linux/drivers/net/ethernet/sfc/nic.h
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#ifndef EFX_NIC_H
  12#define EFX_NIC_H
  13
  14#include <linux/net_tstamp.h>
  15#include <linux/i2c-algo-bit.h>
  16#include "net_driver.h"
  17#include "efx.h"
  18#include "mcdi.h"
  19
  20enum {
  21        EFX_REV_FALCON_A0 = 0,
  22        EFX_REV_FALCON_A1 = 1,
  23        EFX_REV_FALCON_B0 = 2,
  24        EFX_REV_SIENA_A0 = 3,
  25        EFX_REV_HUNT_A0 = 4,
  26};
  27
  28static inline int efx_nic_rev(struct efx_nic *efx)
  29{
  30        return efx->type->revision;
  31}
  32
  33u32 efx_farch_fpga_ver(struct efx_nic *efx);
  34
  35/* NIC has two interlinked PCI functions for the same port. */
  36static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
  37{
  38        return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
  39}
  40
  41/* Read the current event from the event queue */
  42static inline efx_qword_t *efx_event(struct efx_channel *channel,
  43                                     unsigned int index)
  44{
  45        return ((efx_qword_t *) (channel->eventq.buf.addr)) +
  46                (index & channel->eventq_mask);
  47}
  48
  49/* See if an event is present
  50 *
  51 * We check both the high and low dword of the event for all ones.  We
  52 * wrote all ones when we cleared the event, and no valid event can
  53 * have all ones in either its high or low dwords.  This approach is
  54 * robust against reordering.
  55 *
  56 * Note that using a single 64-bit comparison is incorrect; even
  57 * though the CPU read will be atomic, the DMA write may not be.
  58 */
  59static inline int efx_event_present(efx_qword_t *event)
  60{
  61        return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  62                  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
  63}
  64
  65/* Returns a pointer to the specified transmit descriptor in the TX
  66 * descriptor queue belonging to the specified channel.
  67 */
  68static inline efx_qword_t *
  69efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
  70{
  71        return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
  72}
  73
  74/* Get partner of a TX queue, seen as part of the same net core queue */
  75static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
  76{
  77        if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
  78                return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
  79        else
  80                return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
  81}
  82
  83/* Report whether this TX queue would be empty for the given write_count.
  84 * May return false negative.
  85 */
  86static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
  87                                         unsigned int write_count)
  88{
  89        unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
  90
  91        if (empty_read_count == 0)
  92                return false;
  93
  94        return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
  95}
  96
  97/* Decide whether we can use TX PIO, ie. write packet data directly into
  98 * a buffer on the device.  This can reduce latency at the expense of
  99 * throughput, so we only do this if both hardware and software TX rings
 100 * are empty.  This also ensures that only one packet at a time can be
 101 * using the PIO buffer.
 102 */
 103static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
 104{
 105        struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
 106        return tx_queue->piobuf &&
 107               __efx_nic_tx_is_empty(tx_queue, tx_queue->insert_count) &&
 108               __efx_nic_tx_is_empty(partner, partner->insert_count);
 109}
 110
 111/* Decide whether to push a TX descriptor to the NIC vs merely writing
 112 * the doorbell.  This can reduce latency when we are adding a single
 113 * descriptor to an empty queue, but is otherwise pointless.  Further,
 114 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
 115 * triggered if we don't check this.
 116 * We use the write_count used for the last doorbell push, to get the
 117 * NIC's view of the tx queue.
