linux/fs/f2fs/node.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "trace.h"
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  32{
  33        struct f2fs_nm_info *nm_i = NM_I(sbi);
  34        struct sysinfo val;
  35        unsigned long avail_ram;
  36        unsigned long mem_size = 0;
  37        bool res = false;
  38
  39        si_meminfo(&val);
  40
  41        /* only uses low memory */
  42        avail_ram = val.totalram - val.totalhigh;
  43
  44        /*
  45         * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46         */
  47        if (type == FREE_NIDS) {
  48                mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  49                                                        PAGE_CACHE_SHIFT;
  50                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51        } else if (type == NAT_ENTRIES) {
  52                mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53                                                        PAGE_CACHE_SHIFT;
  54                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  55        } else if (type == DIRTY_DENTS) {
  56                if (sbi->sb->s_bdi->wb.dirty_exceeded)
  57                        return false;
  58                mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  59                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  60        } else if (type == INO_ENTRIES) {
  61                int i;
  62
  63                for (i = 0; i <= UPDATE_INO; i++)
  64                        mem_size += (sbi->im[i].ino_num *
  65                                sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
  66                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  67        } else if (type == EXTENT_CACHE) {
  68                mem_size = (atomic_read(&sbi->total_ext_tree) *
  69                                sizeof(struct extent_tree) +
  70                                atomic_read(&sbi->total_ext_node) *
  71                                sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
  72                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  73        } else {
  74                if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  75                        return true;
  76        }
  77        return res;
  78}
  79
  80static void clear_node_page_dirty(struct page *page)
  81{
  82        struct address_space *mapping = page->mapping;
  83        unsigned int long flags;
  84
  85        if (PageDirty(page)) {
  86                spin_lock_irqsave(&mapping->tree_lock, flags);
  87                radix_tree_tag_clear(&mapping->page_tree,
  88                                page_index(page),
  89                                PAGECACHE_TAG_DIRTY);
  90                spin_unlock_irqrestore(&mapping->tree_lock, flags);
  91
  92                clear_page_dirty_for_io(page);
  93                dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  94        }
  95        ClearPageUptodate(page);
  96}
  97
  98static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  99{
 100        pgoff_t index = current_nat_addr(sbi, nid);
 101        return get_meta_page(sbi, index);
 102}
 103
 104static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 105{
 106        struct page *src_page;
 107        struct page *dst_page;
 108        pgoff_t src_off;
 109        pgoff_t dst_off;
 110        void *src_addr;
 111        void *dst_addr;
 112        struct f2fs_nm_info *nm_i = NM_I(sbi);
 113
 114        src_off = current_nat_addr(sbi, nid);
 115        dst_off = next_nat_addr(sbi, src_off);
 116
 117        /* get current nat block page with lock */
 118        src_page = get_meta_page(sbi, src_off);
 119        dst_page = grab_meta_page(sbi, dst_off);
 120        f2fs_bug_on(sbi, PageDirty(src_page));
 121
 122        src_addr = page_address(src_page);
 123        dst_addr = page_address(dst_page);
 124        memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
 125        set_page_dirty(dst_page);
 126        f2fs_put_page(src_page, 1);
 127
 128        set_to_next_nat(nm_i, nid);
 129
 130        return dst_page;
 131}
 132
 133static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 134{
 135        return radix_tree_lookup(&nm_i->nat_root, n);
 136}
 137
 138static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 139                nid_t start, unsigned int nr, struct nat_entry **ep)
 140{
 141        return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 142}
 143
 144static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 145{
 146        list_del(&e->list);
 147        radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 148        nm_i->nat_cnt--;
 149        kmem_cache_free(nat_entry_slab, e);
 150}
 151
 152static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 153                                                struct nat_entry *ne)
 154{
 155        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 156        struct nat_entry_set *head;
 157
 158        if (get_nat_flag(ne, IS_DIRTY))
 159                return;
 160
 161        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 162        if (!head) {
 163                head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 164
 165                INIT_LIST_HEAD(&head->entry_list);
 166                INIT_LIST_HEAD(&head->set_list);
 167                head->set = set;
 168                head->entry_cnt = 0;
 169                f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 170        }
 171        list_move_tail(&ne->list, &head->entry_list);
 172        nm_i->dirty_nat_cnt++;
 173        head->entry_cnt++;
 174        set_nat_flag(ne, IS_DIRTY, true);
 175}
 176
 177static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 178                                                struct nat_entry *ne)
 179{
 180        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 181        struct nat_entry_set *head;
 182
 183        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 184        if (head) {
 185                list_move_tail(&ne->list, &nm_i->nat_entries);
 186                set_nat_flag(ne, IS_DIRTY, false);
 187                head->entry_cnt--;
 188                nm_i->dirty_nat_cnt--;
 189        }
 190}
 191
 192static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 193                nid_t start, unsigned int nr, struct nat_entry_set **ep)
 194{
 195        return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 196                                                        start, nr);
 197}
 198
 199int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 200{
 201        struct f2fs_nm_info *nm_i = NM_I(sbi);
 202        struct nat_entry *e;
 203        bool need = false;
 204
 205        down_read(&nm_i->nat_tree_lock);
 206        e = __lookup_nat_cache(nm_i, nid);
 207        if (e) {
 208                if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 209                                !get_nat_flag(e, HAS_FSYNCED_INODE))
 210                        need = true;
 211        }
 212        up_read(&nm_i->nat_tree_lock);
 213        return need;
 214}
 215
