linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
  14#include "extent_io.h"
  15#include "extent_map.h"
  16#include "ctree.h"
  17#include "btrfs_inode.h"
  18#include "volumes.h"
  19#include "check-integrity.h"
  20#include "locking.h"
  21#include "rcu-string.h"
  22#include "backref.h"
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26static struct bio_set *btrfs_bioset;
  27
  28static inline bool extent_state_in_tree(const struct extent_state *state)
  29{
  30        return !RB_EMPTY_NODE(&state->rb_node);
  31}
  32
  33#ifdef CONFIG_BTRFS_DEBUG
  34static LIST_HEAD(buffers);
  35static LIST_HEAD(states);
  36
  37static DEFINE_SPINLOCK(leak_lock);
  38
  39static inline
  40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  41{
  42        unsigned long flags;
  43
  44        spin_lock_irqsave(&leak_lock, flags);
  45        list_add(new, head);
  46        spin_unlock_irqrestore(&leak_lock, flags);
  47}
  48
  49static inline
  50void btrfs_leak_debug_del(struct list_head *entry)
  51{
  52        unsigned long flags;
  53
  54        spin_lock_irqsave(&leak_lock, flags);
  55        list_del(entry);
  56        spin_unlock_irqrestore(&leak_lock, flags);
  57}
  58
  59static inline
  60void btrfs_leak_debug_check(void)
  61{
  62        struct extent_state *state;
  63        struct extent_buffer *eb;
  64
  65        while (!list_empty(&states)) {
  66                state = list_entry(states.next, struct extent_state, leak_list);
  67                pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  68                       state->start, state->end, state->state,
  69                       extent_state_in_tree(state),
  70                       atomic_read(&state->refs));
  71                list_del(&state->leak_list);
  72                kmem_cache_free(extent_state_cache, state);
  73        }
  74
  75        while (!list_empty(&buffers)) {
  76                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  77                printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
  78                       "refs %d\n",
  79                       eb->start, eb->len, atomic_read(&eb->refs));
  80                list_del(&eb->leak_list);
  81                kmem_cache_free(extent_buffer_cache, eb);
  82        }
  83}
  84
  85#define btrfs_debug_check_extent_io_range(tree, start, end)             \
  86        __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  88                struct extent_io_tree *tree, u64 start, u64 end)
  89{
  90        struct inode *inode;
  91        u64 isize;
  92
  93        if (!tree->mapping)
  94                return;
  95
  96        inode = tree->mapping->host;
  97        isize = i_size_read(inode);
  98        if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
  99                btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 100                    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 101                                caller, btrfs_ino(inode), isize, start, end);
 102        }
 103}
 104#else
 105#define btrfs_leak_debug_add(new, head) do {} while (0)
 106#define btrfs_leak_debug_del(entry)     do {} while (0)
 107#define btrfs_leak_debug_check()        do {} while (0)
 108#define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
 109#endif
 110
 111#define BUFFER_LRU_MAX 64
 112
 113struct tree_entry {
 114        u64 start;
 115        u64 end;
 116        struct rb_node rb_node;
 117};
 118
 119struct extent_page_data {
 120        struct bio *bio;
 121        struct extent_io_tree *tree;
 122        get_extent_t *get_extent;
 123        unsigned long bio_flags;
 124
 125        /* tells writepage not to lock the state bits for this range
 126         * it still does the unlocking
 127         */
 128        unsigned int extent_locked:1;
 129
 130        /* tells the submit_bio code to use a WRITE_SYNC */
 131        unsigned int sync_io:1;
 132};
 133
 134static void add_extent_changeset(struct extent_state *state, unsigned bits,
 135                                 struct extent_changeset *changeset,
 136                                 int set)
 137{
 138        int ret;
 139
 140        if (!changeset)
 141                return;
 142        if (set && (state->state & bits) == bits)
 143                return;
 144        if (!set && (state->state & bits) == 0)
 145                return;
 146        changeset->bytes_changed += state->end - state->start + 1;
 147        ret = ulist_add(changeset->range_changed, state->start, state->end,
 148                        GFP_ATOMIC);
 149        /* ENOMEM */
 150        BUG_ON(ret < 0);
 151}
 152
 153static noinline void flush_write_bio(void *data);
 154static inline struct btrfs_fs_info *
 155tree_fs_info(struct extent_io_tree *tree)
 156{
 157        if (!tree->mapping)
 158                return NULL;
 159        return btrfs_sb(tree->mapping->host->i_sb);
 160}
 161
 162int __init extent_io_init(void)
 163{
 164        extent_state_cache = kmem_cache_create("btrfs_extent_state",
 165                        sizeof(struct extent_state), 0,
 166                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 167        if (!extent_state_cache)
 168                return -ENOMEM;
 169
 170        extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 171                        sizeof(struct extent_buffer), 0,
 172                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 173        if (!extent_buffer_cache)
 174                goto free_state_cache;
 175
 176        btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 177                                     offsetof(struct btrfs_io_bio, bio));
 178        if (!btrfs_bioset)
 179                goto free_buffer_cache;
 180
 181        if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 182                goto free_bioset;
 183
 184        return 0;
 185
 186free_bioset:
 187        bioset_free(btrfs_bioset);
 188        btrfs_bioset = NULL;
 189
 190free_buffer_cache:
 191        kmem_cache_destroy(extent_buffer_cache);
 192        extent_buffer_cache = NULL;
 193
 194free_state_cache:
 195        kmem_cache_destroy(extent_state_cache);
 196        extent_state_cache = NULL;
 197        return -ENOMEM;
 198}
 199
 200void extent_io_exit(void)
 201{
 202        btrfs_leak_debug_check();
 203
 204        /*
 205         * Make sure all delayed rcu free are flushed before we
 206         * destroy caches.
 207         */
 208        rcu_barrier();
 209        if (extent_state_cache)
 210                kmem_cache_destroy(extent_state_cache);
 211        if (extent_buffer_cache)
 212                kmem_cache_destroy(extent_buffer_cache);
 213        if (btrfs_bioset)
 214                bioset_free(btrfs_bioset);
 215}
 216
 217void extent_io_tree_init(struct extent_io_tree *tree,
 218                         struct address_space *mapping)
 219{
 220        tree->state = RB_ROOT;
 221        tree->ops = NULL;
 222        tree->dirty_bytes = 0;
 223        spin_lock_init(&tree->lock);
 224        tree->mapping = mapping;
 225}
 226
 227static struct extent_state *alloc_extent_state(gfp_t mask)
 228{
 229        struct extent_state *state;
 230
 231        state = kmem_cache_alloc(extent_state_cache, mask);
 232        if (!state)
 233                return state;
 234        state->state = 0;
 235        state->private = 0;
 236        RB_CLEAR_NODE(&state->rb_node);
 237        btrfs_leak_debug_add(&state->leak_list, &states);
 238        atomic_set(&state->refs, 1);
 239        init_waitqueue_head(&state->wq);
 240        trace_alloc_extent_state(state, mask, _RET_IP_);
 241        return state;
 242}
 243
 244void free_extent_state(struct extent_state *state)
 245{
 246        if (!state)
 247                return;
 248        if (atomic_dec_and_test(&state->refs)) {
 249                WARN_ON(extent_state_in_tree(state));
 250                btrfs_leak_debug_del(&state->leak_list);
 251                trace_free_extent_state(state, _RET_IP_);
 252                kmem_cache_free(extent_state_cache, state);
 253        }
 254}
 255
 256static struct rb_node *tree_insert(struct rb_root *root,
 257                                   struct rb_node *search_start,
 258                                   u64 offset,
 259                                   struct rb_node *node,
 260                                   struct rb_node ***p_in,
 261                                   struct rb_node **parent_in)
 262{
 263        struct rb_node **p;
 264        struct rb_node *parent = NULL;
 265        struct tree_entry *entry;
 266
 267        if (p_in && parent_in) {
 268                p = *p_in;
 269                parent = *parent_in;
 270                goto do_insert;
 271        }
 272
 273        p = search_start ? &search_start : &root->rb_node;
 274        while (*p) {
 275                parent = *p;
 276                entry = rb_entry(parent, struct tree_entry, rb_node);
 277
 278                if (offset < entry->start)
 279                        p = &(*p)->rb_left;
 280                else if (offset > entry->end)
 281                        p = &(*p)->rb_right;
 282                else
 283                        return parent;
 284        }
 285
 286do_insert:
 287        rb_link_node(node, parent, p);
 288        rb_insert_color(node, root);
 289        return NULL;
 290}
 291
 292static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 293                                      struct rb_node **prev_ret,
 294                                      struct rb_node **next_ret,
 295                                      struct rb_node ***p_ret,
 296                                      struct rb_node **parent_ret)
 297{
 298        struct rb_root *root = &tree->state;
 299        struct rb_node **n = &root->rb_node;
 300        struct rb_node *prev = NULL;
 301        struct rb_node *orig_prev = NULL;
 302        struct tree_entry *entry;
 303        struct tree_entry *prev_entry = NULL;
 304
 305        while (*n) {
 306                prev = *n;
 307                entry = rb_entry(prev, struct tree_entry, rb_node);
 308                prev_entry = entry;
 309
 310                if (offset < entry->start)
 311                        n = &(*n)->rb_left;
 312                else if (offset > entry->end)
 313                        n = &(*n)->rb_right;
 314                else
 315                        return *n;
 316        }
 317
 318        if (p_ret)
 319                *p_ret = n;
 320        if (parent_ret)
 321                *parent_ret = prev;
 322
 323        if (prev_ret) {
 324                orig_prev = prev;
 325                while (prev && offset > prev_entry->end) {
 326                        prev = rb_next(prev);
 327                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 328                }
 329                *prev_ret = prev;
 330                prev = orig_prev;
 331        }
 332
 333        if (next_ret) {
 334                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 335                while (prev && offset < prev_entry->start) {
 336                        prev = rb_prev(prev);
 337                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 338                }
 339                *next_ret = prev;
 340        }
 341        return NULL;
 342}
 343
 344static inline struct rb_node *
 345tree_search_for_insert(struct extent_io_tree *tree,
 346                       u64 offset,
 347                       struct rb_node ***p_ret,
 348                       struct rb_node **parent_ret)
 349{
 350        struct rb_node *prev = NULL;
 351        struct rb_node *ret;
 352
 353        ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 354        if (!ret)
 355                return prev;
 356        return ret;
 357}
 358
 359static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 360                                          u64 offset)
 361{
 362        return tree_search_for_insert(tree, offset, NULL, NULL);
 363}
 364
 365static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 366                     struct extent_state *other)
 367{
 368        if (tree->ops && tree->ops->merge_extent_hook)
 369                tree->ops->merge_extent_hook(tree->mapping->host, new,
 370                                             other);
 371}
 372
 373/*
 374 * utility function to look for merge candidates inside a given range.
 375 * Any extents with matching state are merged together into a single
 376 * extent in the tree.  Extents with EXTENT_IO in their state field
 377 * are not merged because the end_io handlers need to be able to do
 378 * operations on them without sleeping (or doing allocations/splits).
 379 *
 380 * This should be called with the tree lock held.
 381 */
 382static void merge_state(struct extent_io_tree *tree,
 383                        struct extent_state *state)
 384{
 385        struct extent_state *other;
 386        struct rb_node *other_node;
 387
 388        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 389                return;
 390
 391        other_node = rb_prev(&state->rb_node);
 392        if (other_node) {
 393                other = rb_entry(other_node, struct extent_state, rb_node);
 394                if (other->end == state->start - 1 &&
 395                    other->state == state->state) {
 396                        merge_cb(tree, state, other);
 397                        state->start = other->start;
 398                        rb_erase(&other->rb_node, &tree->state);
 399                        RB_CLEAR_NODE(&other->rb_node);
 400                        free_extent_state(other);
 401                }
 402        }
 403        other_node = rb_next(&state->rb_node);
 404        if (other_node) {
 405                other = rb_entry(other_node, struct extent_state, rb_node);
 406                if (other->start == state->end + 1 &&
 407                    other->state == state->state) {
 408                        merge_cb(tree, state, other);
 409                        state->end = other->end;
 410                        rb_erase(&other->rb_node, &tree->state);
 411                        RB_CLEAR_NODE(&other->rb_node);
 412                        free_extent_state(other);
 413                }
 414        }
 415}
 416
 417static void set_state_cb(struct extent_io_tree *tree,
 418                         struct extent_state *state, unsigned *bits)
 419{
 420        if (tree->ops && tree->ops->set_bit_hook)
 421                tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 422}
 423
 424static void clear_state_cb(struct extent_io_tree *tree,
 425                           struct extent_state *state, unsigned *bits)
 426{
 427        if (tree->ops && tree->ops->clear_bit_hook)
 428                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 429}
 430
 431static void set_state_bits(struct extent_io_tree *tree,
 432                           struct extent_state *state, unsigned *bits,
 433                           struct extent_changeset *changeset);
 434
 435/*
 436 * insert an extent_state struct into the tree.  'bits' are set on the
 437 * struct before it is inserted.
 438 *
 439 * This may return -EEXIST if the extent is already there, in which case the
 440 * state struct is freed.
 441 *
 442 * The tree lock is not taken internally.  This is a utility function and
 443 * probably isn't what you want to call (see set/clear_extent_bit).
 444 */
 445static int insert_state(struct extent_io_tree *tree,
 446                        struct extent_state *state, u64 start, u64 end,
 447                        struct rb_node ***p,
 448                        struct rb_node **parent,
 449                        unsigned *bits, struct extent_changeset *changeset)
 450{
 451        struct rb_node *node;
 452
 453        if (end < start)
 454                WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 455                       end, start);
 456        state->start = start;
 457        state->end = end;
 458
 459        set_state_bits(tree, state, bits, changeset);
 460
 461        node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 462        if (node) {
 463                struct extent_state *found;
 464                found = rb_entry(node, struct extent_state, rb_node);
 465                printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
 466                       "%llu %llu\n",
 467                       found->start, found->end, start, end);
 468                return -EEXIST;
 469        }
 470        merge_state(tree, state);
 471        return 0;
 472}
 473
 474static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 475                     u64 split)
 476{
 477        if (tree->ops && tree->ops->split_extent_hook)
 478                tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 479}
 480
 481/*
 482 * split a given extent state struct in two, inserting the preallocated
 483 * struct 'prealloc' as the newly created second half.  'split' indicates an
 484 * offset inside 'orig' where it should be split.
 485 *
 486 * Before calling,
 487 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 488 * are two extent state structs in the tree:
 489 * prealloc: [orig->start, split - 1]
 490 * orig: [ split, orig->end ]
 491 *
 492 * The tree locks are not taken by this function. They need to be held
 493 * by the caller.
 494 */
 495static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 496                       struct extent_state *prealloc, u64 split)
 497{
 498        struct rb_node *node;
 499
 500        split_cb(tree, orig, split);
 501
 502        prealloc->start = orig->start;
 503        prealloc->end = split - 1;
 504        prealloc->state = orig->state;
 505        orig->start = split;
 506
 507        node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 508                           &prealloc->rb_node, NULL, NULL);
 509        if (node) {
 510                free_extent_state(prealloc);
 511                return -EEXIST;
 512        }
 513        return 0;
 514}
 515
 516static struct extent_state *next_state(struct extent_state *state)
 517{
 518        struct rb_node *next = rb_next(&state->rb_node);
 519        if (next)
 520                return rb_entry(next, struct extent_state, rb_node);
 521        else
 522                return NULL;
 523}
 524
 525/*
 526 * utility function to clear some bits in an extent state struct.
 527 * it will optionally wake up any one waiting on this state (wake == 1).
 528 *
 529 * If no bits are set on the state struct after clearing things, the
 530 * struct is freed and removed from the tree
 531 */
 532static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 533                                            struct extent_state *state,
 534                                            unsigned *bits, int wake,
 535                                            struct extent_changeset *changeset)
 536{
 537        struct extent_state *next;
 538        unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 539
 540        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 541                u64 range = state->end - state->start + 1;
 542                WARN_ON(range > tree->dirty_bytes);
 543                tree->dirty_bytes -= range;
 544        }
 545        clear_state_cb(tree, state, bits);
 546        add_extent_changeset(state, bits_to_clear, changeset, 0);
 547        state->state &= ~bits_to_clear;
 548        if (wake)
 549                wake_up(&state->wq);
 550        if (state->state == 0) {
 551                next = next_state(state);
 552                if (extent_state_in_tree(state)) {
 553                        rb_erase(&state->rb_node, &tree->state);
 554                        RB_CLEAR_NODE(&state->rb_node);
 555                        free_extent_state(state);
 556                } else {
 557                        WARN_ON(1);
 558                }
 559        } else {
 560                merge_state(tree, state);
 561                next = next_state(state);
 562        }
 563        return next;
 564}
 565
 566static struct extent_state *
 567alloc_extent_state_atomic(struct extent_state *prealloc)
 568{
 569        if (!prealloc)
 570                prealloc = alloc_extent_state(GFP_ATOMIC);
 571
 572        return prealloc;
 573}
 574
 575static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 576{
 577        btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 578                    "Extent tree was modified by another "
 579                    "thread while locked.");
 580}
 581
 582/*
 583 * clear some bits on a range in the tree.  This may require splitting
 584 * or inserting elements in the tree, so the gfp mask is used to
 585 * indicate which allocations or sleeping are allowed.
 586 *
 587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 588 * the given range from the tree regardless of state (ie for truncate).
 589 *
 590 * the range [start, end] is inclusive.
 591 *
 592 * This takes the tree lock, and returns 0 on success and < 0 on error.
 593 */
 594static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 595                              unsigned bits, int wake, int delete,
 596                              struct extent_state **cached_state,
 597                              gfp_t mask, struct extent_changeset *changeset)
 598{
 599        struct extent_state *state;
 600        struct extent_state *cached;
 601        struct extent_state *prealloc = NULL;
 602        struct rb_node *node;
 603        u64 last_end;
 604        int err;
 605        int clear = 0;
 606
 607        btrfs_debug_check_extent_io_range(tree, start, end);
 608
 609        if (bits & EXTENT_DELALLOC)
 610                bits |= EXTENT_NORESERVE;
 611
 612        if (delete)
 613                bits |= ~EXTENT_CTLBITS;
 614        bits |= EXTENT_FIRST_DELALLOC;
 615
 616        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 617                clear = 1;
 618again:
 619        if (!prealloc && gfpflags_allow_blocking(mask)) {
 620                /*
 621                 * Don't care for allocation failure here because we might end
 622                 * up not needing the pre-allocated extent state at all, which
 623                 * is the case if we only have in the tree extent states that
 624                 * cover our input range and don't cover too any other range.
 625                 * If we end up needing a new extent state we allocate it later.
 626                 */
 627                prealloc = alloc_extent_state(mask);
 628        }
 629
 630        spin_lock(&tree->lock);
 631        if (cached_state) {
 632                cached = *cached_state;
 633
 634                if (clear) {
 635                        *cached_state = NULL;
 636                        cached_state = NULL;
 637                }
 638
 639                if (cached && extent_state_in_tree(cached) &&
 640                    cached->start <= start && cached->end > start) {
 641                        if (clear)
 642                                atomic_dec(&cached->refs);
 643                        state = cached;
 644                        goto hit_next;
 645                }
 646                if (clear)
 647                        free_extent_state(cached);
 648        }
 649        /*
 650         * this search will find the extents that end after
 651         * our range starts
 652         */
 653        node = tree_search(tree, start);
 654        if (!node)
 655                goto out;
 656        state = rb_entry(node, struct extent_state, rb_node);
 657hit_next:
 658        if (state->start > end)
 659                goto out;
 660        WARN_ON(state->end < start);
 661        last_end = state->end;
 662
 663        /* the state doesn't have the wanted bits, go ahead */
 664        if (!(state->state & bits)) {
 665                state = next_state(state);
 666                goto next;
 667        }
 668
 669        /*
 670         *     | ---- desired range ---- |
 671         *  | state | or
 672         *  | ------------- state -------------- |
 673         *
 674         * We need to split the extent we found, and may flip
 675         * bits on second half.
 676         *
 677         * If the extent we found extends past our range, we
 678         * just split and search again.  It'll get split again
 679         * the next time though.
 680         *
 681         * If the extent we found is inside our range, we clear
 682         * the desired bit on it.
 683         */
 684
 685        if (state->start < start) {
 686                prealloc = alloc_extent_state_atomic(prealloc);
 687                BUG_ON(!prealloc);
 688                err = split_state(tree, state, prealloc, start);
 689                if (err)
 690                        extent_io_tree_panic(tree, err);
 691
 692                prealloc = NULL;
 693                if (err)
 694                        goto out;
 695                if (state->end <= end) {
 696                        state = clear_state_bit(tree, state, &bits, wake,
 697                                                changeset);
 698                        goto next;
 699                }
 700                goto search_again;
 701        }
 702        /*
 703         * | ---- desired range ---- |
 704         *                        | state |
 705         * We need to split the extent, and clear the bit
 706         * on the first half
 707         */
 708        if (state->start <= end && state->end > end) {
 709                prealloc = alloc_extent_state_atomic(prealloc);
 710                BUG_ON(!prealloc);
 711                err = split_state(tree, state, prealloc, end + 1);
 712                if (err)
 713                        extent_io_tree_panic(tree, err);
 714
 715                if (wake)
 716                        wake_up(&state->wq);
 717
 718                clear_state_bit(tree, prealloc, &bits, wake, changeset);
 719
 720                prealloc = NULL;
 721                goto out;
 722        }
 723
 724        state = clear_state_bit(tree, state, &bits, wake, changeset);
 725next:
 726        if (last_end == (u64)-1)
 727                goto out;
 728        start = last_end + 1;
 729        if (start <= end && state && !need_resched())
 730                goto hit_next;
 731        goto search_again;
 732
 733out:
 734        spin_unlock(&tree->lock);
 735        if (prealloc)
 736                free_extent_state(prealloc);
 737
 738        return 0;
 739
 740search_again:
 741        if (start > end)
 742                goto out;
 743        spin_unlock(&tree->lock);
 744        if (gfpflags_allow_blocking(mask))
 745                cond_resched();
 746        goto again;
 747}
 748
 749static void wait_on_state(struct extent_io_tree *tree,
 750                          struct extent_state *state)
 751                __releases(tree->lock)
 752                __acquires(tree->lock)
 753{
 754        DEFINE_WAIT(wait);
 755        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 756        spin_unlock(&tree->lock);
 757        schedule();
 758        spin_lock(&tree->lock);
 759        finish_wait(&state->wq, &wait);
 760}
 761
 762/*
 763 * waits for one or more bits to clear on a range in the state tree.
