linux/drivers/scsi/csiostor/csio_wr.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio FCoE driver for Linux.
   3 *
   4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/kernel.h>
  36#include <linux/string.h>
  37#include <linux/compiler.h>
  38#include <linux/slab.h>
  39#include <asm/page.h>
  40#include <linux/cache.h>
  41
  42#include "csio_hw.h"
  43#include "csio_wr.h"
  44#include "csio_mb.h"
  45#include "csio_defs.h"
  46
  47int csio_intr_coalesce_cnt;             /* value:SGE_INGRESS_RX_THRESHOLD[0] */
  48static int csio_sge_thresh_reg;         /* SGE_INGRESS_RX_THRESHOLD[0] */
  49
  50int csio_intr_coalesce_time = 10;       /* value:SGE_TIMER_VALUE_1 */
  51static int csio_sge_timer_reg = 1;
  52
  53#define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val)                            \
  54        csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
  55
  56static void
  57csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
  58{
  59        sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
  60                                                        reg * sizeof(uint32_t));
  61}
  62
  63/* Free list buffer size */
  64static inline uint32_t
  65csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
  66{
  67        return sge->sge_fl_buf_size[buf->paddr & 0xF];
  68}
  69
  70/* Size of the egress queue status page */
  71static inline uint32_t
  72csio_wr_qstat_pgsz(struct csio_hw *hw)
  73{
  74        return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ?  128 : 64;
  75}
  76
  77/* Ring freelist doorbell */
  78static inline void
  79csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
  80{
  81        /*
  82         * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
  83         * number of bytes in the freelist queue. This translates to atleast
  84         * 8 freelist buffer pointers (since each pointer is 8 bytes).
  85         */
  86        if (flq->inc_idx >= 8) {
  87                csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
  88                                  PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
  89                                  MYPF_REG(SGE_PF_KDOORBELL_A));
  90                flq->inc_idx &= 7;
  91        }
  92}
  93
  94/* Write a 0 cidx increment value to enable SGE interrupts for this queue */
  95static void
  96csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
  97{
  98        csio_wr_reg32(hw, CIDXINC_V(0)          |
  99                          INGRESSQID_V(iqid)    |
 100                          TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
 101                          MYPF_REG(SGE_PF_GTS_A));
 102}
 103
 104/*
 105 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
 106 * @hw: HW module.
 107 * @flq: Freelist queue.
 108 *
 109 * Fill up freelist buffer entries with buffers of size specified
 110 * in the size register.
 111 *
 112 */
 113static int
 114csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
 115{
 116        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
 117        struct csio_sge *sge = &wrm->sge;
 118        __be64 *d = (__be64 *)(flq->vstart);
 119        struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
 120        uint64_t paddr;
 121        int sreg = flq->un.fl.sreg;
 122        int n = flq->credits;
 123
 124        while (n--) {
 125                buf->len = sge->sge_fl_buf_size[sreg];
 126                buf->vaddr = pci_alloc_consistent(hw->pdev, buf->len,
 127                                                  &buf->paddr);
 128                if (!buf->vaddr) {
 129                        csio_err(hw, "Could only fill %d buffers!\n", n + 1);
 130                        return -ENOMEM;
 131                }
 132
 133                paddr = buf->paddr | (sreg & 0xF);
 134
 135                *d++ = cpu_to_be64(paddr);
 136                buf++;
 137        }
 138
 139        return 0;
 140}
 141
 142/*
 143 * csio_wr_update_fl -
 144 * @hw: HW module.
 145 * @flq: Freelist queue.
 146 *
 147 *
 148 */
 149static inline void
 150csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
 151{
 152
 153        flq->inc_idx += n;
 154        flq->pidx += n;
 155        if (unlikely(flq->pidx >= flq->credits))
 156                flq->pidx -= (uint16_t)flq->credits;
 157
 158        CSIO_INC_STATS(flq, n_flq_refill);
 159}
 160
 161/*
 162 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
 163 * @hw: HW module
 164 * @qsize: Size of the queue in bytes
 165 * @wrsize: Since of WR in this queue, if fixed.
 166 * @type: Type of queue (Ingress/Egress/Freelist)
 167 * @owner: Module that owns this queue.
 168 * @nflb: Number of freelist buffers for FL.
 169 * @sreg: What is the FL buffer size register?
 170 * @iq_int_handler: Ingress queue handler in INTx mode.
 171 *
 172 * This function allocates and sets up a queue for the caller
 173 * of size qsize, aligned at the required boundary. This is subject to
 174 * be free entries being available in the queue array. If one is found,
 175 * it is initialized with the allocated queue, marked as being used (owner),
 176 * and a handle returned to the caller in form of the queue's index
 177 * into the q_arr array.
 178 * If user has indicated a freelist (by specifying nflb > 0), create
 179 * another queue (with its own index into q_arr) for the freelist. Allocate
 180 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
 181 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
 182 * with its owning ingress queue.
 183 */
 184int
 185csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
 186                uint16_t type, void *owner, uint32_t nflb, int sreg,
 187                iq_handler_t iq_intx_handler)
 188{
 189        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
 190        struct csio_q   *q, *flq;
 191        int             free_idx = wrm->free_qidx;
 192        int             ret_idx = free_idx;
 193        uint32_t        qsz;
 194        int flq_idx;
 195
 196        if (free_idx >= wrm->num_q) {
 197                csio_err(hw, "No more free queues.\n");
 198                return -1;
 199        }
 200
 201        switch (type) {
 202        case CSIO_EGRESS:
 203                qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
 204                break;
 205        case CSIO_INGRESS:
 206                switch (wrsize) {
 207                case 16:
 208                case 32:
 209                case 64:
 210                case 128:
 211                        break;
 212                default:
 213                        csio_err(hw, "Invalid Ingress queue WR size:%d\n",
 214                                    wrsize);
 215                        return -1;
 216                }
 217
 218                /*
 219                 * Number of elements must be a multiple of 16
 220                 * So this includes status page size
 221                 */
 222                qsz = ALIGN(qsize/wrsize, 16) * wrsize;
 223
 224                break;
 225        case CSIO_FREELIST:
 226                qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
 227                break;
 228        default:
 229                csio_err(hw, "Invalid queue type: 0x%x\n", type);
 230                return -1;
 231        }
 232
 233        q = wrm->q_arr[free_idx];
 234
 235        q->vstart = pci_zalloc_consistent(hw->pdev, qsz, &q->pstart);
 236        if (!q->vstart) {
 237                csio_err(hw,
 238                         "Failed to allocate DMA memory for "
 239                         "queue at id: %d size: %d\n", free_idx, qsize);
 240                return -1;
 241        }
 242
 243        q->type         = type;
 244        q->owner        = owner;
 245        q->pidx         = q->cidx = q->inc_idx = 0;
 246        q->size         = qsz;
 247        q->wr_sz        = wrsize;       /* If using fixed size WRs */
 248
 249        wrm->free_qidx++;
 250
 251        if (type == CSIO_INGRESS) {
 252                /* Since queue area is set to zero */
 253                q->un.iq.genbit = 1;
 254
 255                /*
 256                 * Ingress queue status page size is always the size of
 257                 * the ingress queue entry.
