 856                 * sees the new next_to_clean.
 857                 */
 858                smp_mb();
 859                if (netif_queue_stopped(netdev) &&
 860                    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 861                        netif_wake_queue(netdev);
 862                        ++adapter->restart_queue;
 863                }
 864        }
 865
 866        adapter->net_stats.tx_bytes += total_bytes;
 867        adapter->net_stats.tx_packets += total_packets;
 868        return count < tx_ring->count;
 869}
 870
 871static irqreturn_t igbvf_msix_other(int irq, void *data)
 872{
 873        struct net_device *netdev = data;
 874        struct igbvf_adapter *adapter = netdev_priv(netdev);
 875        struct e1000_hw *hw = &adapter->hw;
 876
 877        adapter->int_counter1++;
 878
 879        netif_carrier_off(netdev);
 880        hw->mac.get_link_status = 1;
 881        if (!test_bit(__IGBVF_DOWN, &adapter->state))
 882                mod_timer(&adapter->watchdog_timer, jiffies + 1);
 883
 884        ew32(EIMS, adapter->eims_other);
 885
 886        return IRQ_HANDLED;
 887}
 888
 889static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 890{
 891        struct net_device *netdev = data;
 892        struct igbvf_adapter *adapter = netdev_priv(netdev);
 893        struct e1000_hw *hw = &adapter->hw;
 894        struct igbvf_ring *tx_ring = adapter->tx_ring;
 895
 896        if (tx_ring->set_itr) {
 897                writel(tx_ring->itr_val,
 898                       adapter->hw.hw_addr + tx_ring->itr_register);
 899                adapter->tx_ring->set_itr = 0;
 900        }
 901
 902        adapter->total_tx_bytes = 0;
 903        adapter->total_tx_packets = 0;
 904
 905        /* auto mask will automatically re-enable the interrupt when we write
 906         * EICS
 907         */
 908        if (!igbvf_clean_tx_irq(tx_ring))
 909                /* Ring was not completely cleaned, so fire another interrupt */
 910                ew32(EICS, tx_ring->eims_value);
 911        else
 912                ew32(EIMS, tx_ring->eims_value);
 913
 914        return IRQ_HANDLED;
 915}
 916
 917static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 918{
 919        struct net_device *netdev = data;
 920        struct igbvf_adapter *adapter = netdev_priv(netdev);
 921
 922        adapter->int_counter0++;
 923
 924        /* Write the ITR value calculated at the end of the
 925         * previous interrupt.
 926         */
 927        if (adapter->rx_ring->set_itr) {
 928                writel(adapter->rx_ring->itr_val,
 929                       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 930                adapter->rx_ring->set_itr = 0;
 931        }
 932
 933        if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 934                adapter->total_rx_bytes = 0;
 935                adapter->total_rx_packets = 0;
 936                __napi_schedule(&adapter->rx_ring->napi);
 937        }
 938
 939        return IRQ_HANDLED;
 940}
 941
 942#define IGBVF_NO_QUEUE -1
 943
 944static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 945                                int tx_queue, int msix_vector)
 946{
 947        struct e1000_hw *hw = &adapter->hw;
 948        u32 ivar, index;
 949
 950        /* 82576 uses a table-based method for assigning vectors.
 951         * Each queue has a single entry in the table to which we write
 952         * a vector number along with a "valid" bit.  Sadly, the layout
 953         * of the table is somewhat counterintuitive.
 954         */
 955        if (rx_queue > IGBVF_NO_QUEUE) {
 956                index = (rx_queue >> 1);
 957                ivar = array_er32(IVAR0, index);
 958                if (rx_queue & 0x1) {
 959                        /* vector goes into third byte of register */
 960                        ivar = ivar & 0xFF00FFFF;
 961                        ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 962                } else {
 963                        /* vector goes into low byte of register */
 964                        ivar = ivar & 0xFFFFFF00;
 965                        ivar |= msix_vector | E1000_IVAR_VALID;
 966                }
 967                adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
 968                array_ew32(IVAR0, index, ivar);
 969        }
 970        if (tx_queue > IGBVF_NO_QUEUE) {
 971                index = (tx_queue >> 1);
 972                ivar = array_er32(IVAR0, index);
 973                if (tx_queue & 0x1) {
 974                        /* vector goes into high byte of register */
 975                        ivar = ivar & 0x00FFFFFF;
 976                        ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 977                } else {
 978                        /* vector goes into second byte of register */
 979                        ivar = ivar & 0xFFFF00FF;
 980                        ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 981                }
 982                adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
 983                array_ew32(IVAR0, index, ivar);
 984        }
 985}
 986
 987/**
 988 * igbvf_configure_msix - Configure MSI-X hardware
 989 * @adapter: board private structure
 990 *
 991 * igbvf_configure_msix sets up the hardware to properly
 992 * generate MSI-X interrupts.
 993 **/
 994static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 995{
 996        u32 tmp;
 997        struct e1000_hw *hw = &adapter->hw;
 998        struct igbvf_ring *tx_ring = adapter->tx_ring;
 999        struct igbvf_ring *rx_ring = adapter->rx_ring;
1000        int vector = 0;
1001
1002        adapter->eims_enable_mask = 0;
1003
1004        igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005        adapter->eims_enable_mask |= tx_ring->eims_value;
1006        writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007        igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008        adapter->eims_enable_mask |= rx_ring->eims_value;
1009        writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1010
1011        /* set vector for other causes, i.e. link changes */
1012
1013        tmp = (vector++ | E1000_IVAR_VALID);
1014
1015        ew32(IVAR_MISC, tmp);
1016
1017        adapter->eims_enable_mask = (1 << (vector)) - 1;
1018        adapter->eims_other = 1 << (vector - 1);
1019        e1e_flush();
1020}
1021
1022static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1023{
1024        if (adapter->msix_entries) {
1025                pci_disable_msix(adapter->pdev);
1026                kfree(adapter->msix_entries);
1027                adapter->msix_entries = NULL;
1028        }
1029}
1030
1031/**
1032 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033 * @adapter: board private structure
1034 *
1035 * Attempt to configure interrupts using the best available
1036 * capabilities of the hardware and kernel.
1037 **/
1038static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1039{
1040        int err = -ENOMEM;
1041        int i;
1042
1043        /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044        adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045                                        GFP_KERNEL);
1046        if (adapter->msix_entries) {
1047                for (i = 0; i < 3; i++)
1048                        adapter->msix_entries[i].entry = i;
1049
1050                err = pci_enable_msix_range(adapter->pdev,
1051                                            adapter->msix_entries, 3, 3);
1052        }
1053
1054        if (err < 0) {
1055                /* MSI-X failed */
1056                dev_err(&adapter->pdev->dev,
1057                        "Failed to initialize MSI-X interrupts.\n");
1058                igbvf_reset_interrupt_capability(adapter);
1059        }
1060}
1061
1062/**
1063 * igbvf_request_msix - Initialize MSI-X interrupts
1064 * @adapter: board private structure
1065 *
1066 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067 * kernel.
1068 **/
1069static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070{
1071        struct net_device *netdev = adapter->netdev;
1072        int err = 0, vector = 0;
1073
1074        if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075                sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076                sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077        } else {
1078                memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079                memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080        }
1081
1082        err = request_irq(adapter->msix_entries[vector].vector,
1083                          igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084                          netdev);
1085        if (err)
1086                goto out;
1087
1088        adapter->tx_ring->itr_register = E1000_EITR(vector);
1089        adapter->tx_ring->itr_val = adapter->current_itr;
1090        vector++;
1091
1092        err = request_irq(adapter->msix_entries[vector].vector,
1093                          igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094                          netdev);
1095        if (err)
1096                goto out;
1097
1098        adapter->rx_ring->itr_register = E1000_EITR(vector);
1099        adapter->rx_ring->itr_val = adapter->current_itr;
1100        vector++;
1101
1102        err = request_irq(adapter->msix_entries[vector].vector,
1103                          igbvf_msix_other, 0, netdev->name, netdev);
1104        if (err)
1105                goto out;
1106
1107        igbvf_configure_msix(adapter);
1108        return 0;
1109out:
1110        return err;
1111}
1112
1113/**
1114 * igbvf_alloc_queues - Allocate memory for all rings
1115 * @adapter: board private structure to initialize
1116 **/
1117static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1118{
1119        struct net_device *netdev = adapter->netdev;
1120
1121        adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122        if (!adapter->tx_ring)
1123                return -ENOMEM;
1124
1125        adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126        if (!adapter->rx_ring) {
1127                kfree(adapter->tx_ring);
1128                return -ENOMEM;
1129        }
1130
1131        netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1132
1133        return 0;
1134}
1135
1136/**
1137 * igbvf_request_irq - initialize interrupts
1138 * @adapter: board private structure
1139 *
1140 * Attempts to configure interrupts using the best available
1141 * capabilities of the hardware and kernel.
