linux/drivers/staging/panel/panel.c
<<
>>
Prefs
   1/*
   2 * Front panel driver for Linux
   3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version
   8 * 2 of the License, or (at your option) any later version.
   9 *
  10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
  11 * connected to a parallel printer port.
  12 *
  13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  14 * serial module compatible with Samsung's KS0074. The pins may be connected in
  15 * any combination, everything is programmable.
  16 *
  17 * The keypad consists in a matrix of push buttons connecting input pins to
  18 * data output pins or to the ground. The combinations have to be hard-coded
  19 * in the driver, though several profiles exist and adding new ones is easy.
  20 *
  21 * Several profiles are provided for commonly found LCD+keypad modules on the
  22 * market, such as those found in Nexcom's appliances.
  23 *
  24 * FIXME:
  25 *      - the initialization/deinitialization process is very dirty and should
  26 *        be rewritten. It may even be buggy.
  27 *
  28 * TODO:
  29 *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  30 *      - make the LCD a part of a virtual screen of Vx*Vy
  31 *      - make the inputs list smp-safe
  32 *      - change the keyboard to a double mapping : signals -> key_id -> values
  33 *        so that applications can change values without knowing signals
  34 *
  35 */
  36
  37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  38
  39#include <linux/module.h>
  40
  41#include <linux/types.h>
  42#include <linux/errno.h>
  43#include <linux/signal.h>
  44#include <linux/sched.h>
  45#include <linux/spinlock.h>
  46#include <linux/interrupt.h>
  47#include <linux/miscdevice.h>
  48#include <linux/slab.h>
  49#include <linux/ioport.h>
  50#include <linux/fcntl.h>
  51#include <linux/init.h>
  52#include <linux/delay.h>
  53#include <linux/kernel.h>
  54#include <linux/ctype.h>
  55#include <linux/parport.h>
  56#include <linux/list.h>
  57#include <linux/notifier.h>
  58#include <linux/reboot.h>
  59#include <generated/utsrelease.h>
  60
  61#include <linux/io.h>
  62#include <linux/uaccess.h>
  63
  64#define LCD_MINOR               156
  65#define KEYPAD_MINOR            185
  66
  67#define PANEL_VERSION           "0.9.5"
  68
  69#define LCD_MAXBYTES            256     /* max burst write */
  70
  71#define KEYPAD_BUFFER           64
  72
  73/* poll the keyboard this every second */
  74#define INPUT_POLL_TIME         (HZ / 50)
  75/* a key starts to repeat after this times INPUT_POLL_TIME */
  76#define KEYPAD_REP_START        (10)
  77/* a key repeats this times INPUT_POLL_TIME */
  78#define KEYPAD_REP_DELAY        (2)
  79
  80/* keep the light on this times INPUT_POLL_TIME for each flash */
  81#define FLASH_LIGHT_TEMPO       (200)
  82
  83/* converts an r_str() input to an active high, bits string : 000BAOSE */
  84#define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  85
  86#define PNL_PBUSY               0x80    /* inverted input, active low */
  87#define PNL_PACK                0x40    /* direct input, active low */
  88#define PNL_POUTPA              0x20    /* direct input, active high */
  89#define PNL_PSELECD             0x10    /* direct input, active high */
  90#define PNL_PERRORP             0x08    /* direct input, active low */
  91
  92#define PNL_PBIDIR              0x20    /* bi-directional ports */
  93/* high to read data in or-ed with data out */
  94#define PNL_PINTEN              0x10
  95#define PNL_PSELECP             0x08    /* inverted output, active low */
  96#define PNL_PINITP              0x04    /* direct output, active low */
  97#define PNL_PAUTOLF             0x02    /* inverted output, active low */
  98#define PNL_PSTROBE             0x01    /* inverted output */
  99
 100#define PNL_PD0                 0x01
 101#define PNL_PD1                 0x02
 102#define PNL_PD2                 0x04
 103#define PNL_PD3                 0x08
 104#define PNL_PD4                 0x10
 105#define PNL_PD5                 0x20
 106#define PNL_PD6                 0x40
 107#define PNL_PD7                 0x80
 108
 109#define PIN_NONE                0
 110#define PIN_STROBE              1
 111#define PIN_D0                  2
 112#define PIN_D1                  3
 113#define PIN_D2                  4
 114#define PIN_D3                  5
 115#define PIN_D4                  6
 116#define PIN_D5                  7
 117#define PIN_D6                  8
 118#define PIN_D7                  9
 119#define PIN_AUTOLF              14
 120#define PIN_INITP               16
 121#define PIN_SELECP              17
 122#define PIN_NOT_SET             127
 123
 124#define LCD_FLAG_S              0x0001
 125#define LCD_FLAG_ID             0x0002
 126#define LCD_FLAG_B              0x0004  /* blink on */
 127#define LCD_FLAG_C              0x0008  /* cursor on */
 128#define LCD_FLAG_D              0x0010  /* display on */
 129#define LCD_FLAG_F              0x0020  /* large font mode */
 130#define LCD_FLAG_N              0x0040  /* 2-rows mode */
 131#define LCD_FLAG_L              0x0080  /* backlight enabled */
 132
 133/* LCD commands */
 134#define LCD_CMD_DISPLAY_CLEAR   0x01    /* Clear entire display */
 135
 136#define LCD_CMD_ENTRY_MODE      0x04    /* Set entry mode */
 137#define LCD_CMD_CURSOR_INC      0x02    /* Increment cursor */
 138
 139#define LCD_CMD_DISPLAY_CTRL    0x08    /* Display control */
 140#define LCD_CMD_DISPLAY_ON      0x04    /* Set display on */
 141#define LCD_CMD_CURSOR_ON       0x02    /* Set cursor on */
 142#define LCD_CMD_BLINK_ON        0x01    /* Set blink on */
 143
 144#define LCD_CMD_SHIFT           0x10    /* Shift cursor/display */
 145#define LCD_CMD_DISPLAY_SHIFT   0x08    /* Shift display instead of cursor */
 146#define LCD_CMD_SHIFT_RIGHT     0x04    /* Shift display/cursor to the right */
 147
 148#define LCD_CMD_FUNCTION_SET    0x20    /* Set function */
 149#define LCD_CMD_DATA_LEN_8BITS  0x10    /* Set data length to 8 bits */
 150#define LCD_CMD_TWO_LINES       0x08    /* Set to two display lines */
 151#define LCD_CMD_FONT_5X10_DOTS  0x04    /* Set char font to 5x10 dots */
 152
 153#define LCD_CMD_SET_CGRAM_ADDR  0x40    /* Set char generator RAM address */
 154
 155#define LCD_CMD_SET_DDRAM_ADDR  0x80    /* Set display data RAM address */
 156
 157#define LCD_ESCAPE_LEN          24      /* max chars for LCD escape command */
 158#define LCD_ESCAPE_CHAR 27      /* use char 27 for escape command */
 159
 160#define NOT_SET                 -1
 161
 162/* macros to simplify use of the parallel port */
 163#define r_ctr(x)        (parport_read_control((x)->port))
 164#define r_dtr(x)        (parport_read_data((x)->port))
 165#define r_str(x)        (parport_read_status((x)->port))
 166#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 167#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 168
 169/* this defines which bits are to be used and which ones to be ignored */
 170/* logical or of the output bits involved in the scan matrix */
 171static __u8 scan_mask_o;
 172/* logical or of the input bits involved in the scan matrix */
 173static __u8 scan_mask_i;
 174
 175typedef __u64 pmask_t;
 176
 177enum input_type {
 178        INPUT_TYPE_STD,
 179        INPUT_TYPE_KBD,
 180};
 181
 182enum input_state {
 183        INPUT_ST_LOW,
 184        INPUT_ST_RISING,
 185        INPUT_ST_HIGH,
 186        INPUT_ST_FALLING,
 187};
 188
 189struct logical_input {
 190        struct list_head list;
 191        pmask_t mask;
 192        pmask_t value;
 193        enum input_type type;
 194        enum input_state state;
 195        __u8 rise_time, fall_time;
 196        __u8 rise_timer, fall_timer, high_timer;
 197
 198        union {
 199                struct {        /* valid when type == INPUT_TYPE_STD */
 200                        void (*press_fct)(int);
 201                        void (*release_fct)(int);
 202                        int press_data;
 203                        int release_data;
 204                } std;
 205                struct {        /* valid when type == INPUT_TYPE_KBD */
 206                        /* strings can be non null-terminated */
 207                        char press_str[sizeof(void *) + sizeof(int)];
 208                        char repeat_str[sizeof(void *) + sizeof(int)];
 209                        char release_str[sizeof(void *) + sizeof(int)];
 210                } kbd;
 211        } u;
 212};
 213
 214static LIST_HEAD(logical_inputs);       /* list of all defined logical inputs */
 215
 216/* physical contacts history
 217 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 218 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 219 * corresponds to the ground.
 220 * Within each group, bits are stored in the same order as read on the port :
 221 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 222 * So, each __u64 (or pmask_t) is represented like this :
 223 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 224 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 225 */
 226
 227/* what has just been read from the I/O ports */
 228static pmask_t phys_read;
 229/* previous phys_read */
 230static pmask_t phys_read_prev;
 231/* stabilized phys_read (phys_read|phys_read_prev) */
 232static pmask_t phys_curr;
 233/* previous phys_curr */
 234static pmask_t phys_prev;
 235/* 0 means that at least one logical signal needs be computed */
 236static char inputs_stable;
 237
 238/* these variables are specific to the keypad */
 239static struct {
 240        bool enabled;
 241} keypad;
 242
 243static char keypad_buffer[KEYPAD_BUFFER];
 244static int keypad_buflen;
 245static int keypad_start;
 246static char keypressed;
 247static wait_queue_head_t keypad_read_wait;
 248
 249/* lcd-specific variables */
 250static struct {
 251        bool enabled;
 252        bool initialized;
 253        bool must_clear;
 254
 255        int height;
 256        int width;
 257        int bwidth;
 258        int hwidth;
 259        int charset;
 260        int proto;
 261        int light_tempo;
 262
 263        /* TODO: use union here? */
 264        struct {
 265                int e;
 266                int rs;
 267                int rw;
 268                int cl;
 269                int da;
 270                int bl;
 271        } pins;
 272
 273        /* contains the LCD config state */
 274        unsigned long int flags;
 275
 276        /* Contains the LCD X and Y offset */
 277        struct {
 278                unsigned long int x;
 279                unsigned long int y;
 280        } addr;
 281
 282        /* Current escape sequence and it's length or -1 if outside */
 283        struct {
 284                char buf[LCD_ESCAPE_LEN + 1];
 285                int len;
 286        } esc_seq;
 287} lcd;
 288
 289/* Needed only for init */
 290static int selected_lcd_type = NOT_SET;
 291
 292/*
 293 * Bit masks to convert LCD signals to parallel port outputs.
