linux/fs/btrfs/check-integrity.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) STRATO AG 2011.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19/*
  20 * This module can be used to catch cases when the btrfs kernel
  21 * code executes write requests to the disk that bring the file
  22 * system in an inconsistent state. In such a state, a power-loss
  23 * or kernel panic event would cause that the data on disk is
  24 * lost or at least damaged.
  25 *
  26 * Code is added that examines all block write requests during
  27 * runtime (including writes of the super block). Three rules
  28 * are verified and an error is printed on violation of the
  29 * rules:
  30 * 1. It is not allowed to write a disk block which is
  31 *    currently referenced by the super block (either directly
  32 *    or indirectly).
  33 * 2. When a super block is written, it is verified that all
  34 *    referenced (directly or indirectly) blocks fulfill the
  35 *    following requirements:
  36 *    2a. All referenced blocks have either been present when
  37 *        the file system was mounted, (i.e., they have been
  38 *        referenced by the super block) or they have been
  39 *        written since then and the write completion callback
  40 *        was called and no write error was indicated and a
  41 *        FLUSH request to the device where these blocks are
  42 *        located was received and completed.
  43 *    2b. All referenced blocks need to have a generation
  44 *        number which is equal to the parent's number.
  45 *
  46 * One issue that was found using this module was that the log
  47 * tree on disk became temporarily corrupted because disk blocks
  48 * that had been in use for the log tree had been freed and
  49 * reused too early, while being referenced by the written super
  50 * block.
  51 *
  52 * The search term in the kernel log that can be used to filter
  53 * on the existence of detected integrity issues is
  54 * "btrfs: attempt".
  55 *
  56 * The integrity check is enabled via mount options. These
  57 * mount options are only supported if the integrity check
  58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
  59 *
  60 * Example #1, apply integrity checks to all metadata:
  61 * mount /dev/sdb1 /mnt -o check_int
  62 *
  63 * Example #2, apply integrity checks to all metadata and
  64 * to data extents:
  65 * mount /dev/sdb1 /mnt -o check_int_data
  66 *
  67 * Example #3, apply integrity checks to all metadata and dump
  68 * the tree that the super block references to kernel messages
  69 * each time after a super block was written:
  70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
  71 *
  72 * If the integrity check tool is included and activated in
  73 * the mount options, plenty of kernel memory is used, and
  74 * plenty of additional CPU cycles are spent. Enabling this
  75 * functionality is not intended for normal use. In most
  76 * cases, unless you are a btrfs developer who needs to verify
  77 * the integrity of (super)-block write requests, do not
  78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
  79 * include and compile the integrity check tool.
  80 *
  81 * Expect millions of lines of information in the kernel log with an
  82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
  83 * kernel config to at least 26 (which is 64MB). Usually the value is
  84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
  85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
  86 * config LOG_BUF_SHIFT
  87 *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
  88 *       range 12 30
  89 */
  90
  91#include <linux/sched.h>
  92#include <linux/slab.h>
  93#include <linux/buffer_head.h>
  94#include <linux/mutex.h>
  95#include <linux/genhd.h>
  96#include <linux/blkdev.h>
  97#include <linux/vmalloc.h>
  98#include "ctree.h"
  99#include "disk-io.h"
 100#include "hash.h"
 101#include "transaction.h"
 102#include "extent_io.h"
 103#include "volumes.h"
 104#include "print-tree.h"
 105#include "locking.h"
 106#include "check-integrity.h"
 107#include "rcu-string.h"
 108
 109#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
 110#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
 111#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
 112#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
 113#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
 114#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
 115#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
 116#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)    /* in characters,
 117                                                         * excluding " [...]" */
 118#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
 119
 120/*
 121 * The definition of the bitmask fields for the print_mask.
 122 * They are specified with the mount option check_integrity_print_mask.
 123 */
 124#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE                     0x00000001
 125#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION         0x00000002
 126#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE                  0x00000004
 127#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE                 0x00000008
 128#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH                        0x00000010
 129#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH                        0x00000020
 130#define BTRFSIC_PRINT_MASK_VERBOSE                              0x00000040
 131#define BTRFSIC_PRINT_MASK_VERY_VERBOSE                         0x00000080
 132#define BTRFSIC_PRINT_MASK_INITIAL_TREE                         0x00000100
 133#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES                    0x00000200
 134#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE                     0x00000400
 135#define BTRFSIC_PRINT_MASK_NUM_COPIES                           0x00000800
 136#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS                0x00001000
 137#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE                0x00002000
 138
 139struct btrfsic_dev_state;
 140struct btrfsic_state;
 141
 142struct btrfsic_block {
 143        u32 magic_num;          /* only used for debug purposes */
 144        unsigned int is_metadata:1;     /* if it is meta-data, not data-data */
 145        unsigned int is_superblock:1;   /* if it is one of the superblocks */
 146        unsigned int is_iodone:1;       /* if is done by lower subsystem */
 147        unsigned int iodone_w_error:1;  /* error was indicated to endio */
 148        unsigned int never_written:1;   /* block was added because it was
 149                                         * referenced, not because it was
 150                                         * written */
 151        unsigned int mirror_num;        /* large enough to hold
 152                                         * BTRFS_SUPER_MIRROR_MAX */
 153        struct btrfsic_dev_state *dev_state;
 154        u64 dev_bytenr;         /* key, physical byte num on disk */
 155        u64 logical_bytenr;     /* logical byte num on disk */
 156        u64 generation;
 157        struct btrfs_disk_key disk_key; /* extra info to print in case of
 158                                         * issues, will not always be correct */
 159        struct list_head collision_resolving_node;      /* list node */
 160        struct list_head all_blocks_node;       /* list node */
 161
 162        /* the following two lists contain block_link items */
 163        struct list_head ref_to_list;   /* list */
 164        struct list_head ref_from_list; /* list */
 165        struct btrfsic_block *next_in_same_bio;
 166        void *orig_bio_bh_private;
 167        union {
 168                bio_end_io_t *bio;
 169                bh_end_io_t *bh;
 170        } orig_bio_bh_end_io;
 171        int submit_bio_bh_rw;
 172        u64 flush_gen; /* only valid if !never_written */
 173};
 174
 175/*
 176 * Elements of this type are allocated dynamically and required because
 177 * each block object can refer to and can be ref from multiple blocks.
 178 * The key to lookup them in the hashtable is the dev_bytenr of
 179 * the block ref to plus the one from the block refered from.
 180 * The fact that they are searchable via a hashtable and that a
 181 * ref_cnt is maintained is not required for the btrfs integrity
 182 * check algorithm itself, it is only used to make the output more
 183 * beautiful in case that an error is detected (an error is defined
 184 * as a write operation to a block while that block is still referenced).
 185 */
 186struct btrfsic_block_link {
 187        u32 magic_num;          /* only used for debug purposes */
 188        u32 ref_cnt;
 189        struct list_head node_ref_to;   /* list node */
 190        struct list_head node_ref_from; /* list node */
 191        struct list_head collision_resolving_node;      /* list node */
 192        struct btrfsic_block *block_ref_to;
 193        struct btrfsic_block *block_ref_from;
 194        u64 parent_generation;
 195};
 196
 197struct btrfsic_dev_state {
 198        u32 magic_num;          /* only used for debug purposes */
 199        struct block_device *bdev;
 200        struct btrfsic_state *state;
 201        struct list_head collision_resolving_node;      /* list node */
 202        struct btrfsic_block dummy_block_for_bio_bh_flush;
 203        u64 last_flush_gen;
 204        char name[BDEVNAME_SIZE];
 205};
 206
 207struct btrfsic_block_hashtable {
 208        struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
 209};
 210
 211struct btrfsic_block_link_hashtable {
 212        struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
 213};
 214
 215struct btrfsic_dev_state_hashtable {
 216        struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
 217};
 218
 219struct btrfsic_block_data_ctx {
 220        u64 start;              /* virtual bytenr */
 221        u64 dev_bytenr;         /* physical bytenr on device */
 222        u32 len;
 223        struct btrfsic_dev_state *dev;
 224        char **datav;
 225        struct page **pagev;
 226        void *mem_to_free;
 227};
 228
 229/* This structure is used to implement recursion without occupying
 230 * any stack space, refer to btrfsic_process_metablock() */
 231struct btrfsic_stack_frame {
 232        u32 magic;
 233        u32 nr;
 234        int error;
 235        int i;
 236        int limit_nesting;
 237        int num_copies;
 238        int mirror_num;
 239        struct btrfsic_block *block;
 240        struct btrfsic_block_data_ctx *block_ctx;
 241        struct btrfsic_block *next_block;
 242        struct btrfsic_block_data_ctx next_block_ctx;
 243        struct btrfs_header *hdr;
 244        struct btrfsic_stack_frame *prev;
 245};
 246
 247/* Some state per mounted filesystem */
 248struct btrfsic_state {
 249        u32 print_mask;
 250        int include_extent_data;
 251        int csum_size;
 252        struct list_head all_blocks_list;
 253        struct btrfsic_block_hashtable block_hashtable;
 254        struct btrfsic_block_link_hashtable block_link_hashtable;
 255        struct btrfs_root *root;
 256        u64 max_superblock_generation;
 257        struct btrfsic_block *latest_superblock;
 258        u32 metablock_size;
 259        u32 datablock_size;
 260};
 261
 262static void btrfsic_block_init(struct btrfsic_block *b);
 263static struct btrfsic_block *btrfsic_block_alloc(void);
 264static void btrfsic_block_free(struct btrfsic_block *b);
 265static void btrfsic_block_link_init(struct btrfsic_block_link *n);
 266static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
 267static void btrfsic_block_link_free(struct btrfsic_block_link *n);
 268static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
 269static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
 270static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
 271static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
 272static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 273                                        struct btrfsic_block_hashtable *h);
 274static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
 275static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 276                struct block_device *bdev,
 277                u64 dev_bytenr,
 278                struct btrfsic_block_hashtable *h);
 279static void btrfsic_block_link_hashtable_init(
 280                struct btrfsic_block_link_hashtable *h);
 281static void btrfsic_block_link_hashtable_add(
 282                struct btrfsic_block_link *l,
 283                struct btrfsic_block_link_hashtable *h);
 284static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
 285static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 286                struct block_device *bdev_ref_to,
 287                u64 dev_bytenr_ref_to,
 288                struct block_device *bdev_ref_from,
 289                u64 dev_bytenr_ref_from,
 290                struct btrfsic_block_link_hashtable *h);
 291static void btrfsic_dev_state_hashtable_init(
 292                struct btrfsic_dev_state_hashtable *h);
 293static void btrfsic_dev_state_hashtable_add(
 294                struct btrfsic_dev_state *ds,
 295                struct btrfsic_dev_state_hashtable *h);
 296static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
 297static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
 298                struct block_device *bdev,
 299                struct btrfsic_dev_state_hashtable *h);
 300static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
 301static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
 302static int btrfsic_process_superblock(struct btrfsic_state *state,
 303                                      struct btrfs_fs_devices *fs_devices);
 304static int btrfsic_process_metablock(struct btrfsic_state *state,
 305                                     struct btrfsic_block *block,
 306                                     struct btrfsic_block_data_ctx *block_ctx,
 307                                     int limit_nesting, int force_iodone_flag);
 308static void btrfsic_read_from_block_data(
 309        struct btrfsic_block_data_ctx *block_ctx,
 310        void *dst, u32 offset, size_t len);
 311static int btrfsic_create_link_to_next_block(
 312                struct btrfsic_state *state,
 313                struct btrfsic_block *block,
 314                struct btrfsic_block_data_ctx
 315                *block_ctx, u64 next_bytenr,
 316                int limit_nesting,
 317                struct btrfsic_block_data_ctx *next_block_ctx,
 318                struct btrfsic_block **next_blockp,
 319                int force_iodone_flag,
 320                int *num_copiesp, int *mirror_nump,
 321                struct btrfs_disk_key *disk_key,
 322                u64 parent_generation);
 323static int btrfsic_handle_extent_data(struct btrfsic_state *state,
 324                                      struct btrfsic_block *block,
 325                                      struct btrfsic_block_data_ctx *block_ctx,
 326                                      u32 item_offset, int force_iodone_flag);
 327static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
 328                             struct btrfsic_block_data_ctx *block_ctx_out,
 329                             int mirror_num);
 330static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
 331static int btrfsic_read_block(struct btrfsic_state *state,
 332                              struct btrfsic_block_data_ctx *block_ctx);
 333static void btrfsic_dump_database(struct btrfsic_state *state);
 334static int btrfsic_test_for_metadata(struct btrfsic_state *state,
 335                                     char **datav, unsigned int num_pages);
 336static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
 337                                          u64 dev_bytenr, char **mapped_datav,
 338                                          unsigned int num_pages,
 339                                          struct bio *bio, int *bio_is_patched,
 340                                          struct buffer_head *bh,
 341                                          int submit_bio_bh_rw);
 342static int btrfsic_process_written_superblock(
 343                struct btrfsic_state *state,
 344                struct btrfsic_block *const block,
 345                struct btrfs_super_block *const super_hdr);
 346static void btrfsic_bio_end_io(struct bio *bp);
 347static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
 348static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
 349                                              const struct btrfsic_block *block,
 350                                              int recursion_level);
 351static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
 352                                        struct btrfsic_block *const block,
 353                                        int recursion_level);
 354static void btrfsic_print_add_link(const struct btrfsic_state *state,
 355                                   const struct btrfsic_block_link *l);
 356static void btrfsic_print_rem_link(const struct btrfsic_state *state,
 357                                   const struct btrfsic_block_link *l);
 358static char btrfsic_get_block_type(const struct btrfsic_state *state,
 359                                   const struct btrfsic_block *block);
 360static void btrfsic_dump_tree(const struct btrfsic_state *state);
 361static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
 362                                  const struct btrfsic_block *block,
 363                                  int indent_level);
 364static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
 365                struct btrfsic_state *state,
 366                struct btrfsic_block_data_ctx *next_block_ctx,
 367                struct btrfsic_block *next_block,
 368                struct btrfsic_block *from_block,
 369                u64 parent_generation);
 370static struct btrfsic_block *btrfsic_block_lookup_or_add(
 371                struct btrfsic_state *state,
 372                struct btrfsic_block_data_ctx *block_ctx,
 373                const char *additional_string,
 374                int is_metadata,
 375                int is_iodone,
 376                int never_written,
 377                int mirror_num,
 378                int *was_created);
 379static int btrfsic_process_superblock_dev_mirror(
 380                struct btrfsic_state *state,
 381                struct btrfsic_dev_state *dev_state,
 382                struct btrfs_device *device,
 383                int superblock_mirror_num,
 384                struct btrfsic_dev_state **selected_dev_state,
 385                struct btrfs_super_block *selected_super);
 386static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
 387                struct block_device *bdev);
 388static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
 389                                           u64 bytenr,
 390                                           struct btrfsic_dev_state *dev_state,