 258                 */
 259                q->credits      = (qsz - q->wr_sz) / q->wr_sz;
 260                q->vwrap        = (void *)((uintptr_t)(q->vstart) + qsz
 261                                                        - q->wr_sz);
 262
 263                /* Allocate memory for FL if requested */
 264                if (nflb > 0) {
 265                        flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
 266                                                  sizeof(__be64), CSIO_FREELIST,
 267                                                  owner, 0, sreg, NULL);
 268                        if (flq_idx == -1) {
 269                                csio_err(hw,
 270                                         "Failed to allocate FL queue"
 271                                         " for IQ idx:%d\n", free_idx);
 272                                return -1;
 273                        }
 274
 275                        /* Associate the new FL with the Ingress quue */
 276                        q->un.iq.flq_idx = flq_idx;
 277
 278                        flq = wrm->q_arr[q->un.iq.flq_idx];
 279                        flq->un.fl.bufs = kzalloc(flq->credits *
 280                                                  sizeof(struct csio_dma_buf),
 281                                                  GFP_KERNEL);
 282                        if (!flq->un.fl.bufs) {
 283                                csio_err(hw,
 284                                         "Failed to allocate FL queue bufs"
 285                                         " for IQ idx:%d\n", free_idx);
 286                                return -1;
 287                        }
 288
 289                        flq->un.fl.packen = 0;
 290                        flq->un.fl.offset = 0;
 291                        flq->un.fl.sreg = sreg;
 292
 293                        /* Fill up the free list buffers */
 294                        if (csio_wr_fill_fl(hw, flq))
 295                                return -1;
 296
 297                        /*
 298                         * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
 299                         * remains unpopulated,otherwise HW thinks
 300                         * FLQ is empty.
 301                         */
 302                        flq->pidx = flq->inc_idx = flq->credits - 8;
 303                } else {
 304                        q->un.iq.flq_idx = -1;
 305                }
 306
 307                /* Associate the IQ INTx handler. */
 308                q->un.iq.iq_intx_handler = iq_intx_handler;
 309
 310                csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
 311
 312        } else if (type == CSIO_EGRESS) {
 313                q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
 314                q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
 315                                                - csio_wr_qstat_pgsz(hw));
 316                csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
 317        } else { /* Freelist */
 318                q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
 319                q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
 320                                                - csio_wr_qstat_pgsz(hw));
 321                csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
 322        }
 323
 324        return ret_idx;
 325}
 326
 327/*
 328 * csio_wr_iq_create_rsp - Response handler for IQ creation.
 329 * @hw: The HW module.
 330 * @mbp: Mailbox.
 331 * @iq_idx: Ingress queue that got created.
 332 *
 333 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
 334 */
 335static int
 336csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
 337{
 338        struct csio_iq_params iqp;
 339        enum fw_retval retval;
 340        uint32_t iq_id;
 341        int flq_idx;
 342
 343        memset(&iqp, 0, sizeof(struct csio_iq_params));
 344
 345        csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
 346
 347        if (retval != FW_SUCCESS) {
 348                csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
 349                mempool_free(mbp, hw->mb_mempool);
 350                return -EINVAL;
 351        }
 352
 353        csio_q_iqid(hw, iq_idx)         = iqp.iqid;
 354        csio_q_physiqid(hw, iq_idx)     = iqp.physiqid;
 355        csio_q_pidx(hw, iq_idx)         = csio_q_cidx(hw, iq_idx) = 0;
 356        csio_q_inc_idx(hw, iq_idx)      = 0;
 357
 358        /* Actual iq-id. */
 359        iq_id = iqp.iqid - hw->wrm.fw_iq_start;
 360
 361        /* Set the iq-id to iq map table. */
 362        if (iq_id >= CSIO_MAX_IQ) {
 363                csio_err(hw,
 364                         "Exceeding MAX_IQ(%d) supported!"
 365                         " iqid:%d rel_iqid:%d FW iq_start:%d\n",
 366                         CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
 367                mempool_free(mbp, hw->mb_mempool);
 368                return -EINVAL;
 369        }
 370        csio_q_set_intr_map(hw, iq_idx, iq_id);
 371
 372        /*
 373         * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
 374         * ingress context of this queue. This will block interrupts to
 375         * this queue until the next GTS write. Therefore, we do a
 376         * 0-cidx increment GTS write for this queue just to clear the
 377         * interrupt_sent bit. This will re-enable interrupts to this
 378         * queue.
 379         */
 380        csio_wr_sge_intr_enable(hw, iqp.physiqid);
 381
 382        flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
 383        if (flq_idx != -1) {
 384                struct csio_q *flq = hw->wrm.q_arr[flq_idx];
 385
 386                csio_q_flid(hw, flq_idx) = iqp.fl0id;
 387                csio_q_cidx(hw, flq_idx) = 0;
 388                csio_q_pidx(hw, flq_idx)    = csio_q_credits(hw, flq_idx) - 8;
 389                csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
 390
 391                /* Now update SGE about the buffers allocated during init */
 392                csio_wr_ring_fldb(hw, flq);
 393        }
 394
 395        mempool_free(mbp, hw->mb_mempool);
 396
 397        return 0;
 398}
 399
 400/*
 401 * csio_wr_iq_create - Configure an Ingress queue with FW.
 402 * @hw: The HW module.
 403 * @priv: Private data object.
 404 * @iq_idx: Ingress queue index in the WR module.
 405 * @vec: MSIX vector.
 406 * @portid: PCIE Channel to be associated with this queue.
 407 * @async: Is this a FW asynchronous message handling queue?
 408 * @cbfn: Completion callback.
 409 *
 410 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
 411 * with alloc/write bits set.