 764 * The range [start, end] is inclusive.
 765 * The tree lock is taken by this function
 766 */
 767static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 768                            unsigned long bits)
 769{
 770        struct extent_state *state;
 771        struct rb_node *node;
 772
 773        btrfs_debug_check_extent_io_range(tree, start, end);
 774
 775        spin_lock(&tree->lock);
 776again:
 777        while (1) {
 778                /*
 779                 * this search will find all the extents that end after
 780                 * our range starts
 781                 */
 782                node = tree_search(tree, start);
 783process_node:
 784                if (!node)
 785                        break;
 786
 787                state = rb_entry(node, struct extent_state, rb_node);
 788
 789                if (state->start > end)
 790                        goto out;
 791
 792                if (state->state & bits) {
 793                        start = state->start;
 794                        atomic_inc(&state->refs);
 795                        wait_on_state(tree, state);
 796                        free_extent_state(state);
 797                        goto again;
 798                }
 799                start = state->end + 1;
 800
 801                if (start > end)
 802                        break;
 803
 804                if (!cond_resched_lock(&tree->lock)) {
 805                        node = rb_next(node);
 806                        goto process_node;
 807                }
 808        }
 809out:
 810        spin_unlock(&tree->lock);
 811}
 812
 813static void set_state_bits(struct extent_io_tree *tree,
 814                           struct extent_state *state,
 815                           unsigned *bits, struct extent_changeset *changeset)
 816{
 817        unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 818
 819        set_state_cb(tree, state, bits);
 820        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 821                u64 range = state->end - state->start + 1;
 822                tree->dirty_bytes += range;
 823        }
 824        add_extent_changeset(state, bits_to_set, changeset, 1);
 825        state->state |= bits_to_set;
 826}
 827
 828static void cache_state_if_flags(struct extent_state *state,
 829                                 struct extent_state **cached_ptr,
 830                                 unsigned flags)
 831{
 832        if (cached_ptr && !(*cached_ptr)) {
 833                if (!flags || (state->state & flags)) {
 834                        *cached_ptr = state;
 835                        atomic_inc(&state->refs);
 836                }
 837        }
 838}
 839
 840static void cache_state(struct extent_state *state,
 841                        struct extent_state **cached_ptr)
 842{
 843        return cache_state_if_flags(state, cached_ptr,
 844                                    EXTENT_IOBITS | EXTENT_BOUNDARY);
 845}
 846
 847/*
 848 * set some bits on a range in the tree.  This may require allocations or
 849 * sleeping, so the gfp mask is used to indicate what is allowed.
 850 *
 851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 852 * part of the range already has the desired bits set.  The start of the
 853 * existing range is returned in failed_start in this case.
 854 *
 855 * [start, end] is inclusive This takes the tree lock.
 856 */
 857
 858static int __must_check
 859__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 860                 unsigned bits, unsigned exclusive_bits,
 861                 u64 *failed_start, struct extent_state **cached_state,
 862                 gfp_t mask, struct extent_changeset *changeset)
 863{
 864        struct extent_state *state;
 865        struct extent_state *prealloc = NULL;
 866        struct rb_node *node;
 867        struct rb_node **p;
 868        struct rb_node *parent;
 869        int err = 0;
 870        u64 last_start;
 871        u64 last_end;
 872
 873        btrfs_debug_check_extent_io_range(tree, start, end);
 874
 875        bits |= EXTENT_FIRST_DELALLOC;
 876again:
 877        if (!prealloc && gfpflags_allow_blocking(mask)) {
 878                prealloc = alloc_extent_state(mask);
 879                BUG_ON(!prealloc);
 880        }
 881
 882        spin_lock(&tree->lock);
 883        if (cached_state && *cached_state) {
 884                state = *cached_state;
 885                if (state->start <= start && state->end > start &&
 886                    extent_state_in_tree(state)) {
 887                        node = &state->rb_node;
 888                        goto hit_next;
 889                }
 890        }
 891        /*
 892         * this search will find all the extents that end after
 893         * our range starts.
 894         */
 895        node = tree_search_for_insert(tree, start, &p, &parent);
 896        if (!node) {
 897                prealloc = alloc_extent_state_atomic(prealloc);
 898                BUG_ON(!prealloc);
 899                err = insert_state(tree, prealloc, start, end,
 900                                   &p, &parent, &bits, changeset);
 901                if (err)
 902                        extent_io_tree_panic(tree, err);
 903
 904                cache_state(prealloc, cached_state);
 905                prealloc = NULL;
 906                goto out;
 907        }
 908        state = rb_entry(node, struct extent_state, rb_node);
 909hit_next:
 910        last_start = state->start;
 911        last_end = state->end;
 912
 913        /*
 914         * | ---- desired range ---- |
 915         * | state |
 916         *
 917         * Just lock what we found and keep going
 918         */
 919        if (state->start == start && state->end <= end) {
 920                if (state->state & exclusive_bits) {
 921                        *failed_start = state->start;
 922                        err = -EEXIST;
 923                        goto out;
 924                }
 925
 926                set_state_bits(tree, state, &bits, changeset);
 927                cache_state(state, cached_state);
 928                merge_state(tree, state);
 929                if (last_end == (u64)-1)
 930                        goto out;
 931                start = last_end + 1;
 932                state = next_state(state);
 933                if (start < end && state && state->start == start &&
 934                    !need_resched())
 935                        goto hit_next;
 936                goto search_again;
 937        }
 938
 939        /*
 940         *     | ---- desired range ---- |
 941         * | state |
 942         *   or
 943         * | ------------- state -------------- |
 944         *
 945         * We need to split the extent we found, and may flip bits on
 946         * second half.
 947         *
 948         * If the extent we found extends past our
 949         * range, we just split and search again.  It'll get split
 950         * again the next time though.
 951         *
 952         * If the extent we found is inside our range, we set the
 953         * desired bit on it.
 954         */
 955        if (state->start < start) {
 956                if (state->state & exclusive_bits) {
 957                        *failed_start = start;
 958                        err = -EEXIST;
 959                        goto out;
 960                }
 961
 962                prealloc = alloc_extent_state_atomic(prealloc);
 963                BUG_ON(!prealloc);
 964                err = split_state(tree, state, prealloc, start);
 965                if (err)
 966                        extent_io_tree_panic(tree, err);
 967
 968                prealloc = NULL;
 969                if (err)
 970                        goto out;
 971                if (state->end <= end) {
 972                        set_state_bits(tree, state, &bits, changeset);
 973                        cache_state(state, cached_state);
 974                        merge_state(tree, state);
 975                        if (last_end == (u64)-1)
 976                                goto out;
 977                        start = last_end + 1;
 978                        state = next_state(state);
 979                        if (start < end && state && state->start == start &&
 980                            !need_resched())
 981                                goto hit_next;
 982                }
 983                goto search_again;
 984        }
 985        /*
 986         * | ---- desired range ---- |
 987         *     | state | or               | state |
 988         *
 989         * There's a hole, we need to insert something in it and
 990         * ignore the extent we found.
 991         */
 992        if (state->start > start) {
 993                u64 this_end;
 994                if (end < last_start)
 995                        this_end = end;
 996                else
 997                        this_end = last_start - 1;
 998
 999                prealloc = alloc_extent_state_atomic(prealloc);
1000                BUG_ON(!prealloc);
1001
1002                /*
1003                 * Avoid to free 'prealloc' if it can be merged with
1004                 * the later extent.
1005                 */
1006                err = insert_state(tree, prealloc, start, this_end,
1007                                   NULL, NULL, &bits, changeset);
1008                if (err)
1009                        extent_io_tree_panic(tree, err);
1010
1011                cache_state(prealloc, cached_state);
1012                prealloc = NULL;
1013                start = this_end + 1;
1014                goto search_again;
1015        }
1016        /*
1017         * | ---- desired range ---- |
1018         *                        | state |
1019         * We need to split the extent, and set the bit
1020         * on the first half
1021         */
1022        if (state->start <= end && state->end > end) {
1023                if (state->state & exclusive_bits) {
1024                        *failed_start = start;
1025                        err = -EEXIST;
1026                        goto out;
1027                }
1028
1029                prealloc = alloc_extent_state_atomic(prealloc);
1030                BUG_ON(!prealloc);
1031                err = split_state(tree, state, prealloc, end + 1);
1032                if (err)
1033                        extent_io_tree_panic(tree, err);
1034
1035                set_state_bits(tree, prealloc, &bits, changeset);
1036                cache_state(prealloc, cached_state);
1037                merge_state(tree, prealloc);
1038                prealloc = NULL;
1039                goto out;
1040        }
1041
1042        goto search_again;
1043
1044out:
1045        spin_unlock(&tree->lock);
1046        if (prealloc)
1047                free_extent_state(prealloc);
1048
1049        return err;
1050
1051search_again:
1052        if (start > end)
1053                goto out;
1054        spin_unlock(&tree->lock);
1055        if (gfpflags_allow_blocking(mask))
1056                cond_resched();
1057        goto again;
1058}
1059
1060int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061                   unsigned bits, u64 * failed_start,
1062                   struct extent_state **cached_state, gfp_t mask)
1063{
1064        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065                                cached_state, mask, NULL);
1066}
1067
1068
1069/**
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 *                      another
1072 * @tree:       the io tree to search
1073 * @start:      the start offset in bytes
1074 * @end:        the end offset in bytes (inclusive)
1075 * @bits:       the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
1077 * @cached_state:       state that we're going to cache
1078 * @mask:       the allocation mask
1079 *
1080 * This will go through and set bits for the given range.  If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087                       unsigned bits, unsigned clear_bits,
1088                       struct extent_state **cached_state, gfp_t mask)
1089{
1090        struct extent_state *state;
1091        struct extent_state *prealloc = NULL;
1092        struct rb_node *node;
1093        struct rb_node **p;
1094        struct rb_node *parent;
1095        int err = 0;
1096        u64 last_start;
1097        u64 last_end;
1098        bool first_iteration = true;
1099
1100        btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102again:
1103        if (!prealloc && gfpflags_allow_blocking(mask)) {
1104                /*
1105                 * Best effort, don't worry if extent state allocation fails
1106                 * here for the first iteration. We might have a cached state
1107                 * that matches exactly the target range, in which case no
1108                 * extent state allocations are needed. We'll only know this
1109                 * after locking the tree.
1110                 */
1111                prealloc = alloc_extent_state(mask);
1112                if (!prealloc && !first_iteration)
1113                        return -ENOMEM;
1114        }
1115
1116        spin_lock(&tree->lock);
1117        if (cached_state && *cached_state) {
1118                state = *cached_state;
1119                if (state->start <= start && state->end > start &&
1120                    extent_state_in_tree(state)) {
1121                        node = &state->rb_node;
1122                        goto hit_next;
1123                }
1124        }
1125
1126        /*
1127         * this search will find all the extents that end after
1128         * our range starts.
1129         */
1130        node = tree_search_for_insert(tree, start, &p, &parent);
1131        if (!node) {
1132                prealloc = alloc_extent_state_atomic(prealloc);
1133                if (!prealloc) {
1134                        err = -ENOMEM;
1135                        goto out;
1136                }
1137                err = insert_state(tree, prealloc, start, end,
1138                                   &p, &parent, &bits, NULL);
1139                if (err)
1140                        extent_io_tree_panic(tree, err);
1141                cache_state(prealloc, cached_state);
1142                prealloc = NULL;
1143                goto out;
1144        }
1145        state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147        last_start = state->start;
1148        last_end = state->end;
1149
1150        /*
1151         * | ---- desired range ---- |
1152         * | state |
1153         *
1154         * Just lock what we found and keep going
1155         */
1156        if (state->start == start && state->end <= end) {
1157                set_state_bits(tree, state, &bits, NULL);
1158                cache_state(state, cached_state);
1159                state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160                if (last_end == (u64)-1)
1161                        goto out;
1162                start = last_end + 1;
1163                if (start < end && state && state->start == start &&
1164                    !need_resched())
1165                        goto hit_next;
1166                goto search_again;
1167        }
1168
1169        /*
1170         *     | ---- desired range ---- |
1171         * | state |
1172         *   or
1173         * | ------------- state -------------- |
1174         *
1175         * We need to split the extent we found, and may flip bits on
1176         * second half.
1177         *
1178         * If the extent we found extends past our
1179         * range, we just split and search again.  It'll get split
1180         * again the next time though.
1181         *
1182         * If the extent we found is inside our range, we set the
1183         * desired bit on it.
1184         */
1185        if (state->start < start) {
1186                prealloc = alloc_extent_state_atomic(prealloc);
1187                if (!prealloc) {
1188                        err = -ENOMEM;
1189                        goto out;
1190                }
1191                err = split_state(tree, state, prealloc, start);
1192                if (err)
1193                        extent_io_tree_panic(tree, err);
1194                prealloc = NULL;
1195                if (err)
1196                        goto out;
1197                if (state->end <= end) {
1198                        set_state_bits(tree, state, &bits, NULL);
1199                        cache_state(state, cached_state);
1200                        state = clear_state_bit(tree, state, &clear_bits, 0,
1201                                                NULL);
1202                        if (last_end == (u64)-1)
1203                                goto out;
1204                        start = last_end + 1;
1205                        if (start < end && state && state->start == start &&
1206                            !need_resched())
1207                                goto hit_next;
1208                }
1209                goto search_again;
1210        }
1211        /*
1212         * | ---- desired range ---- |
1213         *     | state | or               | state |
1214         *
1215         * There's a hole, we need to insert something in it and
1216         * ignore the extent we found.
1217         */
1218        if (state->start > start) {
1219                u64 this_end;
1220                if (end < last_start)
1221                        this_end = end;
1222                else
1223                        this_end = last_start - 1;
1224
1225                prealloc = alloc_extent_state_atomic(prealloc);
1226                if (!prealloc) {
1227                        err = -ENOMEM;
1228                        goto out;
1229                }
1230
1231                /*
1232                 * Avoid to free 'prealloc' if it can be merged with
1233                 * the later extent.
1234                 */
1235                err = insert_state(tree, prealloc, start, this_end,
1236                                   NULL, NULL, &bits, NULL);
1237                if (err)
1238                        extent_io_tree_panic(tree, err);
1239                cache_state(prealloc, cached_state);
1240                prealloc = NULL;
1241                start = this_end + 1;
1242                goto search_again;
1243        }
1244        /*
1245         * | ---- desired range ---- |
1246         *                        | state |
1247         * We need to split the extent, and set the bit
1248         * on the first half
1249         */
1250        if (state->start <= end && state->end > end) {
1251                prealloc = alloc_extent_state_atomic(prealloc);
1252                if (!prealloc) {
1253                        err = -ENOMEM;
1254                        goto out;
1255                }
1256
1257                err = split_state(tree, state, prealloc, end + 1);
1258                if (err)
1259                        extent_io_tree_panic(tree, err);
1260
1261                set_state_bits(tree, prealloc, &bits, NULL);
1262                cache_state(prealloc, cached_state);
1263                clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264                prealloc = NULL;
1265                goto out;
1266        }
1267
1268        goto search_again;
1269
1270out:
1271        spin_unlock(&tree->lock);
1272        if (prealloc)
1273                free_extent_state(prealloc);
1274
1275        return err;
1276
1277search_again:
1278        if (start > end)
1279                goto out;
1280        spin_unlock(&tree->lock);
1281        if (gfpflags_allow_blocking(mask))
1282                cond_resched();
1283        first_iteration = false;
1284        goto again;
1285}
1286
1287/* wrappers around set/clear extent bit */
1288int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1289                           unsigned bits, gfp_t mask,
1290                           struct extent_changeset *changeset)
1291{
1292        /*
1293         * We don't support EXTENT_LOCKED yet, as current changeset will
1294         * record any bits changed, so for EXTENT_LOCKED case, it will
1295         * either fail with -EEXIST or changeset will record the whole
1296         * range.
1297         */
1298        BUG_ON(bits & EXTENT_LOCKED);
1299
1300        return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1301                                changeset);
1302}
1303
1304int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305                     unsigned bits, int wake, int delete,
1306                     struct extent_state **cached, gfp_t mask)
1307{
1308        return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309                                  cached, mask, NULL);
1310}
1311
1312int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313                             unsigned bits, gfp_t mask,
1314                             struct extent_changeset *changeset)
1315{
1316        /*
1317         * Don't support EXTENT_LOCKED case, same reason as
1318         * set_record_extent_bits().
1319         */
1320        BUG_ON(bits & EXTENT_LOCKED);
1321
1322        return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1323                                  changeset);
1324}
1325
1326/*
1327 * either insert or lock state struct between start and end use mask to tell
1328 * us if waiting is desired.
1329 */
1330int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1331                     struct extent_state **cached_state)
1332{
1333        int err;
1334        u64 failed_start;
1335
1336        while (1) {
1337                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1338                                       EXTENT_LOCKED, &failed_start,
1339                                       cached_state, GFP_NOFS, NULL);
1340                if (err == -EEXIST) {
1341                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1342                        start = failed_start;
1343                } else
1344                        break;
1345                WARN_ON(start > end);
1346        }
1347        return err;
1348}
1349
1350int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1351{
1352        int err;
1353        u64 failed_start;
1354
1355        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1356                               &failed_start, NULL, GFP_NOFS, NULL);
1357        if (err == -EEXIST) {
1358                if (failed_start > start)
1359                        clear_extent_bit(tree, start, failed_start - 1,
1360                                         EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1361                return 0;
1362        }
1363        return 1;
1364}
1365
1366void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1367{
1368        unsigned long index = start >> PAGE_CACHE_SHIFT;
1369        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1370        struct page *page;
1371
1372        while (index <= end_index) {
1373                page = find_get_page(inode->i_mapping, index);
1374                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1375                clear_page_dirty_for_io(page);
1376                page_cache_release(page);
1377                index++;
1378        }
1379}
1380
1381void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1382{
1383        unsigned long index = start >> PAGE_CACHE_SHIFT;
1384        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1385        struct page *page;
1386
1387        while (index <= end_index) {
1388                page = find_get_page(inode->i_mapping, index);
1389                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1390                __set_page_dirty_nobuffers(page);
1391                account_page_redirty(page);
1392                page_cache_release(page);
1393                index++;
1394        }
1395}
1396
1397/*
1398 * helper function to set both pages and extents in the tree writeback
1399 */
1400static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1401{
1402        unsigned long index = start >> PAGE_CACHE_SHIFT;
1403        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1404        struct page *page;
1405
1406        while (index <= end_index) {
1407                page = find_get_page(tree->mapping, index);
1408                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1409                set_page_writeback(page);
1410                page_cache_release(page);
1411                index++;
1412        }
1413}
1414
1415/* find the first state struct with 'bits' set after 'start', and
1416 * return it.  tree->lock must be held.  NULL will returned if
1417 * nothing was found after 'start'
1418 */
1419static struct extent_state *
1420find_first_extent_bit_state(struct extent_io_tree *tree,
1421                            u64 start, unsigned bits)
1422{
1423        struct rb_node *node;
1424        struct extent_state *state;
1425
1426        /*
1427         * this search will find all the extents that end after
1428         * our range starts.
1429         */
1430        node = tree_search(tree, start);
1431        if (!node)
1432                goto out;
1433
1434        while (1) {
1435                state = rb_entry(node, struct extent_state, rb_node);
1436                if (state->end >= start && (state->state & bits))
1437                        return state;
1438
1439                node = rb_next(node);
1440                if (!node)
1441                        break;
1442        }
1443out:
1444        return NULL;
1445}
1446
1447/*
1448 * find the first offset in the io tree with 'bits' set. zero is
1449 * returned if we find something, and *start_ret and *end_ret are
1450 * set to reflect the state struct that was found.
1451 *
1452 * If nothing was found, 1 is returned. If found something, return 0.
1453 */
1454int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1455                          u64 *start_ret, u64 *end_ret, unsigned bits,
1456                          struct extent_state **cached_state)
1457{
1458        struct extent_state *state;
1459        struct rb_node *n;
1460        int ret = 1;
1461
1462        spin_lock(&tree->lock);
1463        if (cached_state && *cached_state) {
1464                state = *cached_state;
1465                if (state->end == start - 1 && extent_state_in_tree(state)) {
1466                        n = rb_next(&state->rb_node);
1467                        while (n) {
1468                                state = rb_entry(n, struct extent_state,
1469                                                 rb_node);
1470                                if (state->state & bits)
1471                                        goto got_it;
1472                                n = rb_next(n);
1473                        }
1474                        free_extent_state(*cached_state);
1475                        *cached_state = NULL;
1476                        goto out;
1477                }
1478                free_extent_state(*cached_state);
1479                *cached_state = NULL;
1480        }
1481
1482        state = find_first_extent_bit_state(tree, start, bits);
1483got_it:
1484        if (state) {
1485                cache_state_if_flags(state, cached_state, 0);
1486                *start_ret = state->start;
1487                *end_ret = state->end;
1488                ret = 0;
1489        }
1490out:
1491        spin_unlock(&tree->lock);
1492        return ret;
1493}
1494
1495/*
1496 * find a contiguous range of bytes in the file marked as delalloc, not
1497 * more than 'max_bytes'.  start and end are used to return the range,
1498 *
1499 * 1 is returned if we find something, 0 if nothing was in the tree
1500 */
1501static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1502                                        u64 *start, u64 *end, u64 max_bytes,
1503                                        struct extent_state **cached_state)
1504{
1505        struct rb_node *node;
1506        struct extent_state *state;
1507        u64 cur_start = *start;
1508        u64 found = 0;
1509        u64 total_bytes = 0;
1510
1511        spin_lock(&tree->lock);
1512
1513        /*
1514         * this search will find all the extents that end after
1515         * our range starts.