 294 * _d_ are values for data port, _c_ are for control port.
 295 * [0] = signal OFF, [1] = signal ON, [2] = mask
 296 */
 297#define BIT_CLR         0
 298#define BIT_SET         1
 299#define BIT_MSK         2
 300#define BIT_STATES      3
 301/*
 302 * one entry for each bit on the LCD
 303 */
 304#define LCD_BIT_E       0
 305#define LCD_BIT_RS      1
 306#define LCD_BIT_RW      2
 307#define LCD_BIT_BL      3
 308#define LCD_BIT_CL      4
 309#define LCD_BIT_DA      5
 310#define LCD_BITS        6
 311
 312/*
 313 * each bit can be either connected to a DATA or CTRL port
 314 */
 315#define LCD_PORT_C      0
 316#define LCD_PORT_D      1
 317#define LCD_PORTS       2
 318
 319static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 320
 321/*
 322 * LCD protocols
 323 */
 324#define LCD_PROTO_PARALLEL      0
 325#define LCD_PROTO_SERIAL        1
 326#define LCD_PROTO_TI_DA8XX_LCD  2
 327
 328/*
 329 * LCD character sets
 330 */
 331#define LCD_CHARSET_NORMAL      0
 332#define LCD_CHARSET_KS0074      1
 333
 334/*
 335 * LCD types
 336 */
 337#define LCD_TYPE_NONE           0
 338#define LCD_TYPE_CUSTOM         1
 339#define LCD_TYPE_OLD            2
 340#define LCD_TYPE_KS0074         3
 341#define LCD_TYPE_HANTRONIX      4
 342#define LCD_TYPE_NEXCOM         5
 343
 344/*
 345 * keypad types
 346 */
 347#define KEYPAD_TYPE_NONE        0
 348#define KEYPAD_TYPE_OLD         1
 349#define KEYPAD_TYPE_NEW         2
 350#define KEYPAD_TYPE_NEXCOM      3
 351
 352/*
 353 * panel profiles
 354 */
 355#define PANEL_PROFILE_CUSTOM    0
 356#define PANEL_PROFILE_OLD       1
 357#define PANEL_PROFILE_NEW       2
 358#define PANEL_PROFILE_HANTRONIX 3
 359#define PANEL_PROFILE_NEXCOM    4
 360#define PANEL_PROFILE_LARGE     5
 361
 362/*
 363 * Construct custom config from the kernel's configuration
 364 */
 365#define DEFAULT_PARPORT         0
 366#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 367#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
 368#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
 369#define DEFAULT_LCD_HEIGHT      2
 370#define DEFAULT_LCD_WIDTH       40
 371#define DEFAULT_LCD_BWIDTH      40
 372#define DEFAULT_LCD_HWIDTH      64
 373#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 374#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 375
 376#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 377#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 378#define DEFAULT_LCD_PIN_RW      PIN_INITP
 379#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 380#define DEFAULT_LCD_PIN_SDA     PIN_D0
 381#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 382
 383#ifdef CONFIG_PANEL_PARPORT
 384#undef DEFAULT_PARPORT
 385#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 386#endif
 387
 388#ifdef CONFIG_PANEL_PROFILE
 389#undef DEFAULT_PROFILE
 390#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 391#endif
 392
 393#if DEFAULT_PROFILE == 0        /* custom */
 394#ifdef CONFIG_PANEL_KEYPAD
 395#undef DEFAULT_KEYPAD_TYPE
 396#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
 397#endif
 398
 399#ifdef CONFIG_PANEL_LCD
 400#undef DEFAULT_LCD_TYPE
 401#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
 402#endif
 403
 404#ifdef CONFIG_PANEL_LCD_HEIGHT
 405#undef DEFAULT_LCD_HEIGHT
 406#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 407#endif
 408
 409#ifdef CONFIG_PANEL_LCD_WIDTH
 410#undef DEFAULT_LCD_WIDTH
 411#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 412#endif
 413
 414#ifdef CONFIG_PANEL_LCD_BWIDTH
 415#undef DEFAULT_LCD_BWIDTH
 416#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 417#endif
 418
 419#ifdef CONFIG_PANEL_LCD_HWIDTH
 420#undef DEFAULT_LCD_HWIDTH
 421#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 422#endif
 423
 424#ifdef CONFIG_PANEL_LCD_CHARSET
 425#undef DEFAULT_LCD_CHARSET
 426#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 427#endif
 428
 429#ifdef CONFIG_PANEL_LCD_PROTO
 430#undef DEFAULT_LCD_PROTO
 431#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 432#endif
 433
 434#ifdef CONFIG_PANEL_LCD_PIN_E
 435#undef DEFAULT_LCD_PIN_E
 436#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 437#endif
 438
 439#ifdef CONFIG_PANEL_LCD_PIN_RS
 440#undef DEFAULT_LCD_PIN_RS
 441#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 442#endif
 443
 444#ifdef CONFIG_PANEL_LCD_PIN_RW
 445#undef DEFAULT_LCD_PIN_RW
 446#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 447#endif
 448
 449#ifdef CONFIG_PANEL_LCD_PIN_SCL
 450#undef DEFAULT_LCD_PIN_SCL
 451#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 452#endif
 453
 454#ifdef CONFIG_PANEL_LCD_PIN_SDA
 455#undef DEFAULT_LCD_PIN_SDA
 456#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 457#endif
 458
 459#ifdef CONFIG_PANEL_LCD_PIN_BL
 460#undef DEFAULT_LCD_PIN_BL
 461#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 462#endif
 463
 464#endif /* DEFAULT_PROFILE == 0 */
 465
 466/* global variables */
 467
 468/* Device single-open policy control */
 469static atomic_t lcd_available = ATOMIC_INIT(1);
 470static atomic_t keypad_available = ATOMIC_INIT(1);
 471
 472static struct pardevice *pprt;
 473
 474static int keypad_initialized;
 475
 476static void (*lcd_write_cmd)(int);
 477static void (*lcd_write_data)(int);
 478static void (*lcd_clear_fast)(void);
 479
 480static DEFINE_SPINLOCK(pprt_lock);
 481static struct timer_list scan_timer;
 482
 483MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 484
 485static int parport = DEFAULT_PARPORT;
 486module_param(parport, int, 0000);
 487MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 488
 489static int profile = DEFAULT_PROFILE;
 490module_param(profile, int, 0000);
 491MODULE_PARM_DESC(profile,
 492                 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 493                 "4=16x2 nexcom; default=40x2, old kp");
 494
 495static int keypad_type = NOT_SET;
 496module_param(keypad_type, int, 0000);
 497MODULE_PARM_DESC(keypad_type,
 498                 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 499
 500static int lcd_type = NOT_SET;
 501module_param(lcd_type, int, 0000);
 502MODULE_PARM_DESC(lcd_type,
 503                 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
 504
 505static int lcd_height = NOT_SET;
 506module_param(lcd_height, int, 0000);
 507MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 508
 509static int lcd_width = NOT_SET;
 510module_param(lcd_width, int, 0000);
 511MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 512
 513static int lcd_bwidth = NOT_SET;        /* internal buffer width (usually 40) */
 514module_param(lcd_bwidth, int, 0000);
 515MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 516
 517static int lcd_hwidth = NOT_SET;        /* hardware buffer width (usually 64) */
 518module_param(lcd_hwidth, int, 0000);
 519MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 520
 521static int lcd_charset = NOT_SET;
 522module_param(lcd_charset, int, 0000);
 523MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 524
 525static int lcd_proto = NOT_SET;
 526module_param(lcd_proto, int, 0000);
 527MODULE_PARM_DESC(lcd_proto,
 528                 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 529
 530/*
 531 * These are the parallel port pins the LCD control signals are connected to.
 532 * Set this to 0 if the signal is not used. Set it to its opposite value
 533 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 534 * pin has not been explicitly specified.
 535 *
 536 * WARNING! no check will be performed about collisions with keypad !