1142 **/
1143static int igbvf_request_irq(struct igbvf_adapter *adapter)
1144{
1145        int err = -1;
1146
1147        /* igbvf supports msi-x only */
1148        if (adapter->msix_entries)
1149                err = igbvf_request_msix(adapter);
1150
1151        if (!err)
1152                return err;
1153
1154        dev_err(&adapter->pdev->dev,
1155                "Unable to allocate interrupt, Error: %d\n", err);
1156
1157        return err;
1158}
1159
1160static void igbvf_free_irq(struct igbvf_adapter *adapter)
1161{
1162        struct net_device *netdev = adapter->netdev;
1163        int vector;
1164
1165        if (adapter->msix_entries) {
1166                for (vector = 0; vector < 3; vector++)
1167                        free_irq(adapter->msix_entries[vector].vector, netdev);
1168        }
1169}
1170
1171/**
1172 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173 * @adapter: board private structure
1174 **/
1175static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1176{
1177        struct e1000_hw *hw = &adapter->hw;
1178
1179        ew32(EIMC, ~0);
1180
1181        if (adapter->msix_entries)
1182                ew32(EIAC, 0);
1183}
1184
1185/**
1186 * igbvf_irq_enable - Enable default interrupt generation settings
1187 * @adapter: board private structure
1188 **/
1189static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1190{
1191        struct e1000_hw *hw = &adapter->hw;
1192
1193        ew32(EIAC, adapter->eims_enable_mask);
1194        ew32(EIAM, adapter->eims_enable_mask);
1195        ew32(EIMS, adapter->eims_enable_mask);
1196}
1197
1198/**
1199 * igbvf_poll - NAPI Rx polling callback
1200 * @napi: struct associated with this polling callback
1201 * @budget: amount of packets driver is allowed to process this poll
1202 **/
1203static int igbvf_poll(struct napi_struct *napi, int budget)
1204{
1205        struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206        struct igbvf_adapter *adapter = rx_ring->adapter;
1207        struct e1000_hw *hw = &adapter->hw;
1208        int work_done = 0;
1209
1210        igbvf_clean_rx_irq(adapter, &work_done, budget);
1211
1212        /* If not enough Rx work done, exit the polling mode */
1213        if (work_done < budget) {
1214                napi_complete_done(napi, work_done);
1215
1216                if (adapter->requested_itr & 3)
1217                        igbvf_set_itr(adapter);
1218
1219                if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220                        ew32(EIMS, adapter->rx_ring->eims_value);
1221        }
1222
1223        return work_done;
1224}
1225
1226/**
1227 * igbvf_set_rlpml - set receive large packet maximum length
1228 * @adapter: board private structure
1229 *
1230 * Configure the maximum size of packets that will be received
1231 */
1232static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1233{
1234        int max_frame_size;
1235        struct e1000_hw *hw = &adapter->hw;
1236
1237        max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1238        e1000_rlpml_set_vf(hw, max_frame_size);
1239}
1240
1241static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1242                                 __be16 proto, u16 vid)
1243{
1244        struct igbvf_adapter *adapter = netdev_priv(netdev);
1245        struct e1000_hw *hw = &adapter->hw;
1246
1247        if (hw->mac.ops.set_vfta(hw, vid, true)) {
1248                dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1249                return -EINVAL;
1250        }
1251        set_bit(vid, adapter->active_vlans);
1252        return 0;
1253}
1254
1255static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1256                                  __be16 proto, u16 vid)
1257{
1258        struct igbvf_adapter *adapter = netdev_priv(netdev);
1259        struct e1000_hw *hw = &adapter->hw;
1260
1261        if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262                dev_err(&adapter->pdev->dev,
1263                        "Failed to remove vlan id %d\n", vid);
1264                return -EINVAL;
1265        }
1266        clear_bit(vid, adapter->active_vlans);
1267        return 0;
1268}
1269
1270static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1271{
1272        u16 vid;
1273
1274        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1275                igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1276}
1277
1278/**
1279 * igbvf_configure_tx - Configure Transmit Unit after Reset
1280 * @adapter: board private structure
1281 *
1282 * Configure the Tx unit of the MAC after a reset.
1283 **/
1284static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1285{
1286        struct e1000_hw *hw = &adapter->hw;
1287        struct igbvf_ring *tx_ring = adapter->tx_ring;
1288        u64 tdba;
1289        u32 txdctl, dca_txctrl;
1290
1291        /* disable transmits */
1292        txdctl = er32(TXDCTL(0));
1293        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1294        e1e_flush();
1295        msleep(10);
1296
1297        /* Setup the HW Tx Head and Tail descriptor pointers */
1298        ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1299        tdba = tx_ring->dma;
1300        ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1301        ew32(TDBAH(0), (tdba >> 32));
1302        ew32(TDH(0), 0);
1303        ew32(TDT(0), 0);
1304        tx_ring->head = E1000_TDH(0);
1305        tx_ring->tail = E1000_TDT(0);
1306
1307        /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1308         * MUST be delivered in order or it will completely screw up
1309         * our bookkeeping.
1310         */
1311        dca_txctrl = er32(DCA_TXCTRL(0));
1312        dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1313        ew32(DCA_TXCTRL(0), dca_txctrl);
1314
1315        /* enable transmits */
1316        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1317        ew32(TXDCTL(0), txdctl);
1318
1319        /* Setup Transmit Descriptor Settings for eop descriptor */
1320        adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1321
1322        /* enable Report Status bit */
1323        adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1324}
1325
1326/**
1327 * igbvf_setup_srrctl - configure the receive control registers
1328 * @adapter: Board private structure
1329 **/
1330static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1331{
1332        struct e1000_hw *hw = &adapter->hw;
1333        u32 srrctl = 0;
1334
1335        srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1336                    E1000_SRRCTL_BSIZEHDR_MASK |
1337                    E1000_SRRCTL_BSIZEPKT_MASK);
1338
1339        /* Enable queue drop to avoid head of line blocking */
1340        srrctl |= E1000_SRRCTL_DROP_EN;
1341
1342        /* Setup buffer sizes */
1343        srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1344                  E1000_SRRCTL_BSIZEPKT_SHIFT;
1345
1346        if (adapter->rx_buffer_len < 2048) {
1347                adapter->rx_ps_hdr_size = 0;
1348                srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1349        } else {
1350                adapter->rx_ps_hdr_size = 128;
1351                srrctl |= adapter->rx_ps_hdr_size <<
1352                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1353                srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1354        }
1355
1356        ew32(SRRCTL(0), srrctl);
1357}
1358
1359/**
1360 * igbvf_configure_rx - Configure Receive Unit after Reset
1361 * @adapter: board private structure
1362 *
1363 * Configure the Rx unit of the MAC after a reset.
1364 **/
1365static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1366{
1367        struct e1000_hw *hw = &adapter->hw;
1368        struct igbvf_ring *rx_ring = adapter->rx_ring;
1369        u64 rdba;
1370        u32 rdlen, rxdctl;
1371
1372        /* disable receives */
1373        rxdctl = er32(RXDCTL(0));
1374        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1375        e1e_flush();
1376        msleep(10);
1377
1378        rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1379
1380        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1381         * the Base and Length of the Rx Descriptor Ring
1382         */
1383        rdba = rx_ring->dma;
1384        ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1385        ew32(RDBAH(0), (rdba >> 32));
1386        ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1387        rx_ring->head = E1000_RDH(0);
1388        rx_ring->tail = E1000_RDT(0);
1389        ew32(RDH(0), 0);
1390        ew32(RDT(0), 0);
1391
1392        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1393        rxdctl &= 0xFFF00000;
1394        rxdctl |= IGBVF_RX_PTHRESH;
1395        rxdctl |= IGBVF_RX_HTHRESH << 8;
1396        rxdctl |= IGBVF_RX_WTHRESH << 16;
1397
1398        igbvf_set_rlpml(adapter);
1399
1400        /* enable receives */
1401        ew32(RXDCTL(0), rxdctl);
1402}
1403
1404/**
1405 * igbvf_set_multi - Multicast and Promiscuous mode set
1406 * @netdev: network interface device structure
1407 *
1408 * The set_multi entry point is called whenever the multicast address
1409 * list or the network interface flags are updated.  This routine is
1410 * responsible for configuring the hardware for proper multicast,
1411 * promiscuous mode, and all-multi behavior.