 391                                           u64 dev_bytenr);
 392
 393static struct mutex btrfsic_mutex;
 394static int btrfsic_is_initialized;
 395static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
 396
 397
 398static void btrfsic_block_init(struct btrfsic_block *b)
 399{
 400        b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
 401        b->dev_state = NULL;
 402        b->dev_bytenr = 0;
 403        b->logical_bytenr = 0;
 404        b->generation = BTRFSIC_GENERATION_UNKNOWN;
 405        b->disk_key.objectid = 0;
 406        b->disk_key.type = 0;
 407        b->disk_key.offset = 0;
 408        b->is_metadata = 0;
 409        b->is_superblock = 0;
 410        b->is_iodone = 0;
 411        b->iodone_w_error = 0;
 412        b->never_written = 0;
 413        b->mirror_num = 0;
 414        b->next_in_same_bio = NULL;
 415        b->orig_bio_bh_private = NULL;
 416        b->orig_bio_bh_end_io.bio = NULL;
 417        INIT_LIST_HEAD(&b->collision_resolving_node);
 418        INIT_LIST_HEAD(&b->all_blocks_node);
 419        INIT_LIST_HEAD(&b->ref_to_list);
 420        INIT_LIST_HEAD(&b->ref_from_list);
 421        b->submit_bio_bh_rw = 0;
 422        b->flush_gen = 0;
 423}
 424
 425static struct btrfsic_block *btrfsic_block_alloc(void)
 426{
 427        struct btrfsic_block *b;
 428
 429        b = kzalloc(sizeof(*b), GFP_NOFS);
 430        if (NULL != b)
 431                btrfsic_block_init(b);
 432
 433        return b;
 434}
 435
 436static void btrfsic_block_free(struct btrfsic_block *b)
 437{
 438        BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
 439        kfree(b);
 440}
 441
 442static void btrfsic_block_link_init(struct btrfsic_block_link *l)
 443{
 444        l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
 445        l->ref_cnt = 1;
 446        INIT_LIST_HEAD(&l->node_ref_to);
 447        INIT_LIST_HEAD(&l->node_ref_from);
 448        INIT_LIST_HEAD(&l->collision_resolving_node);
 449        l->block_ref_to = NULL;
 450        l->block_ref_from = NULL;
 451}
 452
 453static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
 454{
 455        struct btrfsic_block_link *l;
 456
 457        l = kzalloc(sizeof(*l), GFP_NOFS);
 458        if (NULL != l)
 459                btrfsic_block_link_init(l);
 460
 461        return l;
 462}
 463
 464static void btrfsic_block_link_free(struct btrfsic_block_link *l)
 465{
 466        BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
 467        kfree(l);
 468}
 469
 470static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
 471{
 472        ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
 473        ds->bdev = NULL;
 474        ds->state = NULL;
 475        ds->name[0] = '\0';
 476        INIT_LIST_HEAD(&ds->collision_resolving_node);
 477        ds->last_flush_gen = 0;
 478        btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
 479        ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
 480        ds->dummy_block_for_bio_bh_flush.dev_state = ds;
 481}
 482
 483static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
 484{
 485        struct btrfsic_dev_state *ds;
 486
 487        ds = kzalloc(sizeof(*ds), GFP_NOFS);
 488        if (NULL != ds)
 489                btrfsic_dev_state_init(ds);
 490
 491        return ds;
 492}
 493
 494static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
 495{
 496        BUG_ON(!(NULL == ds ||
 497                 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
 498        kfree(ds);
 499}
 500
 501static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
 502{
 503        int i;
 504
 505        for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
 506                INIT_LIST_HEAD(h->table + i);
 507}
 508
 509static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 510                                        struct btrfsic_block_hashtable *h)
 511{
 512        const unsigned int hashval =
 513            (((unsigned int)(b->dev_bytenr >> 16)) ^
 514             ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
 515             (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 516
 517        list_add(&b->collision_resolving_node, h->table + hashval);
 518}
 519
 520static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
 521{
 522        list_del(&b->collision_resolving_node);
 523}
 524
 525static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 526                struct block_device *bdev,
 527                u64 dev_bytenr,
 528                struct btrfsic_block_hashtable *h)
 529{
 530        const unsigned int hashval =
 531            (((unsigned int)(dev_bytenr >> 16)) ^
 532             ((unsigned int)((uintptr_t)bdev))) &
 533             (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 534        struct btrfsic_block *b;
 535
 536        list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
 537                if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
 538                        return b;
 539        }
 540
 541        return NULL;
 542}
 543
 544static void btrfsic_block_link_hashtable_init(
 545                struct btrfsic_block_link_hashtable *h)
 546{
 547        int i;
 548
 549        for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
 550                INIT_LIST_HEAD(h->table + i);
 551}
 552
 553static void btrfsic_block_link_hashtable_add(
 554                struct btrfsic_block_link *l,
 555                struct btrfsic_block_link_hashtable *h)
 556{
 557        const unsigned int hashval =
 558            (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
 559             ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
 560             ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
 561             ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
 562             & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 563
 564        BUG_ON(NULL == l->block_ref_to);
 565        BUG_ON(NULL == l->block_ref_from);
 566        list_add(&l->collision_resolving_node, h->table + hashval);
 567}
 568
 569static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
 570{
 571        list_del(&l->collision_resolving_node);
 572}
 573
 574static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 575                struct block_device *bdev_ref_to,
 576                u64 dev_bytenr_ref_to,
 577                struct block_device *bdev_ref_from,
 578                u64 dev_bytenr_ref_from,
 579                struct btrfsic_block_link_hashtable *h)
 580{
 581        const unsigned int hashval =
 582            (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
 583             ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
 584             ((unsigned int)((uintptr_t)bdev_ref_to)) ^
 585             ((unsigned int)((uintptr_t)bdev_ref_from))) &
 586             (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 587        struct btrfsic_block_link *l;
 588
 589        list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
 590                BUG_ON(NULL == l->block_ref_to);
 591                BUG_ON(NULL == l->block_ref_from);
 592                if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
 593                    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
 594                    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
 595                    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
 596                        return l;
 597        }
 598
 599        return NULL;
 600}
 601
 602static void btrfsic_dev_state_hashtable_init(
 603                struct btrfsic_dev_state_hashtable *h)
 604{
 605        int i;
 606
 607        for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
 608                INIT_LIST_HEAD(h->table + i);
 609}
 610
 611static void btrfsic_dev_state_hashtable_add(
 612                struct btrfsic_dev_state *ds,
 613                struct btrfsic_dev_state_hashtable *h)
 614{
 615        const unsigned int hashval =
 616            (((unsigned int)((uintptr_t)ds->bdev)) &
 617             (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
 618
 619        list_add(&ds->collision_resolving_node, h->table + hashval);
 620}
 621
 622static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
 623{
 624        list_del(&ds->collision_resolving_node);
 625}
 626
 627static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
 628                struct block_device *bdev,
 629                struct btrfsic_dev_state_hashtable *h)
 630{
 631        const unsigned int hashval =
 632            (((unsigned int)((uintptr_t)bdev)) &
 633             (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
 634        struct btrfsic_dev_state *ds;
 635
 636        list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
 637                if (ds->bdev == bdev)
 638                        return ds;
 639        }
 640
 641        return NULL;
 642}
 643
 644static int btrfsic_process_superblock(struct btrfsic_state *state,
 645                                      struct btrfs_fs_devices *fs_devices)
 646{
 647        int ret = 0;
 648        struct btrfs_super_block *selected_super;
 649        struct list_head *dev_head = &fs_devices->devices;
 650        struct btrfs_device *device;
 651        struct btrfsic_dev_state *selected_dev_state = NULL;
 652        int pass;
 653
 654        BUG_ON(NULL == state);
 655        selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
 656        if (NULL == selected_super) {
 657                printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
 658                return -ENOMEM;
 659        }
 660
 661        list_for_each_entry(device, dev_head, dev_list) {
 662                int i;
 663                struct btrfsic_dev_state *dev_state;
 664
 665                if (!device->bdev || !device->name)
 666                        continue;
 667
 668                dev_state = btrfsic_dev_state_lookup(device->bdev);
 669                BUG_ON(NULL == dev_state);
 670                for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 671                        ret = btrfsic_process_superblock_dev_mirror(
 672                                        state, dev_state, device, i,
 673                                        &selected_dev_state, selected_super);
 674                        if (0 != ret && 0 == i) {
 675                                kfree(selected_super);
 676                                return ret;
 677                        }
 678                }
 679        }
 680
 681        if (NULL == state->latest_superblock) {
 682                printk(KERN_INFO "btrfsic: no superblock found!\n");
 683                kfree(selected_super);
 684                return -1;
 685        }
 686
 687        state->csum_size = btrfs_super_csum_size(selected_super);
 688
 689        for (pass = 0; pass < 3; pass++) {
 690                int num_copies;
 691                int mirror_num;
 692                u64 next_bytenr;
 693
 694                switch (pass) {
 695                case 0:
 696                        next_bytenr = btrfs_super_root(selected_super);
 697                        if (state->print_mask &
 698                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 699                                printk(KERN_INFO "root@%llu\n", next_bytenr);
 700                        break;
 701                case 1:
 702                        next_bytenr = btrfs_super_chunk_root(selected_super);
 703                        if (state->print_mask &
 704                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 705                                printk(KERN_INFO "chunk@%llu\n", next_bytenr);
 706                        break;
 707                case 2:
 708                        next_bytenr = btrfs_super_log_root(selected_super);
 709                        if (0 == next_bytenr)
 710                                continue;
 711                        if (state->print_mask &
 712                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 713                                printk(KERN_INFO "log@%llu\n", next_bytenr);
 714                        break;
 715                }
 716
 717                num_copies =
 718                    btrfs_num_copies(state->root->fs_info,
 719                                     next_bytenr, state->metablock_size);
 720                if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 721                        printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
 722                               next_bytenr, num_copies);
 723
 724                for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 725                        struct btrfsic_block *next_block;
 726                        struct btrfsic_block_data_ctx tmp_next_block_ctx;
 727                        struct btrfsic_block_link *l;
 728
 729                        ret = btrfsic_map_block(state, next_bytenr,
 730                                                state->metablock_size,
 731                                                &tmp_next_block_ctx,
 732                                                mirror_num);
 733                        if (ret) {
 734                                printk(KERN_INFO "btrfsic:"
 735                                       " btrfsic_map_block(root @%llu,"
 736                                       " mirror %d) failed!\n",
 737                                       next_bytenr, mirror_num);
 738                                kfree(selected_super);
 739                                return -1;
 740                        }
 741
 742                        next_block = btrfsic_block_hashtable_lookup(
 743                                        tmp_next_block_ctx.dev->bdev,
 744                                        tmp_next_block_ctx.dev_bytenr,
 745                                        &state->block_hashtable);
 746                        BUG_ON(NULL == next_block);
 747
 748                        l = btrfsic_block_link_hashtable_lookup(
 749                                        tmp_next_block_ctx.dev->bdev,
 750                                        tmp_next_block_ctx.dev_bytenr,
 751                                        state->latest_superblock->dev_state->
 752                                        bdev,
 753                                        state->latest_superblock->dev_bytenr,
 754                                        &state->block_link_hashtable);
 755                        BUG_ON(NULL == l);
 756
 757                        ret = btrfsic_read_block(state, &tmp_next_block_ctx);
 758                        if (ret < (int)PAGE_CACHE_SIZE) {
 759                                printk(KERN_INFO
 760                                       "btrfsic: read @logical %llu failed!\n",
 761                                       tmp_next_block_ctx.start);
 762                                btrfsic_release_block_ctx(&tmp_next_block_ctx);
 763                                kfree(selected_super);
 764                                return -1;
 765                        }
 766
 767                        ret = btrfsic_process_metablock(state,
 768                                                        next_block,
 769                                                        &tmp_next_block_ctx,
 770                                                        BTRFS_MAX_LEVEL + 3, 1);
 771                        btrfsic_release_block_ctx(&tmp_next_block_ctx);
 772                }
 773        }
 774
 775        kfree(selected_super);
 776        return ret;
 777}
 778
 779static int btrfsic_process_superblock_dev_mirror(
 780                struct btrfsic_state *state,
 781                struct btrfsic_dev_state *dev_state,
 782                struct btrfs_device *device,
 783                int superblock_mirror_num,
 784                struct btrfsic_dev_state **selected_dev_state,
 785                struct btrfs_super_block *selected_super)
 786{
 787        struct btrfs_super_block *super_tmp;
 788        u64 dev_bytenr;
 789        struct buffer_head *bh;
 790        struct btrfsic_block *superblock_tmp;
 791        int pass;
 792        struct block_device *const superblock_bdev = device->bdev;
 793
 794        /* super block bytenr is always the unmapped device bytenr */
 795        dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
 796        if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
 797                return -1;
 798        bh = __bread(superblock_bdev, dev_bytenr / 4096,
 799                     BTRFS_SUPER_INFO_SIZE);
 800        if (NULL == bh)
 801                return -1;
 802        super_tmp = (struct btrfs_super_block *)
 803            (bh->b_data + (dev_bytenr & 4095));
 804
 805        if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
 806            btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
 807            memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
 808            btrfs_super_nodesize(super_tmp) != state->metablock_size ||
 809            btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
 810                brelse(bh);
 811                return 0;
 812        }
 813
 814        superblock_tmp =
 815            btrfsic_block_hashtable_lookup(superblock_bdev,
 816                                           dev_bytenr,
 817                                           &state->block_hashtable);
 818        if (NULL == superblock_tmp) {
 819                superblock_tmp = btrfsic_block_alloc();
 820                if (NULL == superblock_tmp) {
 821                        printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
 822                        brelse(bh);
 823                        return -1;
 824                }
 825                /* for superblock, only the dev_bytenr makes sense */
 826                superblock_tmp->dev_bytenr = dev_bytenr;
 827                superblock_tmp->dev_state = dev_state;
 828                superblock_tmp->logical_bytenr = dev_bytenr;
 829                superblock_tmp->generation = btrfs_super_generation(super_tmp);
 830                superblock_tmp->is_metadata = 1;
 831                superblock_tmp->is_superblock = 1;
 832                superblock_tmp->is_iodone = 1;
 833                superblock_tmp->never_written = 0;
 834                superblock_tmp->mirror_num = 1 + superblock_mirror_num;
 835                if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
 836                        btrfs_info_in_rcu(device->dev_root->fs_info,
 837                                "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
 838                                     superblock_bdev,
 839                                     rcu_str_deref(device->name), dev_bytenr,
 840                                     dev_state->name, dev_bytenr,
 841                                     superblock_mirror_num);
 842                list_add(&superblock_tmp->all_blocks_node,
 843                         &state->all_blocks_list);
 844                btrfsic_block_hashtable_add(superblock_tmp,
 845                                            &state->block_hashtable);