1516         */
1517        node = tree_search(tree, cur_start);
1518        if (!node) {
1519                if (!found)
1520                        *end = (u64)-1;
1521                goto out;
1522        }
1523
1524        while (1) {
1525                state = rb_entry(node, struct extent_state, rb_node);
1526                if (found && (state->start != cur_start ||
1527                              (state->state & EXTENT_BOUNDARY))) {
1528                        goto out;
1529                }
1530                if (!(state->state & EXTENT_DELALLOC)) {
1531                        if (!found)
1532                                *end = state->end;
1533                        goto out;
1534                }
1535                if (!found) {
1536                        *start = state->start;
1537                        *cached_state = state;
1538                        atomic_inc(&state->refs);
1539                }
1540                found++;
1541                *end = state->end;
1542                cur_start = state->end + 1;
1543                node = rb_next(node);
1544                total_bytes += state->end - state->start + 1;
1545                if (total_bytes >= max_bytes)
1546                        break;
1547                if (!node)
1548                        break;
1549        }
1550out:
1551        spin_unlock(&tree->lock);
1552        return found;
1553}
1554
1555static noinline void __unlock_for_delalloc(struct inode *inode,
1556                                           struct page *locked_page,
1557                                           u64 start, u64 end)
1558{
1559        int ret;
1560        struct page *pages[16];
1561        unsigned long index = start >> PAGE_CACHE_SHIFT;
1562        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563        unsigned long nr_pages = end_index - index + 1;
1564        int i;
1565
1566        if (index == locked_page->index && end_index == index)
1567                return;
1568
1569        while (nr_pages > 0) {
1570                ret = find_get_pages_contig(inode->i_mapping, index,
1571                                     min_t(unsigned long, nr_pages,
1572                                     ARRAY_SIZE(pages)), pages);
1573                for (i = 0; i < ret; i++) {
1574                        if (pages[i] != locked_page)
1575                                unlock_page(pages[i]);
1576                        page_cache_release(pages[i]);
1577                }
1578                nr_pages -= ret;
1579                index += ret;
1580                cond_resched();
1581        }
1582}
1583
1584static noinline int lock_delalloc_pages(struct inode *inode,
1585                                        struct page *locked_page,
1586                                        u64 delalloc_start,
1587                                        u64 delalloc_end)
1588{
1589        unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590        unsigned long start_index = index;
1591        unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592        unsigned long pages_locked = 0;
1593        struct page *pages[16];
1594        unsigned long nrpages;
1595        int ret;
1596        int i;
1597
1598        /* the caller is responsible for locking the start index */
1599        if (index == locked_page->index && index == end_index)
1600                return 0;
1601
1602        /* skip the page at the start index */
1603        nrpages = end_index - index + 1;
1604        while (nrpages > 0) {
1605                ret = find_get_pages_contig(inode->i_mapping, index,
1606                                     min_t(unsigned long,
1607                                     nrpages, ARRAY_SIZE(pages)), pages);
1608                if (ret == 0) {
1609                        ret = -EAGAIN;
1610                        goto done;
1611                }
1612                /* now we have an array of pages, lock them all */
1613                for (i = 0; i < ret; i++) {
1614                        /*
1615                         * the caller is taking responsibility for
1616                         * locked_page
1617                         */
1618                        if (pages[i] != locked_page) {
1619                                lock_page(pages[i]);
1620                                if (!PageDirty(pages[i]) ||
1621                                    pages[i]->mapping != inode->i_mapping) {
1622                                        ret = -EAGAIN;
1623                                        unlock_page(pages[i]);
1624                                        page_cache_release(pages[i]);
1625                                        goto done;
1626                                }
1627                        }
1628                        page_cache_release(pages[i]);
1629                        pages_locked++;
1630                }
1631                nrpages -= ret;
1632                index += ret;
1633                cond_resched();
1634        }
1635        ret = 0;
1636done:
1637        if (ret && pages_locked) {
1638                __unlock_for_delalloc(inode, locked_page,
1639                              delalloc_start,
1640                              ((u64)(start_index + pages_locked - 1)) <<
1641                              PAGE_CACHE_SHIFT);
1642        }
1643        return ret;
1644}
1645
1646/*
1647 * find a contiguous range of bytes in the file marked as delalloc, not
1648 * more than 'max_bytes'.  start and end are used to return the range,
1649 *
1650 * 1 is returned if we find something, 0 if nothing was in the tree
1651 */
1652STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653                                    struct extent_io_tree *tree,
1654                                    struct page *locked_page, u64 *start,
1655                                    u64 *end, u64 max_bytes)
1656{
1657        u64 delalloc_start;
1658        u64 delalloc_end;
1659        u64 found;
1660        struct extent_state *cached_state = NULL;
1661        int ret;
1662        int loops = 0;
1663
1664again:
1665        /* step one, find a bunch of delalloc bytes starting at start */
1666        delalloc_start = *start;
1667        delalloc_end = 0;
1668        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1669                                    max_bytes, &cached_state);
1670        if (!found || delalloc_end <= *start) {
1671                *start = delalloc_start;
1672                *end = delalloc_end;
1673                free_extent_state(cached_state);
1674                return 0;
1675        }
1676
1677        /*
1678         * start comes from the offset of locked_page.  We have to lock
1679         * pages in order, so we can't process delalloc bytes before
1680         * locked_page
1681         */
1682        if (delalloc_start < *start)
1683                delalloc_start = *start;
1684
1685        /*
1686         * make sure to limit the number of pages we try to lock down
1687         */
1688        if (delalloc_end + 1 - delalloc_start > max_bytes)
1689                delalloc_end = delalloc_start + max_bytes - 1;
1690
1691        /* step two, lock all the pages after the page that has start */
1692        ret = lock_delalloc_pages(inode, locked_page,
1693                                  delalloc_start, delalloc_end);
1694        if (ret == -EAGAIN) {
1695                /* some of the pages are gone, lets avoid looping by
1696                 * shortening the size of the delalloc range we're searching
1697                 */
1698                free_extent_state(cached_state);
1699                cached_state = NULL;
1700                if (!loops) {
1701                        max_bytes = PAGE_CACHE_SIZE;
1702                        loops = 1;
1703                        goto again;
1704                } else {
1705                        found = 0;
1706                        goto out_failed;
1707                }
1708        }
1709        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1710
1711        /* step three, lock the state bits for the whole range */
1712        lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1713
1714        /* then test to make sure it is all still delalloc */
1715        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1716                             EXTENT_DELALLOC, 1, cached_state);
1717        if (!ret) {
1718                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719                                     &cached_state, GFP_NOFS);
1720                __unlock_for_delalloc(inode, locked_page,
1721                              delalloc_start, delalloc_end);
1722                cond_resched();
1723                goto again;
1724        }
1725        free_extent_state(cached_state);
1726        *start = delalloc_start;
1727        *end = delalloc_end;
1728out_failed:
1729        return found;
1730}
1731
1732void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733                                 struct page *locked_page,
1734                                 unsigned clear_bits,
1735                                 unsigned long page_ops)
1736{
1737        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1738        int ret;
1739        struct page *pages[16];
1740        unsigned long index = start >> PAGE_CACHE_SHIFT;
1741        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742        unsigned long nr_pages = end_index - index + 1;
1743        int i;
1744
1745        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1746        if (page_ops == 0)
1747                return;
1748
1749        if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1750                mapping_set_error(inode->i_mapping, -EIO);
1751
1752        while (nr_pages > 0) {
1753                ret = find_get_pages_contig(inode->i_mapping, index,
1754                                     min_t(unsigned long,
1755                                     nr_pages, ARRAY_SIZE(pages)), pages);
1756                for (i = 0; i < ret; i++) {
1757
1758                        if (page_ops & PAGE_SET_PRIVATE2)
1759                                SetPagePrivate2(pages[i]);
1760
1761                        if (pages[i] == locked_page) {
1762                                page_cache_release(pages[i]);
1763                                continue;
1764                        }
1765                        if (page_ops & PAGE_CLEAR_DIRTY)
1766                                clear_page_dirty_for_io(pages[i]);
1767                        if (page_ops & PAGE_SET_WRITEBACK)
1768                                set_page_writeback(pages[i]);
1769                        if (page_ops & PAGE_SET_ERROR)
1770                                SetPageError(pages[i]);
1771                        if (page_ops & PAGE_END_WRITEBACK)
1772                                end_page_writeback(pages[i]);
1773                        if (page_ops & PAGE_UNLOCK)
1774                                unlock_page(pages[i]);
1775                        page_cache_release(pages[i]);
1776                }
1777                nr_pages -= ret;
1778                index += ret;
1779                cond_resched();
1780        }
1781}
1782
1783/*
1784 * count the number of bytes in the tree that have a given bit(s)
1785 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1786 * cached.  The total number found is returned.
1787 */
1788u64 count_range_bits(struct extent_io_tree *tree,
1789                     u64 *start, u64 search_end, u64 max_bytes,
1790                     unsigned bits, int contig)
1791{
1792        struct rb_node *node;
1793        struct extent_state *state;
1794        u64 cur_start = *start;
1795        u64 total_bytes = 0;
1796        u64 last = 0;
1797        int found = 0;
1798
1799        if (WARN_ON(search_end <= cur_start))
1800                return 0;
1801
1802        spin_lock(&tree->lock);
1803        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1804                total_bytes = tree->dirty_bytes;
1805                goto out;
1806        }
1807        /*
1808         * this search will find all the extents that end after
1809         * our range starts.
1810         */
1811        node = tree_search(tree, cur_start);
1812        if (!node)
1813                goto out;
1814
1815        while (1) {
1816                state = rb_entry(node, struct extent_state, rb_node);
1817                if (state->start > search_end)
1818                        break;
1819                if (contig && found && state->start > last + 1)
1820                        break;
1821                if (state->end >= cur_start && (state->state & bits) == bits) {
1822                        total_bytes += min(search_end, state->end) + 1 -
1823                                       max(cur_start, state->start);
1824                        if (total_bytes >= max_bytes)
1825                                break;
1826                        if (!found) {
1827                                *start = max(cur_start, state->start);
1828                                found = 1;
1829                        }
1830                        last = state->end;
1831                } else if (contig && found) {
1832                        break;
1833                }
1834                node = rb_next(node);
1835                if (!node)
1836                        break;
1837        }
1838out:
1839        spin_unlock(&tree->lock);
1840        return total_bytes;
1841}
1842
1843/*
1844 * set the private field for a given byte offset in the tree.  If there isn't
1845 * an extent_state there already, this does nothing.
1846 */
1847static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1848{
1849        struct rb_node *node;
1850        struct extent_state *state;
1851        int ret = 0;
1852
1853        spin_lock(&tree->lock);
1854        /*
1855         * this search will find all the extents that end after
1856         * our range starts.
1857         */
1858        node = tree_search(tree, start);
1859        if (!node) {
1860                ret = -ENOENT;
1861                goto out;
1862        }
1863        state = rb_entry(node, struct extent_state, rb_node);
1864        if (state->start != start) {
1865                ret = -ENOENT;
1866                goto out;
1867        }
1868        state->private = private;
1869out:
1870        spin_unlock(&tree->lock);
1871        return ret;
1872}
1873
1874int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1875{
1876        struct rb_node *node;
1877        struct extent_state *state;
1878        int ret = 0;
1879
1880        spin_lock(&tree->lock);
1881        /*
1882         * this search will find all the extents that end after
1883         * our range starts.
1884         */
1885        node = tree_search(tree, start);
1886        if (!node) {
1887                ret = -ENOENT;
1888                goto out;
1889        }
1890        state = rb_entry(node, struct extent_state, rb_node);
1891        if (state->start != start) {
1892                ret = -ENOENT;
1893                goto out;
1894        }
1895        *private = state->private;
1896out:
1897        spin_unlock(&tree->lock);
1898        return ret;
1899}
1900
1901/*
1902 * searches a range in the state tree for a given mask.
1903 * If 'filled' == 1, this returns 1 only if every extent in the tree
1904 * has the bits set.  Otherwise, 1 is returned if any bit in the
1905 * range is found set.
1906 */
1907int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1908                   unsigned bits, int filled, struct extent_state *cached)
1909{
1910        struct extent_state *state = NULL;
1911        struct rb_node *node;
1912        int bitset = 0;
1913
1914        spin_lock(&tree->lock);
1915        if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1916            cached->end > start)
1917                node = &cached->rb_node;
1918        else
1919                node = tree_search(tree, start);
1920        while (node && start <= end) {
1921                state = rb_entry(node, struct extent_state, rb_node);
1922
1923                if (filled && state->start > start) {
1924                        bitset = 0;
1925                        break;
1926                }
1927
1928                if (state->start > end)
1929                        break;
1930
1931                if (state->state & bits) {
1932                        bitset = 1;
1933                        if (!filled)
1934                                break;
1935                } else if (filled) {
1936                        bitset = 0;
1937                        break;
1938                }
1939
1940                if (state->end == (u64)-1)
1941                        break;
1942
1943                start = state->end + 1;
1944                if (start > end)
1945                        break;
1946                node = rb_next(node);
1947                if (!node) {
1948                        if (filled)
1949                                bitset = 0;
1950                        break;
1951                }
1952        }
1953        spin_unlock(&tree->lock);
1954        return bitset;
1955}
1956
1957/*
1958 * helper function to set a given page up to date if all the
1959 * extents in the tree for that page are up to date
1960 */
1961static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1962{
1963        u64 start = page_offset(page);
1964        u64 end = start + PAGE_CACHE_SIZE - 1;
1965        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1966                SetPageUptodate(page);
1967}
1968
1969int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1970{
1971        int ret;
1972        int err = 0;
1973        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974
1975        set_state_private(failure_tree, rec->start, 0);
1976        ret = clear_extent_bits(failure_tree, rec->start,
1977                                rec->start + rec->len - 1,
1978                                EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979        if (ret)
1980                err = ret;
1981
1982        ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983                                rec->start + rec->len - 1,
1984                                EXTENT_DAMAGED, GFP_NOFS);
1985        if (ret && !err)
1986                err = ret;
1987
1988        kfree(rec);
1989        return err;
1990}
1991
1992/*
1993 * this bypasses the standard btrfs submit functions deliberately, as
1994 * the standard behavior is to write all copies in a raid setup. here we only
1995 * want to write the one bad copy. so we do the mapping for ourselves and issue
1996 * submit_bio directly.
1997 * to avoid any synchronization issues, wait for the data after writing, which
1998 * actually prevents the read that triggered the error from finishing.
1999 * currently, there can be no more than two copies of every data bit. thus,
2000 * exactly one rewrite is required.
2001 */
2002int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003                      struct page *page, unsigned int pg_offset, int mirror_num)
2004{
2005        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2006        struct bio *bio;
2007        struct btrfs_device *dev;
2008        u64 map_length = 0;
2009        u64 sector;
2010        struct btrfs_bio *bbio = NULL;
2011        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2012        int ret;
2013
2014        ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2015        BUG_ON(!mirror_num);
2016
2017        /* we can't repair anything in raid56 yet */
2018        if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019                return 0;
2020
2021        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2022        if (!bio)
2023                return -EIO;
2024        bio->bi_iter.bi_size = 0;
2025        map_length = length;
2026
2027        ret = btrfs_map_block(fs_info, WRITE, logical,
2028                              &map_length, &bbio, mirror_num);
2029        if (ret) {
2030                bio_put(bio);
2031                return -EIO;
2032        }
2033        BUG_ON(mirror_num != bbio->mirror_num);
2034        sector = bbio->stripes[mirror_num-1].physical >> 9;
2035        bio->bi_iter.bi_sector = sector;
2036        dev = bbio->stripes[mirror_num-1].dev;
2037        btrfs_put_bbio(bbio);
2038        if (!dev || !dev->bdev || !dev->writeable) {
2039                bio_put(bio);
2040                return -EIO;
2041        }
2042        bio->bi_bdev = dev->bdev;
2043        bio_add_page(bio, page, length, pg_offset);
2044
2045        if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2046                /* try to remap that extent elsewhere? */
2047                bio_put(bio);
2048                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049                return -EIO;
2050        }
2051
2052        btrfs_info_rl_in_rcu(fs_info,
2053                "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054                                  btrfs_ino(inode), start,
2055                                  rcu_str_deref(dev->name), sector);
2056        bio_put(bio);
2057        return 0;
2058}
2059
2060int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061                         int mirror_num)
2062{
2063        u64 start = eb->start;
2064        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2065        int ret = 0;
2066
2067        if (root->fs_info->sb->s_flags & MS_RDONLY)
2068                return -EROFS;
2069
2070        for (i = 0; i < num_pages; i++) {
2071                struct page *p = eb->pages[i];
2072
2073                ret = repair_io_failure(root->fs_info->btree_inode, start,
2074                                        PAGE_CACHE_SIZE, start, p,
2075                                        start - page_offset(p), mirror_num);
2076                if (ret)
2077                        break;
2078                start += PAGE_CACHE_SIZE;
2079        }
2080
2081        return ret;
2082}
2083
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089                     unsigned int pg_offset)
2090{
2091        u64 private;
2092        u64 private_failure;
2093        struct io_failure_record *failrec;
2094        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2095        struct extent_state *state;
2096        int num_copies;
2097        int ret;
2098
2099        private = 0;
2100        ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2101                                (u64)-1, 1, EXTENT_DIRTY, 0);
2102        if (!ret)
2103                return 0;
2104
2105        ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2106                                &private_failure);
2107        if (ret)
2108                return 0;
2109
2110        failrec = (struct io_failure_record *)(unsigned long) private_failure;
2111        BUG_ON(!failrec->this_mirror);
2112
2113        if (failrec->in_validation) {
2114                /* there was no real error, just free the record */
2115                pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2116                         failrec->start);
2117                goto out;
2118        }
2119        if (fs_info->sb->s_flags & MS_RDONLY)
2120                goto out;
2121
2122        spin_lock(&BTRFS_I(inode)->io_tree.lock);
2123        state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2124                                            failrec->start,
2125                                            EXTENT_LOCKED);
2126        spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2127
2128        if (state && state->start <= failrec->start &&
2129            state->end >= failrec->start + failrec->len - 1) {
2130                num_copies = btrfs_num_copies(fs_info, failrec->logical,
2131                                              failrec->len);
2132                if (num_copies > 1)  {
2133                        repair_io_failure(inode, start, failrec->len,
2134                                          failrec->logical, page,
2135                                          pg_offset, failrec->failed_mirror);
2136                }
2137        }
2138
2139out:
2140        free_io_failure(inode, failrec);
2141
2142        return 0;
2143}
2144
2145/*
2146 * Can be called when
2147 * - hold extent lock
2148 * - under ordered extent
2149 * - the inode is freeing
2150 */
2151void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2152{
2153        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2154        struct io_failure_record *failrec;
2155        struct extent_state *state, *next;
2156
2157        if (RB_EMPTY_ROOT(&failure_tree->state))
2158                return;
2159
2160        spin_lock(&failure_tree->lock);
2161        state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2162        while (state) {
2163                if (state->start > end)
2164                        break;
2165
2166                ASSERT(state->end <= end);
2167
2168                next = next_state(state);
2169
2170                failrec = (struct io_failure_record *)(unsigned long)state->private;
2171                free_extent_state(state);
2172                kfree(failrec);
2173
2174                state = next;
2175        }
2176        spin_unlock(&failure_tree->lock);
2177}
2178
2179int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2180                                struct io_failure_record **failrec_ret)
2181{
2182        struct io_failure_record *failrec;
2183        u64 private;
2184        struct extent_map *em;
2185        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2186        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2187        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2188        int ret;
2189        u64 logical;
2190
2191        ret = get_state_private(failure_tree, start, &private);
2192        if (ret) {
2193                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2194                if (!failrec)
2195                        return -ENOMEM;
2196
2197                failrec->start = start;
2198                failrec->len = end - start + 1;
2199                failrec->this_mirror = 0;
2200                failrec->bio_flags = 0;
2201                failrec->in_validation = 0;
2202
2203                read_lock(&em_tree->lock);
2204                em = lookup_extent_mapping(em_tree, start, failrec->len);
2205                if (!em) {
2206                        read_unlock(&em_tree->lock);
2207                        kfree(failrec);
2208                        return -EIO;
2209                }
2210
2211                if (em->start > start || em->start + em->len <= start) {
2212                        free_extent_map(em);
2213                        em = NULL;
2214                }
2215                read_unlock(&em_tree->lock);
2216                if (!em) {
2217                        kfree(failrec);
2218                        return -EIO;
2219                }
2220
2221                logical = start - em->start;
2222                logical = em->block_start + logical;
2223                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2224                        logical = em->block_start;
2225                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2226                        extent_set_compress_type(&failrec->bio_flags,
2227                                                 em->compress_type);
2228                }
2229
2230                pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2231                         logical, start, failrec->len);
2232
2233                failrec->logical = logical;
2234                free_extent_map(em);
2235
2236                /* set the bits in the private failure tree */
2237                ret = set_extent_bits(failure_tree, start, end,
2238                                        EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2239                if (ret >= 0)
2240                        ret = set_state_private(failure_tree, start,
2241                                                (u64)(unsigned long)failrec);
2242                /* set the bits in the inode's tree */
2243                if (ret >= 0)
2244                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2245                                                GFP_NOFS);
2246                if (ret < 0) {
2247                        kfree(failrec);
2248                        return ret;
2249                }
2250        } else {
2251                failrec = (struct io_failure_record *)(unsigned long)private;
2252                pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2253                         failrec->logical, failrec->start, failrec->len,
2254                         failrec->in_validation);
2255                /*
2256                 * when data can be on disk more than twice, add to failrec here
2257                 * (e.g. with a list for failed_mirror) to make
2258                 * clean_io_failure() clean all those errors at once.
