linux/drivers/net/ethernet/xilinx/xilinx_axienet_main.c
<<
>>
Prefs
   1/*
   2 * Xilinx Axi Ethernet device driver
   3 *
   4 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
   5 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
   6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
   7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
   8 * Copyright (c) 2010 - 2011 PetaLogix
   9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
  10 *
  11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
  12 * and Spartan6.
  13 *
  14 * TODO:
  15 *  - Add Axi Fifo support.
  16 *  - Factor out Axi DMA code into separate driver.
  17 *  - Test and fix basic multicast filtering.
  18 *  - Add support for extended multicast filtering.
  19 *  - Test basic VLAN support.
  20 *  - Add support for extended VLAN support.
  21 */
  22
  23#include <linux/delay.h>
  24#include <linux/etherdevice.h>
  25#include <linux/module.h>
  26#include <linux/netdevice.h>
  27#include <linux/of_mdio.h>
  28#include <linux/of_platform.h>
  29#include <linux/of_irq.h>
  30#include <linux/of_address.h>
  31#include <linux/skbuff.h>
  32#include <linux/spinlock.h>
  33#include <linux/phy.h>
  34#include <linux/mii.h>
  35#include <linux/ethtool.h>
  36
  37#include "xilinx_axienet.h"
  38
  39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
  40#define TX_BD_NUM               64
  41#define RX_BD_NUM               128
  42
  43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
  44#define DRIVER_NAME             "xaxienet"
  45#define DRIVER_DESCRIPTION      "Xilinx Axi Ethernet driver"
  46#define DRIVER_VERSION          "1.00a"
  47
  48#define AXIENET_REGS_N          32
  49
  50/* Match table for of_platform binding */
  51static const struct of_device_id axienet_of_match[] = {
  52        { .compatible = "xlnx,axi-ethernet-1.00.a", },
  53        { .compatible = "xlnx,axi-ethernet-1.01.a", },
  54        { .compatible = "xlnx,axi-ethernet-2.01.a", },
  55        {},
  56};
  57
  58MODULE_DEVICE_TABLE(of, axienet_of_match);
  59
  60/* Option table for setting up Axi Ethernet hardware options */
  61static struct axienet_option axienet_options[] = {
  62        /* Turn on jumbo packet support for both Rx and Tx */
  63        {
  64                .opt = XAE_OPTION_JUMBO,
  65                .reg = XAE_TC_OFFSET,
  66                .m_or = XAE_TC_JUM_MASK,
  67        }, {
  68                .opt = XAE_OPTION_JUMBO,
  69                .reg = XAE_RCW1_OFFSET,
  70                .m_or = XAE_RCW1_JUM_MASK,
  71        }, { /* Turn on VLAN packet support for both Rx and Tx */
  72                .opt = XAE_OPTION_VLAN,
  73                .reg = XAE_TC_OFFSET,
  74                .m_or = XAE_TC_VLAN_MASK,
  75        }, {
  76                .opt = XAE_OPTION_VLAN,
  77                .reg = XAE_RCW1_OFFSET,
  78                .m_or = XAE_RCW1_VLAN_MASK,
  79        }, { /* Turn on FCS stripping on receive packets */
  80                .opt = XAE_OPTION_FCS_STRIP,
  81                .reg = XAE_RCW1_OFFSET,
  82                .m_or = XAE_RCW1_FCS_MASK,
  83        }, { /* Turn on FCS insertion on transmit packets */
  84                .opt = XAE_OPTION_FCS_INSERT,
  85                .reg = XAE_TC_OFFSET,
  86                .m_or = XAE_TC_FCS_MASK,
  87        }, { /* Turn off length/type field checking on receive packets */
  88                .opt = XAE_OPTION_LENTYPE_ERR,
  89                .reg = XAE_RCW1_OFFSET,
  90                .m_or = XAE_RCW1_LT_DIS_MASK,
  91        }, { /* Turn on Rx flow control */
  92                .opt = XAE_OPTION_FLOW_CONTROL,
  93                .reg = XAE_FCC_OFFSET,
  94                .m_or = XAE_FCC_FCRX_MASK,
  95        }, { /* Turn on Tx flow control */
  96                .opt = XAE_OPTION_FLOW_CONTROL,
  97                .reg = XAE_FCC_OFFSET,
  98                .m_or = XAE_FCC_FCTX_MASK,
  99        }, { /* Turn on promiscuous frame filtering */
 100                .opt = XAE_OPTION_PROMISC,
 101                .reg = XAE_FMI_OFFSET,
 102                .m_or = XAE_FMI_PM_MASK,
 103        }, { /* Enable transmitter */
 104                .opt = XAE_OPTION_TXEN,
 105                .reg = XAE_TC_OFFSET,
 106                .m_or = XAE_TC_TX_MASK,
 107        }, { /* Enable receiver */
 108                .opt = XAE_OPTION_RXEN,
 109                .reg = XAE_RCW1_OFFSET,
 110                .m_or = XAE_RCW1_RX_MASK,
 111        },
 112        {}
 113};
 114
 115/**
 116 * axienet_dma_in32 - Memory mapped Axi DMA register read
 117 * @lp:         Pointer to axienet local structure
 118 * @reg:        Address offset from the base address of the Axi DMA core
 119 *
 120 * Return: The contents of the Axi DMA register
 121 *
 122 * This function returns the contents of the corresponding Axi DMA register.
 123 */
 124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
 125{
 126        return in_be32(lp->dma_regs + reg);
 127}
 128
 129/**
 130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
 131 * @lp:         Pointer to axienet local structure
 132 * @reg:        Address offset from the base address of the Axi DMA core
 133 * @value:      Value to be written into the Axi DMA register
 134 *
 135 * This function writes the desired value into the corresponding Axi DMA
 136 * register.
 137 */
 138static inline void axienet_dma_out32(struct axienet_local *lp,
 139                                     off_t reg, u32 value)
 140{
 141        out_be32((lp->dma_regs + reg), value);
 142}
 143
 144/**
 145 * axienet_dma_bd_release - Release buffer descriptor rings
 146 * @ndev:       Pointer to the net_device structure
 147 *
 148 * This function is used to release the descriptors allocated in
 149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 150 * driver stop api is called.
 151 */
 152static void axienet_dma_bd_release(struct net_device *ndev)
 153{
 154        int i;
 155        struct axienet_local *lp = netdev_priv(ndev);
 156
 157        for (i = 0; i < RX_BD_NUM; i++) {
 158                dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
 159                                 lp->max_frm_size, DMA_FROM_DEVICE);
 160                dev_kfree_skb((struct sk_buff *)
 161                              (lp->rx_bd_v[i].sw_id_offset));
 162        }
 163
 164        if (lp->rx_bd_v) {
 165                dma_free_coherent(ndev->dev.parent,
 166                                  sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 167                                  lp->rx_bd_v,
 168                                  lp->rx_bd_p);
 169        }
 170        if (lp->tx_bd_v) {
 171                dma_free_coherent(ndev->dev.parent,
 172                                  sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 173                                  lp->tx_bd_v,
 174                                  lp->tx_bd_p);
 175        }
 176}
 177
 178/**
 179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 180 * @ndev:       Pointer to the net_device structure
 181 *
 182 * Return: 0, on success -ENOMEM, on failure
 183 *
 184 * This function is called to initialize the Rx and Tx DMA descriptor
 185 * rings. This initializes the descriptors with required default values
 186 * and is called when Axi Ethernet driver reset is called.