1412 **/
1413static void igbvf_set_multi(struct net_device *netdev)
1414{
1415        struct igbvf_adapter *adapter = netdev_priv(netdev);
1416        struct e1000_hw *hw = &adapter->hw;
1417        struct netdev_hw_addr *ha;
1418        u8  *mta_list = NULL;
1419        int i;
1420
1421        if (!netdev_mc_empty(netdev)) {
1422                mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1423                                         GFP_ATOMIC);
1424                if (!mta_list)
1425                        return;
1426        }
1427
1428        /* prepare a packed array of only addresses. */
1429        i = 0;
1430        netdev_for_each_mc_addr(ha, netdev)
1431                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1432
1433        hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1434        kfree(mta_list);
1435}
1436
1437/**
1438 * igbvf_configure - configure the hardware for Rx and Tx
1439 * @adapter: private board structure
1440 **/
1441static void igbvf_configure(struct igbvf_adapter *adapter)
1442{
1443        igbvf_set_multi(adapter->netdev);
1444
1445        igbvf_restore_vlan(adapter);
1446
1447        igbvf_configure_tx(adapter);
1448        igbvf_setup_srrctl(adapter);
1449        igbvf_configure_rx(adapter);
1450        igbvf_alloc_rx_buffers(adapter->rx_ring,
1451                               igbvf_desc_unused(adapter->rx_ring));
1452}
1453
1454/* igbvf_reset - bring the hardware into a known good state
1455 * @adapter: private board structure
1456 *
1457 * This function boots the hardware and enables some settings that
1458 * require a configuration cycle of the hardware - those cannot be
1459 * set/changed during runtime. After reset the device needs to be
1460 * properly configured for Rx, Tx etc.
1461 */
1462static void igbvf_reset(struct igbvf_adapter *adapter)
1463{
1464        struct e1000_mac_info *mac = &adapter->hw.mac;
1465        struct net_device *netdev = adapter->netdev;
1466        struct e1000_hw *hw = &adapter->hw;
1467
1468        /* Allow time for pending master requests to run */
1469        if (mac->ops.reset_hw(hw))
1470                dev_err(&adapter->pdev->dev, "PF still resetting\n");
1471
1472        mac->ops.init_hw(hw);
1473
1474        if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1475                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1476                       netdev->addr_len);
1477                memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1478                       netdev->addr_len);
1479        }
1480
1481        adapter->last_reset = jiffies;
1482}
1483
1484int igbvf_up(struct igbvf_adapter *adapter)
1485{
1486        struct e1000_hw *hw = &adapter->hw;
1487
1488        /* hardware has been reset, we need to reload some things */
1489        igbvf_configure(adapter);
1490
1491        clear_bit(__IGBVF_DOWN, &adapter->state);
1492
1493        napi_enable(&adapter->rx_ring->napi);
1494        if (adapter->msix_entries)
1495                igbvf_configure_msix(adapter);
1496
1497        /* Clear any pending interrupts. */
1498        er32(EICR);
1499        igbvf_irq_enable(adapter);
1500
1501        /* start the watchdog */
1502        hw->mac.get_link_status = 1;
1503        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1504
1505        return 0;
1506}
1507
1508void igbvf_down(struct igbvf_adapter *adapter)
1509{
1510        struct net_device *netdev = adapter->netdev;
1511        struct e1000_hw *hw = &adapter->hw;
1512        u32 rxdctl, txdctl;
1513
1514        /* signal that we're down so the interrupt handler does not
1515         * reschedule our watchdog timer
1516         */
1517        set_bit(__IGBVF_DOWN, &adapter->state);
1518
1519        /* disable receives in the hardware */
1520        rxdctl = er32(RXDCTL(0));
1521        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1522
1523        netif_carrier_off(netdev);
1524        netif_stop_queue(netdev);
1525
1526        /* disable transmits in the hardware */
1527        txdctl = er32(TXDCTL(0));
1528        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1529
1530        /* flush both disables and wait for them to finish */
1531        e1e_flush();
1532        msleep(10);
1533
1534        napi_disable(&adapter->rx_ring->napi);
1535
1536        igbvf_irq_disable(adapter);
1537
1538        del_timer_sync(&adapter->watchdog_timer);
1539
1540        /* record the stats before reset*/
1541        igbvf_update_stats(adapter);
1542
1543        adapter->link_speed = 0;
1544        adapter->link_duplex = 0;
1545
1546        igbvf_reset(adapter);
1547        igbvf_clean_tx_ring(adapter->tx_ring);
1548        igbvf_clean_rx_ring(adapter->rx_ring);
1549}
1550
1551void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1552{
1553        might_sleep();
1554        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1555                usleep_range(1000, 2000);
1556        igbvf_down(adapter);
1557        igbvf_up(adapter);
1558        clear_bit(__IGBVF_RESETTING, &adapter->state);
1559}
1560
1561/**
1562 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1563 * @adapter: board private structure to initialize
1564 *
1565 * igbvf_sw_init initializes the Adapter private data structure.
1566 * Fields are initialized based on PCI device information and
1567 * OS network device settings (MTU size).
1568 **/
1569static int igbvf_sw_init(struct igbvf_adapter *adapter)
1570{
1571        struct net_device *netdev = adapter->netdev;
1572        s32 rc;
1573
1574        adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1575        adapter->rx_ps_hdr_size = 0;
1576        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1577        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1578
1579        adapter->tx_int_delay = 8;
1580        adapter->tx_abs_int_delay = 32;
1581        adapter->rx_int_delay = 0;
1582        adapter->rx_abs_int_delay = 8;
1583        adapter->requested_itr = 3;
1584        adapter->current_itr = IGBVF_START_ITR;
1585
1586        /* Set various function pointers */
1587        adapter->ei->init_ops(&adapter->hw);
1588
1589        rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1590        if (rc)
1591                return rc;
1592
1593        rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1594        if (rc)
1595                return rc;
1596
1597        igbvf_set_interrupt_capability(adapter);
1598
1599        if (igbvf_alloc_queues(adapter))
1600                return -ENOMEM;
1601
1602        spin_lock_init(&adapter->tx_queue_lock);
1603
1604        /* Explicitly disable IRQ since the NIC can be in any state. */
1605        igbvf_irq_disable(adapter);
1606
1607        spin_lock_init(&adapter->stats_lock);
1608
1609        set_bit(__IGBVF_DOWN, &adapter->state);
1610        return 0;
1611}
1612
1613static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1614{
1615        struct e1000_hw *hw = &adapter->hw;
1616
1617        adapter->stats.last_gprc = er32(VFGPRC);
1618        adapter->stats.last_gorc = er32(VFGORC);
1619        adapter->stats.last_gptc = er32(VFGPTC);
1620        adapter->stats.last_gotc = er32(VFGOTC);
1621        adapter->stats.last_mprc = er32(VFMPRC);
1622        adapter->stats.last_gotlbc = er32(VFGOTLBC);
1623        adapter->stats.last_gptlbc = er32(VFGPTLBC);
1624        adapter->stats.last_gorlbc = er32(VFGORLBC);
1625        adapter->stats.last_gprlbc = er32(VFGPRLBC);
1626
1627        adapter->stats.base_gprc = er32(VFGPRC);
1628        adapter->stats.base_gorc = er32(VFGORC);
1629        adapter->stats.base_gptc = er32(VFGPTC);
1630        adapter->stats.base_gotc = er32(VFGOTC);
1631        adapter->stats.base_mprc = er32(VFMPRC);
1632        adapter->stats.base_gotlbc = er32(VFGOTLBC);
1633        adapter->stats.base_gptlbc = er32(VFGPTLBC);
1634        adapter->stats.base_gorlbc = er32(VFGORLBC);
1635        adapter->stats.base_gprlbc = er32(VFGPRLBC);
1636}
1637
1638/**
1639 * igbvf_open - Called when a network interface is made active
1640 * @netdev: network interface device structure
1641 *
1642 * Returns 0 on success, negative value on failure
1643 *
1644 * The open entry point is called when a network interface is made
1645 * active by the system (IFF_UP).  At this point all resources needed
1646 * for transmit and receive operations are allocated, the interrupt
1647 * handler is registered with the OS, the watchdog timer is started,
1648 * and the stack is notified that the interface is ready.