2259                 */
2260        }
2261
2262        *failrec_ret = failrec;
2263
2264        return 0;
2265}
2266
2267int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2268                           struct io_failure_record *failrec, int failed_mirror)
2269{
2270        int num_copies;
2271
2272        num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2273                                      failrec->logical, failrec->len);
2274        if (num_copies == 1) {
2275                /*
2276                 * we only have a single copy of the data, so don't bother with
2277                 * all the retry and error correction code that follows. no
2278                 * matter what the error is, it is very likely to persist.
2279                 */
2280                pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2281                         num_copies, failrec->this_mirror, failed_mirror);
2282                return 0;
2283        }
2284
2285        /*
2286         * there are two premises:
2287         *      a) deliver good data to the caller
2288         *      b) correct the bad sectors on disk
2289         */
2290        if (failed_bio->bi_vcnt > 1) {
2291                /*
2292                 * to fulfill b), we need to know the exact failing sectors, as
2293                 * we don't want to rewrite any more than the failed ones. thus,
2294                 * we need separate read requests for the failed bio
2295                 *
2296                 * if the following BUG_ON triggers, our validation request got
2297                 * merged. we need separate requests for our algorithm to work.
2298                 */
2299                BUG_ON(failrec->in_validation);
2300                failrec->in_validation = 1;
2301                failrec->this_mirror = failed_mirror;
2302        } else {
2303                /*
2304                 * we're ready to fulfill a) and b) alongside. get a good copy
2305                 * of the failed sector and if we succeed, we have setup
2306                 * everything for repair_io_failure to do the rest for us.
2307                 */
2308                if (failrec->in_validation) {
2309                        BUG_ON(failrec->this_mirror != failed_mirror);
2310                        failrec->in_validation = 0;
2311                        failrec->this_mirror = 0;
2312                }
2313                failrec->failed_mirror = failed_mirror;
2314                failrec->this_mirror++;
2315                if (failrec->this_mirror == failed_mirror)
2316                        failrec->this_mirror++;
2317        }
2318
2319        if (failrec->this_mirror > num_copies) {
2320                pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2321                         num_copies, failrec->this_mirror, failed_mirror);
2322                return 0;
2323        }
2324
2325        return 1;
2326}
2327
2328
2329struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330                                    struct io_failure_record *failrec,
2331                                    struct page *page, int pg_offset, int icsum,
2332                                    bio_end_io_t *endio_func, void *data)
2333{
2334        struct bio *bio;
2335        struct btrfs_io_bio *btrfs_failed_bio;
2336        struct btrfs_io_bio *btrfs_bio;
2337
2338        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2339        if (!bio)
2340                return NULL;
2341
2342        bio->bi_end_io = endio_func;
2343        bio->bi_iter.bi_sector = failrec->logical >> 9;
2344        bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2345        bio->bi_iter.bi_size = 0;
2346        bio->bi_private = data;
2347
2348        btrfs_failed_bio = btrfs_io_bio(failed_bio);
2349        if (btrfs_failed_bio->csum) {
2350                struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2351                u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2352
2353                btrfs_bio = btrfs_io_bio(bio);
2354                btrfs_bio->csum = btrfs_bio->csum_inline;
2355                icsum *= csum_size;
2356                memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2357                       csum_size);
2358        }
2359
2360        bio_add_page(bio, page, failrec->len, pg_offset);
2361
2362        return bio;
2363}
2364
2365/*
2366 * this is a generic handler for readpage errors (default
2367 * readpage_io_failed_hook). if other copies exist, read those and write back
2368 * good data to the failed position. does not investigate in remapping the
2369 * failed extent elsewhere, hoping the device will be smart enough to do this as
2370 * needed
2371 */
2372
2373static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2374                              struct page *page, u64 start, u64 end,
2375                              int failed_mirror)
2376{
2377        struct io_failure_record *failrec;
2378        struct inode *inode = page->mapping->host;
2379        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2380        struct bio *bio;
2381        int read_mode;
2382        int ret;
2383
2384        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2385
2386        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387        if (ret)
2388                return ret;
2389
2390        ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2391        if (!ret) {
2392                free_io_failure(inode, failrec);
2393                return -EIO;
2394        }
2395
2396        if (failed_bio->bi_vcnt > 1)
2397                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2398        else
2399                read_mode = READ_SYNC;
2400
2401        phy_offset >>= inode->i_sb->s_blocksize_bits;
2402        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2403                                      start - page_offset(page),
2404                                      (int)phy_offset, failed_bio->bi_end_io,
2405                                      NULL);
2406        if (!bio) {
2407                free_io_failure(inode, failrec);
2408                return -EIO;
2409        }
2410
2411        pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2412                 read_mode, failrec->this_mirror, failrec->in_validation);
2413
2414        ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2415                                         failrec->this_mirror,
2416                                         failrec->bio_flags, 0);
2417        if (ret) {
2418                free_io_failure(inode, failrec);
2419                bio_put(bio);
2420        }
2421
2422        return ret;
2423}
2424
2425/* lots and lots of room for performance fixes in the end_bio funcs */
2426
2427void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2428{
2429        int uptodate = (err == 0);
2430        struct extent_io_tree *tree;
2431        int ret = 0;
2432
2433        tree = &BTRFS_I(page->mapping->host)->io_tree;
2434
2435        if (tree->ops && tree->ops->writepage_end_io_hook) {
2436                ret = tree->ops->writepage_end_io_hook(page, start,
2437                                               end, NULL, uptodate);
2438                if (ret)
2439                        uptodate = 0;
2440        }
2441
2442        if (!uptodate) {
2443                ClearPageUptodate(page);
2444                SetPageError(page);
2445                ret = ret < 0 ? ret : -EIO;
2446                mapping_set_error(page->mapping, ret);
2447        }
2448}
2449
2450/*
2451 * after a writepage IO is done, we need to:
2452 * clear the uptodate bits on error
2453 * clear the writeback bits in the extent tree for this IO
2454 * end_page_writeback if the page has no more pending IO
2455 *
2456 * Scheduling is not allowed, so the extent state tree is expected
2457 * to have one and only one object corresponding to this IO.
2458 */
2459static void end_bio_extent_writepage(struct bio *bio)
2460{
2461        struct bio_vec *bvec;
2462        u64 start;
2463        u64 end;
2464        int i;
2465
2466        bio_for_each_segment_all(bvec, bio, i) {
2467                struct page *page = bvec->bv_page;
2468
2469                /* We always issue full-page reads, but if some block
2470                 * in a page fails to read, blk_update_request() will
2471                 * advance bv_offset and adjust bv_len to compensate.
2472                 * Print a warning for nonzero offsets, and an error
2473                 * if they don't add up to a full page.  */
2474                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2475                        if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2476                                btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2477                                   "partial page write in btrfs with offset %u and length %u",
2478                                        bvec->bv_offset, bvec->bv_len);
2479                        else
2480                                btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2481                                   "incomplete page write in btrfs with offset %u and "
2482                                   "length %u",
2483                                        bvec->bv_offset, bvec->bv_len);
2484                }
2485
2486                start = page_offset(page);
2487                end = start + bvec->bv_offset + bvec->bv_len - 1;
2488
2489                end_extent_writepage(page, bio->bi_error, start, end);
2490                end_page_writeback(page);
2491        }
2492
2493        bio_put(bio);
2494}
2495
2496static void
2497endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2498                              int uptodate)
2499{
2500        struct extent_state *cached = NULL;
2501        u64 end = start + len - 1;
2502
2503        if (uptodate && tree->track_uptodate)
2504                set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2505        unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2506}
2507
2508/*
2509 * after a readpage IO is done, we need to:
2510 * clear the uptodate bits on error
2511 * set the uptodate bits if things worked
2512 * set the page up to date if all extents in the tree are uptodate
2513 * clear the lock bit in the extent tree
2514 * unlock the page if there are no other extents locked for it
2515 *
2516 * Scheduling is not allowed, so the extent state tree is expected
2517 * to have one and only one object corresponding to this IO.
2518 */
2519static void end_bio_extent_readpage(struct bio *bio)
2520{
2521        struct bio_vec *bvec;
2522        int uptodate = !bio->bi_error;
2523        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2524        struct extent_io_tree *tree;
2525        u64 offset = 0;
2526        u64 start;
2527        u64 end;
2528        u64 len;
2529        u64 extent_start = 0;
2530        u64 extent_len = 0;
2531        int mirror;
2532        int ret;
2533        int i;
2534
2535        bio_for_each_segment_all(bvec, bio, i) {
2536                struct page *page = bvec->bv_page;
2537                struct inode *inode = page->mapping->host;
2538
2539                pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2540                         "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2541                         bio->bi_error, io_bio->mirror_num);
2542                tree = &BTRFS_I(inode)->io_tree;
2543
2544                /* We always issue full-page reads, but if some block
2545                 * in a page fails to read, blk_update_request() will
2546                 * advance bv_offset and adjust bv_len to compensate.
2547                 * Print a warning for nonzero offsets, and an error
2548                 * if they don't add up to a full page.  */
2549                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2550                        if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2551                                btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2552                                   "partial page read in btrfs with offset %u and length %u",
2553                                        bvec->bv_offset, bvec->bv_len);
2554                        else
2555                                btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2556                                   "incomplete page read in btrfs with offset %u and "
2557                                   "length %u",
2558                                        bvec->bv_offset, bvec->bv_len);
2559                }
2560
2561                start = page_offset(page);
2562                end = start + bvec->bv_offset + bvec->bv_len - 1;
2563                len = bvec->bv_len;
2564
2565                mirror = io_bio->mirror_num;
2566                if (likely(uptodate && tree->ops &&
2567                           tree->ops->readpage_end_io_hook)) {
2568                        ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2569                                                              page, start, end,
2570                                                              mirror);
2571                        if (ret)
2572                                uptodate = 0;
2573                        else
2574                                clean_io_failure(inode, start, page, 0);
2575                }
2576
2577                if (likely(uptodate))
2578                        goto readpage_ok;
2579
2580                if (tree->ops && tree->ops->readpage_io_failed_hook) {
2581                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2582                        if (!ret && !bio->bi_error)
2583                                uptodate = 1;
2584                } else {
2585                        /*
2586                         * The generic bio_readpage_error handles errors the
2587                         * following way: If possible, new read requests are
2588                         * created and submitted and will end up in
2589                         * end_bio_extent_readpage as well (if we're lucky, not
2590                         * in the !uptodate case). In that case it returns 0 and
2591                         * we just go on with the next page in our bio. If it
2592                         * can't handle the error it will return -EIO and we
2593                         * remain responsible for that page.
2594                         */
2595                        ret = bio_readpage_error(bio, offset, page, start, end,
2596                                                 mirror);
2597                        if (ret == 0) {
2598                                uptodate = !bio->bi_error;
2599                                offset += len;
2600                                continue;
2601                        }
2602                }
2603readpage_ok:
2604                if (likely(uptodate)) {
2605                        loff_t i_size = i_size_read(inode);
2606                        pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2607                        unsigned off;
2608
2609                        /* Zero out the end if this page straddles i_size */
2610                        off = i_size & (PAGE_CACHE_SIZE-1);
2611                        if (page->index == end_index && off)
2612                                zero_user_segment(page, off, PAGE_CACHE_SIZE);
2613                        SetPageUptodate(page);
2614                } else {
2615                        ClearPageUptodate(page);
2616                        SetPageError(page);
2617                }
2618                unlock_page(page);
2619                offset += len;
2620
2621                if (unlikely(!uptodate)) {
2622                        if (extent_len) {
2623                                endio_readpage_release_extent(tree,
2624                                                              extent_start,
2625                                                              extent_len, 1);
2626                                extent_start = 0;
2627                                extent_len = 0;
2628                        }
2629                        endio_readpage_release_extent(tree, start,
2630                                                      end - start + 1, 0);
2631                } else if (!extent_len) {
2632                        extent_start = start;
2633                        extent_len = end + 1 - start;
2634                } else if (extent_start + extent_len == start) {
2635                        extent_len += end + 1 - start;
2636                } else {
2637                        endio_readpage_release_extent(tree, extent_start,
2638                                                      extent_len, uptodate);
2639                        extent_start = start;
2640                        extent_len = end + 1 - start;
2641                }
2642        }
2643
2644        if (extent_len)
2645                endio_readpage_release_extent(tree, extent_start, extent_len,
2646                                              uptodate);
2647        if (io_bio->end_io)
2648                io_bio->end_io(io_bio, bio->bi_error);
2649        bio_put(bio);
2650}
2651
2652/*
2653 * this allocates from the btrfs_bioset.  We're returning a bio right now
2654 * but you can call btrfs_io_bio for the appropriate container_of magic
2655 */
2656struct bio *
2657btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2658                gfp_t gfp_flags)
2659{
2660        struct btrfs_io_bio *btrfs_bio;
2661        struct bio *bio;
2662
2663        bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2664
2665        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2666                while (!bio && (nr_vecs /= 2)) {
2667                        bio = bio_alloc_bioset(gfp_flags,
2668                                               nr_vecs, btrfs_bioset);
2669                }
2670        }
2671
2672        if (bio) {
2673                bio->bi_bdev = bdev;
2674                bio->bi_iter.bi_sector = first_sector;
2675                btrfs_bio = btrfs_io_bio(bio);
2676                btrfs_bio->csum = NULL;
2677                btrfs_bio->csum_allocated = NULL;
2678                btrfs_bio->end_io = NULL;
2679        }
2680        return bio;
2681}
2682
2683struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2684{
2685        struct btrfs_io_bio *btrfs_bio;
2686        struct bio *new;
2687
2688        new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2689        if (new) {
2690                btrfs_bio = btrfs_io_bio(new);
2691                btrfs_bio->csum = NULL;
2692                btrfs_bio->csum_allocated = NULL;
2693                btrfs_bio->end_io = NULL;
2694
2695#ifdef CONFIG_BLK_CGROUP
2696                /* FIXME, put this into bio_clone_bioset */
2697                if (bio->bi_css)
2698                        bio_associate_blkcg(new, bio->bi_css);
2699#endif
2700        }
2701        return new;
2702}
2703
2704/* this also allocates from the btrfs_bioset */
2705struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2706{
2707        struct btrfs_io_bio *btrfs_bio;
2708        struct bio *bio;
2709
2710        bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2711        if (bio) {
2712                btrfs_bio = btrfs_io_bio(bio);
2713                btrfs_bio->csum = NULL;
2714                btrfs_bio->csum_allocated = NULL;
2715                btrfs_bio->end_io = NULL;
2716        }
2717        return bio;
2718}
2719
2720
2721static int __must_check submit_one_bio(int rw, struct bio *bio,
2722                                       int mirror_num, unsigned long bio_flags)
2723{
2724        int ret = 0;
2725        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2726        struct page *page = bvec->bv_page;
2727        struct extent_io_tree *tree = bio->bi_private;
2728        u64 start;
2729
2730        start = page_offset(page) + bvec->bv_offset;
2731
2732        bio->bi_private = NULL;
2733
2734        bio_get(bio);
2735
2736        if (tree->ops && tree->ops->submit_bio_hook)
2737                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2738                                           mirror_num, bio_flags, start);
2739        else
2740                btrfsic_submit_bio(rw, bio);
2741
2742        bio_put(bio);
2743        return ret;
2744}
2745
2746static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2747                     unsigned long offset, size_t size, struct bio *bio,
2748                     unsigned long bio_flags)
2749{
2750        int ret = 0;
2751        if (tree->ops && tree->ops->merge_bio_hook)
2752                ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2753                                                bio_flags);
2754        BUG_ON(ret < 0);
2755        return ret;
2756
2757}
2758
2759static int submit_extent_page(int rw, struct extent_io_tree *tree,
2760                              struct writeback_control *wbc,
2761                              struct page *page, sector_t sector,
2762                              size_t size, unsigned long offset,
2763                              struct block_device *bdev,
2764                              struct bio **bio_ret,
2765                              unsigned long max_pages,
2766                              bio_end_io_t end_io_func,
2767                              int mirror_num,
2768                              unsigned long prev_bio_flags,
2769                              unsigned long bio_flags,
2770                              bool force_bio_submit)
2771{
2772        int ret = 0;
2773        struct bio *bio;
2774        int contig = 0;
2775        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2776        size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2777
2778        if (bio_ret && *bio_ret) {
2779                bio = *bio_ret;
2780                if (old_compressed)
2781                        contig = bio->bi_iter.bi_sector == sector;
2782                else
2783                        contig = bio_end_sector(bio) == sector;
2784
2785                if (prev_bio_flags != bio_flags || !contig ||
2786                    force_bio_submit ||
2787                    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2788                    bio_add_page(bio, page, page_size, offset) < page_size) {
2789                        ret = submit_one_bio(rw, bio, mirror_num,
2790                                             prev_bio_flags);
2791                        if (ret < 0) {
2792                                *bio_ret = NULL;
2793                                return ret;
2794                        }
2795                        bio = NULL;
2796                } else {
2797                        if (wbc)
2798                                wbc_account_io(wbc, page, page_size);
2799                        return 0;
2800                }
2801        }
2802
2803        bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2804                        GFP_NOFS | __GFP_HIGH);
2805        if (!bio)
2806                return -ENOMEM;
2807
2808        bio_add_page(bio, page, page_size, offset);
2809        bio->bi_end_io = end_io_func;
2810        bio->bi_private = tree;
2811        if (wbc) {
2812                wbc_init_bio(wbc, bio);
2813                wbc_account_io(wbc, page, page_size);
2814        }
2815
2816        if (bio_ret)
2817                *bio_ret = bio;
2818        else
2819                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2820
2821        return ret;
2822}
2823
2824static void attach_extent_buffer_page(struct extent_buffer *eb,
2825                                      struct page *page)
2826{
2827        if (!PagePrivate(page)) {
2828                SetPagePrivate(page);
2829                page_cache_get(page);
2830                set_page_private(page, (unsigned long)eb);
2831        } else {
2832                WARN_ON(page->private != (unsigned long)eb);
2833        }
2834}
2835
2836void set_page_extent_mapped(struct page *page)
2837{
2838        if (!PagePrivate(page)) {
2839                SetPagePrivate(page);
2840                page_cache_get(page);
2841                set_page_private(page, EXTENT_PAGE_PRIVATE);
2842        }
2843}
2844
2845static struct extent_map *
2846__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2847                 u64 start, u64 len, get_extent_t *get_extent,
2848                 struct extent_map **em_cached)
2849{
2850        struct extent_map *em;
2851
2852        if (em_cached && *em_cached) {
2853                em = *em_cached;
2854                if (extent_map_in_tree(em) && start >= em->start &&
2855                    start < extent_map_end(em)) {
2856                        atomic_inc(&em->refs);
2857                        return em;
2858                }
2859
2860                free_extent_map(em);
2861                *em_cached = NULL;
2862        }
2863
2864        em = get_extent(inode, page, pg_offset, start, len, 0);
2865        if (em_cached && !IS_ERR_OR_NULL(em)) {
2866                BUG_ON(*em_cached);
2867                atomic_inc(&em->refs);
2868                *em_cached = em;
2869        }
2870        return em;
2871}
2872/*
2873 * basic readpage implementation.  Locked extent state structs are inserted
2874 * into the tree that are removed when the IO is done (by the end_io
2875 * handlers)
2876 * XXX JDM: This needs looking at to ensure proper page locking
2877 */
2878static int __do_readpage(struct extent_io_tree *tree,
2879                         struct page *page,
2880                         get_extent_t *get_extent,
2881                         struct extent_map **em_cached,
2882                         struct bio **bio, int mirror_num,
2883                         unsigned long *bio_flags, int rw,
2884                         u64 *prev_em_start)
2885{
2886        struct inode *inode = page->mapping->host;
2887        u64 start = page_offset(page);
2888        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2889        u64 end;
2890        u64 cur = start;
2891        u64 extent_offset;
2892        u64 last_byte = i_size_read(inode);
2893        u64 block_start;
2894        u64 cur_end;
2895        sector_t sector;
2896        struct extent_map *em;
2897        struct block_device *bdev;
2898        int ret;
2899        int nr = 0;
2900        size_t pg_offset = 0;
2901        size_t iosize;
2902        size_t disk_io_size;
2903        size_t blocksize = inode->i_sb->s_blocksize;
2904        unsigned long this_bio_flag = 0;
2905
2906        set_page_extent_mapped(page);
2907
2908        end = page_end;
2909        if (!PageUptodate(page)) {
2910                if (cleancache_get_page(page) == 0) {
2911                        BUG_ON(blocksize != PAGE_SIZE);
2912                        unlock_extent(tree, start, end);
2913                        goto out;
2914                }
2915        }
2916
2917        if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2918                char *userpage;
2919                size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2920
2921                if (zero_offset) {
2922                        iosize = PAGE_CACHE_SIZE - zero_offset;
2923                        userpage = kmap_atomic(page);
2924                        memset(userpage + zero_offset, 0, iosize);
2925                        flush_dcache_page(page);
2926                        kunmap_atomic(userpage);
2927                }
2928        }
2929        while (cur <= end) {
2930                unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2931                bool force_bio_submit = false;
2932
2933                if (cur >= last_byte) {
2934                        char *userpage;
2935                        struct extent_state *cached = NULL;
2936
2937                        iosize = PAGE_CACHE_SIZE - pg_offset;
2938                        userpage = kmap_atomic(page);
2939                        memset(userpage + pg_offset, 0, iosize);
2940                        flush_dcache_page(page);
2941                        kunmap_atomic(userpage);
2942                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2943                                            &cached, GFP_NOFS);
2944                        unlock_extent_cached(tree, cur,
2945                                             cur + iosize - 1,
2946                                             &cached, GFP_NOFS);
2947                        break;
2948                }
2949                em = __get_extent_map(inode, page, pg_offset, cur,
2950                                      end - cur + 1, get_extent, em_cached);
2951                if (IS_ERR_OR_NULL(em)) {
2952                        SetPageError(page);
2953                        unlock_extent(tree, cur, end);
2954                        break;
2955                }
2956                extent_offset = cur - em->start;
2957                BUG_ON(extent_map_end(em) <= cur);
2958                BUG_ON(end < cur);
2959
2960                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2961                        this_bio_flag |= EXTENT_BIO_COMPRESSED;
2962                        extent_set_compress_type(&this_bio_flag,
2963                                                 em->compress_type);
2964                }
2965
2966                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2967                cur_end = min(extent_map_end(em) - 1, end);
2968                iosize = ALIGN(iosize, blocksize);
2969                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2970                        disk_io_size = em->block_len;
2971                        sector = em->block_start >> 9;
2972                } else {
2973                        sector = (em->block_start + extent_offset) >> 9;
2974                        disk_io_size = iosize;
2975                }
2976                bdev = em->bdev;
2977                block_start = em->block_start;
2978                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2979                        block_start = EXTENT_MAP_HOLE;
2980
2981                /*
2982                 * If we have a file range that points to a compressed extent
2983                 * and it's followed by a consecutive file range that points to
2984                 * to the same compressed extent (possibly with a different
2985                 * offset and/or length, so it either points to the whole extent
2986                 * or only part of it), we must make sure we do not submit a
2987                 * single bio to populate the pages for the 2 ranges because
2988                 * this makes the compressed extent read zero out the pages
2989                 * belonging to the 2nd range. Imagine the following scenario:
2990                 *
2991                 *  File layout
2992                 *  [0 - 8K]                     [8K - 24K]
2993                 *    |                               |
2994                 *    |                               |
2995                 * points to extent X,         points to extent X,
2996                 * offset 4K, length of 8K     offset 0, length 16K
2997                 *
2998                 * [extent X, compressed length = 4K uncompressed length = 16K]
2999                 *
3000                 * If the bio to read the compressed extent covers both ranges,
3001                 * it will decompress extent X into the pages belonging to the
3002                 * first range and then it will stop, zeroing out the remaining
3003                 * pages that belong to the other range that points to extent X.