 216bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 217{
 218        struct f2fs_nm_info *nm_i = NM_I(sbi);
 219        struct nat_entry *e;
 220        bool is_cp = true;
 221
 222        down_read(&nm_i->nat_tree_lock);
 223        e = __lookup_nat_cache(nm_i, nid);
 224        if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 225                is_cp = false;
 226        up_read(&nm_i->nat_tree_lock);
 227        return is_cp;
 228}
 229
 230bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 231{
 232        struct f2fs_nm_info *nm_i = NM_I(sbi);
 233        struct nat_entry *e;
 234        bool need_update = true;
 235
 236        down_read(&nm_i->nat_tree_lock);
 237        e = __lookup_nat_cache(nm_i, ino);
 238        if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 239                        (get_nat_flag(e, IS_CHECKPOINTED) ||
 240                         get_nat_flag(e, HAS_FSYNCED_INODE)))
 241                need_update = false;
 242        up_read(&nm_i->nat_tree_lock);
 243        return need_update;
 244}
 245
 246static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 247{
 248        struct nat_entry *new;
 249
 250        new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 251        f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 252        memset(new, 0, sizeof(struct nat_entry));
 253        nat_set_nid(new, nid);
 254        nat_reset_flag(new);
 255        list_add_tail(&new->list, &nm_i->nat_entries);
 256        nm_i->nat_cnt++;
 257        return new;
 258}
 259
 260static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
 261                                                struct f2fs_nat_entry *ne)
 262{
 263        struct nat_entry *e;
 264
 265        e = __lookup_nat_cache(nm_i, nid);
 266        if (!e) {
 267                e = grab_nat_entry(nm_i, nid);
 268                node_info_from_raw_nat(&e->ni, ne);
 269        }
 270}
 271
 272static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 273                        block_t new_blkaddr, bool fsync_done)
 274{
 275        struct f2fs_nm_info *nm_i = NM_I(sbi);
 276        struct nat_entry *e;
 277
 278        down_write(&nm_i->nat_tree_lock);
 279        e = __lookup_nat_cache(nm_i, ni->nid);
 280        if (!e) {
 281                e = grab_nat_entry(nm_i, ni->nid);
 282                copy_node_info(&e->ni, ni);
 283                f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 284        } else if (new_blkaddr == NEW_ADDR) {
 285                /*
 286                 * when nid is reallocated,
 287                 * previous nat entry can be remained in nat cache.
 288                 * So, reinitialize it with new information.
 289                 */
 290                copy_node_info(&e->ni, ni);
 291                f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 292        }
 293
 294        /* sanity check */
 295        f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 296        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 297                        new_blkaddr == NULL_ADDR);
 298        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 299                        new_blkaddr == NEW_ADDR);
 300        f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 301                        nat_get_blkaddr(e) != NULL_ADDR &&
 302                        new_blkaddr == NEW_ADDR);
 303
 304        /* increment version no as node is removed */
 305        if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 306                unsigned char version = nat_get_version(e);
 307                nat_set_version(e, inc_node_version(version));
 308
 309                /* in order to reuse the nid */
 310                if (nm_i->next_scan_nid > ni->nid)
 311                        nm_i->next_scan_nid = ni->nid;
 312        }
 313
 314        /* change address */
 315        nat_set_blkaddr(e, new_blkaddr);
 316        if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 317                set_nat_flag(e, IS_CHECKPOINTED, false);
 318        __set_nat_cache_dirty(nm_i, e);
 319
 320        /* update fsync_mark if its inode nat entry is still alive */
 321        if (ni->nid != ni->ino)
 322                e = __lookup_nat_cache(nm_i, ni->ino);
 323        if (e) {
 324                if (fsync_done && ni->nid == ni->ino)
 325                        set_nat_flag(e, HAS_FSYNCED_INODE, true);
 326                set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 327        }
 328        up_write(&nm_i->nat_tree_lock);
 329}
 330
 331int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 332{
 333        struct f2fs_nm_info *nm_i = NM_I(sbi);
 334        int nr = nr_shrink;
 335
 336        if (!down_write_trylock(&nm_i->nat_tree_lock))
 337                return 0;
 338
 339        while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 340                struct nat_entry *ne;
 341                ne = list_first_entry(&nm_i->nat_entries,
 342                                        struct nat_entry, list);
 343                __del_from_nat_cache(nm_i, ne);
 344                nr_shrink--;
 345        }
 346        up_write(&nm_i->nat_tree_lock);
 347        return nr - nr_shrink;
 348}
 349
 350/*
 351 * This function always returns success
 352 */
 353void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 354{
 355        struct f2fs_nm_info *nm_i = NM_I(sbi);
 356        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 357        struct f2fs_summary_block *sum = curseg->sum_blk;
 358        nid_t start_nid = START_NID(nid);
 359        struct f2fs_nat_block *nat_blk;
 360        struct page *page = NULL;
 361        struct f2fs_nat_entry ne;
 362        struct nat_entry *e;
 363        int i;
 364
 365        ni->nid = nid;
 366
 367        /* Check nat cache */
 368        down_read(&nm_i->nat_tree_lock);
 369        e = __lookup_nat_cache(nm_i, nid);
 370        if (e) {
 371                ni->ino = nat_get_ino(e);
 372                ni->blk_addr = nat_get_blkaddr(e);
 373                ni->version = nat_get_version(e);
 374        }
 375        up_read(&nm_i->nat_tree_lock);
 376        if (e)
 377                return;
 378
 379        memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 380
 381        down_write(&nm_i->nat_tree_lock);
 382
 383        /* Check current segment summary */
 384        mutex_lock(&curseg->curseg_mutex);
 385        i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
 386        if (i >= 0) {
 387                ne = nat_in_journal(sum, i);
 388                node_info_from_raw_nat(ni, &ne);
 389        }
 390        mutex_unlock(&curseg->curseg_mutex);
 391        if (i >= 0)
 392                goto cache;
 393
 394        /* Fill node_info from nat page */
 395        page = get_current_nat_page(sbi, start_nid);
 396        nat_blk = (struct f2fs_nat_block *)page_address(page);
 397        ne = nat_blk->entries[nid - start_nid];
 398        node_info_from_raw_nat(ni, &ne);
 399        f2fs_put_page(page, 1);
 400cache:
 401        /* cache nat entry */
 402        cache_nat_entry(NM_I(sbi), nid, &ne);
 403        up_write(&nm_i->nat_tree_lock);
 404}
 405
 406/*
 407 * The maximum depth is four.