1649 **/
1650static int igbvf_open(struct net_device *netdev)
1651{
1652        struct igbvf_adapter *adapter = netdev_priv(netdev);
1653        struct e1000_hw *hw = &adapter->hw;
1654        int err;
1655
1656        /* disallow open during test */
1657        if (test_bit(__IGBVF_TESTING, &adapter->state))
1658                return -EBUSY;
1659
1660        /* allocate transmit descriptors */
1661        err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1662        if (err)
1663                goto err_setup_tx;
1664
1665        /* allocate receive descriptors */
1666        err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1667        if (err)
1668                goto err_setup_rx;
1669
1670        /* before we allocate an interrupt, we must be ready to handle it.
1671         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1672         * as soon as we call pci_request_irq, so we have to setup our
1673         * clean_rx handler before we do so.
1674         */
1675        igbvf_configure(adapter);
1676
1677        err = igbvf_request_irq(adapter);
1678        if (err)
1679                goto err_req_irq;
1680
1681        /* From here on the code is the same as igbvf_up() */
1682        clear_bit(__IGBVF_DOWN, &adapter->state);
1683
1684        napi_enable(&adapter->rx_ring->napi);
1685
1686        /* clear any pending interrupts */
1687        er32(EICR);
1688
1689        igbvf_irq_enable(adapter);
1690
1691        /* start the watchdog */
1692        hw->mac.get_link_status = 1;
1693        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1694
1695        return 0;
1696
1697err_req_irq:
1698        igbvf_free_rx_resources(adapter->rx_ring);
1699err_setup_rx:
1700        igbvf_free_tx_resources(adapter->tx_ring);
1701err_setup_tx:
1702        igbvf_reset(adapter);
1703
1704        return err;
1705}
1706
1707/**
1708 * igbvf_close - Disables a network interface
1709 * @netdev: network interface device structure
1710 *
1711 * Returns 0, this is not allowed to fail
1712 *
1713 * The close entry point is called when an interface is de-activated
1714 * by the OS.  The hardware is still under the drivers control, but
1715 * needs to be disabled.  A global MAC reset is issued to stop the
1716 * hardware, and all transmit and receive resources are freed.
1717 **/
1718static int igbvf_close(struct net_device *netdev)
1719{
1720        struct igbvf_adapter *adapter = netdev_priv(netdev);
1721
1722        WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1723        igbvf_down(adapter);
1724
1725        igbvf_free_irq(adapter);
1726
1727        igbvf_free_tx_resources(adapter->tx_ring);
1728        igbvf_free_rx_resources(adapter->rx_ring);
1729
1730        return 0;
1731}
1732
1733/**
1734 * igbvf_set_mac - Change the Ethernet Address of the NIC
1735 * @netdev: network interface device structure
1736 * @p: pointer to an address structure
1737 *
1738 * Returns 0 on success, negative on failure
1739 **/
1740static int igbvf_set_mac(struct net_device *netdev, void *p)
1741{
1742        struct igbvf_adapter *adapter = netdev_priv(netdev);
1743        struct e1000_hw *hw = &adapter->hw;
1744        struct sockaddr *addr = p;
1745
1746        if (!is_valid_ether_addr(addr->sa_data))
1747                return -EADDRNOTAVAIL;
1748
1749        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1750
1751        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1752
1753        if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1754                return -EADDRNOTAVAIL;
1755
1756        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1757
1758        return 0;
1759}
1760
1761#define UPDATE_VF_COUNTER(reg, name) \
1762{ \
1763        u32 current_counter = er32(reg); \
1764        if (current_counter < adapter->stats.last_##name) \
1765                adapter->stats.name += 0x100000000LL; \
1766        adapter->stats.last_##name = current_counter; \
1767        adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1768        adapter->stats.name |= current_counter; \
1769}
1770
1771/**
1772 * igbvf_update_stats - Update the board statistics counters
1773 * @adapter: board private structure
1774**/
1775void igbvf_update_stats(struct igbvf_adapter *adapter)
1776{
1777        struct e1000_hw *hw = &adapter->hw;
1778        struct pci_dev *pdev = adapter->pdev;
1779
1780        /* Prevent stats update while adapter is being reset, link is down
1781         * or if the pci connection is down.
1782         */
1783        if (adapter->link_speed == 0)
1784                return;
1785
1786        if (test_bit(__IGBVF_RESETTING, &adapter->state))
1787                return;
1788
1789        if (pci_channel_offline(pdev))
1790                return;
1791
1792        UPDATE_VF_COUNTER(VFGPRC, gprc);
1793        UPDATE_VF_COUNTER(VFGORC, gorc);
1794        UPDATE_VF_COUNTER(VFGPTC, gptc);
1795        UPDATE_VF_COUNTER(VFGOTC, gotc);
1796        UPDATE_VF_COUNTER(VFMPRC, mprc);
1797        UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1798        UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1799        UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1800        UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1801
1802        /* Fill out the OS statistics structure */
1803        adapter->net_stats.multicast = adapter->stats.mprc;
1804}
1805
1806static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1807{
1808        dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1809                 adapter->link_speed,
1810                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1811}
1812
1813static bool igbvf_has_link(struct igbvf_adapter *adapter)
1814{
1815        struct e1000_hw *hw = &adapter->hw;
1816        s32 ret_val = E1000_SUCCESS;
1817        bool link_active;
1818
1819        /* If interface is down, stay link down */
1820        if (test_bit(__IGBVF_DOWN, &adapter->state))
1821                return false;
1822
1823        ret_val = hw->mac.ops.check_for_link(hw);
1824        link_active = !hw->mac.get_link_status;
1825
1826        /* if check for link returns error we will need to reset */
1827        if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1828                schedule_work(&adapter->reset_task);
1829
1830        return link_active;
1831}
1832
1833/**
1834 * igbvf_watchdog - Timer Call-back
1835 * @data: pointer to adapter cast into an unsigned long
1836 **/
1837static void igbvf_watchdog(unsigned long data)
1838{
1839        struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1840
1841        /* Do the rest outside of interrupt context */
1842        schedule_work(&adapter->watchdog_task);
1843}
1844
1845static void igbvf_watchdog_task(struct work_struct *work)
1846{
1847        struct igbvf_adapter *adapter = container_of(work,
1848                                                     struct igbvf_adapter,
1849                                                     watchdog_task);
1850        struct net_device *netdev = adapter->netdev;
1851        struct e1000_mac_info *mac = &adapter->hw.mac;
1852        struct igbvf_ring *tx_ring = adapter->tx_ring;
1853        struct e1000_hw *hw = &adapter->hw;
1854        u32 link;
1855        int tx_pending = 0;
1856
1857        link = igbvf_has_link(adapter);
1858
1859        if (link) {
1860                if (!netif_carrier_ok(netdev)) {
1861                        mac->ops.get_link_up_info(&adapter->hw,
1862                                                  &adapter->link_speed,
1863                                                  &adapter->link_duplex);
1864                        igbvf_print_link_info(adapter);
1865
1866                        netif_carrier_on(netdev);
1867                        netif_wake_queue(netdev);
1868                }
1869        } else {
1870                if (netif_carrier_ok(netdev)) {
1871                        adapter->link_speed = 0;
1872                        adapter->link_duplex = 0;
1873                        dev_info(&adapter->pdev->dev, "Link is Down\n");
1874                        netif_carrier_off(netdev);
1875                        netif_stop_queue(netdev);
1876                }
1877        }
1878
1879        if (netif_carrier_ok(netdev)) {
1880                igbvf_update_stats(adapter);
1881        } else {
1882                tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1883                              tx_ring->count);
1884                if (tx_pending) {
1885                        /* We've lost link, so the controller stops DMA,
1886                         * but we've got queued Tx work that's never going
1887                         * to get done, so reset controller to flush Tx.