3004                 * So here we make sure we submit 2 bios, one for the first
3005                 * range and another one for the third range. Both will target
3006                 * the same physical extent from disk, but we can't currently
3007                 * make the compressed bio endio callback populate the pages
3008                 * for both ranges because each compressed bio is tightly
3009                 * coupled with a single extent map, and each range can have
3010                 * an extent map with a different offset value relative to the
3011                 * uncompressed data of our extent and different lengths. This
3012                 * is a corner case so we prioritize correctness over
3013                 * non-optimal behavior (submitting 2 bios for the same extent).
3014                 */
3015                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3016                    prev_em_start && *prev_em_start != (u64)-1 &&
3017                    *prev_em_start != em->orig_start)
3018                        force_bio_submit = true;
3019
3020                if (prev_em_start)
3021                        *prev_em_start = em->orig_start;
3022
3023                free_extent_map(em);
3024                em = NULL;
3025
3026                /* we've found a hole, just zero and go on */
3027                if (block_start == EXTENT_MAP_HOLE) {
3028                        char *userpage;
3029                        struct extent_state *cached = NULL;
3030
3031                        userpage = kmap_atomic(page);
3032                        memset(userpage + pg_offset, 0, iosize);
3033                        flush_dcache_page(page);
3034                        kunmap_atomic(userpage);
3035
3036                        set_extent_uptodate(tree, cur, cur + iosize - 1,
3037                                            &cached, GFP_NOFS);
3038                        unlock_extent_cached(tree, cur,
3039                                             cur + iosize - 1,
3040                                             &cached, GFP_NOFS);
3041                        cur = cur + iosize;
3042                        pg_offset += iosize;
3043                        continue;
3044                }
3045                /* the get_extent function already copied into the page */
3046                if (test_range_bit(tree, cur, cur_end,
3047                                   EXTENT_UPTODATE, 1, NULL)) {
3048                        check_page_uptodate(tree, page);
3049                        unlock_extent(tree, cur, cur + iosize - 1);
3050                        cur = cur + iosize;
3051                        pg_offset += iosize;
3052                        continue;
3053                }
3054                /* we have an inline extent but it didn't get marked up
3055                 * to date.  Error out
3056                 */
3057                if (block_start == EXTENT_MAP_INLINE) {
3058                        SetPageError(page);
3059                        unlock_extent(tree, cur, cur + iosize - 1);
3060                        cur = cur + iosize;
3061                        pg_offset += iosize;
3062                        continue;
3063                }
3064
3065                pnr -= page->index;
3066                ret = submit_extent_page(rw, tree, NULL, page,
3067                                         sector, disk_io_size, pg_offset,
3068                                         bdev, bio, pnr,
3069                                         end_bio_extent_readpage, mirror_num,
3070                                         *bio_flags,
3071                                         this_bio_flag,
3072                                         force_bio_submit);
3073                if (!ret) {
3074                        nr++;
3075                        *bio_flags = this_bio_flag;
3076                } else {
3077                        SetPageError(page);
3078                        unlock_extent(tree, cur, cur + iosize - 1);
3079                }
3080                cur = cur + iosize;
3081                pg_offset += iosize;
3082        }
3083out:
3084        if (!nr) {
3085                if (!PageError(page))
3086                        SetPageUptodate(page);
3087                unlock_page(page);
3088        }
3089        return 0;
3090}
3091
3092static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3093                                             struct page *pages[], int nr_pages,
3094                                             u64 start, u64 end,
3095                                             get_extent_t *get_extent,
3096                                             struct extent_map **em_cached,
3097                                             struct bio **bio, int mirror_num,
3098                                             unsigned long *bio_flags, int rw,
3099                                             u64 *prev_em_start)
3100{
3101        struct inode *inode;
3102        struct btrfs_ordered_extent *ordered;
3103        int index;
3104
3105        inode = pages[0]->mapping->host;
3106        while (1) {
3107                lock_extent(tree, start, end);
3108                ordered = btrfs_lookup_ordered_range(inode, start,
3109                                                     end - start + 1);
3110                if (!ordered)
3111                        break;
3112                unlock_extent(tree, start, end);
3113                btrfs_start_ordered_extent(inode, ordered, 1);
3114                btrfs_put_ordered_extent(ordered);
3115        }
3116
3117        for (index = 0; index < nr_pages; index++) {
3118                __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3119                              mirror_num, bio_flags, rw, prev_em_start);
3120                page_cache_release(pages[index]);
3121        }
3122}
3123
3124static void __extent_readpages(struct extent_io_tree *tree,
3125                               struct page *pages[],
3126                               int nr_pages, get_extent_t *get_extent,
3127                               struct extent_map **em_cached,
3128                               struct bio **bio, int mirror_num,
3129                               unsigned long *bio_flags, int rw,
3130                               u64 *prev_em_start)
3131{
3132        u64 start = 0;
3133        u64 end = 0;
3134        u64 page_start;
3135        int index;
3136        int first_index = 0;
3137
3138        for (index = 0; index < nr_pages; index++) {
3139                page_start = page_offset(pages[index]);
3140                if (!end) {
3141                        start = page_start;
3142                        end = start + PAGE_CACHE_SIZE - 1;
3143                        first_index = index;
3144                } else if (end + 1 == page_start) {
3145                        end += PAGE_CACHE_SIZE;
3146                } else {
3147                        __do_contiguous_readpages(tree, &pages[first_index],
3148                                                  index - first_index, start,
3149                                                  end, get_extent, em_cached,
3150                                                  bio, mirror_num, bio_flags,
3151                                                  rw, prev_em_start);
3152                        start = page_start;
3153                        end = start + PAGE_CACHE_SIZE - 1;
3154                        first_index = index;
3155                }
3156        }
3157
3158        if (end)
3159                __do_contiguous_readpages(tree, &pages[first_index],
3160                                          index - first_index, start,
3161                                          end, get_extent, em_cached, bio,
3162                                          mirror_num, bio_flags, rw,
3163                                          prev_em_start);
3164}
3165
3166static int __extent_read_full_page(struct extent_io_tree *tree,
3167                                   struct page *page,
3168                                   get_extent_t *get_extent,
3169                                   struct bio **bio, int mirror_num,
3170                                   unsigned long *bio_flags, int rw)
3171{
3172        struct inode *inode = page->mapping->host;
3173        struct btrfs_ordered_extent *ordered;
3174        u64 start = page_offset(page);
3175        u64 end = start + PAGE_CACHE_SIZE - 1;
3176        int ret;
3177
3178        while (1) {
3179                lock_extent(tree, start, end);
3180                ordered = btrfs_lookup_ordered_extent(inode, start);
3181                if (!ordered)
3182                        break;
3183                unlock_extent(tree, start, end);
3184                btrfs_start_ordered_extent(inode, ordered, 1);
3185                btrfs_put_ordered_extent(ordered);
3186        }
3187
3188        ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3189                            bio_flags, rw, NULL);
3190        return ret;
3191}
3192
3193int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3194                            get_extent_t *get_extent, int mirror_num)
3195{
3196        struct bio *bio = NULL;
3197        unsigned long bio_flags = 0;
3198        int ret;
3199
3200        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3201                                      &bio_flags, READ);
3202        if (bio)
3203                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3204        return ret;
3205}
3206
3207static noinline void update_nr_written(struct page *page,
3208                                      struct writeback_control *wbc,
3209                                      unsigned long nr_written)
3210{
3211        wbc->nr_to_write -= nr_written;
3212        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3213            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3214                page->mapping->writeback_index = page->index + nr_written;
3215}
3216
3217/*
3218 * helper for __extent_writepage, doing all of the delayed allocation setup.
3219 *
3220 * This returns 1 if our fill_delalloc function did all the work required
3221 * to write the page (copy into inline extent).  In this case the IO has
3222 * been started and the page is already unlocked.
3223 *
3224 * This returns 0 if all went well (page still locked)
3225 * This returns < 0 if there were errors (page still locked)
3226 */
3227static noinline_for_stack int writepage_delalloc(struct inode *inode,
3228                              struct page *page, struct writeback_control *wbc,
3229                              struct extent_page_data *epd,
3230                              u64 delalloc_start,
3231                              unsigned long *nr_written)
3232{
3233        struct extent_io_tree *tree = epd->tree;
3234        u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3235        u64 nr_delalloc;
3236        u64 delalloc_to_write = 0;
3237        u64 delalloc_end = 0;
3238        int ret;
3239        int page_started = 0;
3240
3241        if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3242                return 0;
3243
3244        while (delalloc_end < page_end) {
3245                nr_delalloc = find_lock_delalloc_range(inode, tree,
3246                                               page,
3247                                               &delalloc_start,
3248                                               &delalloc_end,
3249                                               BTRFS_MAX_EXTENT_SIZE);
3250                if (nr_delalloc == 0) {
3251                        delalloc_start = delalloc_end + 1;
3252                        continue;
3253                }
3254                ret = tree->ops->fill_delalloc(inode, page,
3255                                               delalloc_start,
3256                                               delalloc_end,
3257                                               &page_started,
3258                                               nr_written);
3259                /* File system has been set read-only */
3260                if (ret) {
3261                        SetPageError(page);
3262                        /* fill_delalloc should be return < 0 for error
3263                         * but just in case, we use > 0 here meaning the
3264                         * IO is started, so we don't want to return > 0
3265                         * unless things are going well.
3266                         */
3267                        ret = ret < 0 ? ret : -EIO;
3268                        goto done;
3269                }
3270                /*
3271                 * delalloc_end is already one less than the total
3272                 * length, so we don't subtract one from
3273                 * PAGE_CACHE_SIZE
3274                 */
3275                delalloc_to_write += (delalloc_end - delalloc_start +
3276                                      PAGE_CACHE_SIZE) >>
3277                                      PAGE_CACHE_SHIFT;
3278                delalloc_start = delalloc_end + 1;
3279        }
3280        if (wbc->nr_to_write < delalloc_to_write) {
3281                int thresh = 8192;
3282
3283                if (delalloc_to_write < thresh * 2)
3284                        thresh = delalloc_to_write;
3285                wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286                                         thresh);
3287        }
3288
3289        /* did the fill delalloc function already unlock and start
3290         * the IO?
3291         */
3292        if (page_started) {
3293                /*
3294                 * we've unlocked the page, so we can't update
3295                 * the mapping's writeback index, just update
3296                 * nr_to_write.
3297                 */
3298                wbc->nr_to_write -= *nr_written;
3299                return 1;
3300        }
3301
3302        ret = 0;
3303
3304done:
3305        return ret;
3306}
3307
3308/*
3309 * helper for __extent_writepage.  This calls the writepage start hooks,
3310 * and does the loop to map the page into extents and bios.
3311 *
3312 * We return 1 if the IO is started and the page is unlocked,
3313 * 0 if all went well (page still locked)
3314 * < 0 if there were errors (page still locked)
3315 */
3316static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317                                 struct page *page,
3318                                 struct writeback_control *wbc,
3319                                 struct extent_page_data *epd,
3320                                 loff_t i_size,
3321                                 unsigned long nr_written,
3322                                 int write_flags, int *nr_ret)
3323{
3324        struct extent_io_tree *tree = epd->tree;
3325        u64 start = page_offset(page);
3326        u64 page_end = start + PAGE_CACHE_SIZE - 1;
3327        u64 end;
3328        u64 cur = start;
3329        u64 extent_offset;
3330        u64 block_start;
3331        u64 iosize;
3332        sector_t sector;
3333        struct extent_state *cached_state = NULL;
3334        struct extent_map *em;
3335        struct block_device *bdev;
3336        size_t pg_offset = 0;
3337        size_t blocksize;
3338        int ret = 0;
3339        int nr = 0;
3340        bool compressed;
3341
3342        if (tree->ops && tree->ops->writepage_start_hook) {
3343                ret = tree->ops->writepage_start_hook(page, start,
3344                                                      page_end);
3345                if (ret) {
3346                        /* Fixup worker will requeue */
3347                        if (ret == -EBUSY)
3348                                wbc->pages_skipped++;
3349                        else
3350                                redirty_page_for_writepage(wbc, page);
3351
3352                        update_nr_written(page, wbc, nr_written);
3353                        unlock_page(page);
3354                        ret = 1;
3355                        goto done_unlocked;
3356                }
3357        }
3358
3359        /*
3360         * we don't want to touch the inode after unlocking the page,
3361         * so we update the mapping writeback index now
3362         */
3363        update_nr_written(page, wbc, nr_written + 1);
3364
3365        end = page_end;
3366        if (i_size <= start) {
3367                if (tree->ops && tree->ops->writepage_end_io_hook)
3368                        tree->ops->writepage_end_io_hook(page, start,
3369                                                         page_end, NULL, 1);
3370                goto done;
3371        }
3372
3373        blocksize = inode->i_sb->s_blocksize;
3374
3375        while (cur <= end) {
3376                u64 em_end;
3377                if (cur >= i_size) {
3378                        if (tree->ops && tree->ops->writepage_end_io_hook)
3379                                tree->ops->writepage_end_io_hook(page, cur,
3380                                                         page_end, NULL, 1);
3381                        break;
3382                }
3383                em = epd->get_extent(inode, page, pg_offset, cur,
3384                                     end - cur + 1, 1);
3385                if (IS_ERR_OR_NULL(em)) {
3386                        SetPageError(page);
3387                        ret = PTR_ERR_OR_ZERO(em);
3388                        break;
3389                }
3390
3391                extent_offset = cur - em->start;
3392                em_end = extent_map_end(em);
3393                BUG_ON(em_end <= cur);
3394                BUG_ON(end < cur);
3395                iosize = min(em_end - cur, end - cur + 1);
3396                iosize = ALIGN(iosize, blocksize);
3397                sector = (em->block_start + extent_offset) >> 9;
3398                bdev = em->bdev;
3399                block_start = em->block_start;
3400                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3401                free_extent_map(em);
3402                em = NULL;
3403
3404                /*
3405                 * compressed and inline extents are written through other
3406                 * paths in the FS
3407                 */
3408                if (compressed || block_start == EXTENT_MAP_HOLE ||
3409                    block_start == EXTENT_MAP_INLINE) {
3410                        /*
3411                         * end_io notification does not happen here for
3412                         * compressed extents
3413                         */
3414                        if (!compressed && tree->ops &&
3415                            tree->ops->writepage_end_io_hook)
3416                                tree->ops->writepage_end_io_hook(page, cur,
3417                                                         cur + iosize - 1,
3418                                                         NULL, 1);
3419                        else if (compressed) {
3420                                /* we don't want to end_page_writeback on
3421                                 * a compressed extent.  this happens
3422                                 * elsewhere
3423                                 */
3424                                nr++;
3425                        }
3426
3427                        cur += iosize;
3428                        pg_offset += iosize;
3429                        continue;
3430                }
3431
3432                if (tree->ops && tree->ops->writepage_io_hook) {
3433                        ret = tree->ops->writepage_io_hook(page, cur,
3434                                                cur + iosize - 1);
3435                } else {
3436                        ret = 0;
3437                }
3438                if (ret) {
3439                        SetPageError(page);
3440                } else {
3441                        unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3442
3443                        set_range_writeback(tree, cur, cur + iosize - 1);
3444                        if (!PageWriteback(page)) {
3445                                btrfs_err(BTRFS_I(inode)->root->fs_info,
3446                                           "page %lu not writeback, cur %llu end %llu",
3447                                       page->index, cur, end);
3448                        }
3449
3450                        ret = submit_extent_page(write_flags, tree, wbc, page,
3451                                                 sector, iosize, pg_offset,
3452                                                 bdev, &epd->bio, max_nr,
3453                                                 end_bio_extent_writepage,
3454                                                 0, 0, 0, false);
3455                        if (ret)
3456                                SetPageError(page);
3457                }
3458                cur = cur + iosize;
3459                pg_offset += iosize;
3460                nr++;
3461        }
3462done:
3463        *nr_ret = nr;
3464
3465done_unlocked:
3466
3467        /* drop our reference on any cached states */
3468        free_extent_state(cached_state);
3469        return ret;
3470}
3471
3472/*
3473 * the writepage semantics are similar to regular writepage.  extent
3474 * records are inserted to lock ranges in the tree, and as dirty areas
3475 * are found, they are marked writeback.  Then the lock bits are removed
3476 * and the end_io handler clears the writeback ranges
3477 */
3478static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3479                              void *data)
3480{
3481        struct inode *inode = page->mapping->host;
3482        struct extent_page_data *epd = data;
3483        u64 start = page_offset(page);
3484        u64 page_end = start + PAGE_CACHE_SIZE - 1;
3485        int ret;
3486        int nr = 0;
3487        size_t pg_offset = 0;
3488        loff_t i_size = i_size_read(inode);
3489        unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3490        int write_flags;
3491        unsigned long nr_written = 0;
3492
3493        if (wbc->sync_mode == WB_SYNC_ALL)
3494                write_flags = WRITE_SYNC;
3495        else
3496                write_flags = WRITE;
3497
3498        trace___extent_writepage(page, inode, wbc);
3499
3500        WARN_ON(!PageLocked(page));
3501
3502        ClearPageError(page);
3503
3504        pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3505        if (page->index > end_index ||
3506           (page->index == end_index && !pg_offset)) {
3507                page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3508                unlock_page(page);
3509                return 0;
3510        }
3511
3512        if (page->index == end_index) {
3513                char *userpage;
3514
3515                userpage = kmap_atomic(page);
3516                memset(userpage + pg_offset, 0,
3517                       PAGE_CACHE_SIZE - pg_offset);
3518                kunmap_atomic(userpage);
3519                flush_dcache_page(page);
3520        }
3521
3522        pg_offset = 0;
3523
3524        set_page_extent_mapped(page);
3525
3526        ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3527        if (ret == 1)
3528                goto done_unlocked;
3529        if (ret)
3530                goto done;
3531
3532        ret = __extent_writepage_io(inode, page, wbc, epd,
3533                                    i_size, nr_written, write_flags, &nr);
3534        if (ret == 1)
3535                goto done_unlocked;
3536
3537done:
3538        if (nr == 0) {
3539                /* make sure the mapping tag for page dirty gets cleared */
3540                set_page_writeback(page);
3541                end_page_writeback(page);
3542        }
3543        if (PageError(page)) {
3544                ret = ret < 0 ? ret : -EIO;
3545                end_extent_writepage(page, ret, start, page_end);
3546        }
3547        unlock_page(page);
3548        return ret;
3549
3550done_unlocked:
3551        return 0;
3552}
3553
3554void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3555{
3556        wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3557                       TASK_UNINTERRUPTIBLE);
3558}
3559
3560static noinline_for_stack int
3561lock_extent_buffer_for_io(struct extent_buffer *eb,
3562                          struct btrfs_fs_info *fs_info,
3563                          struct extent_page_data *epd)
3564{
3565        unsigned long i, num_pages;
3566        int flush = 0;
3567        int ret = 0;
3568
3569        if (!btrfs_try_tree_write_lock(eb)) {
3570                flush = 1;
3571                flush_write_bio(epd);
3572                btrfs_tree_lock(eb);
3573        }
3574
3575        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3576                btrfs_tree_unlock(eb);
3577                if (!epd->sync_io)
3578                        return 0;
3579                if (!flush) {
3580                        flush_write_bio(epd);
3581                        flush = 1;
3582                }
3583                while (1) {
3584                        wait_on_extent_buffer_writeback(eb);
3585                        btrfs_tree_lock(eb);
3586                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3587                                break;
3588                        btrfs_tree_unlock(eb);
3589                }
3590        }
3591
3592        /*
3593         * We need to do this to prevent races in people who check if the eb is
3594         * under IO since we can end up having no IO bits set for a short period
3595         * of time.