 408 * Offset[0] will have raw inode offset.
 409 */
 410static int get_node_path(struct f2fs_inode_info *fi, long block,
 411                                int offset[4], unsigned int noffset[4])
 412{
 413        const long direct_index = ADDRS_PER_INODE(fi);
 414        const long direct_blks = ADDRS_PER_BLOCK;
 415        const long dptrs_per_blk = NIDS_PER_BLOCK;
 416        const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 417        const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 418        int n = 0;
 419        int level = 0;
 420
 421        noffset[0] = 0;
 422
 423        if (block < direct_index) {
 424                offset[n] = block;
 425                goto got;
 426        }
 427        block -= direct_index;
 428        if (block < direct_blks) {
 429                offset[n++] = NODE_DIR1_BLOCK;
 430                noffset[n] = 1;
 431                offset[n] = block;
 432                level = 1;
 433                goto got;
 434        }
 435        block -= direct_blks;
 436        if (block < direct_blks) {
 437                offset[n++] = NODE_DIR2_BLOCK;
 438                noffset[n] = 2;
 439                offset[n] = block;
 440                level = 1;
 441                goto got;
 442        }
 443        block -= direct_blks;
 444        if (block < indirect_blks) {
 445                offset[n++] = NODE_IND1_BLOCK;
 446                noffset[n] = 3;
 447                offset[n++] = block / direct_blks;
 448                noffset[n] = 4 + offset[n - 1];
 449                offset[n] = block % direct_blks;
 450                level = 2;
 451                goto got;
 452        }
 453        block -= indirect_blks;
 454        if (block < indirect_blks) {
 455                offset[n++] = NODE_IND2_BLOCK;
 456                noffset[n] = 4 + dptrs_per_blk;
 457                offset[n++] = block / direct_blks;
 458                noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 459                offset[n] = block % direct_blks;
 460                level = 2;
 461                goto got;
 462        }
 463        block -= indirect_blks;
 464        if (block < dindirect_blks) {
 465                offset[n++] = NODE_DIND_BLOCK;
 466                noffset[n] = 5 + (dptrs_per_blk * 2);
 467                offset[n++] = block / indirect_blks;
 468                noffset[n] = 6 + (dptrs_per_blk * 2) +
 469                              offset[n - 1] * (dptrs_per_blk + 1);
 470                offset[n++] = (block / direct_blks) % dptrs_per_blk;
 471                noffset[n] = 7 + (dptrs_per_blk * 2) +
 472                              offset[n - 2] * (dptrs_per_blk + 1) +
 473                              offset[n - 1];
 474                offset[n] = block % direct_blks;
 475                level = 3;
 476                goto got;
 477        } else {
 478                BUG();
 479        }
 480got:
 481        return level;
 482}
 483
 484/*
 485 * Caller should call f2fs_put_dnode(dn).
 486 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 487 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 488 * In the case of RDONLY_NODE, we don't need to care about mutex.