 846        }
 847
 848        /* select the one with the highest generation field */
 849        if (btrfs_super_generation(super_tmp) >
 850            state->max_superblock_generation ||
 851            0 == state->max_superblock_generation) {
 852                memcpy(selected_super, super_tmp, sizeof(*selected_super));
 853                *selected_dev_state = dev_state;
 854                state->max_superblock_generation =
 855                    btrfs_super_generation(super_tmp);
 856                state->latest_superblock = superblock_tmp;
 857        }
 858
 859        for (pass = 0; pass < 3; pass++) {
 860                u64 next_bytenr;
 861                int num_copies;
 862                int mirror_num;
 863                const char *additional_string = NULL;
 864                struct btrfs_disk_key tmp_disk_key;
 865
 866                tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
 867                tmp_disk_key.offset = 0;
 868                switch (pass) {
 869                case 0:
 870                        btrfs_set_disk_key_objectid(&tmp_disk_key,
 871                                                    BTRFS_ROOT_TREE_OBJECTID);
 872                        additional_string = "initial root ";
 873                        next_bytenr = btrfs_super_root(super_tmp);
 874                        break;
 875                case 1:
 876                        btrfs_set_disk_key_objectid(&tmp_disk_key,
 877                                                    BTRFS_CHUNK_TREE_OBJECTID);
 878                        additional_string = "initial chunk ";
 879                        next_bytenr = btrfs_super_chunk_root(super_tmp);
 880                        break;
 881                case 2:
 882                        btrfs_set_disk_key_objectid(&tmp_disk_key,
 883                                                    BTRFS_TREE_LOG_OBJECTID);
 884                        additional_string = "initial log ";
 885                        next_bytenr = btrfs_super_log_root(super_tmp);
 886                        if (0 == next_bytenr)
 887                                continue;
 888                        break;
 889                }
 890
 891                num_copies =
 892                    btrfs_num_copies(state->root->fs_info,
 893                                     next_bytenr, state->metablock_size);
 894                if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 895                        printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
 896                               next_bytenr, num_copies);
 897                for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 898                        struct btrfsic_block *next_block;
 899                        struct btrfsic_block_data_ctx tmp_next_block_ctx;
 900                        struct btrfsic_block_link *l;
 901
 902                        if (btrfsic_map_block(state, next_bytenr,
 903                                              state->metablock_size,
 904                                              &tmp_next_block_ctx,
 905                                              mirror_num)) {
 906                                printk(KERN_INFO "btrfsic: btrfsic_map_block("
 907                                       "bytenr @%llu, mirror %d) failed!\n",
 908                                       next_bytenr, mirror_num);
 909                                brelse(bh);
 910                                return -1;
 911                        }
 912
 913                        next_block = btrfsic_block_lookup_or_add(
 914                                        state, &tmp_next_block_ctx,
 915                                        additional_string, 1, 1, 0,
 916                                        mirror_num, NULL);
 917                        if (NULL == next_block) {
 918                                btrfsic_release_block_ctx(&tmp_next_block_ctx);
 919                                brelse(bh);
 920                                return -1;
 921                        }
 922
 923                        next_block->disk_key = tmp_disk_key;
 924                        next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
 925                        l = btrfsic_block_link_lookup_or_add(
 926                                        state, &tmp_next_block_ctx,
 927                                        next_block, superblock_tmp,
 928                                        BTRFSIC_GENERATION_UNKNOWN);
 929                        btrfsic_release_block_ctx(&tmp_next_block_ctx);
 930                        if (NULL == l) {
 931                                brelse(bh);
 932                                return -1;
 933                        }
 934                }
 935        }
 936        if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
 937                btrfsic_dump_tree_sub(state, superblock_tmp, 0);
 938
 939        brelse(bh);
 940        return 0;
 941}
 942
 943static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
 944{
 945        struct btrfsic_stack_frame *sf;
 946
 947        sf = kzalloc(sizeof(*sf), GFP_NOFS);
 948        if (NULL == sf)
 949                printk(KERN_INFO "btrfsic: alloc memory failed!\n");
 950        else
 951                sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
 952        return sf;
 953}
 954
 955static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
 956{
 957        BUG_ON(!(NULL == sf ||
 958                 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
 959        kfree(sf);
 960}
 961
 962static int btrfsic_process_metablock(
 963                struct btrfsic_state *state,
 964                struct btrfsic_block *const first_block,
 965                struct btrfsic_block_data_ctx *const first_block_ctx,
 966                int first_limit_nesting, int force_iodone_flag)
 967{
 968        struct btrfsic_stack_frame initial_stack_frame = { 0 };
 969        struct btrfsic_stack_frame *sf;
 970        struct btrfsic_stack_frame *next_stack;
 971        struct btrfs_header *const first_hdr =
 972                (struct btrfs_header *)first_block_ctx->datav[0];
 973
 974        BUG_ON(!first_hdr);
 975        sf = &initial_stack_frame;
 976        sf->error = 0;
 977        sf->i = -1;
 978        sf->limit_nesting = first_limit_nesting;
 979        sf->block = first_block;
 980        sf->block_ctx = first_block_ctx;
 981        sf->next_block = NULL;
 982        sf->hdr = first_hdr;
 983        sf->prev = NULL;
 984
 985continue_with_new_stack_frame:
 986        sf->block->generation = le64_to_cpu(sf->hdr->generation);
 987        if (0 == sf->hdr->level) {
 988                struct btrfs_leaf *const leafhdr =
 989                    (struct btrfs_leaf *)sf->hdr;
 990
 991                if (-1 == sf->i) {
 992                        sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
 993
 994                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
 995                                printk(KERN_INFO
 996                                       "leaf %llu items %d generation %llu"
 997                                       " owner %llu\n",
 998                                       sf->block_ctx->start, sf->nr,
 999                                       btrfs_stack_header_generation(
1000                                               &leafhdr->header),
1001                                       btrfs_stack_header_owner(
1002                                               &leafhdr->header));
1003                }
1004
1005continue_with_current_leaf_stack_frame:
1006                if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1007                        sf->i++;
1008                        sf->num_copies = 0;
1009                }
1010
1011                if (sf->i < sf->nr) {
1012                        struct btrfs_item disk_item;
1013                        u32 disk_item_offset =
1014                                (uintptr_t)(leafhdr->items + sf->i) -
1015                                (uintptr_t)leafhdr;
1016                        struct btrfs_disk_key *disk_key;
1017                        u8 type;
1018                        u32 item_offset;
1019                        u32 item_size;
1020
1021                        if (disk_item_offset + sizeof(struct btrfs_item) >
1022                            sf->block_ctx->len) {
1023leaf_item_out_of_bounce_error:
1024                                printk(KERN_INFO
1025                                       "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1026                                       sf->block_ctx->start,
1027                                       sf->block_ctx->dev->name);
1028                                goto one_stack_frame_backwards;
1029                        }
1030                        btrfsic_read_from_block_data(sf->block_ctx,
1031                                                     &disk_item,
1032                                                     disk_item_offset,
1033                                                     sizeof(struct btrfs_item));
1034                        item_offset = btrfs_stack_item_offset(&disk_item);
1035                        item_size = btrfs_stack_item_size(&disk_item);
1036                        disk_key = &disk_item.key;
1037                        type = btrfs_disk_key_type(disk_key);
1038
1039                        if (BTRFS_ROOT_ITEM_KEY == type) {
1040                                struct btrfs_root_item root_item;
1041                                u32 root_item_offset;
1042                                u64 next_bytenr;
1043
1044                                root_item_offset = item_offset +
1045                                        offsetof(struct btrfs_leaf, items);
1046                                if (root_item_offset + item_size >
1047                                    sf->block_ctx->len)
1048                                        goto leaf_item_out_of_bounce_error;
1049                                btrfsic_read_from_block_data(
1050                                        sf->block_ctx, &root_item,
1051                                        root_item_offset,
1052                                        item_size);
1053                                next_bytenr = btrfs_root_bytenr(&root_item);
1054
1055                                sf->error =
1056                                    btrfsic_create_link_to_next_block(
1057                                                state,
1058                                                sf->block,
1059                                                sf->block_ctx,
1060                                                next_bytenr,
1061                                                sf->limit_nesting,
1062                                                &sf->next_block_ctx,
1063                                                &sf->next_block,
1064                                                force_iodone_flag,
1065                                                &sf->num_copies,
1066                                                &sf->mirror_num,
1067                                                disk_key,
1068                                                btrfs_root_generation(
1069                                                &root_item));
1070                                if (sf->error)
1071                                        goto one_stack_frame_backwards;
1072
1073                                if (NULL != sf->next_block) {
1074                                        struct btrfs_header *const next_hdr =
1075                                            (struct btrfs_header *)
1076                                            sf->next_block_ctx.datav[0];
1077
1078                                        next_stack =
1079                                            btrfsic_stack_frame_alloc();
1080                                        if (NULL == next_stack) {
1081                                                sf->error = -1;
1082                                                btrfsic_release_block_ctx(
1083                                                                &sf->
1084                                                                next_block_ctx);
1085                                                goto one_stack_frame_backwards;
1086                                        }
1087
1088                                        next_stack->i = -1;
1089                                        next_stack->block = sf->next_block;
1090                                        next_stack->block_ctx =
1091                                            &sf->next_block_ctx;
1092                                        next_stack->next_block = NULL;
1093                                        next_stack->hdr = next_hdr;
1094                                        next_stack->limit_nesting =
1095                                            sf->limit_nesting - 1;
1096                                        next_stack->prev = sf;
1097                                        sf = next_stack;
1098                                        goto continue_with_new_stack_frame;
1099                                }
1100                        } else if (BTRFS_EXTENT_DATA_KEY == type &&
1101                                   state->include_extent_data) {
1102                                sf->error = btrfsic_handle_extent_data(
1103                                                state,
1104                                                sf->block,
1105                                                sf->block_ctx,
1106                                                item_offset,
1107                                                force_iodone_flag);
1108                                if (sf->error)
1109                                        goto one_stack_frame_backwards;
1110                        }
1111
1112                        goto continue_with_current_leaf_stack_frame;
1113                }
1114        } else {
1115                struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1116
1117                if (-1 == sf->i) {
1118                        sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1119
1120                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1121                                printk(KERN_INFO "node %llu level %d items %d"
1122                                       " generation %llu owner %llu\n",
1123                                       sf->block_ctx->start,
1124                                       nodehdr->header.level, sf->nr,
1125                                       btrfs_stack_header_generation(
1126                                       &nodehdr->header),
1127                                       btrfs_stack_header_owner(
1128                                       &nodehdr->header));
1129                }
1130
1131continue_with_current_node_stack_frame:
1132                if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1133                        sf->i++;
1134                        sf->num_copies = 0;
1135                }
1136
1137                if (sf->i < sf->nr) {
1138                        struct btrfs_key_ptr key_ptr;
1139                        u32 key_ptr_offset;
1140                        u64 next_bytenr;
1141
1142                        key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1143                                          (uintptr_t)nodehdr;
1144                        if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1145                            sf->block_ctx->len) {
1146                                printk(KERN_INFO
1147                                       "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1148                                       sf->block_ctx->start,
1149                                       sf->block_ctx->dev->name);
1150                                goto one_stack_frame_backwards;
1151                        }
1152                        btrfsic_read_from_block_data(
1153                                sf->block_ctx, &key_ptr, key_ptr_offset,
1154                                sizeof(struct btrfs_key_ptr));
1155                        next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1156
1157                        sf->error = btrfsic_create_link_to_next_block(
1158                                        state,
1159                                        sf->block,
1160                                        sf->block_ctx,
1161                                        next_bytenr,
1162                                        sf->limit_nesting,
1163                                        &sf->next_block_ctx,
1164                                        &sf->next_block,
1165                                        force_iodone_flag,
1166                                        &sf->num_copies,
1167                                        &sf->mirror_num,
1168                                        &key_ptr.key,
1169                                        btrfs_stack_key_generation(&key_ptr));
1170                        if (sf->error)
1171                                goto one_stack_frame_backwards;
1172
1173                        if (NULL != sf->next_block) {
1174                                struct btrfs_header *const next_hdr =
1175                                    (struct btrfs_header *)
1176                                    sf->next_block_ctx.datav[0];
1177
1178                                next_stack = btrfsic_stack_frame_alloc();
1179                                if (NULL == next_stack) {
1180                                        sf->error = -1;
1181                                        goto one_stack_frame_backwards;
1182                                }
1183
1184                                next_stack->i = -1;
1185                                next_stack->block = sf->next_block;
1186                                next_stack->block_ctx = &sf->next_block_ctx;
1187                                next_stack->next_block = NULL;
1188                                next_stack->hdr = next_hdr;
1189                                next_stack->limit_nesting =
1190                                    sf->limit_nesting - 1;
1191                                next_stack->prev = sf;
1192                                sf = next_stack;
1193                                goto continue_with_new_stack_frame;
1194                        }
1195
1196                        goto continue_with_current_node_stack_frame;
1197                }
1198        }
1199
1200one_stack_frame_backwards:
1201        if (NULL != sf->prev) {
1202                struct btrfsic_stack_frame *const prev = sf->prev;
1203
1204                /* the one for the initial block is freed in the caller */
1205                btrfsic_release_block_ctx(sf->block_ctx);
1206
1207                if (sf->error) {
1208                        prev->error = sf->error;
1209                        btrfsic_stack_frame_free(sf);
1210                        sf = prev;
1211                        goto one_stack_frame_backwards;
1212                }
1213
1214                btrfsic_stack_frame_free(sf);