3596         */
3597        spin_lock(&eb->refs_lock);
3598        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3599                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3600                spin_unlock(&eb->refs_lock);
3601                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3602                __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3603                                     -eb->len,
3604                                     fs_info->dirty_metadata_batch);
3605                ret = 1;
3606        } else {
3607                spin_unlock(&eb->refs_lock);
3608        }
3609
3610        btrfs_tree_unlock(eb);
3611
3612        if (!ret)
3613                return ret;
3614
3615        num_pages = num_extent_pages(eb->start, eb->len);
3616        for (i = 0; i < num_pages; i++) {
3617                struct page *p = eb->pages[i];
3618
3619                if (!trylock_page(p)) {
3620                        if (!flush) {
3621                                flush_write_bio(epd);
3622                                flush = 1;
3623                        }
3624                        lock_page(p);
3625                }
3626        }
3627
3628        return ret;
3629}
3630
3631static void end_extent_buffer_writeback(struct extent_buffer *eb)
3632{
3633        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3634        smp_mb__after_atomic();
3635        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3636}
3637
3638static void set_btree_ioerr(struct page *page)
3639{
3640        struct extent_buffer *eb = (struct extent_buffer *)page->private;
3641        struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3642
3643        SetPageError(page);
3644        if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3645                return;
3646
3647        /*
3648         * If writeback for a btree extent that doesn't belong to a log tree
3649         * failed, increment the counter transaction->eb_write_errors.
3650         * We do this because while the transaction is running and before it's
3651         * committing (when we call filemap_fdata[write|wait]_range against
3652         * the btree inode), we might have
3653         * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3654         * returns an error or an error happens during writeback, when we're
3655         * committing the transaction we wouldn't know about it, since the pages
3656         * can be no longer dirty nor marked anymore for writeback (if a
3657         * subsequent modification to the extent buffer didn't happen before the
3658         * transaction commit), which makes filemap_fdata[write|wait]_range not
3659         * able to find the pages tagged with SetPageError at transaction
3660         * commit time. So if this happens we must abort the transaction,
3661         * otherwise we commit a super block with btree roots that point to
3662         * btree nodes/leafs whose content on disk is invalid - either garbage
3663         * or the content of some node/leaf from a past generation that got
3664         * cowed or deleted and is no longer valid.
3665         *
3666         * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3667         * not be enough - we need to distinguish between log tree extents vs
3668         * non-log tree extents, and the next filemap_fdatawait_range() call
3669         * will catch and clear such errors in the mapping - and that call might
3670         * be from a log sync and not from a transaction commit. Also, checking
3671         * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3672         * not done and would not be reliable - the eb might have been released
3673         * from memory and reading it back again means that flag would not be
3674         * set (since it's a runtime flag, not persisted on disk).
3675         *
3676         * Using the flags below in the btree inode also makes us achieve the
3677         * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3678         * writeback for all dirty pages and before filemap_fdatawait_range()
3679         * is called, the writeback for all dirty pages had already finished
3680         * with errors - because we were not using AS_EIO/AS_ENOSPC,
3681         * filemap_fdatawait_range() would return success, as it could not know
3682         * that writeback errors happened (the pages were no longer tagged for
3683         * writeback).
3684         */
3685        switch (eb->log_index) {
3686        case -1:
3687                set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3688                break;
3689        case 0:
3690                set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3691                break;
3692        case 1:
3693                set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3694                break;
3695        default:
3696                BUG(); /* unexpected, logic error */
3697        }
3698}
3699
3700static void end_bio_extent_buffer_writepage(struct bio *bio)
3701{
3702        struct bio_vec *bvec;
3703        struct extent_buffer *eb;
3704        int i, done;
3705
3706        bio_for_each_segment_all(bvec, bio, i) {
3707                struct page *page = bvec->bv_page;
3708
3709                eb = (struct extent_buffer *)page->private;
3710                BUG_ON(!eb);
3711                done = atomic_dec_and_test(&eb->io_pages);
3712
3713                if (bio->bi_error ||
3714                    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3715                        ClearPageUptodate(page);
3716                        set_btree_ioerr(page);
3717                }
3718
3719                end_page_writeback(page);
3720
3721                if (!done)
3722                        continue;
3723
3724                end_extent_buffer_writeback(eb);
3725        }
3726
3727        bio_put(bio);
3728}
3729
3730static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3731                        struct btrfs_fs_info *fs_info,
3732                        struct writeback_control *wbc,
3733                        struct extent_page_data *epd)
3734{
3735        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3736        struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3737        u64 offset = eb->start;
3738        unsigned long i, num_pages;
3739        unsigned long bio_flags = 0;
3740        int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3741        int ret = 0;
3742
3743        clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3744        num_pages = num_extent_pages(eb->start, eb->len);
3745        atomic_set(&eb->io_pages, num_pages);
3746        if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3747                bio_flags = EXTENT_BIO_TREE_LOG;
3748
3749        for (i = 0; i < num_pages; i++) {
3750                struct page *p = eb->pages[i];
3751
3752                clear_page_dirty_for_io(p);
3753                set_page_writeback(p);
3754                ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3755                                         PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3756                                         -1, end_bio_extent_buffer_writepage,
3757                                         0, epd->bio_flags, bio_flags, false);
3758                epd->bio_flags = bio_flags;
3759                if (ret) {
3760                        set_btree_ioerr(p);
3761                        end_page_writeback(p);
3762                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3763                                end_extent_buffer_writeback(eb);
3764                        ret = -EIO;
3765                        break;
3766                }
3767                offset += PAGE_CACHE_SIZE;
3768                update_nr_written(p, wbc, 1);
3769                unlock_page(p);
3770        }
3771
3772        if (unlikely(ret)) {
3773                for (; i < num_pages; i++) {
3774                        struct page *p = eb->pages[i];
3775                        clear_page_dirty_for_io(p);
3776                        unlock_page(p);
3777                }
3778        }
3779
3780        return ret;
3781}
3782
3783int btree_write_cache_pages(struct address_space *mapping,
3784                                   struct writeback_control *wbc)
3785{
3786        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3787        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3788        struct extent_buffer *eb, *prev_eb = NULL;
3789        struct extent_page_data epd = {
3790                .bio = NULL,
3791                .tree = tree,
3792                .extent_locked = 0,
3793                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3794                .bio_flags = 0,
3795        };
3796        int ret = 0;
3797        int done = 0;
3798        int nr_to_write_done = 0;
3799        struct pagevec pvec;
3800        int nr_pages;
3801        pgoff_t index;
3802        pgoff_t end;            /* Inclusive */
3803        int scanned = 0;
3804        int tag;
3805
3806        pagevec_init(&pvec, 0);
3807        if (wbc->range_cyclic) {
3808                index = mapping->writeback_index; /* Start from prev offset */
3809                end = -1;
3810        } else {
3811                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3812                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3813                scanned = 1;
3814        }
3815        if (wbc->sync_mode == WB_SYNC_ALL)
3816                tag = PAGECACHE_TAG_TOWRITE;
3817        else
3818                tag = PAGECACHE_TAG_DIRTY;
3819retry:
3820        if (wbc->sync_mode == WB_SYNC_ALL)
3821                tag_pages_for_writeback(mapping, index, end);
3822        while (!done && !nr_to_write_done && (index <= end) &&
3823               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3824                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3825                unsigned i;
3826
3827                scanned = 1;
3828                for (i = 0; i < nr_pages; i++) {
3829                        struct page *page = pvec.pages[i];
3830
3831                        if (!PagePrivate(page))
3832                                continue;
3833
3834                        if (!wbc->range_cyclic && page->index > end) {
3835                                done = 1;
3836                                break;
3837                        }
3838
3839                        spin_lock(&mapping->private_lock);
3840                        if (!PagePrivate(page)) {
3841                                spin_unlock(&mapping->private_lock);
3842                                continue;
3843                        }
3844
3845                        eb = (struct extent_buffer *)page->private;
3846
3847                        /*
3848                         * Shouldn't happen and normally this would be a BUG_ON
3849                         * but no sense in crashing the users box for something
3850                         * we can survive anyway.
3851                         */
3852                        if (WARN_ON(!eb)) {
3853                                spin_unlock(&mapping->private_lock);
3854                                continue;
3855                        }
3856
3857                        if (eb == prev_eb) {
3858                                spin_unlock(&mapping->private_lock);
3859                                continue;
3860                        }
3861
3862                        ret = atomic_inc_not_zero(&eb->refs);
3863                        spin_unlock(&mapping->private_lock);
3864                        if (!ret)
3865                                continue;
3866
3867                        prev_eb = eb;
3868                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3869                        if (!ret) {
3870                                free_extent_buffer(eb);
3871                                continue;
3872                        }
3873
3874                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3875                        if (ret) {
3876                                done = 1;
3877                                free_extent_buffer(eb);
3878                                break;
3879                        }
3880                        free_extent_buffer(eb);
3881
3882                        /*
3883                         * the filesystem may choose to bump up nr_to_write.
3884                         * We have to make sure to honor the new nr_to_write
3885                         * at any time
3886                         */
3887                        nr_to_write_done = wbc->nr_to_write <= 0;
3888                }
3889                pagevec_release(&pvec);
3890                cond_resched();
3891        }
3892        if (!scanned && !done) {
3893                /*
3894                 * We hit the last page and there is more work to be done: wrap
3895                 * back to the start of the file
3896                 */
3897                scanned = 1;
3898                index = 0;
3899                goto retry;
3900        }
3901        flush_write_bio(&epd);
3902        return ret;
3903}
3904
3905/**
3906 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3907 * @mapping: address space structure to write
3908 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3909 * @writepage: function called for each page
3910 * @data: data passed to writepage function
3911 *
3912 * If a page is already under I/O, write_cache_pages() skips it, even
3913 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3914 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3915 * and msync() need to guarantee that all the data which was dirty at the time
3916 * the call was made get new I/O started against them.  If wbc->sync_mode is
3917 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3918 * existing IO to complete.
3919 */
3920static int extent_write_cache_pages(struct extent_io_tree *tree,
3921                             struct address_space *mapping,
3922                             struct writeback_control *wbc,
3923                             writepage_t writepage, void *data,
3924                             void (*flush_fn)(void *))
3925{
3926        struct inode *inode = mapping->host;
3927        int ret = 0;
3928        int done = 0;
3929        int err = 0;
3930        int nr_to_write_done = 0;
3931        struct pagevec pvec;
3932        int nr_pages;
3933        pgoff_t index;
3934        pgoff_t end;            /* Inclusive */
3935        int scanned = 0;
3936        int tag;
3937
3938        /*
3939         * We have to hold onto the inode so that ordered extents can do their
3940         * work when the IO finishes.  The alternative to this is failing to add
3941         * an ordered extent if the igrab() fails there and that is a huge pain
3942         * to deal with, so instead just hold onto the inode throughout the
3943         * writepages operation.  If it fails here we are freeing up the inode
3944         * anyway and we'd rather not waste our time writing out stuff that is
3945         * going to be truncated anyway.
3946         */
3947        if (!igrab(inode))
3948                return 0;
3949
3950        pagevec_init(&pvec, 0);
3951        if (wbc->range_cyclic) {
3952                index = mapping->writeback_index; /* Start from prev offset */
3953                end = -1;
3954        } else {
3955                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3956                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3957                scanned = 1;
3958        }
3959        if (wbc->sync_mode == WB_SYNC_ALL)
3960                tag = PAGECACHE_TAG_TOWRITE;
3961        else
3962                tag = PAGECACHE_TAG_DIRTY;
3963retry:
3964        if (wbc->sync_mode == WB_SYNC_ALL)
3965                tag_pages_for_writeback(mapping, index, end);
3966        while (!done && !nr_to_write_done && (index <= end) &&
3967               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3968                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3969                unsigned i;
3970
3971                scanned = 1;
3972                for (i = 0; i < nr_pages; i++) {
3973                        struct page *page = pvec.pages[i];
3974
3975                        /*
3976                         * At this point we hold neither mapping->tree_lock nor
3977                         * lock on the page itself: the page may be truncated or
3978                         * invalidated (changing page->mapping to NULL), or even
3979                         * swizzled back from swapper_space to tmpfs file
3980                         * mapping
3981                         */
3982                        if (!trylock_page(page)) {
3983                                flush_fn(data);
3984                                lock_page(page);
3985                        }
3986
3987                        if (unlikely(page->mapping != mapping)) {
3988                                unlock_page(page);
3989                                continue;
3990                        }
3991
3992                        if (!wbc->range_cyclic && page->index > end) {
3993                                done = 1;
3994                                unlock_page(page);
3995                                continue;
3996                        }
3997
3998                        if (wbc->sync_mode != WB_SYNC_NONE) {
3999                                if (PageWriteback(page))
4000                                        flush_fn(data);
4001                                wait_on_page_writeback(page);
4002                        }
4003
4004                        if (PageWriteback(page) ||
4005                            !clear_page_dirty_for_io(page)) {
4006                                unlock_page(page);
4007                                continue;
4008                        }
4009
4010                        ret = (*writepage)(page, wbc, data);
4011
4012                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4013                                unlock_page(page);
4014                                ret = 0;
4015                        }
4016                        if (!err && ret < 0)
4017                                err = ret;
4018
4019                        /*
4020                         * the filesystem may choose to bump up nr_to_write.
4021                         * We have to make sure to honor the new nr_to_write
4022                         * at any time
4023                         */
4024                        nr_to_write_done = wbc->nr_to_write <= 0;
4025                }
4026                pagevec_release(&pvec);
4027                cond_resched();
4028        }
4029        if (!scanned && !done && !err) {
4030                /*
4031                 * We hit the last page and there is more work to be done: wrap
4032                 * back to the start of the file
4033                 */
4034                scanned = 1;
4035                index = 0;
4036                goto retry;
4037        }
4038        btrfs_add_delayed_iput(inode);
4039        return err;
4040}
4041
4042static void flush_epd_write_bio(struct extent_page_data *epd)
4043{
4044        if (epd->bio) {
4045                int rw = WRITE;
4046                int ret;
4047
4048                if (epd->sync_io)
4049                        rw = WRITE_SYNC;
4050
4051                ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4052                BUG_ON(ret < 0); /* -ENOMEM */
4053                epd->bio = NULL;
4054        }
4055}
4056
4057static noinline void flush_write_bio(void *data)
4058{
4059        struct extent_page_data *epd = data;
4060        flush_epd_write_bio(epd);
4061}
4062
4063int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4064                          get_extent_t *get_extent,
4065                          struct writeback_control *wbc)
4066{
4067        int ret;
4068        struct extent_page_data epd = {
4069                .bio = NULL,
4070                .tree = tree,
4071                .get_extent = get_extent,
4072                .extent_locked = 0,
4073                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4074                .bio_flags = 0,
4075        };
4076
4077        ret = __extent_writepage(page, wbc, &epd);
4078
4079        flush_epd_write_bio(&epd);
4080        return ret;
4081}
4082
4083int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4084                              u64 start, u64 end, get_extent_t *get_extent,
4085                              int mode)
4086{
4087        int ret = 0;
4088        struct address_space *mapping = inode->i_mapping;
4089        struct page *page;
4090        unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4091                PAGE_CACHE_SHIFT;
4092
4093        struct extent_page_data epd = {
4094                .bio = NULL,
4095                .tree = tree,
4096                .get_extent = get_extent,
4097                .extent_locked = 1,
4098                .sync_io = mode == WB_SYNC_ALL,
4099                .bio_flags = 0,
4100        };
4101        struct writeback_control wbc_writepages = {
4102                .sync_mode      = mode,
4103                .nr_to_write    = nr_pages * 2,
4104                .range_start    = start,
4105                .range_end      = end + 1,
4106        };
4107
4108        while (start <= end) {
4109                page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4110                if (clear_page_dirty_for_io(page))
4111                        ret = __extent_writepage(page, &wbc_writepages, &epd);
4112                else {
4113                        if (tree->ops && tree->ops->writepage_end_io_hook)
4114                                tree->ops->writepage_end_io_hook(page, start,
4115                                                 start + PAGE_CACHE_SIZE - 1,
4116                                                 NULL, 1);
4117                        unlock_page(page);
4118                }
4119                page_cache_release(page);
4120                start += PAGE_CACHE_SIZE;
4121        }
4122
4123        flush_epd_write_bio(&epd);
4124        return ret;
4125}
4126
4127int extent_writepages(struct extent_io_tree *tree,
4128                      struct address_space *mapping,
4129                      get_extent_t *get_extent,
4130                      struct writeback_control *wbc)
4131{
4132        int ret = 0;
4133        struct extent_page_data epd = {
4134                .bio = NULL,
4135                .tree = tree,
4136                .get_extent = get_extent,
4137                .extent_locked = 0,
4138                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4139                .bio_flags = 0,
4140        };
4141
4142        ret = extent_write_cache_pages(tree, mapping, wbc,
4143                                       __extent_writepage, &epd,
4144                                       flush_write_bio);
4145        flush_epd_write_bio(&epd);
4146        return ret;
4147}
4148
4149int extent_readpages(struct extent_io_tree *tree,
4150                     struct address_space *mapping,
4151                     struct list_head *pages, unsigned nr_pages,
4152                     get_extent_t get_extent)
4153{
4154        struct bio *bio = NULL;
4155        unsigned page_idx;
4156        unsigned long bio_flags = 0;
4157        struct page *pagepool[16];
4158        struct page *page;
4159        struct extent_map *em_cached = NULL;
4160        int nr = 0;
4161        u64 prev_em_start = (u64)-1;
4162
4163        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4164                page = list_entry(pages->prev, struct page, lru);
4165
4166                prefetchw(&page->flags);
4167                list_del(&page->lru);
4168                if (add_to_page_cache_lru(page, mapping,
4169                                        page->index, GFP_NOFS)) {
4170                        page_cache_release(page);
4171                        continue;
4172                }
4173
4174                pagepool[nr++] = page;
4175                if (nr < ARRAY_SIZE(pagepool))
4176                        continue;
4177                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4178                                   &bio, 0, &bio_flags, READ, &prev_em_start);
4179                nr = 0;
4180        }
4181        if (nr)
4182                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4183                                   &bio, 0, &bio_flags, READ, &prev_em_start);
4184
4185        if (em_cached)
4186                free_extent_map(em_cached);
4187
4188        BUG_ON(!list_empty(pages));
4189        if (bio)
4190                return submit_one_bio(READ, bio, 0, bio_flags);
4191        return 0;
4192}
4193
4194/*
4195 * basic invalidatepage code, this waits on any locked or writeback
4196 * ranges corresponding to the page, and then deletes any extent state
4197 * records from the tree
4198 */
4199int extent_invalidatepage(struct extent_io_tree *tree,
4200                          struct page *page, unsigned long offset)
4201{
4202        struct extent_state *cached_state = NULL;
4203        u64 start = page_offset(page);
4204        u64 end = start + PAGE_CACHE_SIZE - 1;
4205        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4206
4207        start += ALIGN(offset, blocksize);
4208        if (start > end)
4209                return 0;
4210
4211        lock_extent_bits(tree, start, end, &cached_state);
4212        wait_on_page_writeback(page);
4213        clear_extent_bit(tree, start, end,
4214                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4215                         EXTENT_DO_ACCOUNTING,
4216                         1, 1, &cached_state, GFP_NOFS);
4217        return 0;
4218}
4219
4220/*
4221 * a helper for releasepage, this tests for areas of the page that
4222 * are locked or under IO and drops the related state bits if it is safe
4223 * to drop the page.
4224 */
4225static int try_release_extent_state(struct extent_map_tree *map,
4226                                    struct extent_io_tree *tree,
4227                                    struct page *page, gfp_t mask)
4228{
4229        u64 start = page_offset(page);
4230        u64 end = start + PAGE_CACHE_SIZE - 1;
4231        int ret = 1;
4232
4233        if (test_range_bit(tree, start, end,
4234                           EXTENT_IOBITS, 0, NULL))
4235                ret = 0;
4236        else {
4237                if ((mask & GFP_NOFS) == GFP_NOFS)
4238                        mask = GFP_NOFS;
4239                /*
4240                 * at this point we can safely clear everything except the
4241                 * locked bit and the nodatasum bit
4242                 */
4243                ret = clear_extent_bit(tree, start, end,
4244                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4245                                 0, 0, NULL, mask);
4246
4247                /* if clear_extent_bit failed for enomem reasons,
4248                 * we can't allow the release to continue.
4249                 */
4250                if (ret < 0)
4251                        ret = 0;
4252                else
4253                        ret = 1;
4254        }
4255        return ret;
4256}
4257
4258/*
4259 * a helper for releasepage.  As long as there are no locked extents
4260 * in the range corresponding to the page, both state records and extent
4261 * map records are removed
4262 */
4263int try_release_extent_mapping(struct extent_map_tree *map,
4264                               struct extent_io_tree *tree, struct page *page,
4265                               gfp_t mask)
4266{
4267        struct extent_map *em;
4268        u64 start = page_offset(page);
4269        u64 end = start + PAGE_CACHE_SIZE - 1;
4270
4271        if (gfpflags_allow_blocking(mask) &&
4272            page->mapping->host->i_size > SZ_16M) {
4273                u64 len;
4274                while (start <= end) {
4275                        len = end - start + 1;
4276                        write_lock(&map->lock);
4277                        em = lookup_extent_mapping(map, start, len);
4278                        if (!em) {
4279                                write_unlock(&map->lock);
4280                                break;
4281                        }
4282                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4283                            em->start != start) {
4284                                write_unlock(&map->lock);
4285                                free_extent_map(em);
4286                                break;
4287                        }
4288                        if (!test_range_bit(tree, em->start,
4289                                            extent_map_end(em) - 1,
4290                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
4291                                            0, NULL)) {
4292                                remove_extent_mapping(map, em);
4293                                /* once for the rb tree */
4294                                free_extent_map(em);
4295                        }
4296                        start = extent_map_end(em);
4297                        write_unlock(&map->lock);
4298
4299                        /* once for us */
4300                        free_extent_map(em);
4301                }
4302        }
4303        return try_release_extent_state(map, tree, page, mask);
4304}
4305
4306/*
4307 * helper function for fiemap, which doesn't want to see any holes.