 118 */
 119static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
 120                                            unsigned int write_count)
 121{
 122        bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
 123
 124        tx_queue->empty_read_count = 0;
 125        return was_empty && tx_queue->write_count - write_count == 1;
 126}
 127
 128/* Returns a pointer to the specified descriptor in the RX descriptor queue */
 129static inline efx_qword_t *
 130efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
 131{
 132        return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
 133}
 134
 135enum {
 136        PHY_TYPE_NONE = 0,
 137        PHY_TYPE_TXC43128 = 1,
 138        PHY_TYPE_88E1111 = 2,
 139        PHY_TYPE_SFX7101 = 3,
 140        PHY_TYPE_QT2022C2 = 4,
 141        PHY_TYPE_PM8358 = 6,
 142        PHY_TYPE_SFT9001A = 8,
 143        PHY_TYPE_QT2025C = 9,
 144        PHY_TYPE_SFT9001B = 10,
 145};
 146
 147#define FALCON_XMAC_LOOPBACKS                   \
 148        ((1 << LOOPBACK_XGMII) |                \
 149         (1 << LOOPBACK_XGXS) |                 \
 150         (1 << LOOPBACK_XAUI))
 151
 152/* Alignment of PCIe DMA boundaries (4KB) */
 153#define EFX_PAGE_SIZE   4096
 154/* Size and alignment of buffer table entries (same) */
 155#define EFX_BUF_SIZE    EFX_PAGE_SIZE
 156
 157/* NIC-generic software stats */
 158enum {
 159        GENERIC_STAT_rx_noskb_drops,
 160        GENERIC_STAT_rx_nodesc_trunc,
 161        GENERIC_STAT_COUNT
 162};
 163
 164/**
 165 * struct falcon_board_type - board operations and type information
 166 * @id: Board type id, as found in NVRAM
 167 * @init: Allocate resources and initialise peripheral hardware
 168 * @init_phy: Do board-specific PHY initialisation
 169 * @fini: Shut down hardware and free resources
 170 * @set_id_led: Set state of identifying LED or revert to automatic function
 171 * @monitor: Board-specific health check function
 172 */
 173struct falcon_board_type {
 174        u8 id;
 175        int (*init) (struct efx_nic *nic);
 176        void (*init_phy) (struct efx_nic *efx);
 177        void (*fini) (struct efx_nic *nic);
 178        void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
 179        int (*monitor) (struct efx_nic *nic);
 180};
 181
 182/**
 183 * struct falcon_board - board information
 184 * @type: Type of board
 185 * @major: Major rev. ('A', 'B' ...)
 186 * @minor: Minor rev. (0, 1, ...)
 187 * @i2c_adap: I2C adapter for on-board peripherals
 188 * @i2c_data: Data for bit-banging algorithm
 189 * @hwmon_client: I2C client for hardware monitor
 190 * @ioexp_client: I2C client for power/port control
 191 */
 192struct falcon_board {
 193        const struct falcon_board_type *type;
 194        int major;
 195        int minor;
 196        struct i2c_adapter i2c_adap;
 197        struct i2c_algo_bit_data i2c_data;
 198        struct i2c_client *hwmon_client, *ioexp_client;
 199};
 200
 201/**
 202 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
 203 * @device_id:          Controller's id for the device
 204 * @size:               Size (in bytes)
 205 * @addr_len:           Number of address bytes in read/write commands
 206 * @munge_address:      Flag whether addresses should be munged.
 207 *      Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
 208 *      use bit 3 of the command byte as address bit A8, rather
 209 *      than having a two-byte address.  If this flag is set, then
 210 *      commands should be munged in this way.
 211 * @erase_command:      Erase command (or 0 if sector erase not needed).
 212 * @erase_size:         Erase sector size (in bytes)
 213 *      Erase commands affect sectors with this size and alignment.
 214 *      This must be a power of two.
 215 * @block_size:         Write block size (in bytes).
 216 *      Write commands are limited to blocks with this size and alignment.