 537 */
 538
 539static int lcd_e_pin  = PIN_NOT_SET;
 540module_param(lcd_e_pin, int, 0000);
 541MODULE_PARM_DESC(lcd_e_pin,
 542                 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 543
 544static int lcd_rs_pin = PIN_NOT_SET;
 545module_param(lcd_rs_pin, int, 0000);
 546MODULE_PARM_DESC(lcd_rs_pin,
 547                 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 548
 549static int lcd_rw_pin = PIN_NOT_SET;
 550module_param(lcd_rw_pin, int, 0000);
 551MODULE_PARM_DESC(lcd_rw_pin,
 552                 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 553
 554static int lcd_cl_pin = PIN_NOT_SET;
 555module_param(lcd_cl_pin, int, 0000);
 556MODULE_PARM_DESC(lcd_cl_pin,
 557                 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 558
 559static int lcd_da_pin = PIN_NOT_SET;
 560module_param(lcd_da_pin, int, 0000);
 561MODULE_PARM_DESC(lcd_da_pin,
 562                 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 563
 564static int lcd_bl_pin = PIN_NOT_SET;
 565module_param(lcd_bl_pin, int, 0000);
 566MODULE_PARM_DESC(lcd_bl_pin,
 567                 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 568
 569/* Deprecated module parameters - consider not using them anymore */
 570
 571static int lcd_enabled = NOT_SET;
 572module_param(lcd_enabled, int, 0000);
 573MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 574
 575static int keypad_enabled = NOT_SET;
 576module_param(keypad_enabled, int, 0000);
 577MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 578
 579static const unsigned char *lcd_char_conv;
 580
 581/* for some LCD drivers (ks0074) we need a charset conversion table. */
 582static const unsigned char lcd_char_conv_ks0074[256] = {
 583        /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 584        /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 585        /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 586        /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 587        /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 588        /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 589        /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 590        /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 591        /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 592        /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 593        /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 594        /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 595        /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 596        /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 597        /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 598        /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 599        /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 600        /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 601        /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 602        /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 603        /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 604        /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 605        /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 606        /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 607        /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 608        /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 609        /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 610        /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 611        /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 612        /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 613        /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 614        /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 615        /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 616};
 617
 618static const char old_keypad_profile[][4][9] = {
 619        {"S0", "Left\n", "Left\n", ""},
 620        {"S1", "Down\n", "Down\n", ""},
 621        {"S2", "Up\n", "Up\n", ""},
 622        {"S3", "Right\n", "Right\n", ""},
 623        {"S4", "Esc\n", "Esc\n", ""},
 624        {"S5", "Ret\n", "Ret\n", ""},
 625        {"", "", "", ""}
 626};
 627
 628/* signals, press, repeat, release */
 629static const char new_keypad_profile[][4][9] = {
 630        {"S0", "Left\n", "Left\n", ""},
 631        {"S1", "Down\n", "Down\n", ""},
 632        {"S2", "Up\n", "Up\n", ""},
 633        {"S3", "Right\n", "Right\n", ""},
 634        {"S4s5", "", "Esc\n", "Esc\n"},
 635        {"s4S5", "", "Ret\n", "Ret\n"},
 636        {"S4S5", "Help\n", "", ""},
 637        /* add new signals above this line */
 638        {"", "", "", ""}
 639};
 640
 641/* signals, press, repeat, release */
 642static const char nexcom_keypad_profile[][4][9] = {
 643        {"a-p-e-", "Down\n", "Down\n", ""},
 644        {"a-p-E-", "Ret\n", "Ret\n", ""},
 645        {"a-P-E-", "Esc\n", "Esc\n", ""},
 646        {"a-P-e-", "Up\n", "Up\n", ""},
 647        /* add new signals above this line */
 648        {"", "", "", ""}
 649};
 650
 651static const char (*keypad_profile)[4][9] = old_keypad_profile;
 652
 653/* FIXME: this should be converted to a bit array containing signals states */
 654static struct {
 655        unsigned char e;  /* parallel LCD E (data latch on falling edge) */
 656        unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
 657        unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
 658        unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
 659        unsigned char cl; /* serial LCD clock (latch on rising edge) */
 660        unsigned char da; /* serial LCD data */
 661} bits;
 662
 663static void init_scan_timer(void);
 664
 665/* sets data port bits according to current signals values */
 666static int set_data_bits(void)
 667{
 668        int val, bit;
 669
 670        val = r_dtr(pprt);
 671        for (bit = 0; bit < LCD_BITS; bit++)
 672                val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
 673
 674        val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
 675            | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
 676            | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
 677            | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
 678            | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
 679            | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
 680
 681        w_dtr(pprt, val);
 682        return val;
 683}
 684
 685/* sets ctrl port bits according to current signals values */
 686static int set_ctrl_bits(void)
 687{
 688        int val, bit;
 689
 690        val = r_ctr(pprt);
 691        for (bit = 0; bit < LCD_BITS; bit++)
 692                val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
 693
 694        val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
 695            | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
 696            | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
 697            | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
 698            | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
 699            | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
 700
 701        w_ctr(pprt, val);
 702        return val;
 703}
 704
 705/* sets ctrl & data port bits according to current signals values */
 706static void panel_set_bits(void)
 707{
 708        set_data_bits();
 709        set_ctrl_bits();
 710}
 711
 712/*
 713 * Converts a parallel port pin (from -25 to 25) to data and control ports
 714 * masks, and data and control port bits. The signal will be considered
 715 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 716 *
 717 * Result will be used this way :
 718 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 719 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 720 */
 721static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 722{
 723        int d_bit, c_bit, inv;
 724
 725        d_val[0] = 0;
 726        c_val[0] = 0;
 727        d_val[1] = 0;
 728        c_val[1] = 0;
 729        d_val[2] = 0xFF;
 730        c_val[2] = 0xFF;
 731
 732        if (pin == 0)
 733                return;
 734
 735        inv = (pin < 0);
 736        if (inv)
 737                pin = -pin;
 738
 739        d_bit = 0;
 740        c_bit = 0;
 741
 742        switch (pin) {
 743        case PIN_STROBE:        /* strobe, inverted */
 744                c_bit = PNL_PSTROBE;
 745                inv = !inv;
 746                break;
 747        case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 748                d_bit = 1 << (pin - 2);
 749                break;
 750        case PIN_AUTOLF:        /* autofeed, inverted */
 751                c_bit = PNL_PAUTOLF;
 752                inv = !inv;
 753                break;
 754        case PIN_INITP:         /* init, direct */
 755                c_bit = PNL_PINITP;
 756                break;
 757        case PIN_SELECP:        /* select_in, inverted */
 758                c_bit = PNL_PSELECP;
 759                inv = !inv;
 760                break;
 761        default:                /* unknown pin, ignore */
 762                break;
 763        }
 764
 765        if (c_bit) {
 766                c_val[2] &= ~c_bit;
 767                c_val[!inv] = c_bit;
 768        } else if (d_bit) {
 769                d_val[2] &= ~d_bit;
 770                d_val[!inv] = d_bit;
 771        }
 772}
 773
 774/* sleeps that many milliseconds with a reschedule */
 775static void long_sleep(int ms)
 776{
 777        if (in_interrupt())
 778                mdelay(ms);
 779        else
 780                schedule_timeout_interruptible(msecs_to_jiffies(ms));
 781}
 782
 783/*
 784 * send a serial byte to the LCD panel. The caller is responsible for locking
 785 * if needed.
 786 */
 787static void lcd_send_serial(int byte)
 788{
 789        int bit;
 790
 791        /*
 792         * the data bit is set on D0, and the clock on STROBE.
 793         * LCD reads D0 on STROBE's rising edge.
 794         */
 795        for (bit = 0; bit < 8; bit++) {
 796                bits.cl = BIT_CLR;      /* CLK low */
 797                panel_set_bits();
 798                bits.da = byte & 1;
 799                panel_set_bits();
 800                udelay(2);  /* maintain the data during 2 us before CLK up */
 801                bits.cl = BIT_SET;      /* CLK high */
 802                panel_set_bits();
 803                udelay(1);  /* maintain the strobe during 1 us */
 804                byte >>= 1;
 805        }
 806}
 807
 808/* turn the backlight on or off */
 809static void lcd_backlight(int on)
 810{
 811        if (lcd.pins.bl == PIN_NONE)
 812                return;
 813
 814        /* The backlight is activated by setting the AUTOFEED line to +5V  */
 815        spin_lock_irq(&pprt_lock);
 816        bits.bl = on;
 817        panel_set_bits();
 818        spin_unlock_irq(&pprt_lock);
 819}
 820
 821/* send a command to the LCD panel in serial mode */
 822static void lcd_write_cmd_s(int cmd)
 823{
 824        spin_lock_irq(&pprt_lock);
 825        lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 826        lcd_send_serial(cmd & 0x0F);
 827        lcd_send_serial((cmd >> 4) & 0x0F);
 828        udelay(40);             /* the shortest command takes at least 40 us */
 829        spin_unlock_irq(&pprt_lock);
 830}
 831
 832/* send data to the LCD panel in serial mode */
 833static void lcd_write_data_s(int data)
 834{
 835        spin_lock_irq(&pprt_lock);
 836        lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 837        lcd_send_serial(data & 0x0F);
 838        lcd_send_serial((data >> 4) & 0x0F);
 839        udelay(40);             /* the shortest data takes at least 40 us */
 840        spin_unlock_irq(&pprt_lock);
 841}
 842
 843/* send a command to the LCD panel in 8 bits parallel mode */
 844static void lcd_write_cmd_p8(int cmd)
 845{
 846        spin_lock_irq(&pprt_lock);
 847        /* present the data to the data port */
 848        w_dtr(pprt, cmd);
 849        udelay(20);     /* maintain the data during 20 us before the strobe */