4308 * This maps until we find something past 'last'
4309 */
4310static struct extent_map *get_extent_skip_holes(struct inode *inode,
4311                                                u64 offset,
4312                                                u64 last,
4313                                                get_extent_t *get_extent)
4314{
4315        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4316        struct extent_map *em;
4317        u64 len;
4318
4319        if (offset >= last)
4320                return NULL;
4321
4322        while (1) {
4323                len = last - offset;
4324                if (len == 0)
4325                        break;
4326                len = ALIGN(len, sectorsize);
4327                em = get_extent(inode, NULL, 0, offset, len, 0);
4328                if (IS_ERR_OR_NULL(em))
4329                        return em;
4330
4331                /* if this isn't a hole return it */
4332                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4333                    em->block_start != EXTENT_MAP_HOLE) {
4334                        return em;
4335                }
4336
4337                /* this is a hole, advance to the next extent */
4338                offset = extent_map_end(em);
4339                free_extent_map(em);
4340                if (offset >= last)
4341                        break;
4342        }
4343        return NULL;
4344}
4345
4346int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4347                __u64 start, __u64 len, get_extent_t *get_extent)
4348{
4349        int ret = 0;
4350        u64 off = start;
4351        u64 max = start + len;
4352        u32 flags = 0;
4353        u32 found_type;
4354        u64 last;
4355        u64 last_for_get_extent = 0;
4356        u64 disko = 0;
4357        u64 isize = i_size_read(inode);
4358        struct btrfs_key found_key;
4359        struct extent_map *em = NULL;
4360        struct extent_state *cached_state = NULL;
4361        struct btrfs_path *path;
4362        struct btrfs_root *root = BTRFS_I(inode)->root;
4363        int end = 0;
4364        u64 em_start = 0;
4365        u64 em_len = 0;
4366        u64 em_end = 0;
4367
4368        if (len == 0)
4369                return -EINVAL;
4370
4371        path = btrfs_alloc_path();
4372        if (!path)
4373                return -ENOMEM;
4374        path->leave_spinning = 1;
4375
4376        start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4377        len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4378
4379        /*
4380         * lookup the last file extent.  We're not using i_size here
4381         * because there might be preallocation past i_size
4382         */
4383        ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4384                                       0);
4385        if (ret < 0) {
4386                btrfs_free_path(path);
4387                return ret;
4388        }
4389        WARN_ON(!ret);
4390        path->slots[0]--;
4391        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4392        found_type = found_key.type;
4393
4394        /* No extents, but there might be delalloc bits */
4395        if (found_key.objectid != btrfs_ino(inode) ||
4396            found_type != BTRFS_EXTENT_DATA_KEY) {
4397                /* have to trust i_size as the end */
4398                last = (u64)-1;
4399                last_for_get_extent = isize;
4400        } else {
4401                /*
4402                 * remember the start of the last extent.  There are a
4403                 * bunch of different factors that go into the length of the
4404                 * extent, so its much less complex to remember where it started
4405                 */
4406                last = found_key.offset;
4407                last_for_get_extent = last + 1;
4408        }
4409        btrfs_release_path(path);
4410
4411        /*
4412         * we might have some extents allocated but more delalloc past those
4413         * extents.  so, we trust isize unless the start of the last extent is
4414         * beyond isize
4415         */
4416        if (last < isize) {
4417                last = (u64)-1;
4418                last_for_get_extent = isize;
4419        }
4420
4421        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4422                         &cached_state);
4423
4424        em = get_extent_skip_holes(inode, start, last_for_get_extent,
4425                                   get_extent);
4426        if (!em)
4427                goto out;
4428        if (IS_ERR(em)) {
4429                ret = PTR_ERR(em);
4430                goto out;
4431        }
4432
4433        while (!end) {
4434                u64 offset_in_extent = 0;
4435
4436                /* break if the extent we found is outside the range */
4437                if (em->start >= max || extent_map_end(em) < off)
4438                        break;
4439
4440                /*
4441                 * get_extent may return an extent that starts before our
4442                 * requested range.  We have to make sure the ranges
4443                 * we return to fiemap always move forward and don't
4444                 * overlap, so adjust the offsets here
4445                 */
4446                em_start = max(em->start, off);
4447
4448                /*
4449                 * record the offset from the start of the extent
4450                 * for adjusting the disk offset below.  Only do this if the
4451                 * extent isn't compressed since our in ram offset may be past
4452                 * what we have actually allocated on disk.
4453                 */
4454                if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4455                        offset_in_extent = em_start - em->start;
4456                em_end = extent_map_end(em);
4457                em_len = em_end - em_start;
4458                disko = 0;
4459                flags = 0;
4460
4461                /*
4462                 * bump off for our next call to get_extent
4463                 */
4464                off = extent_map_end(em);
4465                if (off >= max)
4466                        end = 1;
4467
4468                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4469                        end = 1;
4470                        flags |= FIEMAP_EXTENT_LAST;
4471                } else if (em->block_start == EXTENT_MAP_INLINE) {
4472                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
4473                                  FIEMAP_EXTENT_NOT_ALIGNED);
4474                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4475                        flags |= (FIEMAP_EXTENT_DELALLOC |
4476                                  FIEMAP_EXTENT_UNKNOWN);
4477                } else if (fieinfo->fi_extents_max) {
4478                        u64 bytenr = em->block_start -
4479                                (em->start - em->orig_start);
4480
4481                        disko = em->block_start + offset_in_extent;
4482
4483                        /*
4484                         * As btrfs supports shared space, this information
4485                         * can be exported to userspace tools via
4486                         * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4487                         * then we're just getting a count and we can skip the
4488                         * lookup stuff.
4489                         */
4490                        ret = btrfs_check_shared(NULL, root->fs_info,
4491                                                 root->objectid,
4492                                                 btrfs_ino(inode), bytenr);
4493                        if (ret < 0)
4494                                goto out_free;
4495                        if (ret)
4496                                flags |= FIEMAP_EXTENT_SHARED;
4497                        ret = 0;
4498                }
4499                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4500                        flags |= FIEMAP_EXTENT_ENCODED;
4501                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4502                        flags |= FIEMAP_EXTENT_UNWRITTEN;
4503
4504                free_extent_map(em);
4505                em = NULL;
4506                if ((em_start >= last) || em_len == (u64)-1 ||
4507                   (last == (u64)-1 && isize <= em_end)) {
4508                        flags |= FIEMAP_EXTENT_LAST;
4509                        end = 1;
4510                }
4511
4512                /* now scan forward to see if this is really the last extent. */
4513                em = get_extent_skip_holes(inode, off, last_for_get_extent,
4514                                           get_extent);
4515                if (IS_ERR(em)) {
4516                        ret = PTR_ERR(em);
4517                        goto out;
4518                }
4519                if (!em) {
4520                        flags |= FIEMAP_EXTENT_LAST;
4521                        end = 1;
4522                }
4523                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4524                                              em_len, flags);
4525                if (ret) {
4526                        if (ret == 1)
4527                                ret = 0;
4528                        goto out_free;
4529                }
4530        }
4531out_free:
4532        free_extent_map(em);
4533out:
4534        btrfs_free_path(path);
4535        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4536                             &cached_state, GFP_NOFS);
4537        return ret;
4538}
4539
4540static void __free_extent_buffer(struct extent_buffer *eb)
4541{
4542        btrfs_leak_debug_del(&eb->leak_list);
4543        kmem_cache_free(extent_buffer_cache, eb);
4544}
4545
4546int extent_buffer_under_io(struct extent_buffer *eb)
4547{
4548        return (atomic_read(&eb->io_pages) ||
4549                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4550                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4551}
4552
4553/*
4554 * Helper for releasing extent buffer page.
4555 */
4556static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4557{
4558        unsigned long index;
4559        struct page *page;
4560        int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4561
4562        BUG_ON(extent_buffer_under_io(eb));
4563
4564        index = num_extent_pages(eb->start, eb->len);
4565        if (index == 0)
4566                return;
4567
4568        do {
4569                index--;
4570                page = eb->pages[index];
4571                if (!page)
4572                        continue;
4573                if (mapped)
4574                        spin_lock(&page->mapping->private_lock);
4575                /*
4576                 * We do this since we'll remove the pages after we've
4577                 * removed the eb from the radix tree, so we could race
4578                 * and have this page now attached to the new eb.  So
4579                 * only clear page_private if it's still connected to
4580                 * this eb.
4581                 */
4582                if (PagePrivate(page) &&
4583                    page->private == (unsigned long)eb) {
4584                        BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4585                        BUG_ON(PageDirty(page));
4586                        BUG_ON(PageWriteback(page));
4587                        /*
4588                         * We need to make sure we haven't be attached
4589                         * to a new eb.
4590                         */
4591                        ClearPagePrivate(page);
4592                        set_page_private(page, 0);
4593                        /* One for the page private */
4594                        page_cache_release(page);
4595                }
4596
4597                if (mapped)
4598                        spin_unlock(&page->mapping->private_lock);
4599
4600                /* One for when we alloced the page */
4601                page_cache_release(page);
4602        } while (index != 0);
4603}
4604
4605/*
4606 * Helper for releasing the extent buffer.
4607 */
4608static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4609{
4610        btrfs_release_extent_buffer_page(eb);
4611        __free_extent_buffer(eb);
4612}
4613
4614static struct extent_buffer *
4615__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4616                      unsigned long len)
4617{
4618        struct extent_buffer *eb = NULL;
4619
4620        eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4621        eb->start = start;
4622        eb->len = len;
4623        eb->fs_info = fs_info;
4624        eb->bflags = 0;
4625        rwlock_init(&eb->lock);
4626        atomic_set(&eb->write_locks, 0);
4627        atomic_set(&eb->read_locks, 0);
4628        atomic_set(&eb->blocking_readers, 0);
4629        atomic_set(&eb->blocking_writers, 0);
4630        atomic_set(&eb->spinning_readers, 0);
4631        atomic_set(&eb->spinning_writers, 0);
4632        eb->lock_nested = 0;
4633        init_waitqueue_head(&eb->write_lock_wq);
4634        init_waitqueue_head(&eb->read_lock_wq);
4635
4636        btrfs_leak_debug_add(&eb->leak_list, &buffers);
4637
4638        spin_lock_init(&eb->refs_lock);
4639        atomic_set(&eb->refs, 1);
4640        atomic_set(&eb->io_pages, 0);
4641
4642        /*
4643         * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4644         */
4645        BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4646                > MAX_INLINE_EXTENT_BUFFER_SIZE);
4647        BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4648
4649        return eb;
4650}
4651
4652struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4653{
4654        unsigned long i;
4655        struct page *p;
4656        struct extent_buffer *new;
4657        unsigned long num_pages = num_extent_pages(src->start, src->len);
4658
4659        new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4660        if (new == NULL)
4661                return NULL;
4662
4663        for (i = 0; i < num_pages; i++) {
4664                p = alloc_page(GFP_NOFS);
4665                if (!p) {
4666                        btrfs_release_extent_buffer(new);
4667                        return NULL;
4668                }
4669                attach_extent_buffer_page(new, p);
4670                WARN_ON(PageDirty(p));
4671                SetPageUptodate(p);
4672                new->pages[i] = p;
4673        }
4674
4675        copy_extent_buffer(new, src, 0, 0, src->len);
4676        set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4677        set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4678
4679        return new;
4680}
4681
4682struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4683                                                  u64 start, unsigned long len)
4684{
4685        struct extent_buffer *eb;
4686        unsigned long num_pages;
4687        unsigned long i;
4688
4689        num_pages = num_extent_pages(start, len);
4690
4691        eb = __alloc_extent_buffer(fs_info, start, len);
4692        if (!eb)
4693                return NULL;
4694
4695        for (i = 0; i < num_pages; i++) {
4696                eb->pages[i] = alloc_page(GFP_NOFS);
4697                if (!eb->pages[i])
4698                        goto err;
4699        }
4700        set_extent_buffer_uptodate(eb);
4701        btrfs_set_header_nritems(eb, 0);
4702        set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4703
4704        return eb;
4705err:
4706        for (; i > 0; i--)
4707                __free_page(eb->pages[i - 1]);
4708        __free_extent_buffer(eb);
4709        return NULL;
4710}
4711
4712struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4713                                                u64 start)
4714{
4715        unsigned long len;
4716
4717        if (!fs_info) {
4718                /*
4719                 * Called only from tests that don't always have a fs_info
4720                 * available, but we know that nodesize is 4096
4721                 */
4722                len = 4096;
4723        } else {
4724                len = fs_info->tree_root->nodesize;
4725        }
4726
4727        return __alloc_dummy_extent_buffer(fs_info, start, len);
4728}
4729
4730static void check_buffer_tree_ref(struct extent_buffer *eb)
4731{
4732        int refs;
4733        /* the ref bit is tricky.  We have to make sure it is set
4734         * if we have the buffer dirty.   Otherwise the
4735         * code to free a buffer can end up dropping a dirty
4736         * page
4737         *
4738         * Once the ref bit is set, it won't go away while the
4739         * buffer is dirty or in writeback, and it also won't
4740         * go away while we have the reference count on the
4741         * eb bumped.
4742         *
4743         * We can't just set the ref bit without bumping the
4744         * ref on the eb because free_extent_buffer might
4745         * see the ref bit and try to clear it.  If this happens
4746         * free_extent_buffer might end up dropping our original
4747         * ref by mistake and freeing the page before we are able
4748         * to add one more ref.
4749         *
4750         * So bump the ref count first, then set the bit.  If someone
4751         * beat us to it, drop the ref we added.
4752         */
4753        refs = atomic_read(&eb->refs);
4754        if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4755                return;
4756
4757        spin_lock(&eb->refs_lock);
4758        if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4759                atomic_inc(&eb->refs);
4760        spin_unlock(&eb->refs_lock);
4761}
4762
4763static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4764                struct page *accessed)
4765{
4766        unsigned long num_pages, i;
4767
4768        check_buffer_tree_ref(eb);
4769
4770        num_pages = num_extent_pages(eb->start, eb->len);
4771        for (i = 0; i < num_pages; i++) {
4772                struct page *p = eb->pages[i];
4773
4774                if (p != accessed)
4775                        mark_page_accessed(p);
4776        }
4777}
4778
4779struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4780                                         u64 start)
4781{
4782        struct extent_buffer *eb;
4783
4784        rcu_read_lock();
4785        eb = radix_tree_lookup(&fs_info->buffer_radix,
4786                               start >> PAGE_CACHE_SHIFT);
4787        if (eb && atomic_inc_not_zero(&eb->refs)) {
4788                rcu_read_unlock();
4789                /*
4790                 * Lock our eb's refs_lock to avoid races with
4791                 * free_extent_buffer. When we get our eb it might be flagged
4792                 * with EXTENT_BUFFER_STALE and another task running
4793                 * free_extent_buffer might have seen that flag set,
4794                 * eb->refs == 2, that the buffer isn't under IO (dirty and
4795                 * writeback flags not set) and it's still in the tree (flag
4796                 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4797                 * of decrementing the extent buffer's reference count twice.
4798                 * So here we could race and increment the eb's reference count,
4799                 * clear its stale flag, mark it as dirty and drop our reference
4800                 * before the other task finishes executing free_extent_buffer,
4801                 * which would later result in an attempt to free an extent
4802                 * buffer that is dirty.
4803                 */
4804                if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4805                        spin_lock(&eb->refs_lock);
4806                        spin_unlock(&eb->refs_lock);
4807                }
4808                mark_extent_buffer_accessed(eb, NULL);
4809                return eb;
4810        }
4811        rcu_read_unlock();
4812
4813        return NULL;
4814}
4815
4816#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4817struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4818                                               u64 start)
4819{
4820        struct extent_buffer *eb, *exists = NULL;
4821        int ret;
4822
4823        eb = find_extent_buffer(fs_info, start);
4824        if (eb)
4825                return eb;
4826        eb = alloc_dummy_extent_buffer(fs_info, start);
4827        if (!eb)
4828                return NULL;
4829        eb->fs_info = fs_info;
4830again:
4831        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4832        if (ret)
4833                goto free_eb;
4834        spin_lock(&fs_info->buffer_lock);
4835        ret = radix_tree_insert(&fs_info->buffer_radix,
4836                                start >> PAGE_CACHE_SHIFT, eb);
4837        spin_unlock(&fs_info->buffer_lock);
4838        radix_tree_preload_end();
4839        if (ret == -EEXIST) {
4840                exists = find_extent_buffer(fs_info, start);
4841                if (exists)
4842                        goto free_eb;
4843                else
4844                        goto again;
4845        }
4846        check_buffer_tree_ref(eb);
4847        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4848
4849        /*
4850         * We will free dummy extent buffer's if they come into
4851         * free_extent_buffer with a ref count of 2, but if we are using this we
4852         * want the buffers to stay in memory until we're done with them, so
4853         * bump the ref count again.
4854         */
4855        atomic_inc(&eb->refs);
4856        return eb;
4857free_eb:
4858        btrfs_release_extent_buffer(eb);
4859        return exists;
4860}
4861#endif
4862
4863struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4864                                          u64 start)
4865{
4866        unsigned long len = fs_info->tree_root->nodesize;
4867        unsigned long num_pages = num_extent_pages(start, len);
4868        unsigned long i;
4869        unsigned long index = start >> PAGE_CACHE_SHIFT;
4870        struct extent_buffer *eb;
4871        struct extent_buffer *exists = NULL;
4872        struct page *p;
4873        struct address_space *mapping = fs_info->btree_inode->i_mapping;
4874        int uptodate = 1;
4875        int ret;
4876
4877        eb = find_extent_buffer(fs_info, start);
4878        if (eb)
4879                return eb;
4880
4881        eb = __alloc_extent_buffer(fs_info, start, len);
4882        if (!eb)
4883                return NULL;
4884
4885        for (i = 0; i < num_pages; i++, index++) {
4886                p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4887                if (!p)
4888                        goto free_eb;
4889
4890                spin_lock(&mapping->private_lock);
4891                if (PagePrivate(p)) {
4892                        /*
4893                         * We could have already allocated an eb for this page
4894                         * and attached one so lets see if we can get a ref on
4895                         * the existing eb, and if we can we know it's good and
4896                         * we can just return that one, else we know we can just
4897                         * overwrite page->private.
4898                         */
4899                        exists = (struct extent_buffer *)p->private;
4900                        if (atomic_inc_not_zero(&exists->refs)) {
4901                                spin_unlock(&mapping->private_lock);
4902                                unlock_page(p);
4903                                page_cache_release(p);
4904                                mark_extent_buffer_accessed(exists, p);
4905                                goto free_eb;
4906                        }
4907                        exists = NULL;
4908
4909                        /*
4910                         * Do this so attach doesn't complain and we need to
4911                         * drop the ref the old guy had.
4912                         */
4913                        ClearPagePrivate(p);
4914                        WARN_ON(PageDirty(p));
4915                        page_cache_release(p);
4916                }
4917                attach_extent_buffer_page(eb, p);
4918                spin_unlock(&mapping->private_lock);
4919                WARN_ON(PageDirty(p));
4920                eb->pages[i] = p;
4921                if (!PageUptodate(p))
4922                        uptodate = 0;
4923
4924                /*
4925                 * see below about how we avoid a nasty race with release page
4926                 * and why we unlock later
4927                 */
4928        }
4929        if (uptodate)
4930                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4931again:
4932        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4933        if (ret)
4934                goto free_eb;
4935
4936        spin_lock(&fs_info->buffer_lock);
4937        ret = radix_tree_insert(&fs_info->buffer_radix,
4938                                start >> PAGE_CACHE_SHIFT, eb);
4939        spin_unlock(&fs_info->buffer_lock);
4940        radix_tree_preload_end();
4941        if (ret == -EEXIST) {
4942                exists = find_extent_buffer(fs_info, start);
4943                if (exists)
4944                        goto free_eb;
4945                else
4946                        goto again;
4947        }
4948        /* add one reference for the tree */
4949        check_buffer_tree_ref(eb);
4950        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4951
4952        /*
4953         * there is a race where release page may have
4954         * tried to find this extent buffer in the radix
4955         * but failed.  It will tell the VM it is safe to
4956         * reclaim the, and it will clear the page private bit.
4957         * We must make sure to set the page private bit properly
4958         * after the extent buffer is in the radix tree so
4959         * it doesn't get lost
4960         */
4961        SetPageChecked(eb->pages[0]);
4962        for (i = 1; i < num_pages; i++) {
4963                p = eb->pages[i];
4964                ClearPageChecked(p);
4965                unlock_page(p);
4966        }
4967        unlock_page(eb->pages[0]);
4968        return eb;
4969
4970free_eb:
4971        WARN_ON(!atomic_dec_and_test(&eb->refs));
4972        for (i = 0; i < num_pages; i++) {
4973                if (eb->pages[i])
4974                        unlock_page(eb->pages[i]);
4975        }
4976
4977        btrfs_release_extent_buffer(eb);
4978        return exists;
4979}
4980
4981static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4982{
4983        struct extent_buffer *eb =
4984                        container_of(head, struct extent_buffer, rcu_head);
4985
4986        __free_extent_buffer(eb);
4987}
4988
4989/* Expects to have eb->eb_lock already held */
4990static int release_extent_buffer(struct extent_buffer *eb)
4991{
4992        WARN_ON(atomic_read(&eb->refs) == 0);
4993        if (atomic_dec_and_test(&eb->refs)) {
4994                if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4995                        struct btrfs_fs_info *fs_info = eb->fs_info;
4996
4997                        spin_unlock(&eb->refs_lock);
4998
4999                        spin_lock(&fs_info->buffer_lock);
5000                        radix_tree_delete(&fs_info->buffer_radix,
5001                                          eb->start >> PAGE_CACHE_SHIFT);
5002                        spin_unlock(&fs_info->buffer_lock);
5003                } else {
5004                        spin_unlock(&eb->refs_lock);
5005                }
5006
5007                /* Should be safe to release our pages at this point */
5008                btrfs_release_extent_buffer_page(eb);
5009#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5010                if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5011                        __free_extent_buffer(eb);
5012                        return 1;
5013                }
5014#endif
5015                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5016                return 1;
5017        }
5018        spin_unlock(&eb->refs_lock);
5019
5020        return 0;
5021}
5022
5023void free_extent_buffer(struct extent_buffer *eb)
5024{
5025        int refs;
5026        int old;
5027        if (!eb)
5028                return;
5029
5030        while (1) {
5031                refs = atomic_read(&eb->refs);
5032                if (refs <= 3)
5033                        break;
5034                old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5035                if (old == refs)
5036                        return;
5037        }
5038
5039        spin_lock(&eb->refs_lock);
5040        if (atomic_read(&eb->refs) == 2 &&
5041            test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5042                atomic_dec(&eb->refs);
5043
5044        if (atomic_read(&eb->refs) == 2 &&
5045            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5046            !extent_buffer_under_io(eb) &&
5047            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5048                atomic_dec(&eb->refs);
5049
5050        /*
5051         * I know this is terrible, but it's temporary until we stop tracking
5052         * the uptodate bits and such for the extent buffers.