 217 */
 218struct falcon_spi_device {
 219        int device_id;
 220        unsigned int size;
 221        unsigned int addr_len;
 222        unsigned int munge_address:1;
 223        u8 erase_command;
 224        unsigned int erase_size;
 225        unsigned int block_size;
 226};
 227
 228static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
 229{
 230        return spi->size != 0;
 231}
 232
 233enum {
 234        FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
 235        FALCON_STAT_tx_packets,
 236        FALCON_STAT_tx_pause,
 237        FALCON_STAT_tx_control,
 238        FALCON_STAT_tx_unicast,
 239        FALCON_STAT_tx_multicast,
 240        FALCON_STAT_tx_broadcast,
 241        FALCON_STAT_tx_lt64,
 242        FALCON_STAT_tx_64,
 243        FALCON_STAT_tx_65_to_127,
 244        FALCON_STAT_tx_128_to_255,
 245        FALCON_STAT_tx_256_to_511,
 246        FALCON_STAT_tx_512_to_1023,
 247        FALCON_STAT_tx_1024_to_15xx,
 248        FALCON_STAT_tx_15xx_to_jumbo,
 249        FALCON_STAT_tx_gtjumbo,
 250        FALCON_STAT_tx_non_tcpudp,
 251        FALCON_STAT_tx_mac_src_error,
 252        FALCON_STAT_tx_ip_src_error,
 253        FALCON_STAT_rx_bytes,
 254        FALCON_STAT_rx_good_bytes,
 255        FALCON_STAT_rx_bad_bytes,
 256        FALCON_STAT_rx_packets,
 257        FALCON_STAT_rx_good,
 258        FALCON_STAT_rx_bad,
 259        FALCON_STAT_rx_pause,
 260        FALCON_STAT_rx_control,
 261        FALCON_STAT_rx_unicast,
 262        FALCON_STAT_rx_multicast,
 263        FALCON_STAT_rx_broadcast,
 264        FALCON_STAT_rx_lt64,
 265        FALCON_STAT_rx_64,
 266        FALCON_STAT_rx_65_to_127,
 267        FALCON_STAT_rx_128_to_255,
 268        FALCON_STAT_rx_256_to_511,
 269        FALCON_STAT_rx_512_to_1023,
 270        FALCON_STAT_rx_1024_to_15xx,
 271        FALCON_STAT_rx_15xx_to_jumbo,
 272        FALCON_STAT_rx_gtjumbo,
 273        FALCON_STAT_rx_bad_lt64,
 274        FALCON_STAT_rx_bad_gtjumbo,
 275        FALCON_STAT_rx_overflow,
 276        FALCON_STAT_rx_symbol_error,
 277        FALCON_STAT_rx_align_error,
 278        FALCON_STAT_rx_length_error,
 279        FALCON_STAT_rx_internal_error,
 280        FALCON_STAT_rx_nodesc_drop_cnt,
 281        FALCON_STAT_COUNT
 282};
 283
 284/**
 285 * struct falcon_nic_data - Falcon NIC state
 286 * @pci_dev2: Secondary function of Falcon A
 287 * @board: Board state and functions
 288 * @stats: Hardware statistics
 289 * @stats_disable_count: Nest count for disabling statistics fetches
 290 * @stats_pending: Is there a pending DMA of MAC statistics.
 291 * @stats_timer: A timer for regularly fetching MAC statistics.