 850
 851        bits.e = BIT_SET;
 852        bits.rs = BIT_CLR;
 853        bits.rw = BIT_CLR;
 854        set_ctrl_bits();
 855
 856        udelay(40);     /* maintain the strobe during 40 us */
 857
 858        bits.e = BIT_CLR;
 859        set_ctrl_bits();
 860
 861        udelay(120);    /* the shortest command takes at least 120 us */
 862        spin_unlock_irq(&pprt_lock);
 863}
 864
 865/* send data to the LCD panel in 8 bits parallel mode */
 866static void lcd_write_data_p8(int data)
 867{
 868        spin_lock_irq(&pprt_lock);
 869        /* present the data to the data port */
 870        w_dtr(pprt, data);
 871        udelay(20);     /* maintain the data during 20 us before the strobe */
 872
 873        bits.e = BIT_SET;
 874        bits.rs = BIT_SET;
 875        bits.rw = BIT_CLR;
 876        set_ctrl_bits();
 877
 878        udelay(40);     /* maintain the strobe during 40 us */
 879
 880        bits.e = BIT_CLR;
 881        set_ctrl_bits();
 882
 883        udelay(45);     /* the shortest data takes at least 45 us */
 884        spin_unlock_irq(&pprt_lock);
 885}
 886
 887/* send a command to the TI LCD panel */
 888static void lcd_write_cmd_tilcd(int cmd)
 889{
 890        spin_lock_irq(&pprt_lock);
 891        /* present the data to the control port */
 892        w_ctr(pprt, cmd);
 893        udelay(60);
 894        spin_unlock_irq(&pprt_lock);
 895}
 896
 897/* send data to the TI LCD panel */
 898static void lcd_write_data_tilcd(int data)
 899{
 900        spin_lock_irq(&pprt_lock);
 901        /* present the data to the data port */
 902        w_dtr(pprt, data);
 903        udelay(60);
 904        spin_unlock_irq(&pprt_lock);
 905}
 906
 907static void lcd_gotoxy(void)
 908{
 909        lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
 910                      | (lcd.addr.y ? lcd.hwidth : 0)
 911                      /*
 912                       * we force the cursor to stay at the end of the
 913                       * line if it wants to go farther
 914                       */
 915                      | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
 916                         (lcd.hwidth - 1) : lcd.bwidth - 1));
 917}
 918
 919static void lcd_print(char c)
 920{
 921        if (lcd.addr.x < lcd.bwidth) {
 922                if (lcd_char_conv)
 923                        c = lcd_char_conv[(unsigned char)c];
 924                lcd_write_data(c);
 925                lcd.addr.x++;
 926        }
 927        /* prevents the cursor from wrapping onto the next line */
 928        if (lcd.addr.x == lcd.bwidth)
 929                lcd_gotoxy();
 930}
 931
 932/* fills the display with spaces and resets X/Y */
 933static void lcd_clear_fast_s(void)
 934{
 935        int pos;
 936
 937        lcd.addr.x = 0;
 938        lcd.addr.y = 0;
 939        lcd_gotoxy();
 940
 941        spin_lock_irq(&pprt_lock);
 942        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
 943                lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 944                lcd_send_serial(' ' & 0x0F);
 945                lcd_send_serial((' ' >> 4) & 0x0F);
 946                udelay(40);     /* the shortest data takes at least 40 us */
 947        }
 948        spin_unlock_irq(&pprt_lock);
 949
 950        lcd.addr.x = 0;
 951        lcd.addr.y = 0;
 952        lcd_gotoxy();
 953}
 954
 955/* fills the display with spaces and resets X/Y */
 956static void lcd_clear_fast_p8(void)
 957{
 958        int pos;
 959
 960        lcd.addr.x = 0;
 961        lcd.addr.y = 0;
 962        lcd_gotoxy();
 963
 964        spin_lock_irq(&pprt_lock);
 965        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
 966                /* present the data to the data port */
 967                w_dtr(pprt, ' ');
 968
 969                /* maintain the data during 20 us before the strobe */
 970                udelay(20);
 971
 972                bits.e = BIT_SET;
 973                bits.rs = BIT_SET;
 974                bits.rw = BIT_CLR;
 975                set_ctrl_bits();
 976
 977                /* maintain the strobe during 40 us */
 978                udelay(40);
 979
 980                bits.e = BIT_CLR;
 981                set_ctrl_bits();
 982
 983                /* the shortest data takes at least 45 us */
 984                udelay(45);
 985        }
 986        spin_unlock_irq(&pprt_lock);
 987
 988        lcd.addr.x = 0;
 989        lcd.addr.y = 0;
 990        lcd_gotoxy();
 991}
 992
 993/* fills the display with spaces and resets X/Y */
 994static void lcd_clear_fast_tilcd(void)
 995{
 996        int pos;
 997
 998        lcd.addr.x = 0;
 999        lcd.addr.y = 0;
1000        lcd_gotoxy();
1001
1002        spin_lock_irq(&pprt_lock);
1003        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1004                /* present the data to the data port */
1005                w_dtr(pprt, ' ');
1006                udelay(60);
1007        }
1008
1009        spin_unlock_irq(&pprt_lock);
1010
1011        lcd.addr.x = 0;
1012        lcd.addr.y = 0;
1013        lcd_gotoxy();
1014}
1015
1016/* clears the display and resets X/Y */
1017static void lcd_clear_display(void)
1018{
1019        lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1020        lcd.addr.x = 0;
1021        lcd.addr.y = 0;
1022        /* we must wait a few milliseconds (15) */
1023        long_sleep(15);
1024}
1025
1026static void lcd_init_display(void)
1027{
1028        lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1029            | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1030
1031        long_sleep(20);         /* wait 20 ms after power-up for the paranoid */
1032
1033        /* 8bits, 1 line, small fonts; let's do it 3 times */
1034        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1035        long_sleep(10);
1036        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1037        long_sleep(10);
1038        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1039        long_sleep(10);
1040
1041        /* set font height and lines number */
1042        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1043                      | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1044                      | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1045            );
1046        long_sleep(10);
1047
1048        /* display off, cursor off, blink off */
1049        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1050        long_sleep(10);
1051
1052        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL      /* set display mode */
1053                      | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1054                      | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1055                      | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1056            );
1057
1058        lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1059
1060        long_sleep(10);
1061
1062        /* entry mode set : increment, cursor shifting */
1063        lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1064
1065        lcd_clear_display();
1066}
1067
1068/*
1069 * These are the file operation function for user access to /dev/lcd
1070 * This function can also be called from inside the kernel, by
1071 * setting file and ppos to NULL.
1072 *
1073 */
1074
1075static inline int handle_lcd_special_code(void)
1076{
1077        /* LCD special codes */
1078
1079        int processed = 0;
1080
1081        char *esc = lcd.esc_seq.buf + 2;
1082        int oldflags = lcd.flags;
1083
1084        /* check for display mode flags */
1085        switch (*esc) {
1086        case 'D':       /* Display ON */
1087                lcd.flags |= LCD_FLAG_D;
1088                processed = 1;
1089                break;
1090        case 'd':       /* Display OFF */
1091                lcd.flags &= ~LCD_FLAG_D;
1092                processed = 1;
1093                break;
1094        case 'C':       /* Cursor ON */
1095                lcd.flags |= LCD_FLAG_C;
1096                processed = 1;
1097                break;
1098        case 'c':       /* Cursor OFF */
1099                lcd.flags &= ~LCD_FLAG_C;
1100                processed = 1;
1101                break;
1102        case 'B':       /* Blink ON */
1103                lcd.flags |= LCD_FLAG_B;
1104                processed = 1;
1105                break;
1106        case 'b':       /* Blink OFF */
1107                lcd.flags &= ~LCD_FLAG_B;
1108                processed = 1;
1109                break;
1110        case '+':       /* Back light ON */
1111                lcd.flags |= LCD_FLAG_L;
1112                processed = 1;
1113                break;
1114        case '-':       /* Back light OFF */
1115                lcd.flags &= ~LCD_FLAG_L;
1116                processed = 1;
1117                break;
1118        case '*':
1119                /* flash back light using the keypad timer */
1120                if (scan_timer.function) {
1121                        if (lcd.light_tempo == 0 &&
1122                            ((lcd.flags & LCD_FLAG_L) == 0))
1123                                lcd_backlight(1);
1124                        lcd.light_tempo = FLASH_LIGHT_TEMPO;
1125                }
1126                processed = 1;
1127                break;
1128        case 'f':       /* Small Font */
1129                lcd.flags &= ~LCD_FLAG_F;
1130                processed = 1;
1131                break;
1132        case 'F':       /* Large Font */
1133                lcd.flags |= LCD_FLAG_F;
1134                processed = 1;
1135                break;
1136        case 'n':       /* One Line */
1137                lcd.flags &= ~LCD_FLAG_N;
1138                processed = 1;
1139                break;
1140        case 'N':       /* Two Lines */
1141                lcd.flags |= LCD_FLAG_N;
1142                break;
1143        case 'l':       /* Shift Cursor Left */
1144                if (lcd.addr.x > 0) {
1145                        /* back one char if not at end of line */
1146                        if (lcd.addr.x < lcd.bwidth)
1147                                lcd_write_cmd(LCD_CMD_SHIFT);
1148                        lcd.addr.x--;
1149                }
1150                processed = 1;
1151                break;
1152        case 'r':       /* shift cursor right */
1153                if (lcd.addr.x < lcd.width) {
1154                        /* allow the cursor to pass the end of the line */
1155                        if (lcd.addr.x < (lcd.bwidth - 1))
1156                                lcd_write_cmd(LCD_CMD_SHIFT |
1157                                                LCD_CMD_SHIFT_RIGHT);
1158                        lcd.addr.x++;
1159                }
1160                processed = 1;
1161                break;
1162        case 'L':       /* shift display left */
1163                lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1164                processed = 1;
1165                break;
1166        case 'R':       /* shift display right */
1167                lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1168                                LCD_CMD_SHIFT_RIGHT);
1169                processed = 1;
1170                break;
1171        case 'k': {     /* kill end of line */
1172                int x;
1173
1174                for (x = lcd.addr.x; x < lcd.bwidth; x++)
1175                        lcd_write_data(' ');
1176
1177                /* restore cursor position */
1178                lcd_gotoxy();
1179                processed = 1;
1180                break;
1181        }
1182        case 'I':       /* reinitialize display */
1183                lcd_init_display();
1184                processed = 1;
1185                break;
1186        case 'G': {
1187                /* Generator : LGcxxxxx...xx; must have <c> between '0'
1188                 * and '7', representing the numerical ASCII code of the
1189                 * redefined character, and <xx...xx> a sequence of 16
1190                 * hex digits representing 8 bytes for each character.
1191                 * Most LCDs will only use 5 lower bits of the 7 first
1192                 * bytes.