1888                         * (Do the reset outside of interrupt context).
1889                         */
1890                        adapter->tx_timeout_count++;
1891                        schedule_work(&adapter->reset_task);
1892                }
1893        }
1894
1895        /* Cause software interrupt to ensure Rx ring is cleaned */
1896        ew32(EICS, adapter->rx_ring->eims_value);
1897
1898        /* Reset the timer */
1899        if (!test_bit(__IGBVF_DOWN, &adapter->state))
1900                mod_timer(&adapter->watchdog_timer,
1901                          round_jiffies(jiffies + (2 * HZ)));
1902}
1903
1904#define IGBVF_TX_FLAGS_CSUM             0x00000001
1905#define IGBVF_TX_FLAGS_VLAN             0x00000002
1906#define IGBVF_TX_FLAGS_TSO              0x00000004
1907#define IGBVF_TX_FLAGS_IPV4             0x00000008
1908#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1909#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1910
1911static int igbvf_tso(struct igbvf_adapter *adapter,
1912                     struct igbvf_ring *tx_ring,
1913                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len,
1914                     __be16 protocol)
1915{
1916        struct e1000_adv_tx_context_desc *context_desc;
1917        struct igbvf_buffer *buffer_info;
1918        u32 info = 0, tu_cmd = 0;
1919        u32 mss_l4len_idx, l4len;
1920        unsigned int i;
1921        int err;
1922
1923        *hdr_len = 0;
1924
1925        err = skb_cow_head(skb, 0);
1926        if (err < 0) {
1927                dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1928                return err;
1929        }
1930
1931        l4len = tcp_hdrlen(skb);
1932        *hdr_len += l4len;
1933
1934        if (protocol == htons(ETH_P_IP)) {
1935                struct iphdr *iph = ip_hdr(skb);
1936
1937                iph->tot_len = 0;
1938                iph->check = 0;
1939                tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1940                                                         iph->daddr, 0,
1941                                                         IPPROTO_TCP,
1942                                                         0);
1943        } else if (skb_is_gso_v6(skb)) {
1944                ipv6_hdr(skb)->payload_len = 0;
1945                tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1946                                                       &ipv6_hdr(skb)->daddr,
1947                                                       0, IPPROTO_TCP, 0);
1948        }
1949
1950        i = tx_ring->next_to_use;
1951
1952        buffer_info = &tx_ring->buffer_info[i];
1953        context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1954        /* VLAN MACLEN IPLEN */
1955        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1956                info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1957        info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1958        *hdr_len += skb_network_offset(skb);
1959        info |= (skb_transport_header(skb) - skb_network_header(skb));
1960        *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1961        context_desc->vlan_macip_lens = cpu_to_le32(info);
1962
1963        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1964        tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1965
1966        if (protocol == htons(ETH_P_IP))
1967                tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1968        tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1969
1970        context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1971
1972        /* MSS L4LEN IDX */
1973        mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1974        mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1975
1976        context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1977        context_desc->seqnum_seed = 0;
1978
1979        buffer_info->time_stamp = jiffies;
1980        buffer_info->dma = 0;
1981        i++;
1982        if (i == tx_ring->count)
1983                i = 0;
1984
1985        tx_ring->next_to_use = i;
1986
1987        return true;
1988}
1989
1990static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1991                                 struct igbvf_ring *tx_ring,
1992                                 struct sk_buff *skb, u32 tx_flags,
1993                                 __be16 protocol)
1994{
1995        struct e1000_adv_tx_context_desc *context_desc;
1996        unsigned int i;
1997        struct igbvf_buffer *buffer_info;
1998        u32 info = 0, tu_cmd = 0;
1999
2000        if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2001            (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2002                i = tx_ring->next_to_use;
2003                buffer_info = &tx_ring->buffer_info[i];
2004                context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2005
2006                if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2007                        info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2008
2009                info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2010                if (skb->ip_summed == CHECKSUM_PARTIAL)
2011                        info |= (skb_transport_header(skb) -
2012                                 skb_network_header(skb));
2013
2014                context_desc->vlan_macip_lens = cpu_to_le32(info);
2015
2016                tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2017
2018                if (skb->ip_summed == CHECKSUM_PARTIAL) {
2019                        switch (protocol) {
2020                        case htons(ETH_P_IP):
2021                                tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2022                                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2023                                        tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2024                                break;
2025                        case htons(ETH_P_IPV6):
2026                                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2027                                        tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2028                                break;
2029                        default:
2030                                break;
2031                        }
2032                }
2033
2034                context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2035                context_desc->seqnum_seed = 0;
2036                context_desc->mss_l4len_idx = 0;
2037
2038                buffer_info->time_stamp = jiffies;
2039                buffer_info->dma = 0;
2040                i++;
2041                if (i == tx_ring->count)
2042                        i = 0;
2043                tx_ring->next_to_use = i;
2044
2045                return true;
2046        }
2047
2048        return false;
2049}
2050
2051static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2052{
2053        struct igbvf_adapter *adapter = netdev_priv(netdev);
2054
2055        /* there is enough descriptors then we don't need to worry  */
2056        if (igbvf_desc_unused(adapter->tx_ring) >= size)
2057                return 0;
2058
2059        netif_stop_queue(netdev);
2060
2061        /* Herbert's original patch had:
2062         *  smp_mb__after_netif_stop_queue();
2063         * but since that doesn't exist yet, just open code it.
2064         */
2065        smp_mb();
2066
2067        /* We need to check again just in case room has been made available */
2068        if (igbvf_desc_unused(adapter->tx_ring) < size)
2069                return -EBUSY;
2070
2071        netif_wake_queue(netdev);
2072
2073        ++adapter->restart_queue;
2074        return 0;
2075}
2076
2077#define IGBVF_MAX_TXD_PWR       16
2078#define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2079
2080static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2081                                   struct igbvf_ring *tx_ring,
2082                                   struct sk_buff *skb)
2083{
2084        struct igbvf_buffer *buffer_info;
2085        struct pci_dev *pdev = adapter->pdev;
2086        unsigned int len = skb_headlen(skb);
2087        unsigned int count = 0, i;
2088        unsigned int f;
2089
2090        i = tx_ring->next_to_use;
2091
2092        buffer_info = &tx_ring->buffer_info[i];
2093        BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2094        buffer_info->length = len;
2095        /* set time_stamp *before* dma to help avoid a possible race */
2096        buffer_info->time_stamp = jiffies;
2097        buffer_info->mapped_as_page = false;
2098        buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2099                                          DMA_TO_DEVICE);
2100        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2101                goto dma_error;
2102
2103        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2104                const struct skb_frag_struct *frag;
2105
2106                count++;
2107                i++;
2108                if (i == tx_ring->count)
2109                        i = 0;
2110
2111                frag = &skb_shinfo(skb)->frags[f];
2112                len = skb_frag_size(frag);
2113
2114                buffer_info = &tx_ring->buffer_info[i];
2115                BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2116                buffer_info->length = len;
2117                buffer_info->time_stamp = jiffies;
2118                buffer_info->mapped_as_page = true;
2119                buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2120                                                    DMA_TO_DEVICE);
2121                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2122                        goto dma_error;
2123        }
2124
2125        tx_ring->buffer_info[i].skb = skb;
2126
2127        return ++count;
2128
2129dma_error:
2130        dev_err(&pdev->dev, "TX DMA map failed\n");
2131
2132        /* clear timestamp and dma mappings for failed buffer_info mapping */
2133        buffer_info->dma = 0;
2134        buffer_info->time_stamp = 0;
2135        buffer_info->length = 0;
2136        buffer_info->mapped_as_page = false;
2137        if (count)
2138                count--;
2139
2140        /* clear timestamp and dma mappings for remaining portion of packet */
2141        while (count--) {
2142                if (i == 0)
2143                        i += tx_ring->count;
2144                i--;
2145                buffer_info = &tx_ring->buffer_info[i];
2146                igbvf_put_txbuf(adapter, buffer_info);
2147        }
2148
2149        return 0;
2150}
2151
2152static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2153                                      struct igbvf_ring *tx_ring,
2154                                      int tx_flags, int count,
2155                                      unsigned int first, u32 paylen,
2156                                      u8 hdr_len)
2157{
2158        union e1000_adv_tx_desc *tx_desc = NULL;
2159        struct igbvf_buffer *buffer_info;
2160        u32 olinfo_status = 0, cmd_type_len;
2161        unsigned int i;
2162
2163        cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2164                        E1000_ADVTXD_DCMD_DEXT);
2165
2166        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2167                cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2168
2169        if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2170                cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2171
2172                /* insert tcp checksum */
2173                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2174
2175                /* insert ip checksum */
2176                if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2177                        olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2178
2179        } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2180                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2181        }
2182
2183        olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2184
2185        i = tx_ring->next_to_use;
2186        while (count--) {
2187                buffer_info = &tx_ring->buffer_info[i];
2188                tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2189                tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2190                tx_desc->read.cmd_type_len =
2191                         cpu_to_le32(cmd_type_len | buffer_info->length);
2192                tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2193                i++;
2194                if (i == tx_ring->count)
2195                        i = 0;
2196        }
2197
2198        tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2199        /* Force memory writes to complete before letting h/w
2200         * know there are new descriptors to fetch.  (Only
2201         * applicable for weak-ordered memory model archs,
2202         * such as IA-64).