 187 */
 188static int axienet_dma_bd_init(struct net_device *ndev)
 189{
 190        u32 cr;
 191        int i;
 192        struct sk_buff *skb;
 193        struct axienet_local *lp = netdev_priv(ndev);
 194
 195        /* Reset the indexes which are used for accessing the BDs */
 196        lp->tx_bd_ci = 0;
 197        lp->tx_bd_tail = 0;
 198        lp->rx_bd_ci = 0;
 199
 200        /* Allocate the Tx and Rx buffer descriptors. */
 201        lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 202                                          sizeof(*lp->tx_bd_v) * TX_BD_NUM,
 203                                          &lp->tx_bd_p, GFP_KERNEL);
 204        if (!lp->tx_bd_v)
 205                goto out;
 206
 207        lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
 208                                          sizeof(*lp->rx_bd_v) * RX_BD_NUM,
 209                                          &lp->rx_bd_p, GFP_KERNEL);
 210        if (!lp->rx_bd_v)
 211                goto out;
 212
 213        for (i = 0; i < TX_BD_NUM; i++) {
 214                lp->tx_bd_v[i].next = lp->tx_bd_p +
 215                                      sizeof(*lp->tx_bd_v) *
 216                                      ((i + 1) % TX_BD_NUM);
 217        }
 218
 219        for (i = 0; i < RX_BD_NUM; i++) {
 220                lp->rx_bd_v[i].next = lp->rx_bd_p +
 221                                      sizeof(*lp->rx_bd_v) *
 222                                      ((i + 1) % RX_BD_NUM);
 223
 224                skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 225                if (!skb)
 226                        goto out;
 227
 228                lp->rx_bd_v[i].sw_id_offset = (u32) skb;
 229                lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
 230                                                     skb->data,
 231                                                     lp->max_frm_size,
 232                                                     DMA_FROM_DEVICE);
 233                lp->rx_bd_v[i].cntrl = lp->max_frm_size;
 234        }
 235
 236        /* Start updating the Rx channel control register */
 237        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 238        /* Update the interrupt coalesce count */
 239        cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
 240              ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
 241        /* Update the delay timer count */
 242        cr = ((cr & ~XAXIDMA_DELAY_MASK) |
 243              (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 244        /* Enable coalesce, delay timer and error interrupts */
 245        cr |= XAXIDMA_IRQ_ALL_MASK;
 246        /* Write to the Rx channel control register */
 247        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 248
 249        /* Start updating the Tx channel control register */
 250        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 251        /* Update the interrupt coalesce count */
 252        cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
 253              ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
 254        /* Update the delay timer count */
 255        cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
 256              (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 257        /* Enable coalesce, delay timer and error interrupts */
 258        cr |= XAXIDMA_IRQ_ALL_MASK;
 259        /* Write to the Tx channel control register */
 260        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 261
 262        /* Populate the tail pointer and bring the Rx Axi DMA engine out of
 263         * halted state. This will make the Rx side ready for reception.
 264         */
 265        axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
 266        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 267        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 268                          cr | XAXIDMA_CR_RUNSTOP_MASK);
 269        axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
 270                          (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
 271
 272        /* Write to the RS (Run-stop) bit in the Tx channel control register.
 273         * Tx channel is now ready to run. But only after we write to the
 274         * tail pointer register that the Tx channel will start transmitting.
 275         */
 276        axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
 277        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 278        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 279                          cr | XAXIDMA_CR_RUNSTOP_MASK);
 280
 281        return 0;
 282out:
 283        axienet_dma_bd_release(ndev);
 284        return -ENOMEM;
 285}
 286
 287/**
 288 * axienet_set_mac_address - Write the MAC address
 289 * @ndev:       Pointer to the net_device structure
 290 * @address:    6 byte Address to be written as MAC address
 291 *
 292 * This function is called to initialize the MAC address of the Axi Ethernet
 293 * core. It writes to the UAW0 and UAW1 registers of the core.
 294 */
 295static void axienet_set_mac_address(struct net_device *ndev, void *address)
 296{
 297        struct axienet_local *lp = netdev_priv(ndev);
 298
 299        if (address)
 300                memcpy(ndev->dev_addr, address, ETH_ALEN);
 301        if (!is_valid_ether_addr(ndev->dev_addr))
 302                eth_random_addr(ndev->dev_addr);
 303
 304        /* Set up unicast MAC address filter set its mac address */
 305        axienet_iow(lp, XAE_UAW0_OFFSET,
 306                    (ndev->dev_addr[0]) |
 307                    (ndev->dev_addr[1] << 8) |
 308                    (ndev->dev_addr[2] << 16) |
 309                    (ndev->dev_addr[3] << 24));
 310        axienet_iow(lp, XAE_UAW1_OFFSET,
 311                    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
 312                      ~XAE_UAW1_UNICASTADDR_MASK) |
 313                     (ndev->dev_addr[4] |
 314                     (ndev->dev_addr[5] << 8))));
 315}
 316
 317/**
 318 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 319 * @ndev:       Pointer to the net_device structure
 320 * @p:          6 byte Address to be written as MAC address
 321 *
 322 * Return: 0 for all conditions. Presently, there is no failure case.
 323 *
 324 * This function is called to initialize the MAC address of the Axi Ethernet
 325 * core. It calls the core specific axienet_set_mac_address. This is the
 326 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 327 */
 328static int netdev_set_mac_address(struct net_device *ndev, void *p)
 329{
 330        struct sockaddr *addr = p;
 331        axienet_set_mac_address(ndev, addr->sa_data);
 332        return 0;
 333}
 334
 335/**
 336 * axienet_set_multicast_list - Prepare the multicast table
 337 * @ndev:       Pointer to the net_device structure
 338 *
 339 * This function is called to initialize the multicast table during
 340 * initialization. The Axi Ethernet basic multicast support has a four-entry
 341 * multicast table which is initialized here. Additionally this function
 342 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 343 * means whenever the multicast table entries need to be updated this
 344 * function gets called.
 345 */
 346static void axienet_set_multicast_list(struct net_device *ndev)
 347{
 348        int i;
 349        u32 reg, af0reg, af1reg;
 350        struct axienet_local *lp = netdev_priv(ndev);
 351
 352        if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
 353            netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
 354                /* We must make the kernel realize we had to move into
 355                 * promiscuous mode. If it was a promiscuous mode request
 356                 * the flag is already set. If not we set it.