1193                 */
1194
1195                unsigned char cgbytes[8];
1196                unsigned char cgaddr;
1197                int cgoffset;
1198                int shift;
1199                char value;
1200                int addr;
1201
1202                if (!strchr(esc, ';'))
1203                        break;
1204
1205                esc++;
1206
1207                cgaddr = *(esc++) - '0';
1208                if (cgaddr > 7) {
1209                        processed = 1;
1210                        break;
1211                }
1212
1213                cgoffset = 0;
1214                shift = 0;
1215                value = 0;
1216                while (*esc && cgoffset < 8) {
1217                        shift ^= 4;
1218                        if (*esc >= '0' && *esc <= '9') {
1219                                value |= (*esc - '0') << shift;
1220                        } else if (*esc >= 'A' && *esc <= 'Z') {
1221                                value |= (*esc - 'A' + 10) << shift;
1222                        } else if (*esc >= 'a' && *esc <= 'z') {
1223                                value |= (*esc - 'a' + 10) << shift;
1224                        } else {
1225                                esc++;
1226                                continue;
1227                        }
1228
1229                        if (shift == 0) {
1230                                cgbytes[cgoffset++] = value;
1231                                value = 0;
1232                        }
1233
1234                        esc++;
1235                }
1236
1237                lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1238                for (addr = 0; addr < cgoffset; addr++)
1239                        lcd_write_data(cgbytes[addr]);
1240
1241                /* ensures that we stop writing to CGRAM */
1242                lcd_gotoxy();
1243                processed = 1;
1244                break;
1245        }
1246        case 'x':       /* gotoxy : LxXXX[yYYY]; */
1247        case 'y':       /* gotoxy : LyYYY[xXXX]; */
1248                if (!strchr(esc, ';'))
1249                        break;
1250
1251                while (*esc) {
1252                        if (*esc == 'x') {
1253                                esc++;
1254                                if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1255                                        break;
1256                        } else if (*esc == 'y') {
1257                                esc++;
1258                                if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1259                                        break;
1260                        } else {
1261                                break;
1262                        }
1263                }
1264
1265                lcd_gotoxy();
1266                processed = 1;
1267                break;
1268        }
1269
1270        /* TODO: This indent party here got ugly, clean it! */
1271        /* Check whether one flag was changed */
1272        if (oldflags != lcd.flags) {
1273                /* check whether one of B,C,D flags were changed */
1274                if ((oldflags ^ lcd.flags) &
1275                    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1276                        /* set display mode */
1277                        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1278                                      | ((lcd.flags & LCD_FLAG_D)
1279                                                      ? LCD_CMD_DISPLAY_ON : 0)
1280                                      | ((lcd.flags & LCD_FLAG_C)
1281                                                      ? LCD_CMD_CURSOR_ON : 0)
1282                                      | ((lcd.flags & LCD_FLAG_B)
1283                                                      ? LCD_CMD_BLINK_ON : 0));
1284                /* check whether one of F,N flags was changed */
1285                else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1286                        lcd_write_cmd(LCD_CMD_FUNCTION_SET
1287                                      | LCD_CMD_DATA_LEN_8BITS
1288                                      | ((lcd.flags & LCD_FLAG_F)
1289                                                      ? LCD_CMD_TWO_LINES : 0)
1290                                      | ((lcd.flags & LCD_FLAG_N)
1291                                                      ? LCD_CMD_FONT_5X10_DOTS
1292                                                                      : 0));
1293                /* check whether L flag was changed */
1294                else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1295                        if (lcd.flags & (LCD_FLAG_L))
1296                                lcd_backlight(1);
1297                        else if (lcd.light_tempo == 0)
1298                                /*
1299                                 * switch off the light only when the tempo
1300                                 * lighting is gone
1301                                 */
1302                                lcd_backlight(0);
1303                }
1304        }
1305
1306        return processed;
1307}
1308
1309static void lcd_write_char(char c)
1310{
1311        /* first, we'll test if we're in escape mode */
1312        if ((c != '\n') && lcd.esc_seq.len >= 0) {
1313                /* yes, let's add this char to the buffer */
1314                lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1315                lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1316        } else {
1317                /* aborts any previous escape sequence */
1318                lcd.esc_seq.len = -1;
1319
1320                switch (c) {
1321                case LCD_ESCAPE_CHAR:
1322                        /* start of an escape sequence */
1323                        lcd.esc_seq.len = 0;
1324                        lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1325                        break;
1326                case '\b':
1327                        /* go back one char and clear it */
1328                        if (lcd.addr.x > 0) {
1329                                /*
1330                                 * check if we're not at the
1331                                 * end of the line
1332                                 */
1333                                if (lcd.addr.x < lcd.bwidth)
1334                                        /* back one char */
1335                                        lcd_write_cmd(LCD_CMD_SHIFT);
1336                                lcd.addr.x--;
1337                        }
1338                        /* replace with a space */
1339                        lcd_write_data(' ');
1340                        /* back one char again */
1341                        lcd_write_cmd(LCD_CMD_SHIFT);
1342                        break;
1343                case '\014':
1344                        /* quickly clear the display */
1345                        lcd_clear_fast();
1346                        break;
1347                case '\n':
1348                        /*
1349                         * flush the remainder of the current line and
1350                         * go to the beginning of the next line
1351                         */
1352                        for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1353                                lcd_write_data(' ');
1354                        lcd.addr.x = 0;
1355                        lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1356                        lcd_gotoxy();
1357                        break;
1358                case '\r':
1359                        /* go to the beginning of the same line */
1360                        lcd.addr.x = 0;
1361                        lcd_gotoxy();
1362                        break;
1363                case '\t':
1364                        /* print a space instead of the tab */
1365                        lcd_print(' ');
1366                        break;
1367                default:
1368                        /* simply print this char */
1369                        lcd_print(c);
1370                        break;
1371                }
1372        }
1373
1374        /*
1375         * now we'll see if we're in an escape mode and if the current
1376         * escape sequence can be understood.
1377         */
1378        if (lcd.esc_seq.len >= 2) {
1379                int processed = 0;
1380
1381                if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1382                        /* clear the display */
1383                        lcd_clear_fast();
1384                        processed = 1;
1385                } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1386                        /* cursor to home */
1387                        lcd.addr.x = 0;
1388                        lcd.addr.y = 0;
1389                        lcd_gotoxy();
1390                        processed = 1;
1391                }
1392                /* codes starting with ^[[L */
1393                else if ((lcd.esc_seq.len >= 3) &&
1394                         (lcd.esc_seq.buf[0] == '[') &&
1395                         (lcd.esc_seq.buf[1] == 'L')) {
1396                        processed = handle_lcd_special_code();
1397                }
1398
1399                /* LCD special escape codes */
1400                /*
1401                 * flush the escape sequence if it's been processed
1402                 * or if it is getting too long.
1403                 */
1404                if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1405                        lcd.esc_seq.len = -1;
1406        } /* escape codes */
1407}
1408
1409static ssize_t lcd_write(struct file *file,
1410                         const char __user *buf, size_t count, loff_t *ppos)
1411{
1412        const char __user *tmp = buf;
1413        char c;
1414
1415        for (; count-- > 0; (*ppos)++, tmp++) {
1416                if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1417                        /*
1418                         * let's be a little nice with other processes
1419                         * that need some CPU
1420                         */
1421                        schedule();
1422
1423                if (get_user(c, tmp))
1424                        return -EFAULT;
1425
1426                lcd_write_char(c);
1427        }
1428
1429        return tmp - buf;
1430}
1431
1432static int lcd_open(struct inode *inode, struct file *file)
1433{
1434        if (!atomic_dec_and_test(&lcd_available))
1435                return -EBUSY;  /* open only once at a time */
1436
1437        if (file->f_mode & FMODE_READ)  /* device is write-only */
1438                return -EPERM;
1439
1440        if (lcd.must_clear) {
1441                lcd_clear_display();
1442                lcd.must_clear = false;
1443        }
1444        return nonseekable_open(inode, file);
1445}
1446
1447static int lcd_release(struct inode *inode, struct file *file)
1448{
1449        atomic_inc(&lcd_available);
1450        return 0;
1451}
1452
1453static const struct file_operations lcd_fops = {
1454        .write   = lcd_write,
1455        .open    = lcd_open,
1456        .release = lcd_release,
1457        .llseek  = no_llseek,
1458};
1459
1460static struct miscdevice lcd_dev = {
1461        .minor  = LCD_MINOR,
1462        .name   = "lcd",
1463        .fops   = &lcd_fops,
1464};
1465
1466/* public function usable from the kernel for any purpose */
1467static void panel_lcd_print(const char *s)
1468{
1469        const char *tmp = s;
1470        int count = strlen(s);
1471
1472        if (lcd.enabled && lcd.initialized) {
1473                for (; count-- > 0; tmp++) {
1474                        if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1475                                /*
1476                                 * let's be a little nice with other processes
1477                                 * that need some CPU
1478                                 */
1479                                schedule();
1480
1481                        lcd_write_char(*tmp);
1482                }
1483        }
1484}
1485
1486/* initialize the LCD driver */
1487static void lcd_init(void)
1488{
1489        switch (selected_lcd_type) {
1490        case LCD_TYPE_OLD:
1491                /* parallel mode, 8 bits */
1492                lcd.proto = LCD_PROTO_PARALLEL;
1493                lcd.charset = LCD_CHARSET_NORMAL;
1494                lcd.pins.e = PIN_STROBE;
1495                lcd.pins.rs = PIN_AUTOLF;
1496
1497                lcd.width = 40;
1498                lcd.bwidth = 40;
1499                lcd.hwidth = 64;
1500                lcd.height = 2;
1501                break;
1502        case LCD_TYPE_KS0074:
1503                /* serial mode, ks0074 */
1504                lcd.proto = LCD_PROTO_SERIAL;