 412 */
 413int
 414csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
 415                  uint32_t vec, uint8_t portid, bool async,
 416                  void (*cbfn) (struct csio_hw *, struct csio_mb *))
 417{
 418        struct csio_mb  *mbp;
 419        struct csio_iq_params iqp;
 420        int flq_idx;
 421
 422        memset(&iqp, 0, sizeof(struct csio_iq_params));
 423        csio_q_portid(hw, iq_idx) = portid;
 424
 425        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 426        if (!mbp) {
 427                csio_err(hw, "IQ command out of memory!\n");
 428                return -ENOMEM;
 429        }
 430
 431        switch (hw->intr_mode) {
 432        case CSIO_IM_INTX:
 433        case CSIO_IM_MSI:
 434                /* For interrupt forwarding queue only */
 435                if (hw->intr_iq_idx == iq_idx)
 436                        iqp.iqandst     = X_INTERRUPTDESTINATION_PCIE;
 437                else
 438                        iqp.iqandst     = X_INTERRUPTDESTINATION_IQ;
 439                iqp.iqandstindex        =
 440                        csio_q_physiqid(hw, hw->intr_iq_idx);
 441                break;
 442        case CSIO_IM_MSIX:
 443                iqp.iqandst             = X_INTERRUPTDESTINATION_PCIE;
 444                iqp.iqandstindex        = (uint16_t)vec;
 445                break;
 446        case CSIO_IM_NONE:
 447                mempool_free(mbp, hw->mb_mempool);
 448                return -EINVAL;
 449        }
 450
 451        /* Pass in the ingress queue cmd parameters */
 452        iqp.pfn                 = hw->pfn;
 453        iqp.vfn                 = 0;
 454        iqp.iq_start            = 1;
 455        iqp.viid                = 0;
 456        iqp.type                = FW_IQ_TYPE_FL_INT_CAP;
 457        iqp.iqasynch            = async;
 458        if (csio_intr_coalesce_cnt)
 459                iqp.iqanus      = X_UPDATESCHEDULING_COUNTER_OPTTIMER;
 460        else
 461                iqp.iqanus      = X_UPDATESCHEDULING_TIMER;
 462        iqp.iqanud              = X_UPDATEDELIVERY_INTERRUPT;
 463        iqp.iqpciech            = portid;
 464        iqp.iqintcntthresh      = (uint8_t)csio_sge_thresh_reg;
 465
 466        switch (csio_q_wr_sz(hw, iq_idx)) {
 467        case 16:
 468                iqp.iqesize = 0; break;
 469        case 32:
 470                iqp.iqesize = 1; break;
 471        case 64:
 472                iqp.iqesize = 2; break;
 473        case 128:
 474                iqp.iqesize = 3; break;
 475        }
 476
 477        iqp.iqsize              = csio_q_size(hw, iq_idx) /
 478                                                csio_q_wr_sz(hw, iq_idx);
 479        iqp.iqaddr              = csio_q_pstart(hw, iq_idx);
 480
 481        flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
 482        if (flq_idx != -1) {
 483                struct csio_q *flq = hw->wrm.q_arr[flq_idx];
 484
 485                iqp.fl0paden    = 1;
 486                iqp.fl0packen   = flq->un.fl.packen ? 1 : 0;
 487                iqp.fl0fbmin    = X_FETCHBURSTMIN_64B;
 488                iqp.fl0fbmax    = X_FETCHBURSTMAX_512B;
 489                iqp.fl0size     = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
 490                iqp.fl0addr     = csio_q_pstart(hw, flq_idx);
 491        }
 492
 493        csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
 494
 495        if (csio_mb_issue(hw, mbp)) {
 496                csio_err(hw, "Issue of IQ cmd failed!\n");
 497                mempool_free(mbp, hw->mb_mempool);
 498                return -EINVAL;
 499        }
 500
 501        if (cbfn != NULL)
 502                return 0;
 503
 504        return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
 505}
 506
 507/*
 508 * csio_wr_eq_create_rsp - Response handler for EQ creation.
 509 * @hw: The HW module.
 510 * @mbp: Mailbox.
 511 * @eq_idx: Egress queue that got created.
 512 *
 513 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
 514 */
 515static int
 516csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
 517{
 518        struct csio_eq_params eqp;
 519        enum fw_retval retval;
 520
 521        memset(&eqp, 0, sizeof(struct csio_eq_params));
 522
 523        csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
 524
 525        if (retval != FW_SUCCESS) {
 526                csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
 527                mempool_free(mbp, hw->mb_mempool);
 528                return -EINVAL;
 529        }
 530
 531        csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid;
 532        csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
 533        csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0;
 534        csio_q_inc_idx(hw, eq_idx) = 0;
 535
 536        mempool_free(mbp, hw->mb_mempool);
 537
 538        return 0;
 539}
 540
 541/*
 542 * csio_wr_eq_create - Configure an Egress queue with FW.
 543 * @hw: HW module.
 544 * @priv: Private data.
 545 * @eq_idx: Egress queue index in the WR module.
 546 * @iq_idx: Associated ingress queue index.
 547 * @cbfn: Completion callback.
 548 *
 549 * This API configures a offload egress queue with FW by issuing a
 550 * FW_EQ_OFLD_CMD  (with alloc + write ) mailbox.
 551 */
 552int
 553csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
 554                  int iq_idx, uint8_t portid,
 555                  void (*cbfn) (struct csio_hw *, struct csio_mb *))
 556{
 557        struct csio_mb  *mbp;
 558        struct csio_eq_params eqp;
 559
 560        memset(&eqp, 0, sizeof(struct csio_eq_params));
 561
 562        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 563        if (!mbp) {
 564                csio_err(hw, "EQ command out of memory!\n");
 565                return -ENOMEM;
 566        }
 567
 568        eqp.pfn                 = hw->pfn;
 569        eqp.vfn                 = 0;
 570        eqp.eqstart             = 1;
 571        eqp.hostfcmode          = X_HOSTFCMODE_STATUS_PAGE;
 572        eqp.iqid                = csio_q_iqid(hw, iq_idx);
 573        eqp.fbmin               = X_FETCHBURSTMIN_64B;
 574        eqp.fbmax               = X_FETCHBURSTMAX_512B;
 575        eqp.cidxfthresh         = 0;
 576        eqp.pciechn             = portid;
 577        eqp.eqsize              = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
 578        eqp.eqaddr              = csio_q_pstart(hw, eq_idx);
 579
 580        csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
 581                                    &eqp, cbfn);
 582
 583        if (csio_mb_issue(hw, mbp)) {
 584                csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
 585                mempool_free(mbp, hw->mb_mempool);
 586                return -EINVAL;
 587        }
 588
 589        if (cbfn != NULL)
 590                return 0;
 591
 592        return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
 593}
 594
 595/*
 596 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
 597 * @hw: The HW module.
 598 * @mbp: Mailbox.
 599 * @iq_idx: Ingress queue that was freed.