 489 */
 490int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 491{
 492        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 493        struct page *npage[4];
 494        struct page *parent = NULL;
 495        int offset[4];
 496        unsigned int noffset[4];
 497        nid_t nids[4];
 498        int level, i;
 499        int err = 0;
 500
 501        level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
 502
 503        nids[0] = dn->inode->i_ino;
 504        npage[0] = dn->inode_page;
 505
 506        if (!npage[0]) {
 507                npage[0] = get_node_page(sbi, nids[0]);
 508                if (IS_ERR(npage[0]))
 509                        return PTR_ERR(npage[0]);
 510        }
 511
 512        /* if inline_data is set, should not report any block indices */
 513        if (f2fs_has_inline_data(dn->inode) && index) {
 514                err = -ENOENT;
 515                f2fs_put_page(npage[0], 1);
 516                goto release_out;
 517        }
 518
 519        parent = npage[0];
 520        if (level != 0)
 521                nids[1] = get_nid(parent, offset[0], true);
 522        dn->inode_page = npage[0];
 523        dn->inode_page_locked = true;
 524
 525        /* get indirect or direct nodes */
 526        for (i = 1; i <= level; i++) {
 527                bool done = false;
 528
 529                if (!nids[i] && mode == ALLOC_NODE) {
 530                        /* alloc new node */
 531                        if (!alloc_nid(sbi, &(nids[i]))) {
 532                                err = -ENOSPC;
 533                                goto release_pages;
 534                        }
 535
 536                        dn->nid = nids[i];
 537                        npage[i] = new_node_page(dn, noffset[i], NULL);
 538                        if (IS_ERR(npage[i])) {
 539                                alloc_nid_failed(sbi, nids[i]);
 540                                err = PTR_ERR(npage[i]);
 541                                goto release_pages;
 542                        }
 543
 544                        set_nid(parent, offset[i - 1], nids[i], i == 1);
 545                        alloc_nid_done(sbi, nids[i]);
 546                        done = true;
 547                } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 548                        npage[i] = get_node_page_ra(parent, offset[i - 1]);
 549                        if (IS_ERR(npage[i])) {
 550                                err = PTR_ERR(npage[i]);
 551                                goto release_pages;
 552                        }
 553                        done = true;
 554                }
 555                if (i == 1) {
 556                        dn->inode_page_locked = false;
 557                        unlock_page(parent);
 558                } else {
 559                        f2fs_put_page(parent, 1);
 560                }
 561
 562                if (!done) {
 563                        npage[i] = get_node_page(sbi, nids[i]);
 564                        if (IS_ERR(npage[i])) {
 565                                err = PTR_ERR(npage[i]);
 566                                f2fs_put_page(npage[0], 0);
 567                                goto release_out;
 568                        }
 569                }
 570                if (i < level) {
 571                        parent = npage[i];
 572                        nids[i + 1] = get_nid(parent, offset[i], false);
 573                }
 574        }
 575        dn->nid = nids[level];
 576        dn->ofs_in_node = offset[level];
 577        dn->node_page = npage[level];
 578        dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 579        return 0;
 580
 581release_pages:
 582        f2fs_put_page(parent, 1);
 583        if (i > 1)
 584                f2fs_put_page(npage[0], 0);
 585release_out:
 586        dn->inode_page = NULL;
 587        dn->node_page = NULL;
 588        return err;
 589}
 590
 591static void truncate_node(struct dnode_of_data *dn)
 592{
 593        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 594        struct node_info ni;
 595
 596        get_node_info(sbi, dn->nid, &ni);
 597        if (dn->inode->i_blocks == 0) {
 598                f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 599                goto invalidate;
 600        }
 601        f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 602
 603        /* Deallocate node address */
 604        invalidate_blocks(sbi, ni.blk_addr);
 605        dec_valid_node_count(sbi, dn->inode);
 606        set_node_addr(sbi, &ni, NULL_ADDR, false);
 607
 608        if (dn->nid == dn->inode->i_ino) {
 609                remove_orphan_inode(sbi, dn->nid);
 610                dec_valid_inode_count(sbi);
 611        } else {
 612                sync_inode_page(dn);
 613        }
 614invalidate:
 615        clear_node_page_dirty(dn->node_page);
 616        set_sbi_flag(sbi, SBI_IS_DIRTY);
 617
 618        f2fs_put_page(dn->node_page, 1);
 619
 620        invalidate_mapping_pages(NODE_MAPPING(sbi),
 621                        dn->node_page->index, dn->node_page->index);
 622
 623        dn->node_page = NULL;
 624        trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 625}
 626
 627static int truncate_dnode(struct dnode_of_data *dn)
 628{
 629        struct page *page;
 630
 631        if (dn->nid == 0)
 632                return 1;
 633
 634        /* get direct node */
 635        page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 636        if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 637                return 1;
 638        else if (IS_ERR(page))
 639                return PTR_ERR(page);
 640
 641        /* Make dnode_of_data for parameter */
 642        dn->node_page = page;
 643        dn->ofs_in_node = 0;
 644        truncate_data_blocks(dn);
 645        truncate_node(dn);
 646        return 1;
 647}
 648
 649static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 650                                                int ofs, int depth)
 651{
 652        struct dnode_of_data rdn = *dn;
 653        struct page *page;
 654        struct f2fs_node *rn;
 655        nid_t child_nid;
 656        unsigned int child_nofs;
 657        int freed = 0;
 658        int i, ret;
 659
 660        if (dn->nid == 0)
 661                return NIDS_PER_BLOCK + 1;
 662
 663        trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 664
 665        page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 666        if (IS_ERR(page)) {
 667                trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 668                return PTR_ERR(page);
 669        }
 670
 671        rn = F2FS_NODE(page);
 672        if (depth < 3) {
 673                for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 674                        child_nid = le32_to_cpu(rn->in.nid[i]);
 675                        if (child_nid == 0)
 676                                continue;
 677                        rdn.nid = child_nid;
 678                        ret = truncate_dnode(&rdn);
 679                        if (ret < 0)
 680                                goto out_err;
 681                        if (set_nid(page, i, 0, false))
 682                                dn->node_changed = true;
 683                }
 684        } else {
 685                child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 686                for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 687                        child_nid = le32_to_cpu(rn->in.nid[i]);
 688                        if (child_nid == 0) {
 689                                child_nofs += NIDS_PER_BLOCK + 1;
 690                                continue;
 691                        }
 692                        rdn.nid = child_nid;