 357                 */
 358                ndev->flags |= IFF_PROMISC;
 359                reg = axienet_ior(lp, XAE_FMI_OFFSET);
 360                reg |= XAE_FMI_PM_MASK;
 361                axienet_iow(lp, XAE_FMI_OFFSET, reg);
 362                dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
 363        } else if (!netdev_mc_empty(ndev)) {
 364                struct netdev_hw_addr *ha;
 365
 366                i = 0;
 367                netdev_for_each_mc_addr(ha, ndev) {
 368                        if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
 369                                break;
 370
 371                        af0reg = (ha->addr[0]);
 372                        af0reg |= (ha->addr[1] << 8);
 373                        af0reg |= (ha->addr[2] << 16);
 374                        af0reg |= (ha->addr[3] << 24);
 375
 376                        af1reg = (ha->addr[4]);
 377                        af1reg |= (ha->addr[5] << 8);
 378
 379                        reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 380                        reg |= i;
 381
 382                        axienet_iow(lp, XAE_FMI_OFFSET, reg);
 383                        axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
 384                        axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
 385                        i++;
 386                }
 387        } else {
 388                reg = axienet_ior(lp, XAE_FMI_OFFSET);
 389                reg &= ~XAE_FMI_PM_MASK;
 390
 391                axienet_iow(lp, XAE_FMI_OFFSET, reg);
 392
 393                for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
 394                        reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 395                        reg |= i;
 396
 397                        axienet_iow(lp, XAE_FMI_OFFSET, reg);
 398                        axienet_iow(lp, XAE_AF0_OFFSET, 0);
 399                        axienet_iow(lp, XAE_AF1_OFFSET, 0);
 400                }
 401
 402                dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
 403        }
 404}
 405
 406/**
 407 * axienet_setoptions - Set an Axi Ethernet option
 408 * @ndev:       Pointer to the net_device structure
 409 * @options:    Option to be enabled/disabled
 410 *
 411 * The Axi Ethernet core has multiple features which can be selectively turned
 412 * on or off. The typical options could be jumbo frame option, basic VLAN
 413 * option, promiscuous mode option etc. This function is used to set or clear
 414 * these options in the Axi Ethernet hardware. This is done through
 415 * axienet_option structure .
 416 */
 417static void axienet_setoptions(struct net_device *ndev, u32 options)
 418{
 419        int reg;
 420        struct axienet_local *lp = netdev_priv(ndev);
 421        struct axienet_option *tp = &axienet_options[0];
 422
 423        while (tp->opt) {
 424                reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
 425                if (options & tp->opt)
 426                        reg |= tp->m_or;
 427                axienet_iow(lp, tp->reg, reg);
 428                tp++;
 429        }
 430
 431        lp->options |= options;
 432}
 433
 434static void __axienet_device_reset(struct axienet_local *lp,
 435                                   struct device *dev, off_t offset)
 436{
 437        u32 timeout;
 438        /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
 439         * process of Axi DMA takes a while to complete as all pending
 440         * commands/transfers will be flushed or completed during this
 441         * reset process.
 442         */
 443        axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
 444        timeout = DELAY_OF_ONE_MILLISEC;
 445        while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
 446                udelay(1);
 447                if (--timeout == 0) {
 448                        netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
 449                                   __func__);
 450                        break;
 451                }
 452        }
 453}
 454
 455/**
 456 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 457 * @ndev:       Pointer to the net_device structure
 458 *
 459 * This function is called to reset and initialize the Axi Ethernet core. This
 460 * is typically called during initialization. It does a reset of the Axi DMA
 461 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 462 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
 463 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 464 * core.
 465 */
 466static void axienet_device_reset(struct net_device *ndev)
 467{
 468        u32 axienet_status;
 469        struct axienet_local *lp = netdev_priv(ndev);
 470
 471        __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
 472        __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
 473
 474        lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
 475        lp->options |= XAE_OPTION_VLAN;
 476        lp->options &= (~XAE_OPTION_JUMBO);
 477
 478        if ((ndev->mtu > XAE_MTU) &&
 479                (ndev->mtu <= XAE_JUMBO_MTU)) {
 480                lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
 481                                        XAE_TRL_SIZE;
 482
 483                if (lp->max_frm_size <= lp->rxmem)
 484                        lp->options |= XAE_OPTION_JUMBO;
 485        }
 486
 487        if (axienet_dma_bd_init(ndev)) {
 488                netdev_err(ndev, "%s: descriptor allocation failed\n",
 489                           __func__);
 490        }
 491
 492        axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
 493        axienet_status &= ~XAE_RCW1_RX_MASK;
 494        axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
 495
 496        axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
 497        if (axienet_status & XAE_INT_RXRJECT_MASK)
 498                axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
 499
 500        axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
 501
 502        /* Sync default options with HW but leave receiver and
 503         * transmitter disabled.
 504         */
 505        axienet_setoptions(ndev, lp->options &
 506                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 507        axienet_set_mac_address(ndev, NULL);
 508        axienet_set_multicast_list(ndev);
 509        axienet_setoptions(ndev, lp->options);
 510
 511        ndev->trans_start = jiffies;
 512}
 513
 514/**
 515 * axienet_adjust_link - Adjust the PHY link speed/duplex.
 516 * @ndev:       Pointer to the net_device structure
 517 *
 518 * This function is called to change the speed and duplex setting after
 519 * auto negotiation is done by the PHY. This is the function that gets
 520 * registered with the PHY interface through the "of_phy_connect" call.
 521 */
 522static void axienet_adjust_link(struct net_device *ndev)
 523{
 524        u32 emmc_reg;
 525        u32 link_state;
 526        u32 setspeed = 1;
 527        struct axienet_local *lp = netdev_priv(ndev);
 528        struct phy_device *phy = lp->phy_dev;
 529
 530        link_state = phy->speed | (phy->duplex << 1) | phy->link;
 531        if (lp->last_link != link_state) {
 532                if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
 533                        if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
 534                                setspeed = 0;
 535                } else {
 536                        if ((phy->speed == SPEED_1000) &&
 537                            (lp->phy_type == XAE_PHY_TYPE_MII))
 538                                setspeed = 0;
 539                }
 540
 541                if (setspeed == 1) {
 542                        emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
 543                        emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
 544
 545                        switch (phy->speed) {
 546                        case SPEED_1000:
 547                                emmc_reg |= XAE_EMMC_LINKSPD_1000;
 548                                break;
 549                        case SPEED_100:
 550                                emmc_reg |= XAE_EMMC_LINKSPD_100;
 551                                break;
 552                        case SPEED_10:
 553                                emmc_reg |= XAE_EMMC_LINKSPD_10;
 554                                break;
 555                        default:
 556                                dev_err(&ndev->dev, "Speed other than 10, 100 "
 557                                        "or 1Gbps is not supported\n");
 558                                break;
 559                        }
 560
 561                        axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
 562                        lp->last_link = link_state;
 563                        phy_print_status(phy);
 564                } else {
 565                        netdev_err(ndev,
 566                                   "Error setting Axi Ethernet mac speed\n");
 567                }
 568        }
 569}
 570
 571/**
 572 * axienet_start_xmit_done - Invoked once a transmit is completed by the
 573 * Axi DMA Tx channel.
 574 * @ndev:       Pointer to the net_device structure
 575 *
 576 * This function is invoked from the Axi DMA Tx isr to notify the completion
 577 * of transmit operation. It clears fields in the corresponding Tx BDs and
 578 * unmaps the corresponding buffer so that CPU can regain ownership of the
 579 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 580 * required.