1505                lcd.charset = LCD_CHARSET_KS0074;
1506                lcd.pins.bl = PIN_AUTOLF;
1507                lcd.pins.cl = PIN_STROBE;
1508                lcd.pins.da = PIN_D0;
1509
1510                lcd.width = 16;
1511                lcd.bwidth = 40;
1512                lcd.hwidth = 16;
1513                lcd.height = 2;
1514                break;
1515        case LCD_TYPE_NEXCOM:
1516                /* parallel mode, 8 bits, generic */
1517                lcd.proto = LCD_PROTO_PARALLEL;
1518                lcd.charset = LCD_CHARSET_NORMAL;
1519                lcd.pins.e = PIN_AUTOLF;
1520                lcd.pins.rs = PIN_SELECP;
1521                lcd.pins.rw = PIN_INITP;
1522
1523                lcd.width = 16;
1524                lcd.bwidth = 40;
1525                lcd.hwidth = 64;
1526                lcd.height = 2;
1527                break;
1528        case LCD_TYPE_CUSTOM:
1529                /* customer-defined */
1530                lcd.proto = DEFAULT_LCD_PROTO;
1531                lcd.charset = DEFAULT_LCD_CHARSET;
1532                /* default geometry will be set later */
1533                break;
1534        case LCD_TYPE_HANTRONIX:
1535                /* parallel mode, 8 bits, hantronix-like */
1536        default:
1537                lcd.proto = LCD_PROTO_PARALLEL;
1538                lcd.charset = LCD_CHARSET_NORMAL;
1539                lcd.pins.e = PIN_STROBE;
1540                lcd.pins.rs = PIN_SELECP;
1541
1542                lcd.width = 16;
1543                lcd.bwidth = 40;
1544                lcd.hwidth = 64;
1545                lcd.height = 2;
1546                break;
1547        }
1548
1549        /* Overwrite with module params set on loading */
1550        if (lcd_height != NOT_SET)
1551                lcd.height = lcd_height;
1552        if (lcd_width != NOT_SET)
1553                lcd.width = lcd_width;
1554        if (lcd_bwidth != NOT_SET)
1555                lcd.bwidth = lcd_bwidth;
1556        if (lcd_hwidth != NOT_SET)
1557                lcd.hwidth = lcd_hwidth;
1558        if (lcd_charset != NOT_SET)
1559                lcd.charset = lcd_charset;
1560        if (lcd_proto != NOT_SET)
1561                lcd.proto = lcd_proto;
1562        if (lcd_e_pin != PIN_NOT_SET)
1563                lcd.pins.e = lcd_e_pin;
1564        if (lcd_rs_pin != PIN_NOT_SET)
1565                lcd.pins.rs = lcd_rs_pin;
1566        if (lcd_rw_pin != PIN_NOT_SET)
1567                lcd.pins.rw = lcd_rw_pin;
1568        if (lcd_cl_pin != PIN_NOT_SET)
1569                lcd.pins.cl = lcd_cl_pin;
1570        if (lcd_da_pin != PIN_NOT_SET)
1571                lcd.pins.da = lcd_da_pin;
1572        if (lcd_bl_pin != PIN_NOT_SET)
1573                lcd.pins.bl = lcd_bl_pin;
1574
1575        /* this is used to catch wrong and default values */
1576        if (lcd.width <= 0)
1577                lcd.width = DEFAULT_LCD_WIDTH;
1578        if (lcd.bwidth <= 0)
1579                lcd.bwidth = DEFAULT_LCD_BWIDTH;
1580        if (lcd.hwidth <= 0)
1581                lcd.hwidth = DEFAULT_LCD_HWIDTH;
1582        if (lcd.height <= 0)
1583                lcd.height = DEFAULT_LCD_HEIGHT;
1584
1585        if (lcd.proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1586                lcd_write_cmd = lcd_write_cmd_s;
1587                lcd_write_data = lcd_write_data_s;
1588                lcd_clear_fast = lcd_clear_fast_s;
1589
1590                if (lcd.pins.cl == PIN_NOT_SET)
1591                        lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1592                if (lcd.pins.da == PIN_NOT_SET)
1593                        lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1594
1595        } else if (lcd.proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1596                lcd_write_cmd = lcd_write_cmd_p8;
1597                lcd_write_data = lcd_write_data_p8;
1598                lcd_clear_fast = lcd_clear_fast_p8;
1599
1600                if (lcd.pins.e == PIN_NOT_SET)
1601                        lcd.pins.e = DEFAULT_LCD_PIN_E;
1602                if (lcd.pins.rs == PIN_NOT_SET)
1603                        lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1604                if (lcd.pins.rw == PIN_NOT_SET)
1605                        lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1606        } else {
1607                lcd_write_cmd = lcd_write_cmd_tilcd;
1608                lcd_write_data = lcd_write_data_tilcd;
1609                lcd_clear_fast = lcd_clear_fast_tilcd;
1610        }
1611
1612        if (lcd.pins.bl == PIN_NOT_SET)
1613                lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1614
1615        if (lcd.pins.e == PIN_NOT_SET)
1616                lcd.pins.e = PIN_NONE;
1617        if (lcd.pins.rs == PIN_NOT_SET)
1618                lcd.pins.rs = PIN_NONE;
1619        if (lcd.pins.rw == PIN_NOT_SET)
1620                lcd.pins.rw = PIN_NONE;
1621        if (lcd.pins.bl == PIN_NOT_SET)
1622                lcd.pins.bl = PIN_NONE;
1623        if (lcd.pins.cl == PIN_NOT_SET)
1624                lcd.pins.cl = PIN_NONE;
1625        if (lcd.pins.da == PIN_NOT_SET)
1626                lcd.pins.da = PIN_NONE;
1627
1628        if (lcd.charset == NOT_SET)
1629                lcd.charset = DEFAULT_LCD_CHARSET;
1630
1631        if (lcd.charset == LCD_CHARSET_KS0074)
1632                lcd_char_conv = lcd_char_conv_ks0074;
1633        else
1634                lcd_char_conv = NULL;
1635
1636        if (lcd.pins.bl != PIN_NONE)
1637                init_scan_timer();
1638
1639        pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1640                    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1641        pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1642                    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1643        pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1644                    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1645        pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1646                    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1647        pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1648                    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1649        pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1650                    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1651
1652        /*
1653         * before this line, we must NOT send anything to the display.
1654         * Since lcd_init_display() needs to write data, we have to
1655         * enable mark the LCD initialized just before.
1656         */
1657        lcd.initialized = true;
1658        lcd_init_display();
1659
1660        /* display a short message */
1661#ifdef CONFIG_PANEL_CHANGE_MESSAGE
1662#ifdef CONFIG_PANEL_BOOT_MESSAGE
1663        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1664#endif
1665#else
1666        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1667                        PANEL_VERSION);
1668#endif
1669        lcd.addr.x = 0;
1670        lcd.addr.y = 0;
1671        /* clear the display on the next device opening */
1672        lcd.must_clear = true;
1673        lcd_gotoxy();
1674}
1675
1676/*
1677 * These are the file operation function for user access to /dev/keypad
1678 */
1679
1680static ssize_t keypad_read(struct file *file,
1681                           char __user *buf, size_t count, loff_t *ppos)
1682{
1683        unsigned i = *ppos;
1684        char __user *tmp = buf;
1685
1686        if (keypad_buflen == 0) {
1687                if (file->f_flags & O_NONBLOCK)
1688                        return -EAGAIN;
1689
1690                if (wait_event_interruptible(keypad_read_wait,
1691                                             keypad_buflen != 0))
1692                        return -EINTR;
1693        }
1694
1695        for (; count-- > 0 && (keypad_buflen > 0);
1696             ++i, ++tmp, --keypad_buflen) {
1697                put_user(keypad_buffer[keypad_start], tmp);
1698                keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1699        }
1700        *ppos = i;
1701
1702        return tmp - buf;
1703}
1704
1705static int keypad_open(struct inode *inode, struct file *file)
1706{
1707        if (!atomic_dec_and_test(&keypad_available))
1708                return -EBUSY;  /* open only once at a time */
1709
1710        if (file->f_mode & FMODE_WRITE) /* device is read-only */
1711                return -EPERM;
1712
1713        keypad_buflen = 0;      /* flush the buffer on opening */
1714        return 0;
1715}
1716
1717static int keypad_release(struct inode *inode, struct file *file)
1718{
1719        atomic_inc(&keypad_available);
1720        return 0;
1721}
1722
1723static const struct file_operations keypad_fops = {
1724        .read    = keypad_read,         /* read */
1725        .open    = keypad_open,         /* open */
1726        .release = keypad_release,      /* close */
1727        .llseek  = default_llseek,
1728};
1729
1730static struct miscdevice keypad_dev = {
1731        .minor  = KEYPAD_MINOR,
1732        .name   = "keypad",
1733        .fops   = &keypad_fops,
1734};
1735
1736static void keypad_send_key(const char *string, int max_len)
1737{
1738        /* send the key to the device only if a process is attached to it. */
1739        if (!atomic_read(&keypad_available)) {
1740                while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1741                        keypad_buffer[(keypad_start + keypad_buflen++) %
1742                                      KEYPAD_BUFFER] = *string++;
1743                }
1744                wake_up_interruptible(&keypad_read_wait);
1745        }
1746}
1747
1748/* this function scans all the bits involving at least one logical signal,
1749 * and puts the results in the bitfield "phys_read" (one bit per established
1750 * contact), and sets "phys_read_prev" to "phys_read".
1751 *
1752 * Note: to debounce input signals, we will only consider as switched a signal
1753 * which is stable across 2 measures. Signals which are different between two
1754 * reads will be kept as they previously were in their logical form (phys_prev).
1755 * A signal which has just switched will have a 1 in
1756 * (phys_read ^ phys_read_prev).
1757 */
1758static void phys_scan_contacts(void)
1759{
1760        int bit, bitval;
1761        char oldval;
1762        char bitmask;
1763        char gndmask;
1764
1765        phys_prev = phys_curr;
1766        phys_read_prev = phys_read;
1767        phys_read = 0;          /* flush all signals */
1768
1769        /* keep track of old value, with all outputs disabled */
1770        oldval = r_dtr(pprt) | scan_mask_o;
1771        /* activate all keyboard outputs (active low) */
1772        w_dtr(pprt, oldval & ~scan_mask_o);
1773
1774        /* will have a 1 for each bit set to gnd */
1775        bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1776        /* disable all matrix signals */
1777        w_dtr(pprt, oldval);
1778
1779        /* now that all outputs are cleared, the only active input bits are
1780         * directly connected to the ground
1781         */
1782
1783        /* 1 for each grounded input */
1784        gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1785
1786        /* grounded inputs are signals 40-44 */
1787        phys_read |= (pmask_t) gndmask << 40;
1788
1789        if (bitmask != gndmask) {
1790                /*
1791                 * since clearing the outputs changed some inputs, we know
1792                 * that some input signals are currently tied to some outputs.
1793                 * So we'll scan them.
1794                 */
1795                for (bit = 0; bit < 8; bit++) {
1796                        bitval = BIT(bit);
1797
1798                        if (!(scan_mask_o & bitval))    /* skip unused bits */
1799                                continue;
1800
1801                        w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1802                        bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1803                        phys_read |= (pmask_t) bitmask << (5 * bit);
1804                }
1805                w_dtr(pprt, oldval);    /* disable all outputs */
1806        }
1807        /*
1808         * this is easy: use old bits when they are flapping,
1809         * use new ones when stable
1810         */
1811        phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1812                    (phys_read & ~(phys_read ^ phys_read_prev));
1813}
1814
1815static inline int input_state_high(struct logical_input *input)
1816{
1817#if 0
1818        /* FIXME:
1819         * this is an invalid test. It tries to catch
1820         * transitions from single-key to multiple-key, but
1821         * doesn't take into account the contacts polarity.