 693                        ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 694                        if (ret == (NIDS_PER_BLOCK + 1)) {
 695                                if (set_nid(page, i, 0, false))
 696                                        dn->node_changed = true;
 697                                child_nofs += ret;
 698                        } else if (ret < 0 && ret != -ENOENT) {
 699                                goto out_err;
 700                        }
 701                }
 702                freed = child_nofs;
 703        }
 704
 705        if (!ofs) {
 706                /* remove current indirect node */
 707                dn->node_page = page;
 708                truncate_node(dn);
 709                freed++;
 710        } else {
 711                f2fs_put_page(page, 1);
 712        }
 713        trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 714        return freed;
 715
 716out_err:
 717        f2fs_put_page(page, 1);
 718        trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 719        return ret;
 720}
 721
 722static int truncate_partial_nodes(struct dnode_of_data *dn,
 723                        struct f2fs_inode *ri, int *offset, int depth)
 724{
 725        struct page *pages[2];
 726        nid_t nid[3];
 727        nid_t child_nid;
 728        int err = 0;
 729        int i;
 730        int idx = depth - 2;
 731
 732        nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 733        if (!nid[0])
 734                return 0;
 735
 736        /* get indirect nodes in the path */
 737        for (i = 0; i < idx + 1; i++) {
 738                /* reference count'll be increased */
 739                pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 740                if (IS_ERR(pages[i])) {
 741                        err = PTR_ERR(pages[i]);
 742                        idx = i - 1;
 743                        goto fail;
 744                }
 745                nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 746        }
 747
 748        /* free direct nodes linked to a partial indirect node */
 749        for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 750                child_nid = get_nid(pages[idx], i, false);
 751                if (!child_nid)
 752                        continue;
 753                dn->nid = child_nid;
 754                err = truncate_dnode(dn);
 755                if (err < 0)
 756                        goto fail;
 757                if (set_nid(pages[idx], i, 0, false))
 758                        dn->node_changed = true;
 759        }
 760
 761        if (offset[idx + 1] == 0) {
 762                dn->node_page = pages[idx];
 763                dn->nid = nid[idx];
 764                truncate_node(dn);
 765        } else {
 766                f2fs_put_page(pages[idx], 1);
 767        }
 768        offset[idx]++;
 769        offset[idx + 1] = 0;
 770        idx--;
 771fail:
 772        for (i = idx; i >= 0; i--)
 773                f2fs_put_page(pages[i], 1);
 774
 775        trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 776
 777        return err;
 778}
 779
 780/*
 781 * All the block addresses of data and nodes should be nullified.
 782 */
 783int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 784{
 785        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 786        int err = 0, cont = 1;
 787        int level, offset[4], noffset[4];
 788        unsigned int nofs = 0;
 789        struct f2fs_inode *ri;
 790        struct dnode_of_data dn;
 791        struct page *page;
 792
 793        trace_f2fs_truncate_inode_blocks_enter(inode, from);
 794
 795        level = get_node_path(F2FS_I(inode), from, offset, noffset);
 796restart:
 797        page = get_node_page(sbi, inode->i_ino);
 798        if (IS_ERR(page)) {
 799                trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 800                return PTR_ERR(page);
 801        }
 802
 803        set_new_dnode(&dn, inode, page, NULL, 0);
 804        unlock_page(page);
 805
 806        ri = F2FS_INODE(page);
 807        switch (level) {
 808        case 0:
 809        case 1:
 810                nofs = noffset[1];
 811                break;
 812        case 2:
 813                nofs = noffset[1];
 814                if (!offset[level - 1])
 815                        goto skip_partial;
 816                err = truncate_partial_nodes(&dn, ri, offset, level);
 817                if (err < 0 && err != -ENOENT)
 818                        goto fail;
 819                nofs += 1 + NIDS_PER_BLOCK;
 820                break;
 821        case 3:
 822                nofs = 5 + 2 * NIDS_PER_BLOCK;
 823                if (!offset[level - 1])
 824                        goto skip_partial;
 825                err = truncate_partial_nodes(&dn, ri, offset, level);
 826                if (err < 0 && err != -ENOENT)
 827                        goto fail;
 828                break;
 829        default:
 830                BUG();
 831        }
 832
 833skip_partial:
 834        while (cont) {
 835                dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 836                switch (offset[0]) {
 837                case NODE_DIR1_BLOCK:
 838                case NODE_DIR2_BLOCK:
 839                        err = truncate_dnode(&dn);
 840                        break;
 841
 842                case NODE_IND1_BLOCK:
 843                case NODE_IND2_BLOCK:
 844                        err = truncate_nodes(&dn, nofs, offset[1], 2);
 845                        break;
 846
 847                case NODE_DIND_BLOCK:
 848                        err = truncate_nodes(&dn, nofs, offset[1], 3);
 849                        cont = 0;
 850                        break;
 851
 852                default:
 853                        BUG();
 854                }
 855                if (err < 0 && err != -ENOENT)
 856                        goto fail;
 857                if (offset[1] == 0 &&
 858                                ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 859                        lock_page(page);
 860                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 861                                f2fs_put_page(page, 1);
 862                                goto restart;
 863                        }
 864                        f2fs_wait_on_page_writeback(page, NODE);
 865                        ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 866                        set_page_dirty(page);
 867                        unlock_page(page);
 868                }
 869                offset[1] = 0;
 870                offset[0]++;
 871                nofs += err;
 872        }
 873fail:
 874        f2fs_put_page(page, 0);
 875        trace_f2fs_truncate_inode_blocks_exit(inode, err);
 876        return err > 0 ? 0 : err;
 877}
 878
 879int truncate_xattr_node(struct inode *inode, struct page *page)
 880{
 881        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 882        nid_t nid = F2FS_I(inode)->i_xattr_nid;
 883        struct dnode_of_data dn;
 884        struct page *npage;
 885
 886        if (!nid)
 887                return 0;
 888
 889        npage = get_node_page(sbi, nid);
 890        if (IS_ERR(npage))
 891                return PTR_ERR(npage);
 892
 893        F2FS_I(inode)->i_xattr_nid = 0;
 894
 895        /* need to do checkpoint during fsync */
 896        F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 897
 898        set_new_dnode(&dn, inode, page, npage, nid);
 899
 900        if (page)
 901                dn.inode_page_locked = true;
 902        truncate_node(&dn);
 903        return 0;
 904}
 905
 906/*
 907 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 908 * f2fs_unlock_op().