 581 */
 582static void axienet_start_xmit_done(struct net_device *ndev)
 583{
 584        u32 size = 0;
 585        u32 packets = 0;
 586        struct axienet_local *lp = netdev_priv(ndev);
 587        struct axidma_bd *cur_p;
 588        unsigned int status = 0;
 589
 590        cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 591        status = cur_p->status;
 592        while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
 593                dma_unmap_single(ndev->dev.parent, cur_p->phys,
 594                                (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
 595                                DMA_TO_DEVICE);
 596                if (cur_p->app4)
 597                        dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
 598                /*cur_p->phys = 0;*/
 599                cur_p->app0 = 0;
 600                cur_p->app1 = 0;
 601                cur_p->app2 = 0;
 602                cur_p->app4 = 0;
 603                cur_p->status = 0;
 604
 605                size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
 606                packets++;
 607
 608                ++lp->tx_bd_ci;
 609                lp->tx_bd_ci %= TX_BD_NUM;
 610                cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
 611                status = cur_p->status;
 612        }
 613
 614        ndev->stats.tx_packets += packets;
 615        ndev->stats.tx_bytes += size;
 616        netif_wake_queue(ndev);
 617}
 618
 619/**
 620 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 621 * @lp:         Pointer to the axienet_local structure
 622 * @num_frag:   The number of BDs to check for
 623 *
 624 * Return: 0, on success
 625 *          NETDEV_TX_BUSY, if any of the descriptors are not free
 626 *
 627 * This function is invoked before BDs are allocated and transmission starts.
 628 * This function returns 0 if a BD or group of BDs can be allocated for
 629 * transmission. If the BD or any of the BDs are not free the function
 630 * returns a busy status. This is invoked from axienet_start_xmit.
 631 */
 632static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
 633                                            int num_frag)
 634{
 635        struct axidma_bd *cur_p;
 636        cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
 637        if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
 638                return NETDEV_TX_BUSY;
 639        return 0;
 640}
 641
 642/**
 643 * axienet_start_xmit - Starts the transmission.
 644 * @skb:        sk_buff pointer that contains data to be Txed.
 645 * @ndev:       Pointer to net_device structure.
 646 *
 647 * Return: NETDEV_TX_OK, on success
 648 *          NETDEV_TX_BUSY, if any of the descriptors are not free
 649 *
 650 * This function is invoked from upper layers to initiate transmission. The
 651 * function uses the next available free BDs and populates their fields to
 652 * start the transmission. Additionally if checksum offloading is supported,
 653 * it populates AXI Stream Control fields with appropriate values.
 654 */
 655static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 656{
 657        u32 ii;
 658        u32 num_frag;
 659        u32 csum_start_off;
 660        u32 csum_index_off;
 661        skb_frag_t *frag;
 662        dma_addr_t tail_p;
 663        struct axienet_local *lp = netdev_priv(ndev);
 664        struct axidma_bd *cur_p;
 665
 666        num_frag = skb_shinfo(skb)->nr_frags;
 667        cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 668
 669        if (axienet_check_tx_bd_space(lp, num_frag)) {
 670                if (!netif_queue_stopped(ndev))
 671                        netif_stop_queue(ndev);
 672                return NETDEV_TX_BUSY;
 673        }
 674
 675        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 676                if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 677                        /* Tx Full Checksum Offload Enabled */
 678                        cur_p->app0 |= 2;
 679                } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
 680                        csum_start_off = skb_transport_offset(skb);
 681                        csum_index_off = csum_start_off + skb->csum_offset;
 682                        /* Tx Partial Checksum Offload Enabled */
 683                        cur_p->app0 |= 1;
 684                        cur_p->app1 = (csum_start_off << 16) | csum_index_off;
 685                }
 686        } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 687                cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
 688        }
 689
 690        cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
 691        cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
 692                                     skb_headlen(skb), DMA_TO_DEVICE);
 693
 694        for (ii = 0; ii < num_frag; ii++) {
 695                ++lp->tx_bd_tail;
 696                lp->tx_bd_tail %= TX_BD_NUM;
 697                cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 698                frag = &skb_shinfo(skb)->frags[ii];
 699                cur_p->phys = dma_map_single(ndev->dev.parent,
 700                                             skb_frag_address(frag),
 701                                             skb_frag_size(frag),
 702                                             DMA_TO_DEVICE);
 703                cur_p->cntrl = skb_frag_size(frag);
 704        }
 705
 706        cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
 707        cur_p->app4 = (unsigned long)skb;
 708
 709        tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
 710        /* Start the transfer */
 711        axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
 712        ++lp->tx_bd_tail;
 713        lp->tx_bd_tail %= TX_BD_NUM;
 714
 715        return NETDEV_TX_OK;
 716}
 717
 718/**
 719 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
 720 *                BD processing.
 721 * @ndev:       Pointer to net_device structure.
 722 *
 723 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
 724 * does minimal processing and invokes "netif_rx" to complete further
 725 * processing.
 726 */
 727static void axienet_recv(struct net_device *ndev)
 728{
 729        u32 length;
 730        u32 csumstatus;
 731        u32 size = 0;
 732        u32 packets = 0;
 733        dma_addr_t tail_p = 0;
 734        struct axienet_local *lp = netdev_priv(ndev);
 735        struct sk_buff *skb, *new_skb;
 736        struct axidma_bd *cur_p;
 737
 738        cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 739
 740        while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
 741                tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
 742                skb = (struct sk_buff *) (cur_p->sw_id_offset);
 743                length = cur_p->app4 & 0x0000FFFF;
 744
 745                dma_unmap_single(ndev->dev.parent, cur_p->phys,
 746                                 lp->max_frm_size,
 747                                 DMA_FROM_DEVICE);
 748
 749                skb_put(skb, length);
 750                skb->protocol = eth_type_trans(skb, ndev);
 751                /*skb_checksum_none_assert(skb);*/
 752                skb->ip_summed = CHECKSUM_NONE;
 753
 754                /* if we're doing Rx csum offload, set it up */
 755                if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
 756                        csumstatus = (cur_p->app2 &
 757                                      XAE_FULL_CSUM_STATUS_MASK) >> 3;
 758                        if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
 759                            (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
 760                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 761                        }
 762                } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
 763                           skb->protocol == htons(ETH_P_IP) &&
 764                           skb->len > 64) {
 765                        skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
 766                        skb->ip_summed = CHECKSUM_COMPLETE;
 767                }
 768
 769                netif_rx(skb);
 770
 771                size += length;
 772                packets++;
 773
 774                new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 775                if (!new_skb)
 776                        return;
 777
 778                cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
 779                                             lp->max_frm_size,
 780                                             DMA_FROM_DEVICE);
 781                cur_p->cntrl = lp->max_frm_size;
 782                cur_p->status = 0;
 783                cur_p->sw_id_offset = (u32) new_skb;
 784
 785                ++lp->rx_bd_ci;
 786                lp->rx_bd_ci %= RX_BD_NUM;
 787                cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 788        }
 789
 790        ndev->stats.rx_packets += packets;
 791        ndev->stats.rx_bytes += size;
 792
 793        if (tail_p)
 794                axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
 795}
 796
 797/**
 798 * axienet_tx_irq - Tx Done Isr.
 799 * @irq:        irq number
 800 * @_ndev:      net_device pointer
 801 *
 802 * Return: IRQ_HANDLED for all cases.
 803 *
 804 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
 805 * to complete the BD processing.