 292 * @spi_flash: SPI flash device
 293 * @spi_eeprom: SPI EEPROM device
 294 * @spi_lock: SPI bus lock
 295 * @mdio_lock: MDIO bus lock
 296 * @xmac_poll_required: XMAC link state needs polling
 297 */
 298struct falcon_nic_data {
 299        struct pci_dev *pci_dev2;
 300        struct falcon_board board;
 301        u64 stats[FALCON_STAT_COUNT];
 302        unsigned int stats_disable_count;
 303        bool stats_pending;
 304        struct timer_list stats_timer;
 305        struct falcon_spi_device spi_flash;
 306        struct falcon_spi_device spi_eeprom;
 307        struct mutex spi_lock;
 308        struct mutex mdio_lock;
 309        bool xmac_poll_required;
 310};
 311
 312static inline struct falcon_board *falcon_board(struct efx_nic *efx)
 313{
 314        struct falcon_nic_data *data = efx->nic_data;
 315        return &data->board;
 316}
 317
 318enum {
 319        SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
 320        SIENA_STAT_tx_good_bytes,
 321        SIENA_STAT_tx_bad_bytes,
 322        SIENA_STAT_tx_packets,
 323        SIENA_STAT_tx_bad,
 324        SIENA_STAT_tx_pause,
 325        SIENA_STAT_tx_control,
 326        SIENA_STAT_tx_unicast,
 327        SIENA_STAT_tx_multicast,
 328        SIENA_STAT_tx_broadcast,
 329        SIENA_STAT_tx_lt64,
 330        SIENA_STAT_tx_64,
 331        SIENA_STAT_tx_65_to_127,
 332        SIENA_STAT_tx_128_to_255,
 333        SIENA_STAT_tx_256_to_511,
 334        SIENA_STAT_tx_512_to_1023,
 335        SIENA_STAT_tx_1024_to_15xx,
 336        SIENA_STAT_tx_15xx_to_jumbo,
 337        SIENA_STAT_tx_gtjumbo,
 338        SIENA_STAT_tx_collision,
 339        SIENA_STAT_tx_single_collision,
 340        SIENA_STAT_tx_multiple_collision,
 341        SIENA_STAT_tx_excessive_collision,
 342        SIENA_STAT_tx_deferred,
 343        SIENA_STAT_tx_late_collision,
 344        SIENA_STAT_tx_excessive_deferred,
 345        SIENA_STAT_tx_non_tcpudp,
 346        SIENA_STAT_tx_mac_src_error,
 347        SIENA_STAT_tx_ip_src_error,
 348        SIENA_STAT_rx_bytes,
 349        SIENA_STAT_rx_good_bytes,
 350        SIENA_STAT_rx_bad_bytes,
 351        SIENA_STAT_rx_packets,
 352        SIENA_STAT_rx_good,
 353        SIENA_STAT_rx_bad,
 354        SIENA_STAT_rx_pause,
 355        SIENA_STAT_rx_control,
 356        SIENA_STAT_rx_unicast,
 357        SIENA_STAT_rx_multicast,
 358        SIENA_STAT_rx_broadcast,
 359        SIENA_STAT_rx_lt64,
 360        SIENA_STAT_rx_64,
 361        SIENA_STAT_rx_65_to_127,
 362        SIENA_STAT_rx_128_to_255,
 363        SIENA_STAT_rx_256_to_511,
 364        SIENA_STAT_rx_512_to_1023,
 365        SIENA_STAT_rx_1024_to_15xx,
 366        SIENA_STAT_rx_15xx_to_jumbo,
 367        SIENA_STAT_rx_gtjumbo,
 368        SIENA_STAT_rx_bad_gtjumbo,
 369        SIENA_STAT_rx_overflow,
 370        SIENA_STAT_rx_false_carrier,
 371        SIENA_STAT_rx_symbol_error,
 372        SIENA_STAT_rx_align_error,
 373        SIENA_STAT_rx_length_error,
 374        SIENA_STAT_rx_internal_error,
 375        SIENA_STAT_rx_nodesc_drop_cnt,
 376        SIENA_STAT_COUNT
 377};
 378
 379/**
 380 * struct siena_nic_data - Siena NIC state
 381 * @efx: Pointer back to main interface structure
 382 * @wol_filter_id: Wake-on-LAN packet filter id
 383 * @stats: Hardware statistics
 384 * @vf: Array of &struct siena_vf objects
 385 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
 386 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
 387 * @local_addr_list: List of local addresses. Protected by %local_lock.
 388 * @local_page_list: List of DMA addressable pages used to broadcast
 389 *      %local_addr_list. Protected by %local_lock.
 390 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
 391 * @peer_work: Work item to broadcast peer addresses to VMs.