2203         */
2204        wmb();
2205
2206        tx_ring->buffer_info[first].next_to_watch = tx_desc;
2207        tx_ring->next_to_use = i;
2208        writel(i, adapter->hw.hw_addr + tx_ring->tail);
2209        /* we need this if more than one processor can write to our tail
2210         * at a time, it synchronizes IO on IA64/Altix systems
2211         */
2212        mmiowb();
2213}
2214
2215static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2216                                             struct net_device *netdev,
2217                                             struct igbvf_ring *tx_ring)
2218{
2219        struct igbvf_adapter *adapter = netdev_priv(netdev);
2220        unsigned int first, tx_flags = 0;
2221        u8 hdr_len = 0;
2222        int count = 0;
2223        int tso = 0;
2224        __be16 protocol = vlan_get_protocol(skb);
2225
2226        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2227                dev_kfree_skb_any(skb);
2228                return NETDEV_TX_OK;
2229        }
2230
2231        if (skb->len <= 0) {
2232                dev_kfree_skb_any(skb);
2233                return NETDEV_TX_OK;
2234        }
2235
2236        /* need: count + 4 desc gap to keep tail from touching
2237         *       + 2 desc gap to keep tail from touching head,
2238         *       + 1 desc for skb->data,
2239         *       + 1 desc for context descriptor,
2240         * head, otherwise try next time
2241         */
2242        if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2243                /* this is a hard error */
2244                return NETDEV_TX_BUSY;
2245        }
2246
2247        if (skb_vlan_tag_present(skb)) {
2248                tx_flags |= IGBVF_TX_FLAGS_VLAN;
2249                tx_flags |= (skb_vlan_tag_get(skb) <<
2250                             IGBVF_TX_FLAGS_VLAN_SHIFT);
2251        }
2252
2253        if (protocol == htons(ETH_P_IP))
2254                tx_flags |= IGBVF_TX_FLAGS_IPV4;
2255
2256        first = tx_ring->next_to_use;
2257
2258        tso = skb_is_gso(skb) ?
2259                igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0;
2260        if (unlikely(tso < 0)) {
2261                dev_kfree_skb_any(skb);
2262                return NETDEV_TX_OK;
2263        }
2264
2265        if (tso)
2266                tx_flags |= IGBVF_TX_FLAGS_TSO;
2267        else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags, protocol) &&
2268                 (skb->ip_summed == CHECKSUM_PARTIAL))
2269                tx_flags |= IGBVF_TX_FLAGS_CSUM;
2270
2271        /* count reflects descriptors mapped, if 0 then mapping error
2272         * has occurred and we need to rewind the descriptor queue
2273         */
2274        count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2275
2276        if (count) {
2277                igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2278                                   first, skb->len, hdr_len);
2279                /* Make sure there is space in the ring for the next send. */
2280                igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2281        } else {
2282                dev_kfree_skb_any(skb);
2283                tx_ring->buffer_info[first].time_stamp = 0;
2284                tx_ring->next_to_use = first;
2285        }
2286
2287        return NETDEV_TX_OK;
2288}
2289
2290static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2291                                    struct net_device *netdev)
2292{
2293        struct igbvf_adapter *adapter = netdev_priv(netdev);
2294        struct igbvf_ring *tx_ring;
2295
2296        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2297                dev_kfree_skb_any(skb);
2298                return NETDEV_TX_OK;
2299        }
2300
2301        tx_ring = &adapter->tx_ring[0];
2302
2303        return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2304}
2305
2306/**
2307 * igbvf_tx_timeout - Respond to a Tx Hang
2308 * @netdev: network interface device structure
2309 **/
2310static void igbvf_tx_timeout(struct net_device *netdev)
2311{
2312        struct igbvf_adapter *adapter = netdev_priv(netdev);
2313
2314        /* Do the reset outside of interrupt context */
2315        adapter->tx_timeout_count++;
2316        schedule_work(&adapter->reset_task);
2317}
2318
2319static void igbvf_reset_task(struct work_struct *work)
2320{
2321        struct igbvf_adapter *adapter;
2322
2323        adapter = container_of(work, struct igbvf_adapter, reset_task);
2324
2325        igbvf_reinit_locked(adapter);
2326}
2327
2328/**
2329 * igbvf_get_stats - Get System Network Statistics
2330 * @netdev: network interface device structure
2331 *
2332 * Returns the address of the device statistics structure.
2333 * The statistics are actually updated from the timer callback.
2334 **/
2335static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2336{
2337        struct igbvf_adapter *adapter = netdev_priv(netdev);
2338
2339        /* only return the current stats */
2340        return &adapter->net_stats;
2341}
2342
2343/**
2344 * igbvf_change_mtu - Change the Maximum Transfer Unit
2345 * @netdev: network interface device structure
2346 * @new_mtu: new value for maximum frame size
2347 *
2348 * Returns 0 on success, negative on failure
2349 **/
2350static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2351{
2352        struct igbvf_adapter *adapter = netdev_priv(netdev);
2353        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2354
2355        if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2356            max_frame > MAX_JUMBO_FRAME_SIZE)
2357                return -EINVAL;
2358
2359#define MAX_STD_JUMBO_FRAME_SIZE 9234
2360        if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2361                dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2362                return -EINVAL;
2363        }
2364
2365        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2366                usleep_range(1000, 2000);
2367        /* igbvf_down has a dependency on max_frame_size */
2368        adapter->max_frame_size = max_frame;
2369        if (netif_running(netdev))
2370                igbvf_down(adapter);
2371
2372        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2373         * means we reserve 2 more, this pushes us to allocate from the next
2374         * larger slab size.