 909 */
 910int remove_inode_page(struct inode *inode)
 911{
 912        struct dnode_of_data dn;
 913        int err;
 914
 915        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 916        err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 917        if (err)
 918                return err;
 919
 920        err = truncate_xattr_node(inode, dn.inode_page);
 921        if (err) {
 922                f2fs_put_dnode(&dn);
 923                return err;
 924        }
 925
 926        /* remove potential inline_data blocks */
 927        if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 928                                S_ISLNK(inode->i_mode))
 929                truncate_data_blocks_range(&dn, 1);
 930
 931        /* 0 is possible, after f2fs_new_inode() has failed */
 932        f2fs_bug_on(F2FS_I_SB(inode),
 933                        inode->i_blocks != 0 && inode->i_blocks != 1);
 934
 935        /* will put inode & node pages */
 936        truncate_node(&dn);
 937        return 0;
 938}
 939
 940struct page *new_inode_page(struct inode *inode)
 941{
 942        struct dnode_of_data dn;
 943
 944        /* allocate inode page for new inode */
 945        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 946
 947        /* caller should f2fs_put_page(page, 1); */
 948        return new_node_page(&dn, 0, NULL);
 949}
 950
 951struct page *new_node_page(struct dnode_of_data *dn,
 952                                unsigned int ofs, struct page *ipage)
 953{
 954        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 955        struct node_info old_ni, new_ni;
 956        struct page *page;
 957        int err;
 958
 959        if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
 960                return ERR_PTR(-EPERM);
 961
 962        page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
 963        if (!page)
 964                return ERR_PTR(-ENOMEM);
 965
 966        if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
 967                err = -ENOSPC;
 968                goto fail;
 969        }
 970
 971        get_node_info(sbi, dn->nid, &old_ni);
 972
 973        /* Reinitialize old_ni with new node page */
 974        f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
 975        new_ni = old_ni;
 976        new_ni.ino = dn->inode->i_ino;
 977        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
 978
 979        f2fs_wait_on_page_writeback(page, NODE);
 980        fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
 981        set_cold_node(dn->inode, page);
 982        SetPageUptodate(page);
 983        if (set_page_dirty(page))
 984                dn->node_changed = true;
 985
 986        if (f2fs_has_xattr_block(ofs))
 987                F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
 988
 989        dn->node_page = page;
 990        if (ipage)
 991                update_inode(dn->inode, ipage);
 992        else
 993                sync_inode_page(dn);
 994        if (ofs == 0)
 995                inc_valid_inode_count(sbi);
 996
 997        return page;
 998
 999fail:
1000        clear_node_page_dirty(page);
1001        f2fs_put_page(page, 1);
1002        return ERR_PTR(err);
1003}
1004
1005/*
1006 * Caller should do after getting the following values.
1007 * 0: f2fs_put_page(page, 0)
1008 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1009 */
1010static int read_node_page(struct page *page, int rw)
1011{
1012        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1013        struct node_info ni;
1014        struct f2fs_io_info fio = {
1015                .sbi = sbi,
1016                .type = NODE,
1017                .rw = rw,
1018                .page = page,
1019                .encrypted_page = NULL,
1020        };
1021
1022        get_node_info(sbi, page->index, &ni);
1023
1024        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1025                ClearPageUptodate(page);
1026                return -ENOENT;
1027        }
1028
1029        if (PageUptodate(page))
1030                return LOCKED_PAGE;
1031
1032        fio.blk_addr = ni.blk_addr;
1033        return f2fs_submit_page_bio(&fio);
1034}
1035
1036/*
1037 * Readahead a node page
1038 */
1039void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1040{
1041        struct page *apage;
1042        int err;
1043
1044        if (!nid)
1045                return;
1046        f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1047
1048        apage = find_get_page(NODE_MAPPING(sbi), nid);
1049        if (apage && PageUptodate(apage)) {
1050                f2fs_put_page(apage, 0);
1051                return;
1052        }
1053        f2fs_put_page(apage, 0);
1054
1055        apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1056        if (!apage)
1057                return;
1058
1059        err = read_node_page(apage, READA);
1060        f2fs_put_page(apage, err ? 1 : 0);
1061}
1062
1063/*
1064 * readahead MAX_RA_NODE number of node pages.