 806 */
 807static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
 808{
 809        u32 cr;
 810        unsigned int status;
 811        struct net_device *ndev = _ndev;
 812        struct axienet_local *lp = netdev_priv(ndev);
 813
 814        status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 815        if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 816                axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 817                axienet_start_xmit_done(lp->ndev);
 818                goto out;
 819        }
 820        if (!(status & XAXIDMA_IRQ_ALL_MASK))
 821                dev_err(&ndev->dev, "No interrupts asserted in Tx path");
 822        if (status & XAXIDMA_IRQ_ERROR_MASK) {
 823                dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
 824                dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 825                        (lp->tx_bd_v[lp->tx_bd_ci]).phys);
 826
 827                cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 828                /* Disable coalesce, delay timer and error interrupts */
 829                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 830                /* Write to the Tx channel control register */
 831                axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 832
 833                cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 834                /* Disable coalesce, delay timer and error interrupts */
 835                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 836                /* Write to the Rx channel control register */
 837                axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 838
 839                tasklet_schedule(&lp->dma_err_tasklet);
 840                axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 841        }
 842out:
 843        return IRQ_HANDLED;
 844}
 845
 846/**
 847 * axienet_rx_irq - Rx Isr.
 848 * @irq:        irq number
 849 * @_ndev:      net_device pointer
 850 *
 851 * Return: IRQ_HANDLED for all cases.
 852 *
 853 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
 854 * processing.
 855 */
 856static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
 857{
 858        u32 cr;
 859        unsigned int status;
 860        struct net_device *ndev = _ndev;
 861        struct axienet_local *lp = netdev_priv(ndev);
 862
 863        status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 864        if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 865                axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 866                axienet_recv(lp->ndev);
 867                goto out;
 868        }
 869        if (!(status & XAXIDMA_IRQ_ALL_MASK))
 870                dev_err(&ndev->dev, "No interrupts asserted in Rx path");
 871        if (status & XAXIDMA_IRQ_ERROR_MASK) {
 872                dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
 873                dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
 874                        (lp->rx_bd_v[lp->rx_bd_ci]).phys);
 875
 876                cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 877                /* Disable coalesce, delay timer and error interrupts */
 878                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 879                /* Finally write to the Tx channel control register */
 880                axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 881
 882                cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 883                /* Disable coalesce, delay timer and error interrupts */
 884                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 885                /* write to the Rx channel control register */
 886                axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 887
 888                tasklet_schedule(&lp->dma_err_tasklet);
 889                axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 890        }
 891out:
 892        return IRQ_HANDLED;
 893}
 894
 895static void axienet_dma_err_handler(unsigned long data);
 896
 897/**
 898 * axienet_open - Driver open routine.
 899 * @ndev:       Pointer to net_device structure
 900 *
 901 * Return: 0, on success.
 902 *          -ENODEV, if PHY cannot be connected to
 903 *          non-zero error value on failure
 904 *
 905 * This is the driver open routine. It calls phy_start to start the PHY device.
 906 * It also allocates interrupt service routines, enables the interrupt lines
 907 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
 908 * descriptors are initialized.
 909 */
 910static int axienet_open(struct net_device *ndev)
 911{
 912        int ret, mdio_mcreg;
 913        struct axienet_local *lp = netdev_priv(ndev);
 914
 915        dev_dbg(&ndev->dev, "axienet_open()\n");
 916
 917        mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
 918        ret = axienet_mdio_wait_until_ready(lp);
 919        if (ret < 0)
 920                return ret;
 921        /* Disable the MDIO interface till Axi Ethernet Reset is completed.
 922         * When we do an Axi Ethernet reset, it resets the complete core
 923         * including the MDIO. If MDIO is not disabled when the reset
 924         * process is started, MDIO will be broken afterwards.
 925         */
 926        axienet_iow(lp, XAE_MDIO_MC_OFFSET,
 927                    (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
 928        axienet_device_reset(ndev);
 929        /* Enable the MDIO */
 930        axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
 931        ret = axienet_mdio_wait_until_ready(lp);
 932        if (ret < 0)
 933                return ret;
 934
 935        if (lp->phy_node) {
 936                if (lp->phy_type == XAE_PHY_TYPE_GMII) {
 937                        lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
 938                                             axienet_adjust_link, 0,
 939                                             PHY_INTERFACE_MODE_GMII);
 940                } else if (lp->phy_type == XAE_PHY_TYPE_RGMII_2_0) {
 941                        lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
 942                                             axienet_adjust_link, 0,
 943                                             PHY_INTERFACE_MODE_RGMII_ID);
 944                }
 945
 946                if (!lp->phy_dev)
 947                        dev_err(lp->dev, "of_phy_connect() failed\n");
 948                else
 949                        phy_start(lp->phy_dev);
 950        }
 951
 952        /* Enable tasklets for Axi DMA error handling */
 953        tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
 954                     (unsigned long) lp);
 955
 956        /* Enable interrupts for Axi DMA Tx */
 957        ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
 958        if (ret)
 959                goto err_tx_irq;
 960        /* Enable interrupts for Axi DMA Rx */
 961        ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
 962        if (ret)
 963                goto err_rx_irq;
 964
 965        return 0;
 966
 967err_rx_irq:
 968        free_irq(lp->tx_irq, ndev);
 969err_tx_irq:
 970        if (lp->phy_dev)
 971                phy_disconnect(lp->phy_dev);
 972        lp->phy_dev = NULL;
 973        tasklet_kill(&lp->dma_err_tasklet);
 974        dev_err(lp->dev, "request_irq() failed\n");
 975        return ret;
 976}
 977
 978/**
 979 * axienet_stop - Driver stop routine.
 980 * @ndev:       Pointer to net_device structure
 981 *
 982 * Return: 0, on success.
 983 *
 984 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
 985 * device. It also removes the interrupt handlers and disables the interrupts.
 986 * The Axi DMA Tx/Rx BDs are released.
 987 */
 988static int axienet_stop(struct net_device *ndev)
 989{
 990        u32 cr;
 991        struct axienet_local *lp = netdev_priv(ndev);
 992
 993        dev_dbg(&ndev->dev, "axienet_close()\n");
 994
 995        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 996        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 997                          cr & (~XAXIDMA_CR_RUNSTOP_MASK));
 998        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 999        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1000                          cr & (~XAXIDMA_CR_RUNSTOP_MASK));
1001        axienet_setoptions(ndev, lp->options &
1002                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1003
1004        tasklet_kill(&lp->dma_err_tasklet);
1005
1006        free_irq(lp->tx_irq, ndev);
1007        free_irq(lp->rx_irq, ndev);
1008
1009        if (lp->phy_dev)
1010                phy_disconnect(lp->phy_dev);
1011        lp->phy_dev = NULL;
1012
1013        axienet_dma_bd_release(ndev);
1014        return 0;
1015}
1016
1017/**
1018 * axienet_change_mtu - Driver change mtu routine.
1019 * @ndev:       Pointer to net_device structure
1020 * @new_mtu:    New mtu value to be applied
1021 *
1022 * Return: Always returns 0 (success).
1023 *
1024 * This is the change mtu driver routine. It checks if the Axi Ethernet
1025 * hardware supports jumbo frames before changing the mtu. This can be
1026 * called only when the device is not up.
1027 */
1028static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1029{
1030        struct axienet_local *lp = netdev_priv(ndev);
1031
1032        if (netif_running(ndev))
1033                return -EBUSY;
1034
1035        if ((new_mtu + VLAN_ETH_HLEN +
1036                XAE_TRL_SIZE) > lp->rxmem)
1037                return -EINVAL;
1038
1039        if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1040                return -EINVAL;
1041
1042        ndev->mtu = new_mtu;
1043
1044        return 0;
1045}
1046
1047#ifdef CONFIG_NET_POLL_CONTROLLER
1048/**
1049 * axienet_poll_controller - Axi Ethernet poll mechanism.