 392 */
 393struct siena_nic_data {
 394        struct efx_nic *efx;
 395        int wol_filter_id;
 396        u64 stats[SIENA_STAT_COUNT];
 397#ifdef CONFIG_SFC_SRIOV
 398        struct siena_vf *vf;
 399        struct efx_channel *vfdi_channel;
 400        unsigned vf_buftbl_base;
 401        struct efx_buffer vfdi_status;
 402        struct list_head local_addr_list;
 403        struct list_head local_page_list;
 404        struct mutex local_lock;
 405        struct work_struct peer_work;
 406#endif
 407};
 408
 409enum {
 410        EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
 411        EF10_STAT_port_tx_packets,
 412        EF10_STAT_port_tx_pause,
 413        EF10_STAT_port_tx_control,
 414        EF10_STAT_port_tx_unicast,
 415        EF10_STAT_port_tx_multicast,
 416        EF10_STAT_port_tx_broadcast,
 417        EF10_STAT_port_tx_lt64,
 418        EF10_STAT_port_tx_64,
 419        EF10_STAT_port_tx_65_to_127,
 420        EF10_STAT_port_tx_128_to_255,
 421        EF10_STAT_port_tx_256_to_511,
 422        EF10_STAT_port_tx_512_to_1023,
 423        EF10_STAT_port_tx_1024_to_15xx,
 424        EF10_STAT_port_tx_15xx_to_jumbo,
 425        EF10_STAT_port_rx_bytes,
 426        EF10_STAT_port_rx_bytes_minus_good_bytes,
 427        EF10_STAT_port_rx_good_bytes,
 428        EF10_STAT_port_rx_bad_bytes,
 429        EF10_STAT_port_rx_packets,
 430        EF10_STAT_port_rx_good,
 431        EF10_STAT_port_rx_bad,
 432        EF10_STAT_port_rx_pause,
 433        EF10_STAT_port_rx_control,
 434        EF10_STAT_port_rx_unicast,
 435        EF10_STAT_port_rx_multicast,
 436        EF10_STAT_port_rx_broadcast,
 437        EF10_STAT_port_rx_lt64,
 438        EF10_STAT_port_rx_64,
 439        EF10_STAT_port_rx_65_to_127,
 440        EF10_STAT_port_rx_128_to_255,
 441        EF10_STAT_port_rx_256_to_511,
 442        EF10_STAT_port_rx_512_to_1023,
 443        EF10_STAT_port_rx_1024_to_15xx,
 444        EF10_STAT_port_rx_15xx_to_jumbo,
 445        EF10_STAT_port_rx_gtjumbo,
 446        EF10_STAT_port_rx_bad_gtjumbo,
 447        EF10_STAT_port_rx_overflow,
 448        EF10_STAT_port_rx_align_error,
 449        EF10_STAT_port_rx_length_error,
 450        EF10_STAT_port_rx_nodesc_drops,
 451        EF10_STAT_port_rx_pm_trunc_bb_overflow,
 452        EF10_STAT_port_rx_pm_discard_bb_overflow,
 453        EF10_STAT_port_rx_pm_trunc_vfifo_full,
 454        EF10_STAT_port_rx_pm_discard_vfifo_full,
 455        EF10_STAT_port_rx_pm_trunc_qbb,
 456        EF10_STAT_port_rx_pm_discard_qbb,
 457        EF10_STAT_port_rx_pm_discard_mapping,
 458        EF10_STAT_port_rx_dp_q_disabled_packets,
 459        EF10_STAT_port_rx_dp_di_dropped_packets,
 460        EF10_STAT_port_rx_dp_streaming_packets,
 461        EF10_STAT_port_rx_dp_hlb_fetch,
 462        EF10_STAT_port_rx_dp_hlb_wait,
 463        EF10_STAT_rx_unicast,
 464        EF10_STAT_rx_unicast_bytes,
 465        EF10_STAT_rx_multicast,
 466        EF10_STAT_rx_multicast_bytes,
 467        EF10_STAT_rx_broadcast,
 468        EF10_STAT_rx_broadcast_bytes,
 469        EF10_STAT_rx_bad,
 470        EF10_STAT_rx_bad_bytes,
 471        EF10_STAT_rx_overflow,
 472        EF10_STAT_tx_unicast,
 473        EF10_STAT_tx_unicast_bytes,
 474        EF10_STAT_tx_multicast,
 475        EF10_STAT_tx_multicast_bytes,
 476        EF10_STAT_tx_broadcast,
 477        EF10_STAT_tx_broadcast_bytes,
 478        EF10_STAT_tx_bad,
 479        EF10_STAT_tx_bad_bytes,
 480        EF10_STAT_tx_overflow,
 481        EF10_STAT_COUNT
 482};
 483
 484/* Maximum number of TX PIO buffers we may allocate to a function.