2375         * i.e. RXBUFFER_2048 --> size-4096 slab
2376         * However with the new *_jumbo_rx* routines, jumbo receives will use
2377         * fragmented skbs
2378         */
2379
2380        if (max_frame <= 1024)
2381                adapter->rx_buffer_len = 1024;
2382        else if (max_frame <= 2048)
2383                adapter->rx_buffer_len = 2048;
2384        else
2385#if (PAGE_SIZE / 2) > 16384
2386                adapter->rx_buffer_len = 16384;
2387#else
2388                adapter->rx_buffer_len = PAGE_SIZE / 2;
2389#endif
2390
2391        /* adjust allocation if LPE protects us, and we aren't using SBP */
2392        if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2393            (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2394                adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2395                                         ETH_FCS_LEN;
2396
2397        dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2398                 netdev->mtu, new_mtu);
2399        netdev->mtu = new_mtu;
2400
2401        if (netif_running(netdev))
2402                igbvf_up(adapter);
2403        else
2404                igbvf_reset(adapter);
2405
2406        clear_bit(__IGBVF_RESETTING, &adapter->state);
2407
2408        return 0;
2409}
2410
2411static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2412{
2413        switch (cmd) {
2414        default:
2415                return -EOPNOTSUPP;
2416        }
2417}
2418
2419static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2420{
2421        struct net_device *netdev = pci_get_drvdata(pdev);
2422        struct igbvf_adapter *adapter = netdev_priv(netdev);
2423#ifdef CONFIG_PM
2424        int retval = 0;
2425#endif
2426
2427        netif_device_detach(netdev);
2428
2429        if (netif_running(netdev)) {
2430                WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2431                igbvf_down(adapter);
2432                igbvf_free_irq(adapter);
2433        }
2434
2435#ifdef CONFIG_PM
2436        retval = pci_save_state(pdev);
2437        if (retval)
2438                return retval;
2439#endif
2440
2441        pci_disable_device(pdev);
2442
2443        return 0;
2444}
2445
2446#ifdef CONFIG_PM
2447static int igbvf_resume(struct pci_dev *pdev)
2448{
2449        struct net_device *netdev = pci_get_drvdata(pdev);
2450        struct igbvf_adapter *adapter = netdev_priv(netdev);
2451        u32 err;
2452
2453        pci_restore_state(pdev);
2454        err = pci_enable_device_mem(pdev);
2455        if (err) {
2456                dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2457                return err;
2458        }
2459
2460        pci_set_master(pdev);
2461
2462        if (netif_running(netdev)) {
2463                err = igbvf_request_irq(adapter);
2464                if (err)
2465                        return err;
2466        }
2467
2468        igbvf_reset(adapter);
2469
2470        if (netif_running(netdev))
2471                igbvf_up(adapter);
2472
2473        netif_device_attach(netdev);
2474
2475        return 0;
2476}
2477#endif
2478
2479static void igbvf_shutdown(struct pci_dev *pdev)
2480{
2481        igbvf_suspend(pdev, PMSG_SUSPEND);
2482}
2483
2484#ifdef CONFIG_NET_POLL_CONTROLLER
2485/* Polling 'interrupt' - used by things like netconsole to send skbs
2486 * without having to re-enable interrupts. It's not called while
2487 * the interrupt routine is executing.
2488 */
2489static void igbvf_netpoll(struct net_device *netdev)
2490{
2491        struct igbvf_adapter *adapter = netdev_priv(netdev);
2492
2493        disable_irq(adapter->pdev->irq);
2494
2495        igbvf_clean_tx_irq(adapter->tx_ring);
2496
2497        enable_irq(adapter->pdev->irq);
2498}
2499#endif
2500
2501/**
2502 * igbvf_io_error_detected - called when PCI error is detected
2503 * @pdev: Pointer to PCI device
2504 * @state: The current pci connection state
2505 *
2506 * This function is called after a PCI bus error affecting
2507 * this device has been detected.
2508 */
2509static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2510                                                pci_channel_state_t state)
2511{
2512        struct net_device *netdev = pci_get_drvdata(pdev);
2513        struct igbvf_adapter *adapter = netdev_priv(netdev);
2514
2515        netif_device_detach(netdev);
2516
2517        if (state == pci_channel_io_perm_failure)
2518                return PCI_ERS_RESULT_DISCONNECT;
2519
2520        if (netif_running(netdev))
2521                igbvf_down(adapter);
2522        pci_disable_device(pdev);
2523
2524        /* Request a slot slot reset. */
2525        return PCI_ERS_RESULT_NEED_RESET;
2526}
2527
2528/**
2529 * igbvf_io_slot_reset - called after the pci bus has been reset.
2530 * @pdev: Pointer to PCI device
2531 *
2532 * Restart the card from scratch, as if from a cold-boot. Implementation
2533 * resembles the first-half of the igbvf_resume routine.
2534 */
2535static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2536{
2537        struct net_device *netdev = pci_get_drvdata(pdev);
2538        struct igbvf_adapter *adapter = netdev_priv(netdev);
2539
2540        if (pci_enable_device_mem(pdev)) {
2541                dev_err(&pdev->dev,
2542                        "Cannot re-enable PCI device after reset.\n");
2543                return PCI_ERS_RESULT_DISCONNECT;
2544        }
2545        pci_set_master(pdev);
2546
2547        igbvf_reset(adapter);
2548
2549        return PCI_ERS_RESULT_RECOVERED;
2550}
2551
2552/**
2553 * igbvf_io_resume - called when traffic can start flowing again.
2554 * @pdev: Pointer to PCI device
2555 *
2556 * This callback is called when the error recovery driver tells us that
2557 * its OK to resume normal operation. Implementation resembles the
2558 * second-half of the igbvf_resume routine.
2559 */
2560static void igbvf_io_resume(struct pci_dev *pdev)
2561{
2562        struct net_device *netdev = pci_get_drvdata(pdev);
2563        struct igbvf_adapter *adapter = netdev_priv(netdev);
2564
2565        if (netif_running(netdev)) {
2566                if (igbvf_up(adapter)) {
2567                        dev_err(&pdev->dev,
2568                                "can't bring device back up after reset\n");
2569                        return;
2570                }
2571        }
2572
2573        netif_device_attach(netdev);
2574}
2575
2576static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2577{
2578        struct e1000_hw *hw = &adapter->hw;
2579        struct net_device *netdev = adapter->netdev;
2580        struct pci_dev *pdev = adapter->pdev;
2581
2582        if (hw->mac.type == e1000_vfadapt_i350)
2583                dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2584        else
2585                dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2586        dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2587}
2588
2589static int igbvf_set_features(struct net_device *netdev,
2590                              netdev_features_t features)
2591{
2592        struct igbvf_adapter *adapter = netdev_priv(netdev);
2593
2594        if (features & NETIF_F_RXCSUM)
2595                adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2596        else
2597                adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2598
2599        return 0;
2600}
2601
2602static const struct net_device_ops igbvf_netdev_ops = {
2603        .ndo_open               = igbvf_open,
2604        .ndo_stop               = igbvf_close,
2605        .ndo_start_xmit         = igbvf_xmit_frame,
2606        .ndo_get_stats          = igbvf_get_stats,
2607        .ndo_set_rx_mode        = igbvf_set_multi,
2608        .ndo_set_mac_address    = igbvf_set_mac,
2609        .ndo_change_mtu         = igbvf_change_mtu,
2610        .ndo_do_ioctl           = igbvf_ioctl,
2611        .ndo_tx_timeout         = igbvf_tx_timeout,
2612        .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2613        .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2614#ifdef CONFIG_NET_POLL_CONTROLLER
2615        .ndo_poll_controller    = igbvf_netpoll,
2616#endif
2617        .ndo_set_features       = igbvf_set_features,
2618        .ndo_features_check     = passthru_features_check,
2619};
2620
2621/**
2622 * igbvf_probe - Device Initialization Routine
2623 * @pdev: PCI device information struct
2624 * @ent: entry in igbvf_pci_tbl
2625 *
2626 * Returns 0 on success, negative on failure
2627 *
2628 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2629 * The OS initialization, configuring of the adapter private structure,
2630 * and a hardware reset occur.