1065 */
1066void ra_node_pages(struct page *parent, int start)
1067{
1068        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1069        struct blk_plug plug;
1070        int i, end;
1071        nid_t nid;
1072
1073        blk_start_plug(&plug);
1074
1075        /* Then, try readahead for siblings of the desired node */
1076        end = start + MAX_RA_NODE;
1077        end = min(end, NIDS_PER_BLOCK);
1078        for (i = start; i < end; i++) {
1079                nid = get_nid(parent, i, false);
1080                ra_node_page(sbi, nid);
1081        }
1082
1083        blk_finish_plug(&plug);
1084}
1085
1086struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1087                                        struct page *parent, int start)
1088{
1089        struct page *page;
1090        int err;
1091
1092        if (!nid)
1093                return ERR_PTR(-ENOENT);
1094        f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1095repeat:
1096        page = grab_cache_page(NODE_MAPPING(sbi), nid);
1097        if (!page)
1098                return ERR_PTR(-ENOMEM);
1099
1100        err = read_node_page(page, READ_SYNC);
1101        if (err < 0) {
1102                f2fs_put_page(page, 1);
1103                return ERR_PTR(err);
1104        } else if (err == LOCKED_PAGE) {
1105                goto page_hit;
1106        }
1107
1108        if (parent)
1109                ra_node_pages(parent, start + 1);
1110
1111        lock_page(page);
1112
1113        if (unlikely(!PageUptodate(page))) {
1114                f2fs_put_page(page, 1);
1115                return ERR_PTR(-EIO);
1116        }
1117        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1118                f2fs_put_page(page, 1);
1119                goto repeat;
1120        }
1121page_hit:
1122        f2fs_bug_on(sbi, nid != nid_of_node(page));
1123        return page;
1124}
1125
1126struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1127{
1128        return __get_node_page(sbi, nid, NULL, 0);
1129}
1130
1131struct page *get_node_page_ra(struct page *parent, int start)
1132{
1133        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1134        nid_t nid = get_nid(parent, start, false);
1135
1136        return __get_node_page(sbi, nid, parent, start);
1137}
1138
1139void sync_inode_page(struct dnode_of_data *dn)
1140{
1141        int ret = 0;
1142
1143        if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1144                ret = update_inode(dn->inode, dn->node_page);
1145        } else if (dn->inode_page) {
1146                if (!dn->inode_page_locked)
1147                        lock_page(dn->inode_page);
1148                ret = update_inode(dn->inode, dn->inode_page);
1149                if (!dn->inode_page_locked)
1150                        unlock_page(dn->inode_page);
1151        } else {
1152                ret = update_inode_page(dn->inode);
1153        }
1154        dn->node_changed = ret ? true: false;
1155}
1156
1157int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1158                                        struct writeback_control *wbc)
1159{
1160        pgoff_t index, end;
1161        struct pagevec pvec;
1162        int step = ino ? 2 : 0;
1163        int nwritten = 0, wrote = 0;
1164
1165        pagevec_init(&pvec, 0);
1166
1167next_step:
1168        index = 0;
1169        end = LONG_MAX;
1170
1171        while (index <= end) {
1172                int i, nr_pages;
1173                nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1174                                PAGECACHE_TAG_DIRTY,
1175                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1176                if (nr_pages == 0)
1177                        break;
1178
1179                for (i = 0; i < nr_pages; i++) {
1180                        struct page *page = pvec.pages[i];
1181
1182                        if (unlikely(f2fs_cp_error(sbi))) {
1183                                pagevec_release(&pvec);
1184                                return -EIO;
1185                        }
1186
1187                        /*
1188                         * flushing sequence with step:
1189                         * 0. indirect nodes
1190                         * 1. dentry dnodes
1191                         * 2. file dnodes
1192                         */
1193                        if (step == 0 && IS_DNODE(page))
1194                                continue;
1195                        if (step == 1 && (!IS_DNODE(page) ||
1196                                                is_cold_node(page)))
1197                                continue;
1198                        if (step == 2 && (!IS_DNODE(page) ||
1199                                                !is_cold_node(page)))
1200                                continue;
1201
1202                        /*
1203                         * If an fsync mode,
1204                         * we should not skip writing node pages.