 485 * This matches the total number of buffers on each SFC9100-family
 486 * controller.
 487 */
 488#define EF10_TX_PIOBUF_COUNT 16
 489
 490/**
 491 * struct efx_ef10_nic_data - EF10 architecture NIC state
 492 * @mcdi_buf: DMA buffer for MCDI
 493 * @warm_boot_count: Last seen MC warm boot count
 494 * @vi_base: Absolute index of first VI in this function
 495 * @n_allocated_vis: Number of VIs allocated to this function
 496 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
 497 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
 498 * @n_piobufs: Number of PIO buffers allocated to this function
 499 * @wc_membase: Base address of write-combining mapping of the memory BAR
 500 * @pio_write_base: Base address for writing PIO buffers
 501 * @pio_write_vi_base: Relative VI number for @pio_write_base
 502 * @piobuf_handle: Handle of each PIO buffer allocated
 503 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
 504 *      reboot
 505 * @rx_rss_context: Firmware handle for our RSS context
 506 * @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared
 507 * @stats: Hardware statistics
 508 * @workaround_35388: Flag: firmware supports workaround for bug 35388
 509 * @workaround_26807: Flag: firmware supports workaround for bug 26807
 510 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
 511 *      after MC reboot
 512 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
 513 *      %MC_CMD_GET_CAPABILITIES response)
 514 * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
 515 * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
 516 * @vport_id: The function's vport ID, only relevant for PFs
 517 * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
 518 * @pf_index: The number for this PF, or the parent PF if this is a VF
 519#ifdef CONFIG_SFC_SRIOV
 520 * @vf: Pointer to VF data structure
 521#endif
 522 */
 523struct efx_ef10_nic_data {
 524        struct efx_buffer mcdi_buf;
 525        u16 warm_boot_count;
 526        unsigned int vi_base;
 527        unsigned int n_allocated_vis;
 528        bool must_realloc_vis;
 529        bool must_restore_filters;
 530        unsigned int n_piobufs;
 531        void __iomem *wc_membase, *pio_write_base;
 532        unsigned int pio_write_vi_base;
 533        unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
 534        bool must_restore_piobufs;
 535        u32 rx_rss_context;
 536        bool rx_rss_context_exclusive;
 537        u64 stats[EF10_STAT_COUNT];
 538        bool workaround_35388;
 539        bool workaround_26807;
 540        bool must_check_datapath_caps;
 541        u32 datapath_caps;
 542        unsigned int rx_dpcpu_fw_id;
 543        unsigned int tx_dpcpu_fw_id;
 544        unsigned int vport_id;
 545        bool must_probe_vswitching;
 546        unsigned int pf_index;
 547        u8 port_id[ETH_ALEN];
 548#ifdef CONFIG_SFC_SRIOV
 549        unsigned int vf_index;
 550        struct ef10_vf *vf;
 551#endif
 552        u8 vport_mac[ETH_ALEN];
 553};
 554
 555int efx_init_sriov(void);
 556void efx_fini_sriov(void);
 557
 558struct ethtool_ts_info;
 559int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
 560void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
 561void efx_ptp_remove(struct efx_nic *efx);
 562int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
 563int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
 564void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
 565bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
 566int efx_ptp_get_mode(struct efx_nic *efx);
 567int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
 568                        unsigned int new_mode);
 569int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
 570void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
 571size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
 572size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
 573void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
 574void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
 575                                   struct sk_buff *skb);
 576static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
 577                                               struct sk_buff *skb)
 578{
 579        if (channel->sync_events_state == SYNC_EVENTS_VALID)
 580                __efx_rx_skb_attach_timestamp(channel, skb);
 581}
 582void efx_ptp_start_datapath(struct efx_nic *efx);
 583void efx_ptp_stop_datapath(struct efx_nic *efx);
 584
 585extern const struct efx_nic_type falcon_a1_nic_type;
 586extern const struct efx_nic_type falcon_b0_nic_type;
 587extern const struct efx_nic_type siena_a0_nic_type;
 588extern const struct efx_nic_type efx_hunt_a0_nic_type;
 589extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
 590
 591/**************************************************************************
 592 *
 593 * Externs
 594 *
 595 **************************************************************************
 596 */
 597
 598int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
 599
 600/* TX data path */
 601static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
 602{
 603        return tx_queue->efx->type->tx_probe(tx_queue);
 604}