1050 * @ndev:       Pointer to net_device structure
1051 *
1052 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1053 * to polling the ISRs and are enabled back after the polling is done.
1054 */
1055static void axienet_poll_controller(struct net_device *ndev)
1056{
1057        struct axienet_local *lp = netdev_priv(ndev);
1058        disable_irq(lp->tx_irq);
1059        disable_irq(lp->rx_irq);
1060        axienet_rx_irq(lp->tx_irq, ndev);
1061        axienet_tx_irq(lp->rx_irq, ndev);
1062        enable_irq(lp->tx_irq);
1063        enable_irq(lp->rx_irq);
1064}
1065#endif
1066
1067static const struct net_device_ops axienet_netdev_ops = {
1068        .ndo_open = axienet_open,
1069        .ndo_stop = axienet_stop,
1070        .ndo_start_xmit = axienet_start_xmit,
1071        .ndo_change_mtu = axienet_change_mtu,
1072        .ndo_set_mac_address = netdev_set_mac_address,
1073        .ndo_validate_addr = eth_validate_addr,
1074        .ndo_set_rx_mode = axienet_set_multicast_list,
1075#ifdef CONFIG_NET_POLL_CONTROLLER
1076        .ndo_poll_controller = axienet_poll_controller,
1077#endif
1078};
1079
1080/**
1081 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1082 * @ndev:       Pointer to net_device structure
1083 * @ecmd:       Pointer to ethtool_cmd structure
1084 *
1085 * This implements ethtool command for getting PHY settings. If PHY could
1086 * not be found, the function returns -ENODEV. This function calls the
1087 * relevant PHY ethtool API to get the PHY settings.
1088 * Issue "ethtool ethX" under linux prompt to execute this function.
1089 *
1090 * Return: 0 on success, -ENODEV if PHY doesn't exist
1091 */
1092static int axienet_ethtools_get_settings(struct net_device *ndev,
1093                                         struct ethtool_cmd *ecmd)
1094{
1095        struct axienet_local *lp = netdev_priv(ndev);
1096        struct phy_device *phydev = lp->phy_dev;
1097        if (!phydev)
1098                return -ENODEV;
1099        return phy_ethtool_gset(phydev, ecmd);
1100}
1101
1102/**
1103 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1104 * @ndev:       Pointer to net_device structure
1105 * @ecmd:       Pointer to ethtool_cmd structure
1106 *
1107 * This implements ethtool command for setting various PHY settings. If PHY
1108 * could not be found, the function returns -ENODEV. This function calls the
1109 * relevant PHY ethtool API to set the PHY.
1110 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1111 * function.
1112 *
1113 * Return: 0 on success, -ENODEV if PHY doesn't exist
1114 */
1115static int axienet_ethtools_set_settings(struct net_device *ndev,
1116                                         struct ethtool_cmd *ecmd)
1117{
1118        struct axienet_local *lp = netdev_priv(ndev);
1119        struct phy_device *phydev = lp->phy_dev;
1120        if (!phydev)
1121                return -ENODEV;
1122        return phy_ethtool_sset(phydev, ecmd);
1123}
1124
1125/**
1126 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1127 * @ndev:       Pointer to net_device structure
1128 * @ed:         Pointer to ethtool_drvinfo structure
1129 *
1130 * This implements ethtool command for getting the driver information.
1131 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1132 */
1133static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1134                                         struct ethtool_drvinfo *ed)
1135{
1136        strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1137        strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1138}
1139
1140/**
1141 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1142 *                                 AxiEthernet core.
1143 * @ndev:       Pointer to net_device structure
1144 *
1145 * This implements ethtool command for getting the total register length
1146 * information.
1147 *
1148 * Return: the total regs length
1149 */
1150static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1151{
1152        return sizeof(u32) * AXIENET_REGS_N;
1153}
1154
1155/**
1156 * axienet_ethtools_get_regs - Dump the contents of all registers present
1157 *                             in AxiEthernet core.
1158 * @ndev:       Pointer to net_device structure
1159 * @regs:       Pointer to ethtool_regs structure
1160 * @ret:        Void pointer used to return the contents of the registers.
1161 *
1162 * This implements ethtool command for getting the Axi Ethernet register dump.
1163 * Issue "ethtool -d ethX" to execute this function.
1164 */
1165static void axienet_ethtools_get_regs(struct net_device *ndev,
1166                                      struct ethtool_regs *regs, void *ret)
1167{
1168        u32 *data = (u32 *) ret;
1169        size_t len = sizeof(u32) * AXIENET_REGS_N;
1170        struct axienet_local *lp = netdev_priv(ndev);
1171
1172        regs->version = 0;
1173        regs->len = len;
1174
1175        memset(data, 0, len);
1176        data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1177        data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1178        data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1179        data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1180        data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1181        data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1182        data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1183        data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1184        data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1185        data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1186        data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1187        data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1188        data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1189        data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1190        data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1191        data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1192        data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1193        data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1194        data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1195        data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1196        data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1197        data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1198        data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1199        data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1200        data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1201        data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1202        data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1203        data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1204        data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1205        data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1206        data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1207        data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1208}
1209
1210/**
1211 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1212 *                                   Tx and Rx paths.
1213 * @ndev:       Pointer to net_device structure
1214 * @epauseparm: Pointer to ethtool_pauseparam structure.
1215 *
1216 * This implements ethtool command for getting axi ethernet pause frame
1217 * setting. Issue "ethtool -a ethX" to execute this function.
1218 */
1219static void
1220axienet_ethtools_get_pauseparam(struct net_device *ndev,
1221                                struct ethtool_pauseparam *epauseparm)
1222{
1223        u32 regval;
1224        struct axienet_local *lp = netdev_priv(ndev);
1225        epauseparm->autoneg  = 0;
1226        regval = axienet_ior(lp, XAE_FCC_OFFSET);
1227        epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1228        epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1229}
1230
1231/**
1232 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1233 *                                   settings.
1234 * @ndev:       Pointer to net_device structure
1235 * @epauseparm:Pointer to ethtool_pauseparam structure
1236 *
1237 * This implements ethtool command for enabling flow control on Rx and Tx
1238 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1239 * function.
1240 *
1241 * Return: 0 on success, -EFAULT if device is running
1242 */
1243static int
1244axienet_ethtools_set_pauseparam(struct net_device *ndev,
1245                                struct ethtool_pauseparam *epauseparm)
1246{
1247        u32 regval = 0;
1248        struct axienet_local *lp = netdev_priv(ndev);
1249
1250        if (netif_running(ndev)) {
1251                netdev_err(ndev,
1252                           "Please stop netif before applying configuration\n");
1253                return -EFAULT;
1254        }
1255
1256        regval = axienet_ior(lp, XAE_FCC_OFFSET);
1257        if (epauseparm->tx_pause)
1258                regval |= XAE_FCC_FCTX_MASK;
1259        else
1260                regval &= ~XAE_FCC_FCTX_MASK;
1261        if (epauseparm->rx_pause)
1262                regval |= XAE_FCC_FCRX_MASK;
1263        else
1264                regval &= ~XAE_FCC_FCRX_MASK;
1265        axienet_iow(lp, XAE_FCC_OFFSET, regval);
1266
1267        return 0;
1268}
1269
1270/**
1271 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1272 * @ndev:       Pointer to net_device structure
1273 * @ecoalesce:  Pointer to ethtool_coalesce structure
1274 *
1275 * This implements ethtool command for getting the DMA interrupt coalescing
1276 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1277 * execute this function.