5053         */
5054        release_extent_buffer(eb);
5055}
5056
5057void free_extent_buffer_stale(struct extent_buffer *eb)
5058{
5059        if (!eb)
5060                return;
5061
5062        spin_lock(&eb->refs_lock);
5063        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5064
5065        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5066            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5067                atomic_dec(&eb->refs);
5068        release_extent_buffer(eb);
5069}
5070
5071void clear_extent_buffer_dirty(struct extent_buffer *eb)
5072{
5073        unsigned long i;
5074        unsigned long num_pages;
5075        struct page *page;
5076
5077        num_pages = num_extent_pages(eb->start, eb->len);
5078
5079        for (i = 0; i < num_pages; i++) {
5080                page = eb->pages[i];
5081                if (!PageDirty(page))
5082                        continue;
5083
5084                lock_page(page);
5085                WARN_ON(!PagePrivate(page));
5086
5087                clear_page_dirty_for_io(page);
5088                spin_lock_irq(&page->mapping->tree_lock);
5089                if (!PageDirty(page)) {
5090                        radix_tree_tag_clear(&page->mapping->page_tree,
5091                                                page_index(page),
5092                                                PAGECACHE_TAG_DIRTY);
5093                }
5094                spin_unlock_irq(&page->mapping->tree_lock);
5095                ClearPageError(page);
5096                unlock_page(page);
5097        }
5098        WARN_ON(atomic_read(&eb->refs) == 0);
5099}
5100
5101int set_extent_buffer_dirty(struct extent_buffer *eb)
5102{
5103        unsigned long i;
5104        unsigned long num_pages;
5105        int was_dirty = 0;
5106
5107        check_buffer_tree_ref(eb);
5108
5109        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5110
5111        num_pages = num_extent_pages(eb->start, eb->len);
5112        WARN_ON(atomic_read(&eb->refs) == 0);
5113        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5114
5115        for (i = 0; i < num_pages; i++)
5116                set_page_dirty(eb->pages[i]);
5117        return was_dirty;
5118}
5119
5120void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5121{
5122        unsigned long i;
5123        struct page *page;
5124        unsigned long num_pages;
5125
5126        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5127        num_pages = num_extent_pages(eb->start, eb->len);
5128        for (i = 0; i < num_pages; i++) {
5129                page = eb->pages[i];
5130                if (page)
5131                        ClearPageUptodate(page);
5132        }
5133}
5134
5135void set_extent_buffer_uptodate(struct extent_buffer *eb)
5136{
5137        unsigned long i;
5138        struct page *page;
5139        unsigned long num_pages;
5140
5141        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5142        num_pages = num_extent_pages(eb->start, eb->len);
5143        for (i = 0; i < num_pages; i++) {
5144                page = eb->pages[i];
5145                SetPageUptodate(page);
5146        }
5147}
5148
5149int extent_buffer_uptodate(struct extent_buffer *eb)
5150{
5151        return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5152}
5153
5154int read_extent_buffer_pages(struct extent_io_tree *tree,
5155                             struct extent_buffer *eb, u64 start, int wait,
5156                             get_extent_t *get_extent, int mirror_num)
5157{
5158        unsigned long i;
5159        unsigned long start_i;
5160        struct page *page;
5161        int err;
5162        int ret = 0;
5163        int locked_pages = 0;
5164        int all_uptodate = 1;
5165        unsigned long num_pages;
5166        unsigned long num_reads = 0;
5167        struct bio *bio = NULL;
5168        unsigned long bio_flags = 0;
5169
5170        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5171                return 0;
5172
5173        if (start) {
5174                WARN_ON(start < eb->start);
5175                start_i = (start >> PAGE_CACHE_SHIFT) -
5176                        (eb->start >> PAGE_CACHE_SHIFT);
5177        } else {
5178                start_i = 0;
5179        }
5180
5181        num_pages = num_extent_pages(eb->start, eb->len);
5182        for (i = start_i; i < num_pages; i++) {
5183                page = eb->pages[i];
5184                if (wait == WAIT_NONE) {
5185                        if (!trylock_page(page))
5186                                goto unlock_exit;
5187                } else {
5188                        lock_page(page);
5189                }
5190                locked_pages++;
5191                if (!PageUptodate(page)) {
5192                        num_reads++;
5193                        all_uptodate = 0;
5194                }
5195        }
5196        if (all_uptodate) {
5197                if (start_i == 0)
5198                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5199                goto unlock_exit;
5200        }
5201
5202        clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5203        eb->read_mirror = 0;
5204        atomic_set(&eb->io_pages, num_reads);
5205        for (i = start_i; i < num_pages; i++) {
5206                page = eb->pages[i];
5207                if (!PageUptodate(page)) {
5208                        ClearPageError(page);
5209                        err = __extent_read_full_page(tree, page,
5210                                                      get_extent, &bio,
5211                                                      mirror_num, &bio_flags,
5212                                                      READ | REQ_META);
5213                        if (err)
5214                                ret = err;
5215                } else {
5216                        unlock_page(page);
5217                }
5218        }
5219
5220        if (bio) {
5221                err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5222                                     bio_flags);
5223                if (err)
5224                        return err;
5225        }
5226
5227        if (ret || wait != WAIT_COMPLETE)
5228                return ret;
5229
5230        for (i = start_i; i < num_pages; i++) {
5231                page = eb->pages[i];
5232                wait_on_page_locked(page);
5233                if (!PageUptodate(page))
5234                        ret = -EIO;
5235        }
5236
5237        return ret;
5238
5239unlock_exit:
5240        i = start_i;
5241        while (locked_pages > 0) {
5242                page = eb->pages[i];
5243                i++;
5244                unlock_page(page);
5245                locked_pages--;
5246        }
5247        return ret;
5248}
5249
5250void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5251                        unsigned long start,
5252                        unsigned long len)
5253{
5254        size_t cur;
5255        size_t offset;
5256        struct page *page;
5257        char *kaddr;
5258        char *dst = (char *)dstv;
5259        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5260        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5261
5262        WARN_ON(start > eb->len);
5263        WARN_ON(start + len > eb->start + eb->len);
5264
5265        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5266
5267        while (len > 0) {
5268                page = eb->pages[i];
5269
5270                cur = min(len, (PAGE_CACHE_SIZE - offset));
5271                kaddr = page_address(page);
5272                memcpy(dst, kaddr + offset, cur);
5273
5274                dst += cur;
5275                len -= cur;
5276                offset = 0;
5277                i++;
5278        }
5279}
5280
5281int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5282                        unsigned long start,
5283                        unsigned long len)
5284{
5285        size_t cur;
5286        size_t offset;
5287        struct page *page;
5288        char *kaddr;
5289        char __user *dst = (char __user *)dstv;
5290        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5291        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5292        int ret = 0;
5293
5294        WARN_ON(start > eb->len);
5295        WARN_ON(start + len > eb->start + eb->len);
5296
5297        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5298
5299        while (len > 0) {
5300                page = eb->pages[i];
5301
5302                cur = min(len, (PAGE_CACHE_SIZE - offset));
5303                kaddr = page_address(page);
5304                if (copy_to_user(dst, kaddr + offset, cur)) {
5305                        ret = -EFAULT;
5306                        break;
5307                }
5308
5309                dst += cur;
5310                len -= cur;
5311                offset = 0;
5312                i++;
5313        }
5314
5315        return ret;
5316}
5317
5318int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5319                               unsigned long min_len, char **map,
5320                               unsigned long *map_start,
5321                               unsigned long *map_len)
5322{
5323        size_t offset = start & (PAGE_CACHE_SIZE - 1);
5324        char *kaddr;
5325        struct page *p;
5326        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5327        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5328        unsigned long end_i = (start_offset + start + min_len - 1) >>
5329                PAGE_CACHE_SHIFT;
5330
5331        if (i != end_i)
5332                return -EINVAL;
5333
5334        if (i == 0) {
5335                offset = start_offset;
5336                *map_start = 0;
5337        } else {
5338                offset = 0;
5339                *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5340        }
5341
5342        if (start + min_len > eb->len) {
5343                WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5344                       "wanted %lu %lu\n",
5345                       eb->start, eb->len, start, min_len);
5346                return -EINVAL;
5347        }
5348
5349        p = eb->pages[i];
5350        kaddr = page_address(p);
5351        *map = kaddr + offset;
5352        *map_len = PAGE_CACHE_SIZE - offset;
5353        return 0;
5354}
5355
5356int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5357                          unsigned long start,
5358                          unsigned long len)
5359{
5360        size_t cur;
5361        size_t offset;
5362        struct page *page;
5363        char *kaddr;
5364        char *ptr = (char *)ptrv;
5365        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5366        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5367        int ret = 0;
5368
5369        WARN_ON(start > eb->len);
5370        WARN_ON(start + len > eb->start + eb->len);
5371
5372        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5373
5374        while (len > 0) {
5375                page = eb->pages[i];
5376
5377                cur = min(len, (PAGE_CACHE_SIZE - offset));
5378
5379                kaddr = page_address(page);
5380                ret = memcmp(ptr, kaddr + offset, cur);
5381                if (ret)
5382                        break;
5383
5384                ptr += cur;
5385                len -= cur;
5386                offset = 0;
5387                i++;
5388        }
5389        return ret;
5390}
5391
5392void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5393                         unsigned long start, unsigned long len)
5394{
5395        size_t cur;
5396        size_t offset;
5397        struct page *page;
5398        char *kaddr;
5399        char *src = (char *)srcv;
5400        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5401        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5402
5403        WARN_ON(start > eb->len);
5404        WARN_ON(start + len > eb->start + eb->len);
5405
5406        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5407
5408        while (len > 0) {
5409                page = eb->pages[i];
5410                WARN_ON(!PageUptodate(page));
5411
5412                cur = min(len, PAGE_CACHE_SIZE - offset);
5413                kaddr = page_address(page);
5414                memcpy(kaddr + offset, src, cur);
5415
5416                src += cur;
5417                len -= cur;
5418                offset = 0;
5419                i++;
5420        }
5421}
5422
5423void memset_extent_buffer(struct extent_buffer *eb, char c,
5424                          unsigned long start, unsigned long len)
5425{
5426        size_t cur;
5427        size_t offset;
5428        struct page *page;
5429        char *kaddr;
5430        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5431        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5432
5433        WARN_ON(start > eb->len);
5434        WARN_ON(start + len > eb->start + eb->len);
5435
5436        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5437
5438        while (len > 0) {
5439                page = eb->pages[i];
5440                WARN_ON(!PageUptodate(page));
5441
5442                cur = min(len, PAGE_CACHE_SIZE - offset);
5443                kaddr = page_address(page);
5444                memset(kaddr + offset, c, cur);
5445
5446                len -= cur;
5447                offset = 0;
5448                i++;
5449        }
5450}
5451
5452void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5453                        unsigned long dst_offset, unsigned long src_offset,
5454                        unsigned long len)
5455{
5456        u64 dst_len = dst->len;
5457        size_t cur;
5458        size_t offset;
5459        struct page *page;
5460        char *kaddr;
5461        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5462        unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5463
5464        WARN_ON(src->len != dst_len);
5465
5466        offset = (start_offset + dst_offset) &
5467                (PAGE_CACHE_SIZE - 1);
5468
5469        while (len > 0) {
5470                page = dst->pages[i];
5471                WARN_ON(!PageUptodate(page));
5472
5473                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5474
5475                kaddr = page_address(page);
5476                read_extent_buffer(src, kaddr + offset, src_offset, cur);
5477
5478                src_offset += cur;
5479                len -= cur;
5480                offset = 0;
5481                i++;
5482        }
5483}
5484
5485/*
5486 * The extent buffer bitmap operations are done with byte granularity because
5487 * bitmap items are not guaranteed to be aligned to a word and therefore a
5488 * single word in a bitmap may straddle two pages in the extent buffer.
5489 */
5490#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5491#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5492#define BITMAP_FIRST_BYTE_MASK(start) \
5493        ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5494#define BITMAP_LAST_BYTE_MASK(nbits) \
5495        (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5496
5497/*
5498 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5499 * given bit number
5500 * @eb: the extent buffer
5501 * @start: offset of the bitmap item in the extent buffer
5502 * @nr: bit number
5503 * @page_index: return index of the page in the extent buffer that contains the
5504 * given bit number
5505 * @page_offset: return offset into the page given by page_index
5506 *
5507 * This helper hides the ugliness of finding the byte in an extent buffer which
5508 * contains a given bit.
5509 */
5510static inline void eb_bitmap_offset(struct extent_buffer *eb,
5511                                    unsigned long start, unsigned long nr,
5512                                    unsigned long *page_index,
5513                                    size_t *page_offset)
5514{
5515        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5516        size_t byte_offset = BIT_BYTE(nr);
5517        size_t offset;
5518
5519        /*
5520         * The byte we want is the offset of the extent buffer + the offset of
5521         * the bitmap item in the extent buffer + the offset of the byte in the
5522         * bitmap item.
5523         */
5524        offset = start_offset + start + byte_offset;
5525
5526        *page_index = offset >> PAGE_CACHE_SHIFT;
5527        *page_offset = offset & (PAGE_CACHE_SIZE - 1);
5528}
5529
5530/**
5531 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5532 * @eb: the extent buffer
5533 * @start: offset of the bitmap item in the extent buffer
5534 * @nr: bit number to test
5535 */
5536int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5537                           unsigned long nr)
5538{
5539        char *kaddr;
5540        struct page *page;
5541        unsigned long i;
5542        size_t offset;
5543
5544        eb_bitmap_offset(eb, start, nr, &i, &offset);
5545        page = eb->pages[i];
5546        WARN_ON(!PageUptodate(page));
5547        kaddr = page_address(page);
5548        return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5549}
5550
5551/**
5552 * extent_buffer_bitmap_set - set an area of a bitmap
5553 * @eb: the extent buffer
5554 * @start: offset of the bitmap item in the extent buffer
5555 * @pos: bit number of the first bit
5556 * @len: number of bits to set
5557 */
5558void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5559                              unsigned long pos, unsigned long len)
5560{
5561        char *kaddr;
5562        struct page *page;
5563        unsigned long i;
5564        size_t offset;
5565        const unsigned int size = pos + len;
5566        int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5567        unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5568
5569        eb_bitmap_offset(eb, start, pos, &i, &offset);
5570        page = eb->pages[i];
5571        WARN_ON(!PageUptodate(page));
5572        kaddr = page_address(page);
5573
5574        while (len >= bits_to_set) {
5575                kaddr[offset] |= mask_to_set;
5576                len -= bits_to_set;
5577                bits_to_set = BITS_PER_BYTE;
5578                mask_to_set = ~0U;
5579                if (++offset >= PAGE_CACHE_SIZE && len > 0) {
5580                        offset = 0;
5581                        page = eb->pages[++i];
5582                        WARN_ON(!PageUptodate(page));
5583                        kaddr = page_address(page);
5584                }
5585        }
5586        if (len) {
5587                mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5588                kaddr[offset] |= mask_to_set;
5589        }
5590}
5591
5592
5593/**
5594 * extent_buffer_bitmap_clear - clear an area of a bitmap
5595 * @eb: the extent buffer
5596 * @start: offset of the bitmap item in the extent buffer
5597 * @pos: bit number of the first bit
5598 * @len: number of bits to clear
5599 */
5600void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5601                                unsigned long pos, unsigned long len)
5602{
5603        char *kaddr;
5604        struct page *page;
5605        unsigned long i;
5606        size_t offset;
5607        const unsigned int size = pos + len;
5608        int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5609        unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5610
5611        eb_bitmap_offset(eb, start, pos, &i, &offset);
5612        page = eb->pages[i];
5613        WARN_ON(!PageUptodate(page));
5614        kaddr = page_address(page);
5615
5616        while (len >= bits_to_clear) {
5617                kaddr[offset] &= ~mask_to_clear;
5618                len -= bits_to_clear;
5619                bits_to_clear = BITS_PER_BYTE;
5620                mask_to_clear = ~0U;
5621                if (++offset >= PAGE_CACHE_SIZE && len > 0) {
5622                        offset = 0;
5623                        page = eb->pages[++i];
5624                        WARN_ON(!PageUptodate(page));
5625                        kaddr = page_address(page);
5626                }
5627        }
5628        if (len) {
5629                mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5630                kaddr[offset] &= ~mask_to_clear;
5631        }
5632}
5633
5634static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5635{
5636        unsigned long distance = (src > dst) ? src - dst : dst - src;
5637        return distance < len;
5638}
5639
5640static void copy_pages(struct page *dst_page, struct page *src_page,
5641                       unsigned long dst_off, unsigned long src_off,
5642                       unsigned long len)
5643{
5644        char *dst_kaddr = page_address(dst_page);
5645        char *src_kaddr;
5646        int must_memmove = 0;
5647
5648        if (dst_page != src_page) {
5649                src_kaddr = page_address(src_page);
5650        } else {
5651                src_kaddr = dst_kaddr;
5652                if (areas_overlap(src_off, dst_off, len))
5653                        must_memmove = 1;
5654        }
5655
5656        if (must_memmove)
5657                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5658        else
5659                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5660}
5661
5662void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5663                           unsigned long src_offset, unsigned long len)
5664{
5665        size_t cur;
5666        size_t dst_off_in_page;
5667        size_t src_off_in_page;
5668        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5669        unsigned long dst_i;
5670        unsigned long src_i;
5671
5672        if (src_offset + len > dst->len) {
5673                btrfs_err(dst->fs_info,
5674                        "memmove bogus src_offset %lu move "
5675                       "len %lu dst len %lu", src_offset, len, dst->len);
5676                BUG_ON(1);
5677        }
5678        if (dst_offset + len > dst->len) {
5679                btrfs_err(dst->fs_info,
5680                        "memmove bogus dst_offset %lu move "
5681                       "len %lu dst len %lu", dst_offset, len, dst->len);
5682                BUG_ON(1);
5683        }
5684
5685        while (len > 0) {
5686                dst_off_in_page = (start_offset + dst_offset) &
5687                        (PAGE_CACHE_SIZE - 1);
5688                src_off_in_page = (start_offset + src_offset) &
5689                        (PAGE_CACHE_SIZE - 1);
5690
5691                dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5692                src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5693
5694                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5695                                               src_off_in_page));
5696                cur = min_t(unsigned long, cur,
5697                        (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5698
5699                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5700                           dst_off_in_page, src_off_in_page, cur);
5701
5702                src_offset += cur;
5703                dst_offset += cur;
5704                len -= cur;
5705        }
5706}
5707
5708void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5709                           unsigned long src_offset, unsigned long len)
5710{
5711        size_t cur;
5712        size_t dst_off_in_page;
5713        size_t src_off_in_page;
5714        unsigned long dst_end = dst_offset + len - 1;
5715        unsigned long src_end = src_offset + len - 1;
5716        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5717        unsigned long dst_i;
5718        unsigned long src_i;
5719
5720        if (src_offset + len > dst->len) {
5721                btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5722                       "len %lu len %lu", src_offset, len, dst->len);
5723                BUG_ON(1);
5724        }
5725        if (dst_offset + len > dst->len) {
5726                btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5727                       "len %lu len %lu", dst_offset, len, dst->len);
5728                BUG_ON(1);
5729        }
5730        if (dst_offset < src_offset) {
5731                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5732                return;
5733        }
5734        while (len > 0) {
5735                dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5736                src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5737
5738                dst_off_in_page = (start_offset + dst_end) &
5739                        (PAGE_CACHE_SIZE - 1);
5740                src_off_in_page = (start_offset + src_end) &
5741                        (PAGE_CACHE_SIZE - 1);
5742
5743                cur = min_t(unsigned long, len, src_off_in_page + 1);
5744                cur = min(cur, dst_off_in_page + 1);
5745                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5746                           dst_off_in_page - cur + 1,
5747                           src_off_in_page - cur + 1, cur);
5748
5749                dst_end -= cur;
5750                src_end -= cur;
5751                len -= cur;
5752        }
5753}
5754
5755int try_release_extent_buffer(struct page *page)
5756{
5757        struct extent_buffer *eb;
5758
5759        /*
5760         * We need to make sure noboody is attaching this page to an eb right
5761         * now.
5762         */
5763        spin_lock(&page->mapping->private_lock);
5764        if (!PagePrivate(page)) {
5765                spin_unlock(&page->mapping->private_lock);
5766                return 1;
5767        }
5768
5769        eb = (struct extent_buffer *)page->private;
5770        BUG_ON(!eb);
5771
5772        /*
5773         * This is a little awful but should be ok, we need to make sure that
5774         * the eb doesn't disappear out from under us while we're looking at
5775         * this page.
5776         */
5777        spin_lock(&eb->refs_lock);
5778        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5779                spin_unlock(&eb->refs_lock);
5780                spin_unlock(&page->mapping->private_lock);
5781                return 0;
5782        }
5783        spin_unlock(&page->mapping->private_lock);
5784
5785        /*
5786         * If tree ref isn't set then we know the ref on this eb is a real ref,
5787         * so just return, this page will likely be freed soon anyway.
5788         */
5789        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5790                spin_unlock(&eb->refs_lock);
5791                return 0;
5792        }
5793
5794        return release_extent_buffer(eb);
5795}
5796