1822         * The only solution to the problem is to parse keys
1823         * from the most complex to the simplest combinations,
1824         * and mark them as 'caught' once a combination
1825         * matches, then unmatch it for all other ones.
1826         */
1827
1828        /* try to catch dangerous transitions cases :
1829         * someone adds a bit, so this signal was a false
1830         * positive resulting from a transition. We should
1831         * invalidate the signal immediately and not call the
1832         * release function.
1833         * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1834         */
1835        if (((phys_prev & input->mask) == input->value) &&
1836            ((phys_curr & input->mask) >  input->value)) {
1837                input->state = INPUT_ST_LOW; /* invalidate */
1838                return 1;
1839        }
1840#endif
1841
1842        if ((phys_curr & input->mask) == input->value) {
1843                if ((input->type == INPUT_TYPE_STD) &&
1844                    (input->high_timer == 0)) {
1845                        input->high_timer++;
1846                        if (input->u.std.press_fct)
1847                                input->u.std.press_fct(input->u.std.press_data);
1848                } else if (input->type == INPUT_TYPE_KBD) {
1849                        /* will turn on the light */
1850                        keypressed = 1;
1851
1852                        if (input->high_timer == 0) {
1853                                char *press_str = input->u.kbd.press_str;
1854
1855                                if (press_str[0]) {
1856                                        int s = sizeof(input->u.kbd.press_str);
1857
1858                                        keypad_send_key(press_str, s);
1859                                }
1860                        }
1861
1862                        if (input->u.kbd.repeat_str[0]) {
1863                                char *repeat_str = input->u.kbd.repeat_str;
1864
1865                                if (input->high_timer >= KEYPAD_REP_START) {
1866                                        int s = sizeof(input->u.kbd.repeat_str);
1867
1868                                        input->high_timer -= KEYPAD_REP_DELAY;
1869                                        keypad_send_key(repeat_str, s);
1870                                }
1871                                /* we will need to come back here soon */
1872                                inputs_stable = 0;
1873                        }
1874
1875                        if (input->high_timer < 255)
1876                                input->high_timer++;
1877                }
1878                return 1;
1879        }
1880
1881        /* else signal falling down. Let's fall through. */
1882        input->state = INPUT_ST_FALLING;
1883        input->fall_timer = 0;
1884
1885        return 0;
1886}
1887
1888static inline void input_state_falling(struct logical_input *input)
1889{
1890#if 0
1891        /* FIXME !!! same comment as in input_state_high */
1892        if (((phys_prev & input->mask) == input->value) &&
1893            ((phys_curr & input->mask) >  input->value)) {
1894                input->state = INPUT_ST_LOW;    /* invalidate */
1895                return;
1896        }
1897#endif
1898
1899        if ((phys_curr & input->mask) == input->value) {
1900                if (input->type == INPUT_TYPE_KBD) {
1901                        /* will turn on the light */
1902                        keypressed = 1;
1903
1904                        if (input->u.kbd.repeat_str[0]) {
1905                                char *repeat_str = input->u.kbd.repeat_str;
1906
1907                                if (input->high_timer >= KEYPAD_REP_START) {
1908                                        int s = sizeof(input->u.kbd.repeat_str);
1909
1910                                        input->high_timer -= KEYPAD_REP_DELAY;
1911                                        keypad_send_key(repeat_str, s);
1912                                }
1913                                /* we will need to come back here soon */
1914                                inputs_stable = 0;
1915                        }
1916
1917                        if (input->high_timer < 255)
1918                                input->high_timer++;
1919                }
1920                input->state = INPUT_ST_HIGH;
1921        } else if (input->fall_timer >= input->fall_time) {
1922                /* call release event */
1923                if (input->type == INPUT_TYPE_STD) {
1924                        void (*release_fct)(int) = input->u.std.release_fct;
1925
1926                        if (release_fct)
1927                                release_fct(input->u.std.release_data);
1928                } else if (input->type == INPUT_TYPE_KBD) {
1929                        char *release_str = input->u.kbd.release_str;
1930
1931                        if (release_str[0]) {
1932                                int s = sizeof(input->u.kbd.release_str);
1933
1934                                keypad_send_key(release_str, s);
1935                        }
1936                }
1937
1938                input->state = INPUT_ST_LOW;
1939        } else {
1940                input->fall_timer++;
1941                inputs_stable = 0;
1942        }
1943}
1944
1945static void panel_process_inputs(void)
1946{
1947        struct list_head *item;
1948        struct logical_input *input;
1949
1950        keypressed = 0;
1951        inputs_stable = 1;
1952        list_for_each(item, &logical_inputs) {
1953                input = list_entry(item, struct logical_input, list);
1954
1955                switch (input->state) {
1956                case INPUT_ST_LOW:
1957                        if ((phys_curr & input->mask) != input->value)
1958                                break;
1959                        /* if all needed ones were already set previously,
1960                         * this means that this logical signal has been
1961                         * activated by the releasing of another combined
1962                         * signal, so we don't want to match.
1963                         * eg: AB -(release B)-> A -(release A)-> 0 :
1964                         *     don't match A.
1965                         */
1966                        if ((phys_prev & input->mask) == input->value)
1967                                break;
1968                        input->rise_timer = 0;
1969                        input->state = INPUT_ST_RISING;
1970                        /* no break here, fall through */
1971                case INPUT_ST_RISING:
1972                        if ((phys_curr & input->mask) != input->value) {
1973                                input->state = INPUT_ST_LOW;
1974                                break;
1975                        }
1976                        if (input->rise_timer < input->rise_time) {
1977                                inputs_stable = 0;
1978                                input->rise_timer++;
1979                                break;
1980                        }
1981                        input->high_timer = 0;
1982                        input->state = INPUT_ST_HIGH;
1983                        /* no break here, fall through */
1984                case INPUT_ST_HIGH:
1985                        if (input_state_high(input))
1986                                break;
1987                        /* no break here, fall through */
1988                case INPUT_ST_FALLING:
1989                        input_state_falling(input);
1990                }
1991        }
1992}
1993
1994static void panel_scan_timer(void)
1995{
1996        if (keypad.enabled && keypad_initialized) {
1997                if (spin_trylock_irq(&pprt_lock)) {
1998                        phys_scan_contacts();
1999
2000                        /* no need for the parport anymore */
2001                        spin_unlock_irq(&pprt_lock);
2002                }
2003
2004                if (!inputs_stable || phys_curr != phys_prev)
2005                        panel_process_inputs();
2006        }
2007
2008        if (lcd.enabled && lcd.initialized) {
2009                if (keypressed) {
2010                        if (lcd.light_tempo == 0 &&
2011                            ((lcd.flags & LCD_FLAG_L) == 0))
2012                                lcd_backlight(1);
2013                        lcd.light_tempo = FLASH_LIGHT_TEMPO;
2014                } else if (lcd.light_tempo > 0) {
2015                        lcd.light_tempo--;
2016                        if (lcd.light_tempo == 0 &&
2017                            ((lcd.flags & LCD_FLAG_L) == 0))
2018                                lcd_backlight(0);
2019                }
2020        }
2021
2022        mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2023}
2024
2025static void init_scan_timer(void)
2026{
2027        if (scan_timer.function)
2028                return;         /* already started */
2029
2030        setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2031        scan_timer.expires = jiffies + INPUT_POLL_TIME;
2032        add_timer(&scan_timer);
2033}
2034
2035/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2036 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2037 * corresponding to out and in bits respectively.
2038 * returns 1 if ok, 0 if error (in which case, nothing is written).
2039 */
2040static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
2041                           char *imask, char *omask)
2042{
2043        static char sigtab[10] = "EeSsPpAaBb";
2044        char im, om;
2045        pmask_t m, v;
2046
2047        om = 0ULL;
2048        im = 0ULL;
2049        m = 0ULL;
2050        v = 0ULL;
2051        while (*name) {
2052                int in, out, bit, neg;
2053
2054                for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
2055                     in++)
2056                        ;
2057
2058                if (in >= sizeof(sigtab))
2059                        return 0;       /* input name not found */
2060                neg = (in & 1); /* odd (lower) names are negated */
2061                in >>= 1;
2062                im |= BIT(in);
2063
2064                name++;
2065                if (isdigit(*name)) {
2066                        out = *name - '0';
2067                        om |= BIT(out);
2068                } else if (*name == '-') {
2069                        out = 8;
2070                } else {
2071                        return 0;       /* unknown bit name */
2072                }
2073
2074                bit = (out * 5) + in;
2075
2076                m |= 1ULL << bit;
2077                if (!neg)
2078                        v |= 1ULL << bit;
2079                name++;
2080        }
2081        *mask = m;
2082        *value = v;
2083        if (imask)
2084                *imask |= im;
2085        if (omask)
2086                *omask |= om;
2087        return 1;
2088}
2089
2090/* tries to bind a key to the signal name <name>. The key will send the
2091 * strings <press>, <repeat>, <release> for these respective events.
2092 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2093 */
2094static struct logical_input *panel_bind_key(const char *name, const char *press,
2095                                            const char *repeat,
2096                                            const char *release)
2097{
2098        struct logical_input *key;
2099
2100        key = kzalloc(sizeof(*key), GFP_KERNEL);
2101        if (!key)
2102                return NULL;
2103
2104        if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2105                             &scan_mask_o)) {
2106                kfree(key);
2107                return NULL;
2108        }
2109
2110        key->type = INPUT_TYPE_KBD;
2111        key->state = INPUT_ST_LOW;
2112        key->rise_time = 1;
2113        key->fall_time = 1;
2114
2115        strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2116        strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2117        strncpy(key->u.kbd.release_str, release,
2118                sizeof(key->u.kbd.release_str));
2119        list_add(&key->list, &logical_inputs);
2120        return key;
2121}
2122
2123#if 0
2124/* tries to bind a callback function to the signal name <name>. The function
2125 * <press_fct> will be called with the <press_data> arg when the signal is
2126 * activated, and so on for <release_fct>/<release_data>
2127 * Returns the pointer to the new signal if ok, NULL if the signal could not
2128 * be bound.