 600 *
 601 * Handle FW_IQ_CMD (free) mailbox completion.
 602 */
 603static int
 604csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
 605{
 606        enum fw_retval retval = csio_mb_fw_retval(mbp);
 607        int rv = 0;
 608
 609        if (retval != FW_SUCCESS)
 610                rv = -EINVAL;
 611
 612        mempool_free(mbp, hw->mb_mempool);
 613
 614        return rv;
 615}
 616
 617/*
 618 * csio_wr_iq_destroy - Free an ingress queue.
 619 * @hw: The HW module.
 620 * @priv: Private data object.
 621 * @iq_idx: Ingress queue index to destroy
 622 * @cbfn: Completion callback.
 623 *
 624 * This API frees an ingress queue by issuing the FW_IQ_CMD
 625 * with the free bit set.
 626 */
 627static int
 628csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
 629                   void (*cbfn)(struct csio_hw *, struct csio_mb *))
 630{
 631        int rv = 0;
 632        struct csio_mb  *mbp;
 633        struct csio_iq_params iqp;
 634        int flq_idx;
 635
 636        memset(&iqp, 0, sizeof(struct csio_iq_params));
 637
 638        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 639        if (!mbp)
 640                return -ENOMEM;
 641
 642        iqp.pfn         = hw->pfn;
 643        iqp.vfn         = 0;
 644        iqp.iqid        = csio_q_iqid(hw, iq_idx);
 645        iqp.type        = FW_IQ_TYPE_FL_INT_CAP;
 646
 647        flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
 648        if (flq_idx != -1)
 649                iqp.fl0id = csio_q_flid(hw, flq_idx);
 650        else
 651                iqp.fl0id = 0xFFFF;
 652
 653        iqp.fl1id = 0xFFFF;
 654
 655        csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
 656
 657        rv = csio_mb_issue(hw, mbp);
 658        if (rv != 0) {
 659                mempool_free(mbp, hw->mb_mempool);
 660                return rv;
 661        }
 662
 663        if (cbfn != NULL)
 664                return 0;
 665
 666        return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
 667}
 668
 669/*
 670 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
 671 * @hw: The HW module.
 672 * @mbp: Mailbox.
 673 * @eq_idx: Egress queue that was freed.
 674 *
 675 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
 676 */
 677static int
 678csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
 679{
 680        enum fw_retval retval = csio_mb_fw_retval(mbp);
 681        int rv = 0;
 682
 683        if (retval != FW_SUCCESS)
 684                rv = -EINVAL;
 685
 686        mempool_free(mbp, hw->mb_mempool);
 687
 688        return rv;
 689}
 690
 691/*
 692 * csio_wr_eq_destroy - Free an Egress queue.
 693 * @hw: The HW module.
 694 * @priv: Private data object.
 695 * @eq_idx: Egress queue index to destroy
 696 * @cbfn: Completion callback.
 697 *
 698 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
 699 * with the free bit set.
 700 */
 701static int
 702csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
 703                   void (*cbfn) (struct csio_hw *, struct csio_mb *))
 704{
 705        int rv = 0;
 706        struct csio_mb  *mbp;
 707        struct csio_eq_params eqp;
 708
 709        memset(&eqp, 0, sizeof(struct csio_eq_params));
 710
 711        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 712        if (!mbp)
 713                return -ENOMEM;
 714
 715        eqp.pfn         = hw->pfn;
 716        eqp.vfn         = 0;
 717        eqp.eqid        = csio_q_eqid(hw, eq_idx);
 718
 719        csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
 720
 721        rv = csio_mb_issue(hw, mbp);
 722        if (rv != 0) {
 723                mempool_free(mbp, hw->mb_mempool);
 724                return rv;
 725        }
 726
 727        if (cbfn != NULL)
 728                return 0;
 729
 730        return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
 731}
 732
 733/*
 734 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
 735 * @hw: HW module
 736 * @qidx: Egress queue index
 737 *
 738 * Cleanup the Egress queue status page.
 739 */
 740static void
 741csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
 742{
 743        struct csio_q   *q = csio_hw_to_wrm(hw)->q_arr[qidx];
 744        struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
 745
 746        memset(stp, 0, sizeof(*stp));
 747}
 748
 749/*
 750 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
 751 * @hw: HW module
 752 * @qidx: Ingress queue index
 753 *
 754 * Cleanup the footer entries in the given ingress queue,
 755 * set to 1 the internal copy of genbit.
 756 */
 757static void
 758csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
 759{
 760        struct csio_wrm *wrm    = csio_hw_to_wrm(hw);
 761        struct csio_q   *q      = wrm->q_arr[qidx];
 762        void *wr;
 763        struct csio_iqwr_footer *ftr;
 764        uint32_t i = 0;
 765
 766        /* set to 1 since we are just about zero out genbit */
 767        q->un.iq.genbit = 1;
 768
 769        for (i = 0; i < q->credits; i++) {
 770                /* Get the WR */
 771                wr = (void *)((uintptr_t)q->vstart +
 772                                           (i * q->wr_sz));
 773                /* Get the footer */
 774                ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
 775                                          (q->wr_sz - sizeof(*ftr)));
 776                /* Zero out footer */
 777                memset(ftr, 0, sizeof(*ftr));
 778        }
 779}
 780
 781int
 782csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
 783{
 784        int i, flq_idx;
 785        struct csio_q *q;
 786        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
 787        int rv;
 788
 789        for (i = 0; i < wrm->free_qidx; i++) {
 790                q = wrm->q_arr[i];
 791
 792                switch (q->type) {
 793                case CSIO_EGRESS:
 794                        if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
 795                                csio_wr_cleanup_eq_stpg(hw, i);
 796                                if (!cmd) {
 797                                        csio_q_eqid(hw, i) = CSIO_MAX_QID;
 798                                        continue;
 799                                }
 800
 801                                rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
 802                                if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
 803                                        cmd = false;
 804
 805                                csio_q_eqid(hw, i) = CSIO_MAX_QID;
 806                        }
 807                case CSIO_INGRESS:
 808                        if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
 809                                csio_wr_cleanup_iq_ftr(hw, i);
 810                                if (!cmd) {
 811                                        csio_q_iqid(hw, i) = CSIO_MAX_QID;
 812                                        flq_idx = csio_q_iq_flq_idx(hw, i);
 813                                        if (flq_idx != -1)
 814                                                csio_q_flid(hw, flq_idx) =
 815                                                                CSIO_MAX_QID;
 816                                        continue;
 817                                }
 818
 819                                rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
 820                                if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
 821                                        cmd = false;
 822
 823                                csio_q_iqid(hw, i) = CSIO_MAX_QID;
 824                                flq_idx = csio_q_iq_flq_idx(hw, i);
 825                                if (flq_idx != -1)
 826                                        csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
 827                        }
 828                default:
 829                        break;
 830                }
 831        }
 832
 833        hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
 834
 835        return 0;
 836}
 837
 838/*
 839 * csio_wr_get - Get requested size of WR entry/entries from queue.