1278 *
1279 * Return: 0 always
1280 */
1281static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1282                                         struct ethtool_coalesce *ecoalesce)
1283{
1284        u32 regval = 0;
1285        struct axienet_local *lp = netdev_priv(ndev);
1286        regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1287        ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1288                                             >> XAXIDMA_COALESCE_SHIFT;
1289        regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1290        ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1291                                             >> XAXIDMA_COALESCE_SHIFT;
1292        return 0;
1293}
1294
1295/**
1296 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1297 * @ndev:       Pointer to net_device structure
1298 * @ecoalesce:  Pointer to ethtool_coalesce structure
1299 *
1300 * This implements ethtool command for setting the DMA interrupt coalescing
1301 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1302 * prompt to execute this function.
1303 *
1304 * Return: 0, on success, Non-zero error value on failure.
1305 */
1306static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1307                                         struct ethtool_coalesce *ecoalesce)
1308{
1309        struct axienet_local *lp = netdev_priv(ndev);
1310
1311        if (netif_running(ndev)) {
1312                netdev_err(ndev,
1313                           "Please stop netif before applying configuration\n");
1314                return -EFAULT;
1315        }
1316
1317        if ((ecoalesce->rx_coalesce_usecs) ||
1318            (ecoalesce->rx_coalesce_usecs_irq) ||
1319            (ecoalesce->rx_max_coalesced_frames_irq) ||
1320            (ecoalesce->tx_coalesce_usecs) ||
1321            (ecoalesce->tx_coalesce_usecs_irq) ||
1322            (ecoalesce->tx_max_coalesced_frames_irq) ||
1323            (ecoalesce->stats_block_coalesce_usecs) ||
1324            (ecoalesce->use_adaptive_rx_coalesce) ||
1325            (ecoalesce->use_adaptive_tx_coalesce) ||
1326            (ecoalesce->pkt_rate_low) ||
1327            (ecoalesce->rx_coalesce_usecs_low) ||
1328            (ecoalesce->rx_max_coalesced_frames_low) ||
1329            (ecoalesce->tx_coalesce_usecs_low) ||
1330            (ecoalesce->tx_max_coalesced_frames_low) ||
1331            (ecoalesce->pkt_rate_high) ||
1332            (ecoalesce->rx_coalesce_usecs_high) ||
1333            (ecoalesce->rx_max_coalesced_frames_high) ||
1334            (ecoalesce->tx_coalesce_usecs_high) ||
1335            (ecoalesce->tx_max_coalesced_frames_high) ||
1336            (ecoalesce->rate_sample_interval))
1337                return -EOPNOTSUPP;
1338        if (ecoalesce->rx_max_coalesced_frames)
1339                lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1340        if (ecoalesce->tx_max_coalesced_frames)
1341                lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1342
1343        return 0;
1344}
1345
1346static struct ethtool_ops axienet_ethtool_ops = {
1347        .get_settings   = axienet_ethtools_get_settings,
1348        .set_settings   = axienet_ethtools_set_settings,
1349        .get_drvinfo    = axienet_ethtools_get_drvinfo,
1350        .get_regs_len   = axienet_ethtools_get_regs_len,
1351        .get_regs       = axienet_ethtools_get_regs,
1352        .get_link       = ethtool_op_get_link,
1353        .get_pauseparam = axienet_ethtools_get_pauseparam,
1354        .set_pauseparam = axienet_ethtools_set_pauseparam,
1355        .get_coalesce   = axienet_ethtools_get_coalesce,
1356        .set_coalesce   = axienet_ethtools_set_coalesce,
1357};
1358
1359/**
1360 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1361 * @data:       Data passed
1362 *
1363 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1364 * Tx/Rx BDs.
1365 */
1366static void axienet_dma_err_handler(unsigned long data)
1367{
1368        u32 axienet_status;
1369        u32 cr, i;
1370        int mdio_mcreg;
1371        struct axienet_local *lp = (struct axienet_local *) data;
1372        struct net_device *ndev = lp->ndev;
1373        struct axidma_bd *cur_p;
1374
1375        axienet_setoptions(ndev, lp->options &
1376                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1377        mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1378        axienet_mdio_wait_until_ready(lp);
1379        /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1380         * When we do an Axi Ethernet reset, it resets the complete core
1381         * including the MDIO. So if MDIO is not disabled when the reset
1382         * process is started, MDIO will be broken afterwards.
1383         */
1384        axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1385                    ~XAE_MDIO_MC_MDIOEN_MASK));
1386
1387        __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1388        __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1389
1390        axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1391        axienet_mdio_wait_until_ready(lp);
1392
1393        for (i = 0; i < TX_BD_NUM; i++) {
1394                cur_p = &lp->tx_bd_v[i];
1395                if (cur_p->phys)
1396                        dma_unmap_single(ndev->dev.parent, cur_p->phys,
1397                                         (cur_p->cntrl &
1398                                          XAXIDMA_BD_CTRL_LENGTH_MASK),
1399                                         DMA_TO_DEVICE);
1400                if (cur_p->app4)
1401                        dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1402                cur_p->phys = 0;
1403                cur_p->cntrl = 0;
1404                cur_p->status = 0;
1405                cur_p->app0 = 0;
1406                cur_p->app1 = 0;
1407                cur_p->app2 = 0;
1408                cur_p->app3 = 0;
1409                cur_p->app4 = 0;
1410                cur_p->sw_id_offset = 0;
1411        }
1412
1413        for (i = 0; i < RX_BD_NUM; i++) {
1414                cur_p = &lp->rx_bd_v[i];
1415                cur_p->status = 0;
1416                cur_p->app0 = 0;
1417                cur_p->app1 = 0;
1418                cur_p->app2 = 0;
1419                cur_p->app3 = 0;
1420                cur_p->app4 = 0;
1421        }
1422
1423        lp->tx_bd_ci = 0;
1424        lp->tx_bd_tail = 0;
1425        lp->rx_bd_ci = 0;
1426
1427        /* Start updating the Rx channel control register */
1428        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1429        /* Update the interrupt coalesce count */
1430        cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1431              (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1432        /* Update the delay timer count */
1433        cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1434              (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1435        /* Enable coalesce, delay timer and error interrupts */
1436        cr |= XAXIDMA_IRQ_ALL_MASK;
1437        /* Finally write to the Rx channel control register */
1438        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1439
1440        /* Start updating the Tx channel control register */
1441        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1442        /* Update the interrupt coalesce count */
1443        cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1444              (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1445        /* Update the delay timer count */
1446        cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1447              (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1448        /* Enable coalesce, delay timer and error interrupts */
1449        cr |= XAXIDMA_IRQ_ALL_MASK;
1450        /* Finally write to the Tx channel control register */
1451        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1452
1453        /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1454         * halted state. This will make the Rx side ready for reception.