2631 **/
2632static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2633{
2634        struct net_device *netdev;
2635        struct igbvf_adapter *adapter;
2636        struct e1000_hw *hw;
2637        const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2638
2639        static int cards_found;
2640        int err, pci_using_dac;
2641
2642        err = pci_enable_device_mem(pdev);
2643        if (err)
2644                return err;
2645
2646        pci_using_dac = 0;
2647        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2648        if (!err) {
2649                pci_using_dac = 1;
2650        } else {
2651                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2652                if (err) {
2653                        dev_err(&pdev->dev,
2654                                "No usable DMA configuration, aborting\n");
2655                        goto err_dma;
2656                }
2657        }
2658
2659        err = pci_request_regions(pdev, igbvf_driver_name);
2660        if (err)
2661                goto err_pci_reg;
2662
2663        pci_set_master(pdev);
2664
2665        err = -ENOMEM;
2666        netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2667        if (!netdev)
2668                goto err_alloc_etherdev;
2669
2670        SET_NETDEV_DEV(netdev, &pdev->dev);
2671
2672        pci_set_drvdata(pdev, netdev);
2673        adapter = netdev_priv(netdev);
2674        hw = &adapter->hw;
2675        adapter->netdev = netdev;
2676        adapter->pdev = pdev;
2677        adapter->ei = ei;
2678        adapter->pba = ei->pba;
2679        adapter->flags = ei->flags;
2680        adapter->hw.back = adapter;
2681        adapter->hw.mac.type = ei->mac;
2682        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2683
2684        /* PCI config space info */
2685
2686        hw->vendor_id = pdev->vendor;
2687        hw->device_id = pdev->device;
2688        hw->subsystem_vendor_id = pdev->subsystem_vendor;
2689        hw->subsystem_device_id = pdev->subsystem_device;
2690        hw->revision_id = pdev->revision;
2691
2692        err = -EIO;
2693        adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2694                                      pci_resource_len(pdev, 0));
2695
2696        if (!adapter->hw.hw_addr)
2697                goto err_ioremap;
2698
2699        if (ei->get_variants) {
2700                err = ei->get_variants(adapter);
2701                if (err)
2702                        goto err_get_variants;
2703        }
2704
2705        /* setup adapter struct */
2706        err = igbvf_sw_init(adapter);
2707        if (err)
2708                goto err_sw_init;
2709
2710        /* construct the net_device struct */
2711        netdev->netdev_ops = &igbvf_netdev_ops;
2712
2713        igbvf_set_ethtool_ops(netdev);
2714        netdev->watchdog_timeo = 5 * HZ;
2715        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2716
2717        adapter->bd_number = cards_found++;
2718
2719        netdev->hw_features = NETIF_F_SG |
2720                           NETIF_F_IP_CSUM |
2721                           NETIF_F_IPV6_CSUM |
2722                           NETIF_F_TSO |
2723                           NETIF_F_TSO6 |
2724                           NETIF_F_RXCSUM;
2725
2726        netdev->features = netdev->hw_features |
2727                           NETIF_F_HW_VLAN_CTAG_TX |
2728                           NETIF_F_HW_VLAN_CTAG_RX |
2729                           NETIF_F_HW_VLAN_CTAG_FILTER;
2730
2731        if (pci_using_dac)
2732                netdev->features |= NETIF_F_HIGHDMA;
2733
2734        netdev->vlan_features |= NETIF_F_TSO;
2735        netdev->vlan_features |= NETIF_F_TSO6;
2736        netdev->vlan_features |= NETIF_F_IP_CSUM;
2737        netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2738        netdev->vlan_features |= NETIF_F_SG;
2739
2740        /*reset the controller to put the device in a known good state */
2741        err = hw->mac.ops.reset_hw(hw);
2742        if (err) {
2743                dev_info(&pdev->dev,
2744                         "PF still in reset state. Is the PF interface up?\n");
2745        } else {
2746                err = hw->mac.ops.read_mac_addr(hw);
2747                if (err)
2748                        dev_info(&pdev->dev, "Error reading MAC address.\n");
2749                else if (is_zero_ether_addr(adapter->hw.mac.addr))
2750                        dev_info(&pdev->dev,
2751                                 "MAC address not assigned by administrator.\n");
2752                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2753                       netdev->addr_len);
2754        }
2755
2756        if (!is_valid_ether_addr(netdev->dev_addr)) {
2757                dev_info(&pdev->dev, "Assigning random MAC address.\n");
2758                eth_hw_addr_random(netdev);
2759                memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2760                       netdev->addr_len);
2761        }
2762
2763        setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2764                    (unsigned long)adapter);
2765
2766        INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2767        INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2768
2769        /* ring size defaults */
2770        adapter->rx_ring->count = 1024;
2771        adapter->tx_ring->count = 1024;
2772
2773        /* reset the hardware with the new settings */
2774        igbvf_reset(adapter);
2775
2776        /* set hardware-specific flags */
2777        if (adapter->hw.mac.type == e1000_vfadapt_i350)
2778                adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2779
2780        strcpy(netdev->name, "eth%d");
2781        err = register_netdev(netdev);
2782        if (err)
2783                goto err_hw_init;
2784
2785        /* tell the stack to leave us alone until igbvf_open() is called */
2786        netif_carrier_off(netdev);
2787        netif_stop_queue(netdev);
2788
2789        igbvf_print_device_info(adapter);
2790
2791        igbvf_initialize_last_counter_stats(adapter);
2792
2793        return 0;
2794
2795err_hw_init:
2796        kfree(adapter->tx_ring);
2797        kfree(adapter->rx_ring);
2798err_sw_init:
2799        igbvf_reset_interrupt_capability(adapter);
2800err_get_variants:
2801        iounmap(adapter->hw.hw_addr);
2802err_ioremap:
2803        free_netdev(netdev);
2804err_alloc_etherdev:
2805        pci_release_regions(pdev);
2806err_pci_reg:
2807err_dma:
2808        pci_disable_device(pdev);
2809        return err;
2810}
2811
2812/**
2813 * igbvf_remove - Device Removal Routine
2814 * @pdev: PCI device information struct
2815 *
2816 * igbvf_remove is called by the PCI subsystem to alert the driver
2817 * that it should release a PCI device.  The could be caused by a
2818 * Hot-Plug event, or because the driver is going to be removed from
2819 * memory.
2820 **/
2821static void igbvf_remove(struct pci_dev *pdev)
2822{
2823        struct net_device *netdev = pci_get_drvdata(pdev);
2824        struct igbvf_adapter *adapter = netdev_priv(netdev);
2825        struct e1000_hw *hw = &adapter->hw;
2826
2827        /* The watchdog timer may be rescheduled, so explicitly
2828         * disable it from being rescheduled.
2829         */
2830        set_bit(__IGBVF_DOWN, &adapter->state);
2831        del_timer_sync(&adapter->watchdog_timer);
2832
2833        cancel_work_sync(&adapter->reset_task);
2834        cancel_work_sync(&adapter->watchdog_task);
2835
2836        unregister_netdev(netdev);
2837
2838        igbvf_reset_interrupt_capability(adapter);
2839
2840        /* it is important to delete the NAPI struct prior to freeing the
2841         * Rx ring so that you do not end up with null pointer refs
2842         */
2843        netif_napi_del(&adapter->rx_ring->napi);
2844        kfree(adapter->tx_ring);
2845        kfree(adapter->rx_ring);
2846
2847        iounmap(hw->hw_addr);
2848        if (hw->flash_address)
2849                iounmap(hw->flash_address);
2850        pci_release_regions(pdev);
2851
2852        free_netdev(netdev);
2853
2854        pci_disable_device(pdev);
2855}
2856
2857/* PCI Error Recovery (ERS) */
2858static const struct pci_error_handlers igbvf_err_handler = {
2859        .error_detected = igbvf_io_error_detected,
2860        .slot_reset = igbvf_io_slot_reset,
2861        .resume = igbvf_io_resume,
2862};
2863
2864static const struct pci_device_id igbvf_pci_tbl[] = {
2865        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2866        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2867        { } /* terminate list */
2868};
2869MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2870
2871/* PCI Device API Driver */
2872static struct pci_driver igbvf_driver = {
2873        .name           = igbvf_driver_name,
2874        .id_table       = igbvf_pci_tbl,
2875        .probe          = igbvf_probe,
2876        .remove         = igbvf_remove,
2877#ifdef CONFIG_PM
2878        /* Power Management Hooks */
2879        .suspend        = igbvf_suspend,
2880        .resume         = igbvf_resume,
2881#endif
2882        .shutdown       = igbvf_shutdown,
2883        .err_handler    = &igbvf_err_handler
2884};
2885
2886/**
2887 * igbvf_init_module - Driver Registration Routine
2888 *
2889 * igbvf_init_module is the first routine called when the driver is
2890 * loaded. All it does is register with the PCI subsystem.
2891 **/
2892static int __init igbvf_init_module(void)
2893{
2894        int ret;
2895
2896        pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2897        pr_info("%s\n", igbvf_copyright);
2898
2899        ret = pci_register_driver(&igbvf_driver);
2900
2901        return ret;
2902}
2903module_init(igbvf_init_module);
2904
2905/**
2906 * igbvf_exit_module - Driver Exit Cleanup Routine
2907 *
2908 * igbvf_exit_module is called just before the driver is removed
2909 * from memory.
2910 **/
2911static void __exit igbvf_exit_module(void)
2912{
2913        pci_unregister_driver(&igbvf_driver);
2914}
2915module_exit(igbvf_exit_module);
2916
2917MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2918MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2919MODULE_LICENSE("GPL");
2920MODULE_VERSION(DRV_VERSION);
2921
2922/* netdev.c */
2923