2129 */
2130static struct logical_input *panel_bind_callback(char *name,
2131                                                 void (*press_fct)(int),
2132                                                 int press_data,
2133                                                 void (*release_fct)(int),
2134                                                 int release_data)
2135{
2136        struct logical_input *callback;
2137
2138        callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2139        if (!callback)
2140                return NULL;
2141
2142        memset(callback, 0, sizeof(struct logical_input));
2143        if (!input_name2mask(name, &callback->mask, &callback->value,
2144                             &scan_mask_i, &scan_mask_o))
2145                return NULL;
2146
2147        callback->type = INPUT_TYPE_STD;
2148        callback->state = INPUT_ST_LOW;
2149        callback->rise_time = 1;
2150        callback->fall_time = 1;
2151        callback->u.std.press_fct = press_fct;
2152        callback->u.std.press_data = press_data;
2153        callback->u.std.release_fct = release_fct;
2154        callback->u.std.release_data = release_data;
2155        list_add(&callback->list, &logical_inputs);
2156        return callback;
2157}
2158#endif
2159
2160static void keypad_init(void)
2161{
2162        int keynum;
2163
2164        init_waitqueue_head(&keypad_read_wait);
2165        keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
2166
2167        /* Let's create all known keys */
2168
2169        for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2170                panel_bind_key(keypad_profile[keynum][0],
2171                               keypad_profile[keynum][1],
2172                               keypad_profile[keynum][2],
2173                               keypad_profile[keynum][3]);
2174        }
2175
2176        init_scan_timer();
2177        keypad_initialized = 1;
2178}
2179
2180/**************************************************/
2181/* device initialization                          */
2182/**************************************************/
2183
2184static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2185                            void *unused)
2186{
2187        if (lcd.enabled && lcd.initialized) {
2188                switch (code) {
2189                case SYS_DOWN:
2190                        panel_lcd_print
2191                            ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2192                        break;
2193                case SYS_HALT:
2194                        panel_lcd_print
2195                            ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2196                        break;
2197                case SYS_POWER_OFF:
2198                        panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2199                        break;
2200                default:
2201                        break;
2202                }
2203        }
2204        return NOTIFY_DONE;
2205}
2206
2207static struct notifier_block panel_notifier = {
2208        panel_notify_sys,
2209        NULL,
2210        0
2211};
2212
2213static void panel_attach(struct parport *port)
2214{
2215        struct pardev_cb panel_cb;
2216
2217        if (port->number != parport)
2218                return;
2219
2220        if (pprt) {
2221                pr_err("%s: port->number=%d parport=%d, already registered!\n",
2222                       __func__, port->number, parport);
2223                return;
2224        }
2225
2226        memset(&panel_cb, 0, sizeof(panel_cb));
2227        panel_cb.private = &pprt;
2228        /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
2229
2230        pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
2231        if (!pprt) {
2232                pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2233                       __func__, port->number, parport);
2234                return;
2235        }
2236
2237        if (parport_claim(pprt)) {
2238                pr_err("could not claim access to parport%d. Aborting.\n",
2239                       parport);
2240                goto err_unreg_device;
2241        }
2242
2243        /* must init LCD first, just in case an IRQ from the keypad is
2244         * generated at keypad init
2245         */
2246        if (lcd.enabled) {
2247                lcd_init();
2248                if (misc_register(&lcd_dev))
2249                        goto err_unreg_device;
2250        }
2251
2252        if (keypad.enabled) {
2253                keypad_init();
2254                if (misc_register(&keypad_dev))
2255                        goto err_lcd_unreg;
2256        }
2257        register_reboot_notifier(&panel_notifier);
2258        return;
2259
2260err_lcd_unreg:
2261        if (lcd.enabled)
2262                misc_deregister(&lcd_dev);
2263err_unreg_device:
2264        parport_unregister_device(pprt);
2265        pprt = NULL;
2266}
2267
2268static void panel_detach(struct parport *port)
2269{
2270        if (port->number != parport)
2271                return;
2272
2273        if (!pprt) {
2274                pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2275                       __func__, port->number, parport);
2276                return;
2277        }
2278        if (scan_timer.function)
2279                del_timer_sync(&scan_timer);
2280
2281        if (pprt) {
2282                if (keypad.enabled) {
2283                        misc_deregister(&keypad_dev);
2284                        keypad_initialized = 0;
2285                }
2286
2287                if (lcd.enabled) {
2288                        panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2289                                        "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2290                        misc_deregister(&lcd_dev);
2291                        lcd.initialized = false;
2292                }
2293
2294                /* TODO: free all input signals */
2295                parport_release(pprt);
2296                parport_unregister_device(pprt);
2297                pprt = NULL;
2298                unregister_reboot_notifier(&panel_notifier);
2299        }
2300}
2301
2302static struct parport_driver panel_driver = {
2303        .name = "panel",
2304        .match_port = panel_attach,
2305        .detach = panel_detach,
2306        .devmodel = true,
2307};
2308
2309/* init function */
2310static int __init panel_init_module(void)
2311{
2312        int selected_keypad_type = NOT_SET, err;
2313
2314        /* take care of an eventual profile */
2315        switch (profile) {
2316        case PANEL_PROFILE_CUSTOM:
2317                /* custom profile */
2318                selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2319                selected_lcd_type = DEFAULT_LCD_TYPE;
2320                break;
2321        case PANEL_PROFILE_OLD:
2322                /* 8 bits, 2*16, old keypad */
2323                selected_keypad_type = KEYPAD_TYPE_OLD;
2324                selected_lcd_type = LCD_TYPE_OLD;
2325
2326                /* TODO: This two are a little hacky, sort it out later */
2327                if (lcd_width == NOT_SET)
2328                        lcd_width = 16;
2329                if (lcd_hwidth == NOT_SET)
2330                        lcd_hwidth = 16;
2331                break;
2332        case PANEL_PROFILE_NEW:
2333                /* serial, 2*16, new keypad */
2334                selected_keypad_type = KEYPAD_TYPE_NEW;
2335                selected_lcd_type = LCD_TYPE_KS0074;
2336                break;
2337        case PANEL_PROFILE_HANTRONIX:
2338                /* 8 bits, 2*16 hantronix-like, no keypad */
2339                selected_keypad_type = KEYPAD_TYPE_NONE;
2340                selected_lcd_type = LCD_TYPE_HANTRONIX;
2341                break;
2342        case PANEL_PROFILE_NEXCOM:
2343                /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2344                selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2345                selected_lcd_type = LCD_TYPE_NEXCOM;
2346                break;
2347        case PANEL_PROFILE_LARGE:
2348                /* 8 bits, 2*40, old keypad */
2349                selected_keypad_type = KEYPAD_TYPE_OLD;
2350                selected_lcd_type = LCD_TYPE_OLD;
2351                break;
2352        }
2353
2354        /*
2355         * Overwrite selection with module param values (both keypad and lcd),
2356         * where the deprecated params have lower prio.
2357         */
2358        if (keypad_enabled != NOT_SET)
2359                selected_keypad_type = keypad_enabled;
2360        if (keypad_type != NOT_SET)
2361                selected_keypad_type = keypad_type;
2362
2363        keypad.enabled = (selected_keypad_type > 0);
2364
2365        if (lcd_enabled != NOT_SET)
2366                selected_lcd_type = lcd_enabled;
2367        if (lcd_type != NOT_SET)
2368                selected_lcd_type = lcd_type;
2369
2370        lcd.enabled = (selected_lcd_type > 0);
2371
2372        if (lcd.enabled) {
2373                /*
2374                 * Init lcd struct with load-time values to preserve exact
2375                 * current functionality (at least for now).
2376                 */
2377                lcd.height = lcd_height;
2378                lcd.width = lcd_width;
2379                lcd.bwidth = lcd_bwidth;
2380                lcd.hwidth = lcd_hwidth;
2381                lcd.charset = lcd_charset;
2382                lcd.proto = lcd_proto;
2383                lcd.pins.e = lcd_e_pin;
2384                lcd.pins.rs = lcd_rs_pin;
2385                lcd.pins.rw = lcd_rw_pin;
2386                lcd.pins.cl = lcd_cl_pin;
2387                lcd.pins.da = lcd_da_pin;
2388                lcd.pins.bl = lcd_bl_pin;
2389
2390                /* Leave it for now, just in case */
2391                lcd.esc_seq.len = -1;
2392        }
2393
2394        switch (selected_keypad_type) {
2395        case KEYPAD_TYPE_OLD:
2396                keypad_profile = old_keypad_profile;
2397                break;
2398        case KEYPAD_TYPE_NEW:
2399                keypad_profile = new_keypad_profile;
2400                break;
2401        case KEYPAD_TYPE_NEXCOM:
2402                keypad_profile = nexcom_keypad_profile;
2403                break;
2404        default:
2405                keypad_profile = NULL;
2406                break;
2407        }
2408
2409        if (!lcd.enabled && !keypad.enabled) {
2410                /* no device enabled, let's exit */
2411                pr_err("driver version " PANEL_VERSION " disabled.\n");
2412                return -ENODEV;
2413        }
2414
2415        err = parport_register_driver(&panel_driver);
2416        if (err) {
2417                pr_err("could not register with parport. Aborting.\n");
2418                return err;
2419        }
2420
2421        if (pprt)
2422                pr_info("driver version " PANEL_VERSION
2423                        " registered on parport%d (io=0x%lx).\n", parport,
2424                        pprt->port->base);
2425        else
2426                pr_info("driver version " PANEL_VERSION
2427                        " not yet registered\n");
2428        return 0;
2429}
2430
2431static void __exit panel_cleanup_module(void)
2432{
2433        parport_unregister_driver(&panel_driver);
2434}
2435
2436module_init(panel_init_module);
2437module_exit(panel_cleanup_module);
2438MODULE_AUTHOR("Willy Tarreau");
2439MODULE_LICENSE("GPL");
2440
2441/*
2442 * Local variables:
2443 *  c-indent-level: 4
2444 *  tab-width: 8
2445 * End:
2446 */
2447