1455         */
1456        axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1457        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1458        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1459                          cr | XAXIDMA_CR_RUNSTOP_MASK);
1460        axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1461                          (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1462
1463        /* Write to the RS (Run-stop) bit in the Tx channel control register.
1464         * Tx channel is now ready to run. But only after we write to the
1465         * tail pointer register that the Tx channel will start transmitting
1466         */
1467        axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1468        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1469        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1470                          cr | XAXIDMA_CR_RUNSTOP_MASK);
1471
1472        axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1473        axienet_status &= ~XAE_RCW1_RX_MASK;
1474        axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1475
1476        axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1477        if (axienet_status & XAE_INT_RXRJECT_MASK)
1478                axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1479        axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1480
1481        /* Sync default options with HW but leave receiver and
1482         * transmitter disabled.
1483         */
1484        axienet_setoptions(ndev, lp->options &
1485                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1486        axienet_set_mac_address(ndev, NULL);
1487        axienet_set_multicast_list(ndev);
1488        axienet_setoptions(ndev, lp->options);
1489}
1490
1491/**
1492 * axienet_probe - Axi Ethernet probe function.
1493 * @pdev:       Pointer to platform device structure.
1494 *
1495 * Return: 0, on success
1496 *          Non-zero error value on failure.
1497 *
1498 * This is the probe routine for Axi Ethernet driver. This is called before
1499 * any other driver routines are invoked. It allocates and sets up the Ethernet
1500 * device. Parses through device tree and populates fields of
1501 * axienet_local. It registers the Ethernet device.
1502 */
1503static int axienet_probe(struct platform_device *pdev)
1504{
1505        int ret;
1506        struct device_node *np;
1507        struct axienet_local *lp;
1508        struct net_device *ndev;
1509        u8 mac_addr[6];
1510        struct resource *ethres, dmares;
1511        u32 value;
1512
1513        ndev = alloc_etherdev(sizeof(*lp));
1514        if (!ndev)
1515                return -ENOMEM;
1516
1517        platform_set_drvdata(pdev, ndev);
1518
1519        SET_NETDEV_DEV(ndev, &pdev->dev);
1520        ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1521        ndev->features = NETIF_F_SG;
1522        ndev->netdev_ops = &axienet_netdev_ops;
1523        ndev->ethtool_ops = &axienet_ethtool_ops;
1524
1525        lp = netdev_priv(ndev);
1526        lp->ndev = ndev;
1527        lp->dev = &pdev->dev;
1528        lp->options = XAE_OPTION_DEFAULTS;
1529        /* Map device registers */
1530        ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1531        lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1532        if (IS_ERR(lp->regs)) {
1533                dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1534                ret = PTR_ERR(lp->regs);
1535                goto free_netdev;
1536        }
1537
1538        /* Setup checksum offload, but default to off if not specified */
1539        lp->features = 0;
1540
1541        ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1542        if (!ret) {
1543                switch (value) {
1544                case 1:
1545                        lp->csum_offload_on_tx_path =
1546                                XAE_FEATURE_PARTIAL_TX_CSUM;
1547                        lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1548                        /* Can checksum TCP/UDP over IPv4. */
1549                        ndev->features |= NETIF_F_IP_CSUM;
1550                        break;
1551                case 2:
1552                        lp->csum_offload_on_tx_path =
1553                                XAE_FEATURE_FULL_TX_CSUM;
1554                        lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1555                        /* Can checksum TCP/UDP over IPv4. */
1556                        ndev->features |= NETIF_F_IP_CSUM;
1557                        break;
1558                default:
1559                        lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1560                }
1561        }
1562        ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1563        if (!ret) {
1564                switch (value) {
1565                case 1:
1566                        lp->csum_offload_on_rx_path =
1567                                XAE_FEATURE_PARTIAL_RX_CSUM;
1568                        lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1569                        break;
1570                case 2:
1571                        lp->csum_offload_on_rx_path =
1572                                XAE_FEATURE_FULL_RX_CSUM;
1573                        lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1574                        break;
1575                default:
1576                        lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1577                }
1578        }
1579        /* For supporting jumbo frames, the Axi Ethernet hardware must have
1580         * a larger Rx/Tx Memory. Typically, the size must be large so that
1581         * we can enable jumbo option and start supporting jumbo frames.
1582         * Here we check for memory allocated for Rx/Tx in the hardware from
1583         * the device-tree and accordingly set flags.
1584         */
1585        of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1586        of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &lp->phy_type);
1587
1588        /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1589        np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1590        if (IS_ERR(np)) {
1591                dev_err(&pdev->dev, "could not find DMA node\n");
1592                ret = PTR_ERR(np);
1593                goto free_netdev;
1594        }
1595        ret = of_address_to_resource(np, 0, &dmares);
1596        if (ret) {
1597                dev_err(&pdev->dev, "unable to get DMA resource\n");
1598                goto free_netdev;
1599        }
1600        lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
1601        if (IS_ERR(lp->dma_regs)) {
1602                dev_err(&pdev->dev, "could not map DMA regs\n");
1603                ret = PTR_ERR(lp->dma_regs);
1604                goto free_netdev;
1605        }
1606        lp->rx_irq = irq_of_parse_and_map(np, 1);
1607        lp->tx_irq = irq_of_parse_and_map(np, 0);
1608        of_node_put(np);
1609        if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1610                dev_err(&pdev->dev, "could not determine irqs\n");
1611                ret = -ENOMEM;
1612                goto free_netdev;
1613        }
1614
1615        /* Retrieve the MAC address */
1616        ret = of_property_read_u8_array(pdev->dev.of_node,
1617                                        "local-mac-address", mac_addr, 6);
1618        if (ret) {
1619                dev_err(&pdev->dev, "could not find MAC address\n");
1620                goto free_netdev;
1621        }
1622        axienet_set_mac_address(ndev, (void *)mac_addr);
1623
1624        lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1625        lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1626
1627        lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1628        if (lp->phy_node) {
1629                ret = axienet_mdio_setup(lp, pdev->dev.of_node);
1630                if (ret)
1631                        dev_warn(&pdev->dev, "error registering MDIO bus\n");
1632        }
1633
1634        ret = register_netdev(lp->ndev);
1635        if (ret) {
1636                dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1637                goto free_netdev;
1638        }
1639
1640        return 0;
1641
1642free_netdev:
1643        free_netdev(ndev);
1644
1645        return ret;
1646}
1647
1648static int axienet_remove(struct platform_device *pdev)
1649{
1650        struct net_device *ndev = platform_get_drvdata(pdev);
1651        struct axienet_local *lp = netdev_priv(ndev);
1652
1653        axienet_mdio_teardown(lp);
1654        unregister_netdev(ndev);
1655
1656        of_node_put(lp->phy_node);
1657        lp->phy_node = NULL;
1658
1659        free_netdev(ndev);
1660
1661        return 0;
1662}
1663
1664static struct platform_driver axienet_driver = {
1665        .probe = axienet_probe,
1666        .remove = axienet_remove,
1667        .driver = {
1668                 .name = "xilinx_axienet",
1669                 .of_match_table = axienet_of_match,
1670        },
1671};
1672
1673module_platform_driver(axienet_driver);
1674
1675MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1676MODULE_AUTHOR("Xilinx");
1677MODULE_LICENSE("GPL");
1678