 840 * @hw: HW module.
 841 * @qidx: Index of queue.
 842 * @size: Cumulative size of Work request(s).
 843 * @wrp: Work request pair.
 844 *
 845 * If requested credits are available, return the start address of the
 846 * work request in the work request pair. Set pidx accordingly and
 847 * return.
 848 *
 849 * NOTE about WR pair:
 850 * ==================
 851 * A WR can start towards the end of a queue, and then continue at the
 852 * beginning, since the queue is considered to be circular. This will
 853 * require a pair of address/size to be passed back to the caller -
 854 * hence Work request pair format.
 855 */
 856int
 857csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
 858            struct csio_wr_pair *wrp)
 859{
 860        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
 861        struct csio_q *q = wrm->q_arr[qidx];
 862        void *cwr = (void *)((uintptr_t)(q->vstart) +
 863                                                (q->pidx * CSIO_QCREDIT_SZ));
 864        struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
 865        uint16_t cidx = q->cidx = ntohs(stp->cidx);
 866        uint16_t pidx = q->pidx;
 867        uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ);
 868        int req_credits = req_sz / CSIO_QCREDIT_SZ;
 869        int credits;
 870
 871        CSIO_DB_ASSERT(q->owner != NULL);
 872        CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
 873        CSIO_DB_ASSERT(cidx <= q->credits);
 874
 875        /* Calculate credits */
 876        if (pidx > cidx) {
 877                credits = q->credits - (pidx - cidx) - 1;
 878        } else if (cidx > pidx) {
 879                credits = cidx - pidx - 1;
 880        } else {
 881                /* cidx == pidx, empty queue */
 882                credits = q->credits;
 883                CSIO_INC_STATS(q, n_qempty);
 884        }
 885
 886        /*
 887         * Check if we have enough credits.
 888         * credits = 1 implies queue is full.
 889         */
 890        if (!credits || (req_credits > credits)) {
 891                CSIO_INC_STATS(q, n_qfull);
 892                return -EBUSY;
 893        }
 894
 895        /*
 896         * If we are here, we have enough credits to satisfy the
 897         * request. Check if we are near the end of q, and if WR spills over.
 898         * If it does, use the first addr/size to cover the queue until
 899         * the end. Fit the remainder portion of the request at the top
 900         * of queue and return it in the second addr/len. Set pidx
 901         * accordingly.
 902         */
 903        if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
 904                wrp->addr1 = cwr;
 905                wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
 906                wrp->addr2 = q->vstart;
 907                wrp->size2 = req_sz - wrp->size1;
 908                q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
 909                                                        CSIO_QCREDIT_SZ);
 910                CSIO_INC_STATS(q, n_qwrap);
 911                CSIO_INC_STATS(q, n_eq_wr_split);
 912        } else {
 913                wrp->addr1 = cwr;
 914                wrp->size1 = req_sz;
 915                wrp->addr2 = NULL;
 916                wrp->size2 = 0;
 917                q->pidx += (uint16_t)req_credits;
 918
 919                /* We are the end of queue, roll back pidx to top of queue */
 920                if (unlikely(q->pidx == q->credits)) {
 921                        q->pidx = 0;
 922                        CSIO_INC_STATS(q, n_qwrap);
 923                }
 924        }
 925
 926        q->inc_idx = (uint16_t)req_credits;
 927
 928        CSIO_INC_STATS(q, n_tot_reqs);
 929
 930        return 0;
 931}
 932
 933/*
 934 * csio_wr_copy_to_wrp - Copies given data into WR.
 935 * @data_buf - Data buffer
 936 * @wrp - Work request pair.
 937 * @wr_off - Work request offset.
 938 * @data_len - Data length.
 939 *
 940 * Copies the given data in Work Request. Work request pair(wrp) specifies
 941 * address information of Work request.
 942 * Returns: none
 943 */
 944void
 945csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
 946                   uint32_t wr_off, uint32_t data_len)
 947{
 948        uint32_t nbytes;
 949
 950        /* Number of space available in buffer addr1 of WRP */
 951        nbytes = ((wrp->size1 - wr_off) >= data_len) ?
 952                                        data_len : (wrp->size1 - wr_off);
 953
 954        memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
 955        data_len -= nbytes;
 956
 957        /* Write the remaining data from the begining of circular buffer */
 958        if (data_len) {
 959                CSIO_DB_ASSERT(data_len <= wrp->size2);
 960                CSIO_DB_ASSERT(wrp->addr2 != NULL);
 961                memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
 962        }
 963}
 964
 965/*
 966 * csio_wr_issue - Notify chip of Work request.
 967 * @hw: HW module.
 968 * @qidx: Index of queue.
 969 * @prio: 0: Low priority, 1: High priority
 970 *
 971 * Rings the SGE Doorbell by writing the current producer index of the passed
 972 * in queue into the register.
 973 *
 974 */
 975int
 976csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
 977{
 978        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
 979        struct csio_q *q = wrm->q_arr[qidx];
 980
 981        CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
 982
 983        wmb();
 984        /* Ring SGE Doorbell writing q->pidx into it */
 985        csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
 986                          PIDX_T5_V(q->inc_idx) | DBTYPE_F,
 987                          MYPF_REG(SGE_PF_KDOORBELL_A));
 988        q->inc_idx = 0;
 989
 990        return 0;
 991}
 992
 993static inline uint32_t
 994csio_wr_avail_qcredits(struct csio_q *q)
 995{
 996        if (q->pidx > q->cidx)
 997                return q->pidx - q->cidx;
 998        else if (q->cidx > q->pidx)
 999                return q->credits - (q->cidx - q->pidx);
1000        else
1001                return 0;       /* cidx == pidx, empty queue */
1002}
1003
1004/*
1005 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1006 * @hw: HW module.
1007 * @flq: The freelist queue.
1008 *
1009 * Invalidate the driver's version of a freelist buffer entry,
1010 * without freeing the associated the DMA memory. The entry
1011 * to be invalidated is picked up from the current Free list
1012 * queue cidx.