1215                sf = prev;
1216                goto continue_with_new_stack_frame;
1217        } else {
1218                BUG_ON(&initial_stack_frame != sf);
1219        }
1220
1221        return sf->error;
1222}
1223
1224static void btrfsic_read_from_block_data(
1225        struct btrfsic_block_data_ctx *block_ctx,
1226        void *dstv, u32 offset, size_t len)
1227{
1228        size_t cur;
1229        size_t offset_in_page;
1230        char *kaddr;
1231        char *dst = (char *)dstv;
1232        size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1233        unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1234
1235        WARN_ON(offset + len > block_ctx->len);
1236        offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1237
1238        while (len > 0) {
1239                cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1240                BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_CACHE_SIZE));
1241                kaddr = block_ctx->datav[i];
1242                memcpy(dst, kaddr + offset_in_page, cur);
1243
1244                dst += cur;
1245                len -= cur;
1246                offset_in_page = 0;
1247                i++;
1248        }
1249}
1250
1251static int btrfsic_create_link_to_next_block(
1252                struct btrfsic_state *state,
1253                struct btrfsic_block *block,
1254                struct btrfsic_block_data_ctx *block_ctx,
1255                u64 next_bytenr,
1256                int limit_nesting,
1257                struct btrfsic_block_data_ctx *next_block_ctx,
1258                struct btrfsic_block **next_blockp,
1259                int force_iodone_flag,
1260                int *num_copiesp, int *mirror_nump,
1261                struct btrfs_disk_key *disk_key,
1262                u64 parent_generation)
1263{
1264        struct btrfsic_block *next_block = NULL;
1265        int ret;
1266        struct btrfsic_block_link *l;
1267        int did_alloc_block_link;
1268        int block_was_created;
1269
1270        *next_blockp = NULL;
1271        if (0 == *num_copiesp) {
1272                *num_copiesp =
1273                    btrfs_num_copies(state->root->fs_info,
1274                                     next_bytenr, state->metablock_size);
1275                if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1276                        printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1277                               next_bytenr, *num_copiesp);
1278                *mirror_nump = 1;
1279        }
1280
1281        if (*mirror_nump > *num_copiesp)
1282                return 0;
1283
1284        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1285                printk(KERN_INFO
1286                       "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1287                       *mirror_nump);
1288        ret = btrfsic_map_block(state, next_bytenr,
1289                                state->metablock_size,
1290                                next_block_ctx, *mirror_nump);
1291        if (ret) {
1292                printk(KERN_INFO
1293                       "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1294                       next_bytenr, *mirror_nump);
1295                btrfsic_release_block_ctx(next_block_ctx);
1296                *next_blockp = NULL;
1297                return -1;
1298        }
1299
1300        next_block = btrfsic_block_lookup_or_add(state,
1301                                                 next_block_ctx, "referenced ",
1302                                                 1, force_iodone_flag,
1303                                                 !force_iodone_flag,
1304                                                 *mirror_nump,
1305                                                 &block_was_created);
1306        if (NULL == next_block) {
1307                btrfsic_release_block_ctx(next_block_ctx);
1308                *next_blockp = NULL;
1309                return -1;
1310        }
1311        if (block_was_created) {
1312                l = NULL;
1313                next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1314        } else {
1315                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1316                        if (next_block->logical_bytenr != next_bytenr &&
1317                            !(!next_block->is_metadata &&
1318                              0 == next_block->logical_bytenr))
1319                                printk(KERN_INFO
1320                                       "Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1321                                       next_bytenr, next_block_ctx->dev->name,
1322                                       next_block_ctx->dev_bytenr, *mirror_nump,
1323                                       btrfsic_get_block_type(state,
1324                                                              next_block),
1325                                       next_block->logical_bytenr);
1326                        else
1327                                printk(KERN_INFO
1328                                       "Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1329                                       next_bytenr, next_block_ctx->dev->name,
1330                                       next_block_ctx->dev_bytenr, *mirror_nump,
1331                                       btrfsic_get_block_type(state,
1332                                                              next_block));
1333                }
1334                next_block->logical_bytenr = next_bytenr;
1335
1336                next_block->mirror_num = *mirror_nump;
1337                l = btrfsic_block_link_hashtable_lookup(
1338                                next_block_ctx->dev->bdev,
1339                                next_block_ctx->dev_bytenr,
1340                                block_ctx->dev->bdev,
1341                                block_ctx->dev_bytenr,
1342                                &state->block_link_hashtable);
1343        }
1344
1345        next_block->disk_key = *disk_key;
1346        if (NULL == l) {
1347                l = btrfsic_block_link_alloc();
1348                if (NULL == l) {
1349                        printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1350                        btrfsic_release_block_ctx(next_block_ctx);
1351                        *next_blockp = NULL;
1352                        return -1;
1353                }
1354
1355                did_alloc_block_link = 1;
1356                l->block_ref_to = next_block;
1357                l->block_ref_from = block;
1358                l->ref_cnt = 1;
1359                l->parent_generation = parent_generation;
1360
1361                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1362                        btrfsic_print_add_link(state, l);
1363
1364                list_add(&l->node_ref_to, &block->ref_to_list);
1365                list_add(&l->node_ref_from, &next_block->ref_from_list);
1366
1367                btrfsic_block_link_hashtable_add(l,
1368                                                 &state->block_link_hashtable);
1369        } else {
1370                did_alloc_block_link = 0;
1371                if (0 == limit_nesting) {
1372                        l->ref_cnt++;
1373                        l->parent_generation = parent_generation;
1374                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1375                                btrfsic_print_add_link(state, l);
1376                }
1377        }
1378
1379        if (limit_nesting > 0 && did_alloc_block_link) {
1380                ret = btrfsic_read_block(state, next_block_ctx);
1381                if (ret < (int)next_block_ctx->len) {
1382                        printk(KERN_INFO
1383                               "btrfsic: read block @logical %llu failed!\n",
1384                               next_bytenr);
1385                        btrfsic_release_block_ctx(next_block_ctx);
1386                        *next_blockp = NULL;
1387                        return -1;
1388                }
1389
1390                *next_blockp = next_block;
1391        } else {
1392                *next_blockp = NULL;
1393        }
1394        (*mirror_nump)++;
1395
1396        return 0;
1397}
1398
1399static int btrfsic_handle_extent_data(
1400                struct btrfsic_state *state,
1401                struct btrfsic_block *block,
1402                struct btrfsic_block_data_ctx *block_ctx,
1403                u32 item_offset, int force_iodone_flag)
1404{
1405        int ret;
1406        struct btrfs_file_extent_item file_extent_item;
1407        u64 file_extent_item_offset;
1408        u64 next_bytenr;
1409        u64 num_bytes;
1410        u64 generation;
1411        struct btrfsic_block_link *l;
1412
1413        file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1414                                  item_offset;
1415        if (file_extent_item_offset +
1416            offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1417            block_ctx->len) {
1418                printk(KERN_INFO
1419                       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1420                       block_ctx->start, block_ctx->dev->name);
1421                return -1;
1422        }
1423
1424        btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1425                file_extent_item_offset,
1426                offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1427        if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1428            btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1429                if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1430                        printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1431                               file_extent_item.type,
1432                               btrfs_stack_file_extent_disk_bytenr(
1433                               &file_extent_item));
1434                return 0;
1435        }
1436
1437        if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1438            block_ctx->len) {
1439                printk(KERN_INFO
1440                       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1441                       block_ctx->start, block_ctx->dev->name);
1442                return -1;
1443        }
1444        btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1445                                     file_extent_item_offset,
1446                                     sizeof(struct btrfs_file_extent_item));
1447        next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1448        if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1449            BTRFS_COMPRESS_NONE) {
1450                next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1451                num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1452        } else {
1453                num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1454        }
1455        generation = btrfs_stack_file_extent_generation(&file_extent_item);
1456
1457        if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1458                printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1459                       " offset = %llu, num_bytes = %llu\n",
1460                       file_extent_item.type,
1461                       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1462                       btrfs_stack_file_extent_offset(&file_extent_item),
1463                       num_bytes);
1464        while (num_bytes > 0) {
1465                u32 chunk_len;
1466                int num_copies;
1467                int mirror_num;
1468
1469                if (num_bytes > state->datablock_size)
1470                        chunk_len = state->datablock_size;
1471                else
1472                        chunk_len = num_bytes;
1473
1474                num_copies =
1475                    btrfs_num_copies(state->root->fs_info,
1476                                     next_bytenr, state->datablock_size);
1477                if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1478                        printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1479                               next_bytenr, num_copies);
1480                for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1481                        struct btrfsic_block_data_ctx next_block_ctx;
1482                        struct btrfsic_block *next_block;
1483                        int block_was_created;
1484
1485                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1486                                printk(KERN_INFO "btrfsic_handle_extent_data("
1487                                       "mirror_num=%d)\n", mirror_num);
1488                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1489                                printk(KERN_INFO
1490                                       "\tdisk_bytenr = %llu, num_bytes %u\n",
1491                                       next_bytenr, chunk_len);
1492                        ret = btrfsic_map_block(state, next_bytenr,
1493                                                chunk_len, &next_block_ctx,
1494                                                mirror_num);
1495                        if (ret) {
1496                                printk(KERN_INFO
1497                                       "btrfsic: btrfsic_map_block(@%llu,"
1498                                       " mirror=%d) failed!\n",
1499                                       next_bytenr, mirror_num);
1500                                return -1;
1501                        }
1502
1503                        next_block = btrfsic_block_lookup_or_add(
1504                                        state,
1505                                        &next_block_ctx,
1506                                        "referenced ",
1507                                        0,
1508                                        force_iodone_flag,
1509                                        !force_iodone_flag,
1510                                        mirror_num,
1511                                        &block_was_created);
1512                        if (NULL == next_block) {
1513                                printk(KERN_INFO
1514                                       "btrfsic: error, kmalloc failed!\n");
1515                                btrfsic_release_block_ctx(&next_block_ctx);
1516                                return -1;
1517                        }
1518                        if (!block_was_created) {
1519                                if ((state->print_mask &
1520                                     BTRFSIC_PRINT_MASK_VERBOSE) &&
1521                                    next_block->logical_bytenr != next_bytenr &&
1522                                    !(!next_block->is_metadata &&
1523                                      0 == next_block->logical_bytenr)) {
1524                                        printk(KERN_INFO
1525                                               "Referenced block"
1526                                               " @%llu (%s/%llu/%d)"
1527                                               " found in hash table, D,"
1528                                               " bytenr mismatch"
1529                                               " (!= stored %llu).\n",
1530                                               next_bytenr,
1531                                               next_block_ctx.dev->name,
1532                                               next_block_ctx.dev_bytenr,
1533                                               mirror_num,
1534                                               next_block->logical_bytenr);
1535                                }
1536                                next_block->logical_bytenr = next_bytenr;
1537                                next_block->mirror_num = mirror_num;
1538                        }
1539
1540                        l = btrfsic_block_link_lookup_or_add(state,
1541                                                             &next_block_ctx,
1542                                                             next_block, block,
1543                                                             generation);
1544                        btrfsic_release_block_ctx(&next_block_ctx);
1545                        if (NULL == l)
1546                                return -1;
1547                }
1548
1549                next_bytenr += chunk_len;
1550                num_bytes -= chunk_len;
1551        }
1552
1553        return 0;
1554}
1555
1556static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1557                             struct btrfsic_block_data_ctx *block_ctx_out,
1558                             int mirror_num)
1559{
1560        int ret;
1561        u64 length;
1562        struct btrfs_bio *multi = NULL;
1563        struct btrfs_device *device;
1564
1565        length = len;
1566        ret = btrfs_map_block(state->root->fs_info, READ,
1567                              bytenr, &length, &multi, mirror_num);
1568
1569        if (ret) {
1570                block_ctx_out->start = 0;
1571                block_ctx_out->dev_bytenr = 0;
1572                block_ctx_out->len = 0;
1573                block_ctx_out->dev = NULL;
1574                block_ctx_out->datav = NULL;
1575                block_ctx_out->pagev = NULL;
1576                block_ctx_out->mem_to_free = NULL;
1577
1578                return ret;
1579        }
1580
1581        device = multi->stripes[0].dev;
1582        block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1583        block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1584        block_ctx_out->start = bytenr;
1585        block_ctx_out->len = len;
1586        block_ctx_out->datav = NULL;
1587        block_ctx_out->pagev = NULL;
1588        block_ctx_out->mem_to_free = NULL;
1589
1590        kfree(multi);
1591        if (NULL == block_ctx_out->dev) {
1592                ret = -ENXIO;
1593                printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1594        }
1595
1596        return ret;
1597}
1598
1599static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1600{
1601        if (block_ctx->mem_to_free) {
1602                unsigned int num_pages;
1603
1604                BUG_ON(!block_ctx->datav);
1605                BUG_ON(!block_ctx->pagev);
1606                num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1607                            PAGE_CACHE_SHIFT;
1608                while (num_pages > 0) {
1609                        num_pages--;
1610                        if (block_ctx->datav[num_pages]) {
1611                                kunmap(block_ctx->pagev[num_pages]);
1612                                block_ctx->datav[num_pages] = NULL;
1613                        }
1614                        if (block_ctx->pagev[num_pages]) {
1615                                __free_page(block_ctx->pagev[num_pages]);
1616                                block_ctx->pagev[num_pages] = NULL;
1617                        }
1618                }
1619
1620                kfree(block_ctx->mem_to_free);