 605static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
 606{
 607        tx_queue->efx->type->tx_init(tx_queue);
 608}
 609static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
 610{
 611        tx_queue->efx->type->tx_remove(tx_queue);
 612}
 613static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
 614{
 615        tx_queue->efx->type->tx_write(tx_queue);
 616}
 617
 618/* RX data path */
 619static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
 620{
 621        return rx_queue->efx->type->rx_probe(rx_queue);
 622}
 623static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
 624{
 625        rx_queue->efx->type->rx_init(rx_queue);
 626}
 627static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
 628{
 629        rx_queue->efx->type->rx_remove(rx_queue);
 630}
 631static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
 632{
 633        rx_queue->efx->type->rx_write(rx_queue);
 634}
 635static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
 636{
 637        rx_queue->efx->type->rx_defer_refill(rx_queue);
 638}
 639
 640/* Event data path */
 641static inline int efx_nic_probe_eventq(struct efx_channel *channel)
 642{
 643        return channel->efx->type->ev_probe(channel);
 644}
 645static inline int efx_nic_init_eventq(struct efx_channel *channel)
 646{
 647        return channel->efx->type->ev_init(channel);
 648}
 649static inline void efx_nic_fini_eventq(struct efx_channel *channel)
 650{
 651        channel->efx->type->ev_fini(channel);
 652}
 653static inline void efx_nic_remove_eventq(struct efx_channel *channel)
 654{
 655        channel->efx->type->ev_remove(channel);
 656}
 657static inline int
 658efx_nic_process_eventq(struct efx_channel *channel, int quota)
 659{
 660        return channel->efx->type->ev_process(channel, quota);
 661}
 662static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
 663{
 664        channel->efx->type->ev_read_ack(channel);
 665}
 666void efx_nic_event_test_start(struct efx_channel *channel);
 667
 668/* Falcon/Siena queue operations */
 669int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
 670void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
 671void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
 672void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
 673void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
 674int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
 675void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
 676void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
 677void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
 678void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
 679void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
 680int efx_farch_ev_probe(struct efx_channel *channel);
 681int efx_farch_ev_init(struct efx_channel *channel);
 682void efx_farch_ev_fini(struct efx_channel *channel);
 683void efx_farch_ev_remove(struct efx_channel *channel);
 684int efx_farch_ev_process(struct efx_channel *channel, int quota);
 685void efx_farch_ev_read_ack(struct efx_channel *channel);
 686void efx_farch_ev_test_generate(struct efx_channel *channel);
 687
 688/* Falcon/Siena filter operations */
 689int efx_farch_filter_table_probe(struct efx_nic *efx);
 690void efx_farch_filter_table_restore(struct efx_nic *efx);
 691void efx_farch_filter_table_remove(struct efx_nic *efx);
 692void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
 693s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
 694                            bool replace);
 695int efx_farch_filter_remove_safe(struct efx_nic *efx,
 696                                 enum efx_filter_priority priority,
 697                                 u32 filter_id);
 698int efx_farch_filter_get_safe(struct efx_nic *efx,
 699                              enum efx_filter_priority priority, u32 filter_id,
 700                              struct efx_filter_spec *);
 701int efx_farch_filter_clear_rx(struct efx_nic *efx,
 702                              enum efx_filter_priority priority);
 703u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
 704                                   enum efx_filter_priority priority);
 705u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
 706s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
 707                                enum efx_filter_priority priority, u32 *buf,
 708                                u32 size);
 709#ifdef CONFIG_RFS_ACCEL
 710s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
 711                                struct efx_filter_spec *spec);
 712bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
 713                                     unsigned int index);
 714#endif
 715void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
 716
 717bool efx_nic_event_present(struct efx_channel *channel);
 718
 719/* Some statistics are computed as A - B where A and B each increase
 720 * linearly with some hardware counter(s) and the counters are read
 721 * asynchronously.  If the counters contributing to B are always read
 722 * after those contributing to A, the computed value may be lower than
 723 * the true value by some variable amount, and may decrease between
 724 * subsequent computations.