1013 *
1014 */
1015static inline void
1016csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
1017{
1018        flq->cidx++;
1019        if (flq->cidx == flq->credits) {
1020                flq->cidx = 0;
1021                CSIO_INC_STATS(flq, n_qwrap);
1022        }
1023}
1024
1025/*
1026 * csio_wr_process_fl - Process a freelist completion.
1027 * @hw: HW module.
1028 * @q: The ingress queue attached to the Freelist.
1029 * @wr: The freelist completion WR in the ingress queue.
1030 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1031 * @iq_handler: Caller's handler for this completion.
1032 * @priv: Private pointer of caller
1033 *
1034 */
1035static inline void
1036csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
1037                   void *wr, uint32_t len_to_qid,
1038                   void (*iq_handler)(struct csio_hw *, void *,
1039                                      uint32_t, struct csio_fl_dma_buf *,
1040                                      void *),
1041                   void *priv)
1042{
1043        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1044        struct csio_sge *sge = &wrm->sge;
1045        struct csio_fl_dma_buf flb;
1046        struct csio_dma_buf *buf, *fbuf;
1047        uint32_t bufsz, len, lastlen = 0;
1048        int n;
1049        struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
1050
1051        CSIO_DB_ASSERT(flq != NULL);
1052
1053        len = len_to_qid;
1054
1055        if (len & IQWRF_NEWBUF) {
1056                if (flq->un.fl.offset > 0) {
1057                        csio_wr_inval_flq_buf(hw, flq);
1058                        flq->un.fl.offset = 0;
1059                }
1060                len = IQWRF_LEN_GET(len);
1061        }
1062
1063        CSIO_DB_ASSERT(len != 0);
1064
1065        flb.totlen = len;
1066
1067        /* Consume all freelist buffers used for len bytes */
1068        for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
1069                buf = &flq->un.fl.bufs[flq->cidx];
1070                bufsz = csio_wr_fl_bufsz(sge, buf);
1071
1072                fbuf->paddr     = buf->paddr;
1073                fbuf->vaddr     = buf->vaddr;
1074
1075                flb.offset      = flq->un.fl.offset;
1076                lastlen         = min(bufsz, len);
1077                fbuf->len       = lastlen;
1078
1079                len -= lastlen;
1080                if (!len)
1081                        break;
1082                csio_wr_inval_flq_buf(hw, flq);
1083        }
1084
1085        flb.defer_free = flq->un.fl.packen ? 0 : 1;
1086
1087        iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
1088                   &flb, priv);
1089
1090        if (flq->un.fl.packen)
1091                flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
1092        else
1093                csio_wr_inval_flq_buf(hw, flq);
1094
1095}
1096
1097/*
1098 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1099 * @q: Ingress quueue.
1100 * @ftr: Ingress queue WR SGE footer.
1101 *
1102 * The entry is new if our generation bit matches the corresponding
1103 * bit in the footer of the current WR.
1104 */
1105static inline bool
1106csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
1107{
1108        return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
1109}
1110
1111/*
1112 * csio_wr_process_iq - Process elements in Ingress queue.
1113 * @hw:  HW pointer
1114 * @qidx: Index of queue
1115 * @iq_handler: Handler for this queue
1116 * @priv: Caller's private pointer
1117 *
1118 * This routine walks through every entry of the ingress queue, calling
1119 * the provided iq_handler with the entry, until the generation bit
1120 * flips.
1121 */
1122int
1123csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
1124                   void (*iq_handler)(struct csio_hw *, void *,
1125                                      uint32_t, struct csio_fl_dma_buf *,
1126                                      void *),
1127                   void *priv)
1128{
1129        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1130        void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
1131        struct csio_iqwr_footer *ftr;
1132        uint32_t wr_type, fw_qid, qid;
1133        struct csio_q *q_completed;
1134        struct csio_q *flq = csio_iq_has_fl(q) ?
1135                                        wrm->q_arr[q->un.iq.flq_idx] : NULL;
1136        int rv = 0;
1137
1138        /* Get the footer */
1139        ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1140                                          (q->wr_sz - sizeof(*ftr)));
1141
1142        /*
1143         * When q wrapped around last time, driver should have inverted
1144         * ic.genbit as well.
1145         */
1146        while (csio_is_new_iqwr(q, ftr)) {
1147
1148                CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
1149                                                (uintptr_t)q->vwrap);
1150                rmb();
1151                wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
1152
1153                switch (wr_type) {
1154                case X_RSPD_TYPE_CPL:
1155                        /* Subtract footer from WR len */
1156                        iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
1157                        break;
1158                case X_RSPD_TYPE_FLBUF:
1159                        csio_wr_process_fl(hw, q, wr,
1160                                           ntohl(ftr->pldbuflen_qid),
1161                                           iq_handler, priv);
1162                        break;
1163                case X_RSPD_TYPE_INTR:
1164                        fw_qid = ntohl(ftr->pldbuflen_qid);
1165                        qid = fw_qid - wrm->fw_iq_start;
1166                        q_completed = hw->wrm.intr_map[qid];
1167
1168                        if (unlikely(qid ==
1169                                        csio_q_physiqid(hw, hw->intr_iq_idx))) {
1170                                /*
1171                                 * We are already in the Forward Interrupt
1172                                 * Interrupt Queue Service! Do-not service
1173                                 * again!
1174                                 *
1175                                 */
1176                        } else {
1177                                CSIO_DB_ASSERT(q_completed);
1178                                CSIO_DB_ASSERT(
1179                                        q_completed->un.iq.iq_intx_handler);
1180
1181                                /* Call the queue handler. */
1182                                q_completed->un.iq.iq_intx_handler(hw, NULL,
1183                                                0, NULL, (void *)q_completed);
1184                        }
1185                        break;
1186                default:
1187                        csio_warn(hw, "Unknown resp type 0x%x received\n",
1188                                 wr_type);
1189                        CSIO_INC_STATS(q, n_rsp_unknown);
1190                        break;
1191                }
1192
1193                /*
1194                 * Ingress *always* has fixed size WR entries. Therefore,
1195                 * there should always be complete WRs towards the end of
1196                 * queue.
1197                 */
1198                if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
1199
1200                        /* Roll over to start of queue */
1201                        q->cidx = 0;
1202                        wr      = q->vstart;
1203
1204                        /* Toggle genbit */
1205                        q->un.iq.genbit ^= 0x1;
1206
1207                        CSIO_INC_STATS(q, n_qwrap);
1208                } else {
1209                        q->cidx++;
1210                        wr      = (void *)((uintptr_t)(q->vstart) +
1211                                           (q->cidx * q->wr_sz));
1212                }
1213
1214                ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1215                                                  (q->wr_sz - sizeof(*ftr)));
1216                q->inc_idx++;
1217
1218        } /* while (q->un.iq.genbit == hdr->genbit) */
1219
1220        /*
1221         * We need to re-arm SGE interrupts in case we got a stray interrupt,
1222         * especially in msix mode. With INTx, this may be a common occurence.