1621                block_ctx->mem_to_free = NULL;
1622                block_ctx->pagev = NULL;
1623                block_ctx->datav = NULL;
1624        }
1625}
1626
1627static int btrfsic_read_block(struct btrfsic_state *state,
1628                              struct btrfsic_block_data_ctx *block_ctx)
1629{
1630        unsigned int num_pages;
1631        unsigned int i;
1632        u64 dev_bytenr;
1633        int ret;
1634
1635        BUG_ON(block_ctx->datav);
1636        BUG_ON(block_ctx->pagev);
1637        BUG_ON(block_ctx->mem_to_free);
1638        if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1639                printk(KERN_INFO
1640                       "btrfsic: read_block() with unaligned bytenr %llu\n",
1641                       block_ctx->dev_bytenr);
1642                return -1;
1643        }
1644
1645        num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1646                    PAGE_CACHE_SHIFT;
1647        block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1648                                          sizeof(*block_ctx->pagev)) *
1649                                         num_pages, GFP_NOFS);
1650        if (!block_ctx->mem_to_free)
1651                return -ENOMEM;
1652        block_ctx->datav = block_ctx->mem_to_free;
1653        block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1654        for (i = 0; i < num_pages; i++) {
1655                block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1656                if (!block_ctx->pagev[i])
1657                        return -1;
1658        }
1659
1660        dev_bytenr = block_ctx->dev_bytenr;
1661        for (i = 0; i < num_pages;) {
1662                struct bio *bio;
1663                unsigned int j;
1664
1665                bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1666                if (!bio) {
1667                        printk(KERN_INFO
1668                               "btrfsic: bio_alloc() for %u pages failed!\n",
1669                               num_pages - i);
1670                        return -1;
1671                }
1672                bio->bi_bdev = block_ctx->dev->bdev;
1673                bio->bi_iter.bi_sector = dev_bytenr >> 9;
1674
1675                for (j = i; j < num_pages; j++) {
1676                        ret = bio_add_page(bio, block_ctx->pagev[j],
1677                                           PAGE_CACHE_SIZE, 0);
1678                        if (PAGE_CACHE_SIZE != ret)
1679                                break;
1680                }
1681                if (j == i) {
1682                        printk(KERN_INFO
1683                               "btrfsic: error, failed to add a single page!\n");
1684                        return -1;
1685                }
1686                if (submit_bio_wait(READ, bio)) {
1687                        printk(KERN_INFO
1688                               "btrfsic: read error at logical %llu dev %s!\n",
1689                               block_ctx->start, block_ctx->dev->name);
1690                        bio_put(bio);
1691                        return -1;
1692                }
1693                bio_put(bio);
1694                dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1695                i = j;
1696        }
1697        for (i = 0; i < num_pages; i++) {
1698                block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1699                if (!block_ctx->datav[i]) {
1700                        printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1701                               block_ctx->dev->name);
1702                        return -1;
1703                }
1704        }
1705
1706        return block_ctx->len;
1707}
1708
1709static void btrfsic_dump_database(struct btrfsic_state *state)
1710{
1711        const struct btrfsic_block *b_all;
1712
1713        BUG_ON(NULL == state);
1714
1715        printk(KERN_INFO "all_blocks_list:\n");
1716        list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1717                const struct btrfsic_block_link *l;
1718
1719                printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1720                       btrfsic_get_block_type(state, b_all),
1721                       b_all->logical_bytenr, b_all->dev_state->name,
1722                       b_all->dev_bytenr, b_all->mirror_num);
1723
1724                list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1725                        printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1726                               " refers %u* to"
1727                               " %c @%llu (%s/%llu/%d)\n",
1728                               btrfsic_get_block_type(state, b_all),
1729                               b_all->logical_bytenr, b_all->dev_state->name,
1730                               b_all->dev_bytenr, b_all->mirror_num,
1731                               l->ref_cnt,
1732                               btrfsic_get_block_type(state, l->block_ref_to),
1733                               l->block_ref_to->logical_bytenr,
1734                               l->block_ref_to->dev_state->name,
1735                               l->block_ref_to->dev_bytenr,
1736                               l->block_ref_to->mirror_num);
1737                }
1738
1739                list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1740                        printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1741                               " is ref %u* from"
1742                               " %c @%llu (%s/%llu/%d)\n",
1743                               btrfsic_get_block_type(state, b_all),
1744                               b_all->logical_bytenr, b_all->dev_state->name,
1745                               b_all->dev_bytenr, b_all->mirror_num,
1746                               l->ref_cnt,
1747                               btrfsic_get_block_type(state, l->block_ref_from),
1748                               l->block_ref_from->logical_bytenr,
1749                               l->block_ref_from->dev_state->name,
1750                               l->block_ref_from->dev_bytenr,
1751                               l->block_ref_from->mirror_num);
1752                }
1753
1754                printk(KERN_INFO "\n");
1755        }
1756}
1757
1758/*
1759 * Test whether the disk block contains a tree block (leaf or node)
1760 * (note that this test fails for the super block)
1761 */
1762static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1763                                     char **datav, unsigned int num_pages)
1764{
1765        struct btrfs_header *h;
1766        u8 csum[BTRFS_CSUM_SIZE];
1767        u32 crc = ~(u32)0;
1768        unsigned int i;
1769
1770        if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1771                return 1; /* not metadata */
1772        num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1773        h = (struct btrfs_header *)datav[0];
1774
1775        if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1776                return 1;
1777
1778        for (i = 0; i < num_pages; i++) {
1779                u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1780                size_t sublen = i ? PAGE_CACHE_SIZE :
1781                                    (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1782
1783                crc = btrfs_crc32c(crc, data, sublen);
1784        }
1785        btrfs_csum_final(crc, csum);
1786        if (memcmp(csum, h->csum, state->csum_size))
1787                return 1;
1788
1789        return 0; /* is metadata */
1790}
1791
1792static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1793                                          u64 dev_bytenr, char **mapped_datav,
1794                                          unsigned int num_pages,
1795                                          struct bio *bio, int *bio_is_patched,
1796                                          struct buffer_head *bh,
1797                                          int submit_bio_bh_rw)
1798{
1799        int is_metadata;
1800        struct btrfsic_block *block;
1801        struct btrfsic_block_data_ctx block_ctx;
1802        int ret;
1803        struct btrfsic_state *state = dev_state->state;
1804        struct block_device *bdev = dev_state->bdev;
1805        unsigned int processed_len;
1806
1807        if (NULL != bio_is_patched)
1808                *bio_is_patched = 0;
1809
1810again:
1811        if (num_pages == 0)
1812                return;
1813
1814        processed_len = 0;
1815        is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1816                                                      num_pages));
1817
1818        block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1819                                               &state->block_hashtable);
1820        if (NULL != block) {
1821                u64 bytenr = 0;
1822                struct btrfsic_block_link *l, *tmp;
1823
1824                if (block->is_superblock) {
1825                        bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1826                                                    mapped_datav[0]);
1827                        if (num_pages * PAGE_CACHE_SIZE <
1828                            BTRFS_SUPER_INFO_SIZE) {
1829                                printk(KERN_INFO
1830                                       "btrfsic: cannot work with too short bios!\n");
1831                                return;
1832                        }
1833                        is_metadata = 1;
1834                        BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1835                        processed_len = BTRFS_SUPER_INFO_SIZE;
1836                        if (state->print_mask &
1837                            BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1838                                printk(KERN_INFO
1839                                       "[before new superblock is written]:\n");
1840                                btrfsic_dump_tree_sub(state, block, 0);
1841                        }
1842                }
1843                if (is_metadata) {
1844                        if (!block->is_superblock) {
1845                                if (num_pages * PAGE_CACHE_SIZE <
1846                                    state->metablock_size) {
1847                                        printk(KERN_INFO
1848                                               "btrfsic: cannot work with too short bios!\n");
1849                                        return;
1850                                }
1851                                processed_len = state->metablock_size;
1852                                bytenr = btrfs_stack_header_bytenr(
1853                                                (struct btrfs_header *)
1854                                                mapped_datav[0]);
1855                                btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1856                                                               dev_state,
1857                                                               dev_bytenr);
1858                        }
1859                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1860                                if (block->logical_bytenr != bytenr &&
1861                                    !(!block->is_metadata &&
1862                                      block->logical_bytenr == 0))
1863                                        printk(KERN_INFO
1864                                               "Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1865                                               bytenr, dev_state->name,
1866                                               dev_bytenr,
1867                                               block->mirror_num,
1868                                               btrfsic_get_block_type(state,
1869                                                                      block),
1870                                               block->logical_bytenr);
1871                                else
1872                                        printk(KERN_INFO
1873                                               "Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1874                                               bytenr, dev_state->name,
1875                                               dev_bytenr, block->mirror_num,
1876                                               btrfsic_get_block_type(state,
1877                                                                      block));
1878                        }
1879                        block->logical_bytenr = bytenr;
1880                } else {
1881                        if (num_pages * PAGE_CACHE_SIZE <
1882                            state->datablock_size) {
1883                                printk(KERN_INFO
1884                                       "btrfsic: cannot work with too short bios!\n");
1885                                return;
1886                        }
1887                        processed_len = state->datablock_size;
1888                        bytenr = block->logical_bytenr;
1889                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1890                                printk(KERN_INFO
1891                                       "Written block @%llu (%s/%llu/%d)"
1892                                       " found in hash table, %c.\n",
1893                                       bytenr, dev_state->name, dev_bytenr,
1894                                       block->mirror_num,
1895                                       btrfsic_get_block_type(state, block));
1896                }
1897
1898                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1899                        printk(KERN_INFO
1900                               "ref_to_list: %cE, ref_from_list: %cE\n",
1901                               list_empty(&block->ref_to_list) ? ' ' : '!',
1902                               list_empty(&block->ref_from_list) ? ' ' : '!');
1903                if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1904                        printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1905                               " @%llu (%s/%llu/%d), old(gen=%llu,"
1906                               " objectid=%llu, type=%d, offset=%llu),"
1907                               " new(gen=%llu),"
1908                               " which is referenced by most recent superblock"
1909                               " (superblockgen=%llu)!\n",
1910                               btrfsic_get_block_type(state, block), bytenr,
1911                               dev_state->name, dev_bytenr, block->mirror_num,
1912                               block->generation,
1913                               btrfs_disk_key_objectid(&block->disk_key),
1914                               block->disk_key.type,
1915                               btrfs_disk_key_offset(&block->disk_key),
1916                               btrfs_stack_header_generation(
1917                                       (struct btrfs_header *) mapped_datav[0]),
1918                               state->max_superblock_generation);
1919                        btrfsic_dump_tree(state);
1920                }
1921
1922                if (!block->is_iodone && !block->never_written) {
1923                        printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1924                               " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1925                               " which is not yet iodone!\n",
1926                               btrfsic_get_block_type(state, block), bytenr,
1927                               dev_state->name, dev_bytenr, block->mirror_num,
1928                               block->generation,
1929                               btrfs_stack_header_generation(
1930                                       (struct btrfs_header *)
1931                                       mapped_datav[0]));
1932                        /* it would not be safe to go on */
1933                        btrfsic_dump_tree(state);
1934                        goto continue_loop;
1935                }
1936
1937                /*
1938                 * Clear all references of this block. Do not free
1939                 * the block itself even if is not referenced anymore
1940                 * because it still carries valueable information
1941                 * like whether it was ever written and IO completed.
1942                 */
1943                list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1944                                         node_ref_to) {
1945                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1946                                btrfsic_print_rem_link(state, l);
1947                        l->ref_cnt--;
1948                        if (0 == l->ref_cnt) {
1949                                list_del(&l->node_ref_to);
1950                                list_del(&l->node_ref_from);
1951                                btrfsic_block_link_hashtable_remove(l);
1952                                btrfsic_block_link_free(l);
1953                        }
1954                }
1955
1956                block_ctx.dev = dev_state;
1957                block_ctx.dev_bytenr = dev_bytenr;
1958                block_ctx.start = bytenr;
1959                block_ctx.len = processed_len;
1960                block_ctx.pagev = NULL;
1961                block_ctx.mem_to_free = NULL;
1962                block_ctx.datav = mapped_datav;
1963
1964                if (is_metadata || state->include_extent_data) {
1965                        block->never_written = 0;
1966                        block->iodone_w_error = 0;
1967                        if (NULL != bio) {
1968                                block->is_iodone = 0;
1969                                BUG_ON(NULL == bio_is_patched);
1970                                if (!*bio_is_patched) {
1971                                        block->orig_bio_bh_private =
1972                                            bio->bi_private;
1973                                        block->orig_bio_bh_end_io.bio =
1974                                            bio->bi_end_io;
1975                                        block->next_in_same_bio = NULL;
1976                                        bio->bi_private = block;
1977                                        bio->bi_end_io = btrfsic_bio_end_io;
1978                                        *bio_is_patched = 1;
1979                                } else {
1980                                        struct btrfsic_block *chained_block =
1981                                            (struct btrfsic_block *)
1982                                            bio->bi_private;
1983
1984                                        BUG_ON(NULL == chained_block);
1985                                        block->orig_bio_bh_private =
1986                                            chained_block->orig_bio_bh_private;
1987                                        block->orig_bio_bh_end_io.bio =
1988                                            chained_block->orig_bio_bh_end_io.