 725 *
 726 * We should never allow statistics to decrease or to exceed the true
 727 * value.  Since the computed value will never be greater than the
 728 * true value, we can achieve this by only storing the computed value
 729 * when it increases.
 730 */
 731static inline void efx_update_diff_stat(u64 *stat, u64 diff)
 732{
 733        if ((s64)(diff - *stat) > 0)
 734                *stat = diff;
 735}
 736
 737/* Interrupts */
 738int efx_nic_init_interrupt(struct efx_nic *efx);
 739void efx_nic_irq_test_start(struct efx_nic *efx);
 740void efx_nic_fini_interrupt(struct efx_nic *efx);
 741
 742/* Falcon/Siena interrupts */
 743void efx_farch_irq_enable_master(struct efx_nic *efx);
 744void efx_farch_irq_test_generate(struct efx_nic *efx);
 745void efx_farch_irq_disable_master(struct efx_nic *efx);
 746irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
 747irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
 748irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
 749
 750static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
 751{
 752        return ACCESS_ONCE(channel->event_test_cpu);
 753}
 754static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
 755{
 756        return ACCESS_ONCE(efx->last_irq_cpu);
 757}
 758
 759/* Global Resources */
 760int efx_nic_flush_queues(struct efx_nic *efx);
 761void siena_prepare_flush(struct efx_nic *efx);
 762int efx_farch_fini_dmaq(struct efx_nic *efx);
 763void efx_farch_finish_flr(struct efx_nic *efx);
 764void siena_finish_flush(struct efx_nic *efx);
 765void falcon_start_nic_stats(struct efx_nic *efx);
 766void falcon_stop_nic_stats(struct efx_nic *efx);
 767int falcon_reset_xaui(struct efx_nic *efx);
 768void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
 769void efx_farch_init_common(struct efx_nic *efx);
 770void efx_ef10_handle_drain_event(struct efx_nic *efx);
 771void efx_farch_rx_push_indir_table(struct efx_nic *efx);
 772
 773int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 774                         unsigned int len, gfp_t gfp_flags);
 775void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
 776
 777/* Tests */
 778struct efx_farch_register_test {
 779        unsigned address;
 780        efx_oword_t mask;
 781};
 782int efx_farch_test_registers(struct efx_nic *efx,
 783                             const struct efx_farch_register_test *regs,
 784                             size_t n_regs);
 785
 786size_t efx_nic_get_regs_len(struct efx_nic *efx);
 787void efx_nic_get_regs(struct efx_nic *efx, void *buf);
 788
 789size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
 790                              const unsigned long *mask, u8 *names);
 791void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
 792                          const unsigned long *mask, u64 *stats,
 793                          const void *dma_buf, bool accumulate);
 794void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
 795
 796#define EFX_MAX_FLUSH_TIME 5000
 797
 798void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 799                              efx_qword_t *event);
 800
 801#endif /* EFX_NIC_H */
 802