1223         */
1224        if (unlikely(!q->inc_idx)) {
1225                CSIO_INC_STATS(q, n_stray_comp);
1226                rv = -EINVAL;
1227                goto restart;
1228        }
1229
1230        /* Replenish free list buffers if pending falls below low water mark */
1231        if (flq) {
1232                uint32_t avail  = csio_wr_avail_qcredits(flq);
1233                if (avail <= 16) {
1234                        /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1235                         * remains unpopulated otherwise HW thinks
1236                         * FLQ is empty.
1237                         */
1238                        csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
1239                        csio_wr_ring_fldb(hw, flq);
1240                }
1241        }
1242
1243restart:
1244        /* Now inform SGE about our incremental index value */
1245        csio_wr_reg32(hw, CIDXINC_V(q->inc_idx)         |
1246                          INGRESSQID_V(q->un.iq.physiqid)       |
1247                          TIMERREG_V(csio_sge_timer_reg),
1248                          MYPF_REG(SGE_PF_GTS_A));
1249        q->stats.n_tot_rsps += q->inc_idx;
1250
1251        q->inc_idx = 0;
1252
1253        return rv;
1254}
1255
1256int
1257csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
1258                   void (*iq_handler)(struct csio_hw *, void *,
1259                                      uint32_t, struct csio_fl_dma_buf *,
1260                                      void *),
1261                   void *priv)
1262{
1263        struct csio_wrm *wrm    = csio_hw_to_wrm(hw);
1264        struct csio_q   *iq     = wrm->q_arr[qidx];
1265
1266        return csio_wr_process_iq(hw, iq, iq_handler, priv);
1267}
1268
1269static int
1270csio_closest_timer(struct csio_sge *s, int time)
1271{
1272        int i, delta, match = 0, min_delta = INT_MAX;
1273
1274        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1275                delta = time - s->timer_val[i];
1276                if (delta < 0)
1277                        delta = -delta;
1278                if (delta < min_delta) {
1279                        min_delta = delta;
1280                        match = i;
1281                }
1282        }
1283        return match;
1284}
1285
1286static int
1287csio_closest_thresh(struct csio_sge *s, int cnt)
1288{
1289        int i, delta, match = 0, min_delta = INT_MAX;
1290
1291        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1292                delta = cnt - s->counter_val[i];
1293                if (delta < 0)
1294                        delta = -delta;
1295                if (delta < min_delta) {
1296                        min_delta = delta;
1297                        match = i;
1298                }
1299        }
1300        return match;
1301}
1302
1303static void
1304csio_wr_fixup_host_params(struct csio_hw *hw)
1305{
1306        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1307        struct csio_sge *sge = &wrm->sge;
1308        uint32_t clsz = L1_CACHE_BYTES;
1309        uint32_t s_hps = PAGE_SHIFT - 10;
1310        uint32_t ingpad = 0;
1311        uint32_t stat_len = clsz > 64 ? 128 : 64;
1312
1313        csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
1314                      HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
1315                      HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
1316                      HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
1317                      SGE_HOST_PAGE_SIZE_A);
1318
1319        sge->csio_fl_align = clsz < 32 ? 32 : clsz;
1320        ingpad = ilog2(sge->csio_fl_align) - 5;
1321
1322        csio_set_reg_field(hw, SGE_CONTROL_A,
1323                           INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
1324                           EGRSTATUSPAGESIZE_F,
1325                           INGPADBOUNDARY_V(ingpad) |
1326                           EGRSTATUSPAGESIZE_V(stat_len != 64));
1327
1328        /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1329        csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
1330
1331        /*
1332         * If using hard params, the following will get set correctly
1333         * in csio_wr_set_sge().
1334         */
1335        if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
1336                csio_wr_reg32(hw,
1337                        (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
1338                        sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1),
1339                        SGE_FL_BUFFER_SIZE2_A);
1340                csio_wr_reg32(hw,
1341                        (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
1342                        sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1),
1343                        SGE_FL_BUFFER_SIZE3_A);
1344        }
1345
1346        csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
1347
1348        /* default value of rx_dma_offset of the NIC driver */
1349        csio_set_reg_field(hw, SGE_CONTROL_A,
1350                           PKTSHIFT_V(PKTSHIFT_M),
1351                           PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
1352
1353        csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
1354                                    CSUM_HAS_PSEUDO_HDR_F, 0);
1355}
1356
1357static void
1358csio_init_intr_coalesce_parms(struct csio_hw *hw)
1359{
1360        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1361        struct csio_sge *sge = &wrm->sge;
1362
1363        csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
1364        if (csio_intr_coalesce_cnt) {
1365                csio_sge_thresh_reg = 0;
1366                csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
1367                return;
1368        }
1369
1370        csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
1371}
1372
1373/*
1374 * csio_wr_get_sge - Get SGE register values.
1375 * @hw: HW module.
1376 *
1377 * Used by non-master functions and by master-functions relying on config file.
1378 */
1379static void
1380csio_wr_get_sge(struct csio_hw *hw)
1381{
1382        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1383        struct csio_sge *sge = &wrm->sge;
1384        uint32_t ingpad;
1385        int i;
1386        u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
1387        u32 ingress_rx_threshold;
1388
1389        sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1390
1391        ingpad = INGPADBOUNDARY_G(sge->sge_control);
1392
1393        switch (ingpad) {
1394        case X_INGPCIEBOUNDARY_32B:
1395                sge->csio_fl_align = 32; break;
1396        case X_INGPCIEBOUNDARY_64B:
1397                sge->csio_fl_align = 64; break;
1398        case X_INGPCIEBOUNDARY_128B:
1399                sge->csio_fl_align = 128; break;
1400        case X_INGPCIEBOUNDARY_256B:
1401                sge->csio_fl_align = 256; break;
1402        case X_INGPCIEBOUNDARY_512B:
1403                sge->csio_fl_align = 512; break;
1404        case X_INGPCIEBOUNDARY_1024B:
1405                sge->csio_fl_align = 1024; break;
1406        case X_INGPCIEBOUNDARY_2048B:
1407                sge->csio_fl_align = 2048; break;
1408        case X_INGPCIEBOUNDARY_4096B:
1409                sge->csio_fl_align = 4096; break;
1410        }
1411
1412        for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1413                csio_get_flbuf_size(hw, sge, i);
1414
1415        timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
1416        timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
1417        timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
1418
1419        sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
1420                                        TIMERVALUE0_G(timer_value_0_and_1));
1421        sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
1422                                        TIMERVALUE1_G(timer_value_0_and_1));
1423        sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
1424                                        TIMERVALUE2_G(timer_value_2_and_3));
1425        sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
1426                                        TIMERVALUE3_G(timer_value_2_and_3));
1427        sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
1428                                        TIMERVALUE4_G(timer_value_4_and_5));
1429        sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
1430                                        TIMERVALUE5_G(timer_value_4_and_5));
1431
1432        ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
1433        sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
1434        sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
1435        sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
1436        sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
1437
1438        csio_init_intr_coalesce_parms(hw);
1439}
1440
1441/*
1442 * csio_wr_set_sge - Initialize SGE registers
1443 * @hw: HW module.