1989                                            bio;
1990                                        block->next_in_same_bio = chained_block;
1991                                        bio->bi_private = block;
1992                                }
1993                        } else if (NULL != bh) {
1994                                block->is_iodone = 0;
1995                                block->orig_bio_bh_private = bh->b_private;
1996                                block->orig_bio_bh_end_io.bh = bh->b_end_io;
1997                                block->next_in_same_bio = NULL;
1998                                bh->b_private = block;
1999                                bh->b_end_io = btrfsic_bh_end_io;
2000                        } else {
2001                                block->is_iodone = 1;
2002                                block->orig_bio_bh_private = NULL;
2003                                block->orig_bio_bh_end_io.bio = NULL;
2004                                block->next_in_same_bio = NULL;
2005                        }
2006                }
2007
2008                block->flush_gen = dev_state->last_flush_gen + 1;
2009                block->submit_bio_bh_rw = submit_bio_bh_rw;
2010                if (is_metadata) {
2011                        block->logical_bytenr = bytenr;
2012                        block->is_metadata = 1;
2013                        if (block->is_superblock) {
2014                                BUG_ON(PAGE_CACHE_SIZE !=
2015                                       BTRFS_SUPER_INFO_SIZE);
2016                                ret = btrfsic_process_written_superblock(
2017                                                state,
2018                                                block,
2019                                                (struct btrfs_super_block *)
2020                                                mapped_datav[0]);
2021                                if (state->print_mask &
2022                                    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2023                                        printk(KERN_INFO
2024                                        "[after new superblock is written]:\n");
2025                                        btrfsic_dump_tree_sub(state, block, 0);
2026                                }
2027                        } else {
2028                                block->mirror_num = 0;  /* unknown */
2029                                ret = btrfsic_process_metablock(
2030                                                state,
2031                                                block,
2032                                                &block_ctx,
2033                                                0, 0);
2034                        }
2035                        if (ret)
2036                                printk(KERN_INFO
2037                                       "btrfsic: btrfsic_process_metablock"
2038                                       "(root @%llu) failed!\n",
2039                                       dev_bytenr);
2040                } else {
2041                        block->is_metadata = 0;
2042                        block->mirror_num = 0;  /* unknown */
2043                        block->generation = BTRFSIC_GENERATION_UNKNOWN;
2044                        if (!state->include_extent_data
2045                            && list_empty(&block->ref_from_list)) {
2046                                /*
2047                                 * disk block is overwritten with extent
2048                                 * data (not meta data) and we are configured
2049                                 * to not include extent data: take the
2050                                 * chance and free the block's memory
2051                                 */
2052                                btrfsic_block_hashtable_remove(block);
2053                                list_del(&block->all_blocks_node);
2054                                btrfsic_block_free(block);
2055                        }
2056                }
2057                btrfsic_release_block_ctx(&block_ctx);
2058        } else {
2059                /* block has not been found in hash table */
2060                u64 bytenr;
2061
2062                if (!is_metadata) {
2063                        processed_len = state->datablock_size;
2064                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2065                                printk(KERN_INFO "Written block (%s/%llu/?)"
2066                                       " !found in hash table, D.\n",
2067                                       dev_state->name, dev_bytenr);
2068                        if (!state->include_extent_data) {
2069                                /* ignore that written D block */
2070                                goto continue_loop;
2071                        }
2072
2073                        /* this is getting ugly for the
2074                         * include_extent_data case... */
2075                        bytenr = 0;     /* unknown */
2076                } else {
2077                        processed_len = state->metablock_size;
2078                        bytenr = btrfs_stack_header_bytenr(
2079                                        (struct btrfs_header *)
2080                                        mapped_datav[0]);
2081                        btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2082                                                       dev_bytenr);
2083                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2084                                printk(KERN_INFO
2085                                       "Written block @%llu (%s/%llu/?)"
2086                                       " !found in hash table, M.\n",
2087                                       bytenr, dev_state->name, dev_bytenr);
2088                }
2089
2090                block_ctx.dev = dev_state;
2091                block_ctx.dev_bytenr = dev_bytenr;
2092                block_ctx.start = bytenr;
2093                block_ctx.len = processed_len;
2094                block_ctx.pagev = NULL;
2095                block_ctx.mem_to_free = NULL;
2096                block_ctx.datav = mapped_datav;
2097
2098                block = btrfsic_block_alloc();
2099                if (NULL == block) {
2100                        printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2101                        btrfsic_release_block_ctx(&block_ctx);
2102                        goto continue_loop;
2103                }
2104                block->dev_state = dev_state;
2105                block->dev_bytenr = dev_bytenr;
2106                block->logical_bytenr = bytenr;
2107                block->is_metadata = is_metadata;
2108                block->never_written = 0;
2109                block->iodone_w_error = 0;
2110                block->mirror_num = 0;  /* unknown */
2111                block->flush_gen = dev_state->last_flush_gen + 1;
2112                block->submit_bio_bh_rw = submit_bio_bh_rw;
2113                if (NULL != bio) {
2114                        block->is_iodone = 0;
2115                        BUG_ON(NULL == bio_is_patched);
2116                        if (!*bio_is_patched) {
2117                                block->orig_bio_bh_private = bio->bi_private;
2118                                block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2119                                block->next_in_same_bio = NULL;
2120                                bio->bi_private = block;
2121                                bio->bi_end_io = btrfsic_bio_end_io;
2122                                *bio_is_patched = 1;
2123                        } else {
2124                                struct btrfsic_block *chained_block =
2125                                    (struct btrfsic_block *)
2126                                    bio->bi_private;
2127
2128                                BUG_ON(NULL == chained_block);
2129                                block->orig_bio_bh_private =
2130                                    chained_block->orig_bio_bh_private;
2131                                block->orig_bio_bh_end_io.bio =
2132                                    chained_block->orig_bio_bh_end_io.bio;
2133                                block->next_in_same_bio = chained_block;
2134                                bio->bi_private = block;
2135                        }
2136                } else if (NULL != bh) {
2137                        block->is_iodone = 0;
2138                        block->orig_bio_bh_private = bh->b_private;
2139                        block->orig_bio_bh_end_io.bh = bh->b_end_io;
2140                        block->next_in_same_bio = NULL;
2141                        bh->b_private = block;
2142                        bh->b_end_io = btrfsic_bh_end_io;
2143                } else {
2144                        block->is_iodone = 1;
2145                        block->orig_bio_bh_private = NULL;
2146                        block->orig_bio_bh_end_io.bio = NULL;
2147                        block->next_in_same_bio = NULL;
2148                }
2149                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2150                        printk(KERN_INFO
2151                               "New written %c-block @%llu (%s/%llu/%d)\n",
2152                               is_metadata ? 'M' : 'D',
2153                               block->logical_bytenr, block->dev_state->name,
2154                               block->dev_bytenr, block->mirror_num);
2155                list_add(&block->all_blocks_node, &state->all_blocks_list);
2156                btrfsic_block_hashtable_add(block, &state->block_hashtable);
2157
2158                if (is_metadata) {
2159                        ret = btrfsic_process_metablock(state, block,
2160                                                        &block_ctx, 0, 0);
2161                        if (ret)
2162                                printk(KERN_INFO
2163                                       "btrfsic: process_metablock(root @%llu)"
2164                                       " failed!\n",
2165                                       dev_bytenr);
2166                }
2167                btrfsic_release_block_ctx(&block_ctx);
2168        }
2169
2170continue_loop:
2171        BUG_ON(!processed_len);
2172        dev_bytenr += processed_len;
2173        mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2174        num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2175        goto again;
2176}
2177
2178static void btrfsic_bio_end_io(struct bio *bp)
2179{
2180        struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2181        int iodone_w_error;
2182
2183        /* mutex is not held! This is not save if IO is not yet completed
2184         * on umount */
2185        iodone_w_error = 0;
2186        if (bp->bi_error)
2187                iodone_w_error = 1;
2188
2189        BUG_ON(NULL == block);
2190        bp->bi_private = block->orig_bio_bh_private;
2191        bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2192
2193        do {
2194                struct btrfsic_block *next_block;
2195                struct btrfsic_dev_state *const dev_state = block->dev_state;
2196
2197                if ((dev_state->state->print_mask &
2198                     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2199                        printk(KERN_INFO
2200                               "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2201                               bp->bi_error,
2202                               btrfsic_get_block_type(dev_state->state, block),
2203                               block->logical_bytenr, dev_state->name,
2204                               block->dev_bytenr, block->mirror_num);
2205                next_block = block->next_in_same_bio;
2206                block->iodone_w_error = iodone_w_error;
2207                if (block->submit_bio_bh_rw & REQ_FLUSH) {
2208                        dev_state->last_flush_gen++;
2209                        if ((dev_state->state->print_mask &
2210                             BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2211                                printk(KERN_INFO
2212                                       "bio_end_io() new %s flush_gen=%llu\n",
2213                                       dev_state->name,
2214                                       dev_state->last_flush_gen);
2215                }
2216                if (block->submit_bio_bh_rw & REQ_FUA)
2217                        block->flush_gen = 0; /* FUA completed means block is
2218                                               * on disk */
2219                block->is_iodone = 1; /* for FLUSH, this releases the block */
2220                block = next_block;
2221        } while (NULL != block);
2222
2223        bp->bi_end_io(bp);
2224}
2225
2226static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2227{
2228        struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2229        int iodone_w_error = !uptodate;
2230        struct btrfsic_dev_state *dev_state;
2231
2232        BUG_ON(NULL == block);
2233        dev_state = block->dev_state;
2234        if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2235                printk(KERN_INFO
2236                       "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2237                       iodone_w_error,
2238                       btrfsic_get_block_type(dev_state->state, block),
2239                       block->logical_bytenr, block->dev_state->name,
2240                       block->dev_bytenr, block->mirror_num);
2241
2242        block->iodone_w_error = iodone_w_error;
2243        if (block->submit_bio_bh_rw & REQ_FLUSH) {
2244                dev_state->last_flush_gen++;
2245                if ((dev_state->state->print_mask &
2246                     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2247                        printk(KERN_INFO
2248                               "bh_end_io() new %s flush_gen=%llu\n",
2249                               dev_state->name, dev_state->last_flush_gen);
2250        }
2251        if (block->submit_bio_bh_rw & REQ_FUA)
2252                block->flush_gen = 0; /* FUA completed means block is on disk */
2253
2254        bh->b_private = block->orig_bio_bh_private;
2255        bh->b_end_io = block->orig_bio_bh_end_io.bh;
2256        block->is_iodone = 1; /* for FLUSH, this releases the block */
2257        bh->b_end_io(bh, uptodate);
2258}
2259
2260static int btrfsic_process_written_superblock(
2261                struct btrfsic_state *state,
2262                struct btrfsic_block *const superblock,
2263                struct btrfs_super_block *const super_hdr)
2264{
2265        int pass;
2266
2267        superblock->generation = btrfs_super_generation(super_hdr);
2268        if (!(superblock->generation > state->max_superblock_generation ||
2269              0 == state->max_superblock_generation)) {
2270                if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2271                        printk(KERN_INFO
2272                               "btrfsic: superblock @%llu (%s/%llu/%d)"
2273                               " with old gen %llu <= %llu\n",
2274                               superblock->logical_bytenr,
2275                               superblock->dev_state->name,
2276                               superblock->dev_bytenr, superblock->mirror_num,
2277                               btrfs_super_generation(super_hdr),
2278                               state->max_superblock_generation);
2279        } else {
2280                if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2281                        printk(KERN_INFO
2282                               "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2283                               " with new gen %llu > %llu\n",
2284                               superblock->logical_bytenr,
2285                               superblock->dev_state->name,
2286                               superblock->dev_bytenr, superblock->mirror_num,
2287                               btrfs_super_generation(super_hdr),
2288                               state->max_superblock_generation);
2289
2290                state->max_superblock_generation =
2291                    btrfs_super_generation(super_hdr);
2292                state->latest_superblock = superblock;
2293        }
2294
2295        for (pass = 0; pass < 3; pass++) {
2296                int ret;
2297                u64 next_bytenr;
2298                struct btrfsic_block *next_block;
2299                struct btrfsic_block_data_ctx tmp_next_block_ctx;
2300                struct btrfsic_block_link *l;
2301                int num_copies;
2302                int mirror_num;
2303                const char *additional_string = NULL;
2304                struct btrfs_disk_key tmp_disk_key = {0};
2305
2306                btrfs_set_disk_key_objectid(&tmp_disk_key,
2307                                            BTRFS_ROOT_ITEM_KEY);
2308                btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2309
2310                switch (pass) {
2311                case 0:
2312                        btrfs_set_disk_key_objectid(&tmp_disk_key,
2313                                                    BTRFS_ROOT_TREE_OBJECTID);
2314                        additional_string = "root ";
2315                        next_bytenr = btrfs_super_root(super_hdr);
2316                        if (state->print_mask &
2317                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2318                                printk(KERN_INFO "root@%llu\n", next_bytenr);
2319                        break;
2320                case 1:
2321                        btrfs_set_disk_key_objectid(&tmp_disk_key,
2322                                                    BTRFS_CHUNK_TREE_OBJECTID);
2323                        additional_string = "chunk ";
2324                        next_bytenr = btrfs_super_chunk_root(super_hdr);
2325                        if (state->print_mask &
2326                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2327                                printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2328                        break;
2329                case 2:
2330                        btrfs_set_disk_key_objectid(&tmp_disk_key,
2331                                                    BTRFS_TREE_LOG_OBJECTID);
2332                        additional_string = "log ";
2333                        next_bytenr = btrfs_super_log_root(super_hdr);
2334                        if (0 == next_bytenr)
2335                                continue;
2336                        if (state->print_mask &
2337                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2338                                printk(KERN_INFO "log@%llu\n", next_bytenr);
2339                        break;
2340                }
2341
2342                num_copies =
2343                    btrfs_num_copies(state->root->fs_info,
2344                                     next_bytenr, BTRFS_SUPER_INFO_SIZE);
2345                if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2346                        printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2347                               next_bytenr, num_copies);
2348                for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2349                        int was_created;
2350
2351                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2352                                printk(KERN_INFO
2353                                       "btrfsic_process_written_superblock("
2354                                       "mirror_num=%d)\n", mirror_num);
2355                        ret = btrfsic_map_block(state, next_bytenr,
2356                                                BTRFS_SUPER_INFO_SIZE,
2357                                                &tmp_next_block_ctx,
2358                                                mirror_num);
2359                        if (ret) {
2360                                printk(KERN_INFO
2361                                       "btrfsic: btrfsic_map_block(@%llu,"
2362                                       " mirror=%d) failed!\n",
2363                                       next_bytenr, mirror_num);
2364                                return -1;
2365                        }
2366
2367                        next_block = btrfsic_block_lookup_or_add(
2368                                        state,
2369                                        &tmp_next_block_ctx,
2370                                        additional_string,
2371                                        1, 0, 1,
2372                                        mirror_num,
2373                                        &was_created);
2374                        if (NULL == next_block) {
2375                                printk(KERN_INFO
2376                                       "btrfsic: error, kmalloc failed!\n");
2377                                btrfsic_release_block_ctx(&tmp_next_block_ctx);
2378                                return -1;
2379                        }
2380
2381                        next_block->disk_key = tmp_disk_key;
2382                        if (was_created)
2383                                next_block->generation =
2384                                    BTRFSIC_GENERATION_UNKNOWN;
2385                        l = btrfsic_block_link_lookup_or_add(
2386                                        state,
2387                                        &tmp_next_block_ctx,
2388                                        next_block,
2389                                        superblock,
2390                                        BTRFSIC_GENERATION_UNKNOWN);
2391                        btrfsic_release_block_ctx(&tmp_next_block_ctx);
2392                        if (NULL == l)
2393                                return -1;
2394                }
2395        }
2396
2397        if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2398                btrfsic_dump_tree(state);
2399
2400        return 0;
2401}
2402
2403static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2404                                        struct btrfsic_block *const block,
2405                                        int recursion_level)
2406{
2407        const struct btrfsic_block_link *l;
2408        int ret = 0;
2409
2410        if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2411                /*
2412                 * Note that this situation can happen and does not
2413                 * indicate an error in regular cases. It happens
2414                 * when disk blocks are freed and later reused.