1444 *
1445 * Used by Master function to initialize SGE registers in the absence
1446 * of a config file.
1447 */
1448static void
1449csio_wr_set_sge(struct csio_hw *hw)
1450{
1451        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1452        struct csio_sge *sge = &wrm->sge;
1453        int i;
1454
1455        /*
1456         * Set up our basic SGE mode to deliver CPL messages to our Ingress
1457         * Queue and Packet Date to the Free List.
1458         */
1459        csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
1460
1461        sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1462
1463        /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1464
1465        /*
1466         * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1467         * and generate an interrupt when this occurs so we can recover.
1468         */
1469        csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
1470                           LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1471                           LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1472        csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
1473                           HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1474                           HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1475
1476        csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
1477                           ENABLE_DROP_F);
1478
1479        /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1480
1481        CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
1482        csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
1483                      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
1484        csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
1485                      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
1486        CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
1487        CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
1488        CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
1489        CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
1490        CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
1491
1492        for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1493                csio_get_flbuf_size(hw, sge, i);
1494
1495        /* Initialize interrupt coalescing attributes */
1496        sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
1497        sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
1498        sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
1499        sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
1500        sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
1501        sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
1502
1503        sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
1504        sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
1505        sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
1506        sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
1507
1508        csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
1509                      THRESHOLD_1_V(sge->counter_val[1]) |
1510                      THRESHOLD_2_V(sge->counter_val[2]) |
1511                      THRESHOLD_3_V(sge->counter_val[3]),
1512                      SGE_INGRESS_RX_THRESHOLD_A);
1513
1514        csio_wr_reg32(hw,
1515                   TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
1516                   TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
1517                   SGE_TIMER_VALUE_0_AND_1_A);
1518
1519        csio_wr_reg32(hw,
1520                   TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
1521                   TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
1522                   SGE_TIMER_VALUE_2_AND_3_A);
1523
1524        csio_wr_reg32(hw,
1525                   TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
1526                   TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
1527                   SGE_TIMER_VALUE_4_AND_5_A);
1528
1529        csio_init_intr_coalesce_parms(hw);
1530}
1531
1532void
1533csio_wr_sge_init(struct csio_hw *hw)
1534{
1535        /*
1536         * If we are master and chip is not initialized:
1537         *    - If we plan to use the config file, we need to fixup some
1538         *      host specific registers, and read the rest of the SGE
1539         *      configuration.
1540         *    - If we dont plan to use the config file, we need to initialize
1541         *      SGE entirely, including fixing the host specific registers.
1542         * If we are master and chip is initialized, just read and work off of
1543         *      the already initialized SGE values.
1544         * If we arent the master, we are only allowed to read and work off of
1545         *      the already initialized SGE values.
1546         *
1547         * Therefore, before calling this function, we assume that the master-
1548         * ship of the card, state and whether to use config file or not, have
1549         * already been decided.
1550         */
1551        if (csio_is_hw_master(hw)) {
1552                if (hw->fw_state != CSIO_DEV_STATE_INIT)
1553                        csio_wr_fixup_host_params(hw);
1554
1555                if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
1556                        csio_wr_get_sge(hw);
1557                else
1558                        csio_wr_set_sge(hw);
1559        } else
1560                csio_wr_get_sge(hw);
1561}
1562
1563/*
1564 * csio_wrm_init - Initialize Work request module.
1565 * @wrm: WR module
1566 * @hw: HW pointer
1567 *
1568 * Allocates memory for an array of queue pointers starting at q_arr.
1569 */
1570int
1571csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
1572{
1573        int i;
1574
1575        if (!wrm->num_q) {
1576                csio_err(hw, "Num queues is not set\n");
1577                return -EINVAL;
1578        }
1579
1580        wrm->q_arr = kzalloc(sizeof(struct csio_q *) * wrm->num_q, GFP_KERNEL);
1581        if (!wrm->q_arr)
1582                goto err;
1583
1584        for (i = 0; i < wrm->num_q; i++) {
1585                wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
1586                if (!wrm->q_arr[i]) {
1587                        while (--i >= 0)
1588                                kfree(wrm->q_arr[i]);
1589                        goto err_free_arr;
1590                }
1591        }
1592        wrm->free_qidx  = 0;
1593
1594        return 0;
1595
1596err_free_arr:
1597        kfree(wrm->q_arr);
1598err:
1599        return -ENOMEM;
1600}
1601
1602/*
1603 * csio_wrm_exit - Initialize Work request module.
1604 * @wrm: WR module
1605 * @hw: HW module
1606 *
1607 * Uninitialize WR module. Free q_arr and pointers in it.
1608 * We have the additional job of freeing the DMA memory associated
1609 * with the queues.
1610 */
1611void
1612csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
1613{
1614        int i;
1615        uint32_t j;
1616        struct csio_q *q;
1617        struct csio_dma_buf *buf;
1618
1619        for (i = 0; i < wrm->num_q; i++) {
1620                q = wrm->q_arr[i];
1621
1622                if (wrm->free_qidx && (i < wrm->free_qidx)) {
1623                        if (q->type == CSIO_FREELIST) {
1624                                if (!q->un.fl.bufs)
1625                                        continue;
1626                                for (j = 0; j < q->credits; j++) {
1627                                        buf = &q->un.fl.bufs[j];
1628                                        if (!buf->vaddr)
1629                                                continue;
1630                                        pci_free_consistent(hw->pdev, buf->len,
1631                                                            buf->vaddr,
1632                                                            buf->paddr);
1633                                }
1634                                kfree(q->un.fl.bufs);
1635                        }
1636                        pci_free_consistent(hw->pdev, q->size,
1637                                            q->vstart, q->pstart);
1638                }
1639                kfree(q);
1640        }
1641
1642        hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
1643
1644        kfree(wrm->q_arr);
1645}
1646