2415                 * The check-integrity module is not aware of any
2416                 * block free operations, it just recognizes block
2417                 * write operations. Therefore it keeps the linkage
2418                 * information for a block until a block is
2419                 * rewritten. This can temporarily cause incorrect
2420                 * and even circular linkage informations. This
2421                 * causes no harm unless such blocks are referenced
2422                 * by the most recent super block.
2423                 */
2424                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2425                        printk(KERN_INFO
2426                               "btrfsic: abort cyclic linkage (case 1).\n");
2427
2428                return ret;
2429        }
2430
2431        /*
2432         * This algorithm is recursive because the amount of used stack
2433         * space is very small and the max recursion depth is limited.
2434         */
2435        list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2436                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2437                        printk(KERN_INFO
2438                               "rl=%d, %c @%llu (%s/%llu/%d)"
2439                               " %u* refers to %c @%llu (%s/%llu/%d)\n",
2440                               recursion_level,
2441                               btrfsic_get_block_type(state, block),
2442                               block->logical_bytenr, block->dev_state->name,
2443                               block->dev_bytenr, block->mirror_num,
2444                               l->ref_cnt,
2445                               btrfsic_get_block_type(state, l->block_ref_to),
2446                               l->block_ref_to->logical_bytenr,
2447                               l->block_ref_to->dev_state->name,
2448                               l->block_ref_to->dev_bytenr,
2449                               l->block_ref_to->mirror_num);
2450                if (l->block_ref_to->never_written) {
2451                        printk(KERN_INFO "btrfs: attempt to write superblock"
2452                               " which references block %c @%llu (%s/%llu/%d)"
2453                               " which is never written!\n",
2454                               btrfsic_get_block_type(state, l->block_ref_to),
2455                               l->block_ref_to->logical_bytenr,
2456                               l->block_ref_to->dev_state->name,
2457                               l->block_ref_to->dev_bytenr,
2458                               l->block_ref_to->mirror_num);
2459                        ret = -1;
2460                } else if (!l->block_ref_to->is_iodone) {
2461                        printk(KERN_INFO "btrfs: attempt to write superblock"
2462                               " which references block %c @%llu (%s/%llu/%d)"
2463                               " which is not yet iodone!\n",
2464                               btrfsic_get_block_type(state, l->block_ref_to),
2465                               l->block_ref_to->logical_bytenr,
2466                               l->block_ref_to->dev_state->name,
2467                               l->block_ref_to->dev_bytenr,
2468                               l->block_ref_to->mirror_num);
2469                        ret = -1;
2470                } else if (l->block_ref_to->iodone_w_error) {
2471                        printk(KERN_INFO "btrfs: attempt to write superblock"
2472                               " which references block %c @%llu (%s/%llu/%d)"
2473                               " which has write error!\n",
2474                               btrfsic_get_block_type(state, l->block_ref_to),
2475                               l->block_ref_to->logical_bytenr,
2476                               l->block_ref_to->dev_state->name,
2477                               l->block_ref_to->dev_bytenr,
2478                               l->block_ref_to->mirror_num);
2479                        ret = -1;
2480                } else if (l->parent_generation !=
2481                           l->block_ref_to->generation &&
2482                           BTRFSIC_GENERATION_UNKNOWN !=
2483                           l->parent_generation &&
2484                           BTRFSIC_GENERATION_UNKNOWN !=
2485                           l->block_ref_to->generation) {
2486                        printk(KERN_INFO "btrfs: attempt to write superblock"
2487                               " which references block %c @%llu (%s/%llu/%d)"
2488                               " with generation %llu !="
2489                               " parent generation %llu!\n",
2490                               btrfsic_get_block_type(state, l->block_ref_to),
2491                               l->block_ref_to->logical_bytenr,
2492                               l->block_ref_to->dev_state->name,
2493                               l->block_ref_to->dev_bytenr,
2494                               l->block_ref_to->mirror_num,
2495                               l->block_ref_to->generation,
2496                               l->parent_generation);
2497                        ret = -1;
2498                } else if (l->block_ref_to->flush_gen >
2499                           l->block_ref_to->dev_state->last_flush_gen) {
2500                        printk(KERN_INFO "btrfs: attempt to write superblock"
2501                               " which references block %c @%llu (%s/%llu/%d)"
2502                               " which is not flushed out of disk's write cache"
2503                               " (block flush_gen=%llu,"
2504                               " dev->flush_gen=%llu)!\n",
2505                               btrfsic_get_block_type(state, l->block_ref_to),
2506                               l->block_ref_to->logical_bytenr,
2507                               l->block_ref_to->dev_state->name,
2508                               l->block_ref_to->dev_bytenr,
2509                               l->block_ref_to->mirror_num, block->flush_gen,
2510                               l->block_ref_to->dev_state->last_flush_gen);
2511                        ret = -1;
2512                } else if (-1 == btrfsic_check_all_ref_blocks(state,
2513                                                              l->block_ref_to,
2514                                                              recursion_level +
2515                                                              1)) {
2516                        ret = -1;
2517                }
2518        }
2519
2520        return ret;
2521}
2522
2523static int btrfsic_is_block_ref_by_superblock(
2524                const struct btrfsic_state *state,
2525                const struct btrfsic_block *block,
2526                int recursion_level)
2527{
2528        const struct btrfsic_block_link *l;
2529
2530        if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2531                /* refer to comment at "abort cyclic linkage (case 1)" */
2532                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2533                        printk(KERN_INFO
2534                               "btrfsic: abort cyclic linkage (case 2).\n");
2535
2536                return 0;
2537        }
2538
2539        /*
2540         * This algorithm is recursive because the amount of used stack space
2541         * is very small and the max recursion depth is limited.
2542         */
2543        list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2544                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2545                        printk(KERN_INFO
2546                               "rl=%d, %c @%llu (%s/%llu/%d)"
2547                               " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2548                               recursion_level,
2549                               btrfsic_get_block_type(state, block),
2550                               block->logical_bytenr, block->dev_state->name,
2551                               block->dev_bytenr, block->mirror_num,
2552                               l->ref_cnt,
2553                               btrfsic_get_block_type(state, l->block_ref_from),
2554                               l->block_ref_from->logical_bytenr,
2555                               l->block_ref_from->dev_state->name,
2556                               l->block_ref_from->dev_bytenr,
2557                               l->block_ref_from->mirror_num);
2558                if (l->block_ref_from->is_superblock &&
2559                    state->latest_superblock->dev_bytenr ==
2560                    l->block_ref_from->dev_bytenr &&
2561                    state->latest_superblock->dev_state->bdev ==
2562                    l->block_ref_from->dev_state->bdev)
2563                        return 1;
2564                else if (btrfsic_is_block_ref_by_superblock(state,
2565                                                            l->block_ref_from,
2566                                                            recursion_level +
2567                                                            1))
2568                        return 1;
2569        }
2570
2571        return 0;
2572}
2573
2574static void btrfsic_print_add_link(const struct btrfsic_state *state,
2575                                   const struct btrfsic_block_link *l)
2576{
2577        printk(KERN_INFO
2578               "Add %u* link from %c @%llu (%s/%llu/%d)"
2579               " to %c @%llu (%s/%llu/%d).\n",
2580               l->ref_cnt,
2581               btrfsic_get_block_type(state, l->block_ref_from),
2582               l->block_ref_from->logical_bytenr,
2583               l->block_ref_from->dev_state->name,
2584               l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2585               btrfsic_get_block_type(state, l->block_ref_to),
2586               l->block_ref_to->logical_bytenr,
2587               l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2588               l->block_ref_to->mirror_num);
2589}
2590
2591static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2592                                   const struct btrfsic_block_link *l)
2593{
2594        printk(KERN_INFO
2595               "Rem %u* link from %c @%llu (%s/%llu/%d)"
2596               " to %c @%llu (%s/%llu/%d).\n",
2597               l->ref_cnt,
2598               btrfsic_get_block_type(state, l->block_ref_from),
2599               l->block_ref_from->logical_bytenr,
2600               l->block_ref_from->dev_state->name,
2601               l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2602               btrfsic_get_block_type(state, l->block_ref_to),
2603               l->block_ref_to->logical_bytenr,
2604               l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2605               l->block_ref_to->mirror_num);
2606}
2607
2608static char btrfsic_get_block_type(const struct btrfsic_state *state,
2609                                   const struct btrfsic_block *block)
2610{
2611        if (block->is_superblock &&
2612            state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2613            state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2614                return 'S';
2615        else if (block->is_superblock)
2616                return 's';
2617        else if (block->is_metadata)
2618                return 'M';
2619        else
2620                return 'D';
2621}
2622
2623static void btrfsic_dump_tree(const struct btrfsic_state *state)
2624{
2625        btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2626}
2627
2628static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2629                                  const struct btrfsic_block *block,
2630                                  int indent_level)
2631{
2632        const struct btrfsic_block_link *l;
2633        int indent_add;
2634        static char buf[80];
2635        int cursor_position;
2636
2637        /*
2638         * Should better fill an on-stack buffer with a complete line and
2639         * dump it at once when it is time to print a newline character.
2640         */
2641
2642        /*
2643         * This algorithm is recursive because the amount of used stack space
2644         * is very small and the max recursion depth is limited.
2645         */
2646        indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2647                             btrfsic_get_block_type(state, block),
2648                             block->logical_bytenr, block->dev_state->name,
2649                             block->dev_bytenr, block->mirror_num);
2650        if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2651                printk("[...]\n");
2652                return;
2653        }
2654        printk(buf);
2655        indent_level += indent_add;
2656        if (list_empty(&block->ref_to_list)) {
2657                printk("\n");
2658                return;
2659        }
2660        if (block->mirror_num > 1 &&
2661            !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2662                printk(" [...]\n");
2663                return;
2664        }
2665
2666        cursor_position = indent_level;
2667        list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2668                while (cursor_position < indent_level) {
2669                        printk(" ");
2670                        cursor_position++;
2671                }
2672                if (l->ref_cnt > 1)
2673                        indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2674                else
2675                        indent_add = sprintf(buf, " --> ");
2676                if (indent_level + indent_add >
2677                    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2678                        printk("[...]\n");
2679                        cursor_position = 0;
2680                        continue;
2681                }
2682
2683                printk(buf);
2684
2685                btrfsic_dump_tree_sub(state, l->block_ref_to,
2686                                      indent_level + indent_add);
2687                cursor_position = 0;
2688        }
2689}
2690
2691static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2692                struct btrfsic_state *state,
2693                struct btrfsic_block_data_ctx *next_block_ctx,
2694                struct btrfsic_block *next_block,
2695                struct btrfsic_block *from_block,
2696                u64 parent_generation)
2697{
2698        struct btrfsic_block_link *l;
2699
2700        l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2701                                                next_block_ctx->dev_bytenr,
2702                                                from_block->dev_state->bdev,
2703                                                from_block->dev_bytenr,
2704                                                &state->block_link_hashtable);
2705        if (NULL == l) {
2706                l = btrfsic_block_link_alloc();
2707                if (NULL == l) {
2708                        printk(KERN_INFO
2709                               "btrfsic: error, kmalloc" " failed!\n");
2710                        return NULL;
2711                }
2712
2713                l->block_ref_to = next_block;
2714                l->block_ref_from = from_block;
2715                l->ref_cnt = 1;
2716                l->parent_generation = parent_generation;
2717
2718                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2719                        btrfsic_print_add_link(state, l);
2720
2721                list_add(&l->node_ref_to, &from_block->ref_to_list);
2722                list_add(&l->node_ref_from, &next_block->ref_from_list);
2723
2724                btrfsic_block_link_hashtable_add(l,
2725                                                 &state->block_link_hashtable);
2726        } else {
2727                l->ref_cnt++;
2728                l->parent_generation = parent_generation;
2729                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2730                        btrfsic_print_add_link(state, l);
2731        }
2732
2733        return l;
2734}
2735
2736static struct btrfsic_block *btrfsic_block_lookup_or_add(
2737                struct btrfsic_state *state,
2738                struct btrfsic_block_data_ctx *block_ctx,
2739                const char *additional_string,
2740                int is_metadata,
2741                int is_iodone,
2742                int never_written,
2743                int mirror_num,
2744                int *was_created)
2745{
2746        struct btrfsic_block *block;
2747
2748        block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2749                                               block_ctx->dev_bytenr,
2750                                               &state->block_hashtable);
2751        if (NULL == block) {
2752                struct btrfsic_dev_state *dev_state;
2753
2754                block = btrfsic_block_alloc();
2755                if (NULL == block) {
2756                        printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2757                        return NULL;
2758                }
2759                dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2760                if (NULL == dev_state) {
2761                        printk(KERN_INFO
2762                               "btrfsic: error, lookup dev_state failed!\n");
2763                        btrfsic_block_free(block);
2764                        return NULL;
2765                }
2766                block->dev_state = dev_state;
2767                block->dev_bytenr = block_ctx->dev_bytenr;
2768                block->logical_bytenr = block_ctx->start;
2769                block->is_metadata = is_metadata;
2770                block->is_iodone = is_iodone;
2771                block->never_written = never_written;
2772                block->mirror_num = mirror_num;
2773                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2774                        printk(KERN_INFO
2775                               "New %s%c-block @%llu (%s/%llu/%d)\n",
2776                               additional_string,
2777                               btrfsic_get_block_type(state, block),
2778                               block->logical_bytenr, dev_state->name,
2779                               block->dev_bytenr, mirror_num);
2780                list_add(&block->all_blocks_node, &state->all_blocks_list);
2781                btrfsic_block_hashtable_add(block, &state->block_hashtable);
2782                if (NULL != was_created)
2783                        *was_created = 1;
2784        } else {
2785                if (NULL != was_created)
2786                        *was_created = 0;
2787        }
2788
2789        return block;
2790}
2791
2792static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2793                                           u64 bytenr,
2794                                           struct btrfsic_dev_state *dev_state,
2795                                           u64 dev_bytenr)
2796{
2797        int num_copies;
2798        int mirror_num;
2799        int ret;
2800        struct btrfsic_block_data_ctx block_ctx;
2801        int match = 0;
2802
2803        num_copies = btrfs_num_copies(state->root->fs_info,
2804                                      bytenr, state->metablock_size);
2805
2806        for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2807                ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2808                                        &block_ctx, mirror_num);
2809                if (ret) {
2810                        printk(KERN_INFO "btrfsic:"
2811                               " btrfsic_map_block(logical @%llu,"
2812                               " mirror %d) failed!\n",
2813                               bytenr, mirror_num);
2814                        continue;
2815                }
2816
2817                if (dev_state->bdev == block_ctx.dev->bdev &&
2818                    dev_bytenr == block_ctx.dev_bytenr) {
2819                        match++;
2820                        btrfsic_release_block_ctx(&block_ctx);
2821                        break;
2822                }
2823                btrfsic_release_block_ctx(&block_ctx);
2824        }
2825
2826        if (WARN_ON(!match)) {
2827                printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2828                       " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2829                       " phys_bytenr=%llu)!\n",
2830                       bytenr, dev_state->name, dev_bytenr);
2831                for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2832                        ret = btrfsic_map_block(state, bytenr,
2833                                                state->metablock_size,
2834                                                &block_ctx, mirror_num);
2835                        if (ret)
2836                                continue;
2837
2838                        printk(KERN_INFO "Read logical bytenr @%llu maps to"
2839                               " (%s/%llu/%d)\n",
2840                               bytenr, block_ctx.dev->name,
2841                               block_ctx.dev_bytenr, mirror_num);
2842                }
2843        }
2844}
2845
2846static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2847                struct block_device *bdev)
2848{
2849        struct btrfsic_dev_state *ds;
2850
2851        ds = btrfsic_dev_state_hashtable_lookup(bdev,
2852                                                &btrfsic_dev_state_hashtable);
2853        return ds;
2854}
2855
2856int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2857{
2858        struct btrfsic_dev_state *dev_state;
2859
2860        if (!btrfsic_is_initialized)
2861                return submit_bh(rw, bh);
2862
2863        mutex_lock(&btrfsic_mutex);
2864        /* since btrfsic_submit_bh() might also be called before
2865         * btrfsic_mount(), this might return NULL */
2866        dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2867
2868        /* Only called to write the superblock (incl. FLUSH/FUA) */
2869        if (NULL != dev_state &&
2870            (rw & WRITE) && bh->b_size > 0) {
2871                u64 dev_bytenr;
2872
2873                dev_bytenr = 4096 * bh->b_blocknr;
2874                if (dev_state->state->print_mask &
2875                    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2876                        printk(KERN_INFO
2877                               "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2878                               " size=%zu, data=%p, bdev=%p)\n",
2879                               rw, (unsigned long long)bh->b_blocknr,
2880                               dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2881                btrfsic_process_written_block(dev_state, dev_bytenr,
2882                                              &bh->b_data, 1, NULL,
2883                                              NULL, bh, rw);
2884        } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2885                if (dev_state->state->print_mask &
2886                    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2887                        printk(KERN_INFO
2888                               "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2889                               rw, bh->b_bdev);
2890                if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2891                        if ((dev_state->state->print_mask &
2892                             (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2893                              BTRFSIC_PRINT_MASK_VERBOSE)))
2894                                printk(KERN_INFO
2895                                       "btrfsic_submit_bh(%s) with FLUSH"
2896                                       " but dummy block already in use"
2897                                       " (ignored)!\n",
2898                                       dev_state->name);
2899                } else {
2900                        struct btrfsic_block *const block =
2901                                &dev_state->dummy_block_for_bio_bh_flush;
2902
2903                        block->is_iodone = 0;
2904                        block->never_written = 0;
2905                        block->iodone_w_error = 0;
2906                        block->flush_gen = dev_state->last_flush_gen + 1;
2907                        block->submit_bio_bh_rw = rw;
2908                        block->orig_bio_bh_private = bh->b_private;
2909                        block->orig_bio_bh_end_io.bh = bh->b_end_io;
2910                        block->next_in_same_bio = NULL;
2911                        bh->b_private = block;
2912                        bh->b_end_io = btrfsic_bh_end_io;
2913                }
2914        }
2915        mutex_unlock(&btrfsic_mutex);
2916        return submit_bh(rw, bh);
2917}
2918
2919static void __btrfsic_submit_bio(int rw, struct bio *bio)
2920{
2921        struct btrfsic_dev_state *dev_state;
2922
2923        if (!btrfsic_is_initialized)
2924                return;
2925
2926        mutex_lock(&btrfsic_mutex);
2927        /* since btrfsic_submit_bio() is also called before
2928         * btrfsic_mount(), this might return NULL */
2929        dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2930        if (NULL != dev_state &&
2931            (rw & WRITE) && NULL != bio->bi_io_vec) {
2932                unsigned int i;
2933                u64 dev_bytenr;
2934                u64 cur_bytenr;
2935                int bio_is_patched;
2936                char **mapped_datav;
2937
2938                dev_bytenr = 512 * bio->bi_iter.bi_sector;
2939                bio_is_patched = 0;
2940                if (dev_state->state->print_mask &
2941                    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2942                        printk(KERN_INFO
2943                               "submit_bio(rw=0x%x, bi_vcnt=%u,"
2944                               " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2945                               rw, bio->bi_vcnt,
2946                               (unsigned long long)bio->bi_iter.bi_sector,
2947                               dev_bytenr, bio->bi_bdev);
2948
2949                mapped_datav = kmalloc_array(bio->bi_vcnt,
2950                                             sizeof(*mapped_datav), GFP_NOFS);
2951                if (!mapped_datav)
2952                        goto leave;
2953                cur_bytenr = dev_bytenr;
2954                for (i = 0; i < bio->bi_vcnt; i++) {
2955                        BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
2956                        mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
2957                        if (!mapped_datav[i]) {
2958                                while (i > 0) {
2959                                        i--;
2960                                        kunmap(bio->bi_io_vec[i].bv_page);
2961                                }
2962                                kfree(mapped_datav);
2963                                goto leave;
2964                        }
2965                        if (dev_state->state->print_mask &
2966                            BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2967                                printk(KERN_INFO
2968                                       "#%u: bytenr=%llu, len=%u, offset=%u\n",
2969                                       i, cur_bytenr, bio->bi_io_vec[i].bv_len,
2970                                       bio->bi_io_vec[i].bv_offset);
2971                        cur_bytenr += bio->bi_io_vec[i].bv_len;
2972                }
2973                btrfsic_process_written_block(dev_state, dev_bytenr,
2974                                              mapped_datav, bio->bi_vcnt,
2975                                              bio, &bio_is_patched,
2976                                              NULL, rw);
2977                while (i > 0) {
2978                        i--;
2979                        kunmap(bio->bi_io_vec[i].bv_page);
2980                }
2981                kfree(mapped_datav);
2982        } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2983                if (dev_state->state->print_mask &
2984                    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2985                        printk(KERN_INFO
2986                               "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
2987                               rw, bio->bi_bdev);
2988                if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2989                        if ((dev_state->state->print_mask &
2990                             (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2991                              BTRFSIC_PRINT_MASK_VERBOSE)))
2992                                printk(KERN_INFO
2993                                       "btrfsic_submit_bio(%s) with FLUSH"
2994                                       " but dummy block already in use"
2995                                       " (ignored)!\n",
2996                                       dev_state->name);
2997                } else {
2998                        struct btrfsic_block *const block =
2999                                &dev_state->dummy_block_for_bio_bh_flush;
3000
3001                        block->is_iodone = 0;
3002                        block->never_written = 0;
3003                        block->iodone_w_error = 0;
3004                        block->flush_gen = dev_state->last_flush_gen + 1;
3005                        block->submit_bio_bh_rw = rw;
3006                        block->orig_bio_bh_private = bio->bi_private;
3007                        block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3008                        block->next_in_same_bio = NULL;
3009                        bio->bi_private = block;
3010                        bio->bi_end_io = btrfsic_bio_end_io;
3011                }
3012        }
3013leave:
3014        mutex_unlock(&btrfsic_mutex);
3015}
3016
3017void btrfsic_submit_bio(int rw, struct bio *bio)
3018{
3019        __btrfsic_submit_bio(rw, bio);
3020        submit_bio(rw, bio);
3021}
3022
3023int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3024{
3025        __btrfsic_submit_bio(rw, bio);
3026        return submit_bio_wait(rw, bio);
3027}
3028
3029int btrfsic_mount(struct btrfs_root *root,
3030                  struct btrfs_fs_devices *fs_devices,
3031                  int including_extent_data, u32 print_mask)
3032{
3033        int ret;
3034        struct btrfsic_state *state;
3035        struct list_head *dev_head = &fs_devices->devices;
3036        struct btrfs_device *device;
3037
3038        if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3039                printk(KERN_INFO
3040                       "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3041                       root->nodesize, PAGE_CACHE_SIZE);
3042                return -1;
3043        }
3044        if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3045                printk(KERN_INFO
3046                       "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3047                       root->sectorsize, PAGE_CACHE_SIZE);
3048                return -1;
3049        }
3050        state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
3051        if (!state) {
3052                state = vzalloc(sizeof(*state));
3053                if (!state) {
3054                        printk(KERN_INFO "btrfs check-integrity: vzalloc() failed!\n");
3055                        return -1;
3056                }
3057        }
3058
3059        if (!btrfsic_is_initialized) {
3060                mutex_init(&btrfsic_mutex);
3061                btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3062                btrfsic_is_initialized = 1;
3063        }
3064        mutex_lock(&btrfsic_mutex);
3065        state->root = root;
3066        state->print_mask = print_mask;
3067        state->include_extent_data = including_extent_data;
3068        state->csum_size = 0;
3069        state->metablock_size = root->nodesize;
3070        state->datablock_size = root->sectorsize;
3071        INIT_LIST_HEAD(&state->all_blocks_list);
3072        btrfsic_block_hashtable_init(&state->block_hashtable);
3073        btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3074        state->max_superblock_generation = 0;
3075        state->latest_superblock = NULL;
3076
3077        list_for_each_entry(device, dev_head, dev_list) {
3078                struct btrfsic_dev_state *ds;
3079                char *p;
3080
3081                if (!device->bdev || !device->name)
3082                        continue;
3083
3084                ds = btrfsic_dev_state_alloc();
3085                if (NULL == ds) {
3086                        printk(KERN_INFO
3087                               "btrfs check-integrity: kmalloc() failed!\n");
3088                        mutex_unlock(&btrfsic_mutex);
3089                        return -1;
3090                }
3091                ds->bdev = device->bdev;
3092                ds->state = state;
3093                bdevname(ds->bdev, ds->name);
3094                ds->name[BDEVNAME_SIZE - 1] = '\0';
3095                for (p = ds->name; *p != '\0'; p++);
3096                while (p > ds->name && *p != '/')
3097                        p--;
3098                if (*p == '/')
3099                        p++;
3100                strlcpy(ds->name, p, sizeof(ds->name));
3101                btrfsic_dev_state_hashtable_add(ds,
3102                                                &btrfsic_dev_state_hashtable);
3103        }
3104
3105        ret = btrfsic_process_superblock(state, fs_devices);
3106        if (0 != ret) {
3107                mutex_unlock(&btrfsic_mutex);
3108                btrfsic_unmount(root, fs_devices);
3109                return ret;
3110        }
3111
3112        if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3113                btrfsic_dump_database(state);
3114        if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3115                btrfsic_dump_tree(state);
3116
3117        mutex_unlock(&btrfsic_mutex);
3118        return 0;
3119}
3120
3121void btrfsic_unmount(struct btrfs_root *root,
3122                     struct btrfs_fs_devices *fs_devices)
3123{
3124        struct btrfsic_block *b_all, *tmp_all;
3125        struct btrfsic_state *state;
3126        struct list_head *dev_head = &fs_devices->devices;
3127        struct btrfs_device *device;
3128
3129        if (!btrfsic_is_initialized)
3130                return;
3131
3132        mutex_lock(&btrfsic_mutex);
3133
3134        state = NULL;
3135        list_for_each_entry(device, dev_head, dev_list) {
3136                struct btrfsic_dev_state *ds;
3137
3138                if (!device->bdev || !device->name)
3139                        continue;
3140
3141                ds = btrfsic_dev_state_hashtable_lookup(
3142                                device->bdev,
3143                                &btrfsic_dev_state_hashtable);
3144                if (NULL != ds) {
3145                        state = ds->state;
3146                        btrfsic_dev_state_hashtable_remove(ds);
3147                        btrfsic_dev_state_free(ds);
3148                }
3149        }
3150
3151        if (NULL == state) {
3152                printk(KERN_INFO
3153                       "btrfsic: error, cannot find state information"
3154                       " on umount!\n");
3155                mutex_unlock(&btrfsic_mutex);
3156                return;
3157        }
3158
3159        /*
3160         * Don't care about keeping the lists' state up to date,
3161         * just free all memory that was allocated dynamically.
3162         * Free the blocks and the block_links.
3163         */
3164        list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3165                                 all_blocks_node) {
3166                struct btrfsic_block_link *l, *tmp;
3167
3168                list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3169                                         node_ref_to) {
3170                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3171                                btrfsic_print_rem_link(state, l);
3172
3173                        l->ref_cnt--;
3174                        if (0 == l->ref_cnt)
3175                                btrfsic_block_link_free(l);
3176                }
3177
3178                if (b_all->is_iodone || b_all->never_written)
3179                        btrfsic_block_free(b_all);
3180                else
3181                        printk(KERN_INFO "btrfs: attempt to free %c-block"
3182                               " @%llu (%s/%llu/%d) on umount which is"
3183                               " not yet iodone!\n",
3184                               btrfsic_get_block_type(state, b_all),
3185                               b_all->logical_bytenr, b_all->dev_state->name,
3186                               b_all->dev_bytenr, b_all->mirror_num);
3187        }
3188
3189        mutex_unlock(&btrfsic_mutex);
3190
3191        kvfree(state);
3192}
3193