1205                         */
1206                        if (ino && ino_of_node(page) == ino)
1207                                lock_page(page);
1208                        else if (!trylock_page(page))
1209                                continue;
1210
1211                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1212continue_unlock:
1213                                unlock_page(page);
1214                                continue;
1215                        }
1216                        if (ino && ino_of_node(page) != ino)
1217                                goto continue_unlock;
1218
1219                        if (!PageDirty(page)) {
1220                                /* someone wrote it for us */
1221                                goto continue_unlock;
1222                        }
1223
1224                        if (!clear_page_dirty_for_io(page))
1225                                goto continue_unlock;
1226
1227                        /* called by fsync() */
1228                        if (ino && IS_DNODE(page)) {
1229                                set_fsync_mark(page, 1);
1230                                if (IS_INODE(page))
1231                                        set_dentry_mark(page,
1232                                                need_dentry_mark(sbi, ino));
1233                                nwritten++;
1234                        } else {
1235                                set_fsync_mark(page, 0);
1236                                set_dentry_mark(page, 0);
1237                        }
1238
1239                        if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1240                                unlock_page(page);
1241                        else
1242                                wrote++;
1243
1244                        if (--wbc->nr_to_write == 0)
1245                                break;
1246                }
1247                pagevec_release(&pvec);
1248                cond_resched();
1249
1250                if (wbc->nr_to_write == 0) {
1251                        step = 2;
1252                        break;
1253                }
1254        }
1255
1256        if (step < 2) {
1257                step++;
1258                goto next_step;
1259        }
1260
1261        if (wrote)
1262                f2fs_submit_merged_bio(sbi, NODE, WRITE);
1263        return nwritten;
1264}
1265
1266int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1267{
1268        pgoff_t index = 0, end = LONG_MAX;
1269        struct pagevec pvec;
1270        int ret2 = 0, ret = 0;
1271
1272        pagevec_init(&pvec, 0);
1273
1274        while (index <= end) {
1275                int i, nr_pages;
1276                nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1277                                PAGECACHE_TAG_WRITEBACK,
1278                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1279                if (nr_pages == 0)
1280                        break;
1281
1282                for (i = 0; i < nr_pages; i++) {
1283                        struct page *page = pvec.pages[i];
1284
1285                        /* until radix tree lookup accepts end_index */
1286                        if (unlikely(page->index > end))
1287                                continue;
1288
1289                        if (ino && ino_of_node(page) == ino) {
1290                                f2fs_wait_on_page_writeback(page, NODE);
1291                                if (TestClearPageError(page))
1292                                        ret = -EIO;
1293                        }
1294                }
1295                pagevec_release(&pvec);
1296                cond_resched();
1297        }
1298
1299        if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1300                ret2 = -ENOSPC;
1301        if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1302                ret2 = -EIO;
1303        if (!ret)
1304                ret = ret2;
1305        return ret;
1306}
1307
1308static int f2fs_write_node_page(struct page *page,
1309                                struct writeback_control *wbc)
1310{
1311        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1312        nid_t nid;
1313        struct node_info ni;
1314        struct f2fs_io_info fio = {
1315                .sbi = sbi,
1316                .type = NODE,
1317                .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1318                .page = page,
1319                .encrypted_page = NULL,
1320        };
1321
1322        trace_f2fs_writepage(page, NODE);
1323
1324        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1325                goto redirty_out;
1326        if (unlikely(f2fs_cp_error(sbi)))
1327                goto redirty_out;
1328
1329        f2fs_wait_on_page_writeback(page, NODE);
1330
1331        /* get old block addr of this node page */
1332        nid = nid_of_node(page);
1333        f2fs_bug_on(sbi, page->index != nid);
1334
1335        if (wbc->for_reclaim) {
1336                if (!down_read_trylock(&sbi->node_write))
1337                        goto redirty_out;
1338        } else {
1339                down_read(&sbi->node_write);
1340        }
1341
1342        get_node_info(sbi, nid, &ni);
1343
1344        /* This page is already truncated */
1345        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1346                ClearPageUptodate(page);
1347                dec_page_count(sbi, F2FS_DIRTY_NODES);
1348                up_read(&sbi->node_write);
1349                unlock_page(page);
1350                return 0;
1351        }
1352
1353        set_page_writeback(page);
1354        fio.blk_addr = ni.blk_addr;
1355        write_node_page(nid, &fio);
1356        set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1357        dec_page_count(sbi, F2FS_DIRTY_NODES);
1358        up_read(&sbi->node_write);
1359        unlock_page(page);
1360
1361        if (wbc->for_reclaim || unlikely(f2fs_cp_error(sbi)))
1362                f2fs_submit_merged_bio(sbi, NODE, WRITE);
1363
1364        return 0;
1365
1366redirty_out:
1367        redirty_page_for_writepage(wbc, page);
1368        return AOP_WRITEPAGE_ACTIVATE;
1369}
1370
1371static int f2fs_write_node_pages(struct address_space *mapping,
1372                            struct writeback_control *wbc)
1373{
1374        struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1375        long diff;
1376
1377        trace_f2fs_writepages(mapping->host, wbc, NODE);
1378
1379        /* balancing f2fs's metadata in background */
1380        f2fs_balance_fs_bg(sbi);
1381
1382        /* collect a number of dirty node pages and write together */
1383        if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1384                goto skip_write;
1385
1386        diff = nr_pages_to_write(sbi, NODE, wbc);
1387        wbc->sync_mode = WB_SYNC_NONE;
1388        sync_node_pages(sbi, 0, wbc);
1389        wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1390        return 0;
1391
1392skip_write:
1393        wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1394        return 0;
1395}
1396
1397static int f2fs_set_node_page_dirty(struct page *page)
1398{
1399        trace_f2fs_set_page_dirty(page, NODE);
1400
1401        SetPageUptodate(page);
1402        if (!PageDirty(page)) {
1403                __set_page_dirty_nobuffers(page);
1404                inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1405                SetPagePrivate(page);
1406                f2fs_trace_pid(page);
1407                return 1;
1408        }
1409        return 0;
1410}
1411
1412/*
1413 * Structure of the f2fs node operations
1414 */
1415const struct address_space_operations f2fs_node_aops = {
1416        .writepage      = f2fs_write_node_page,
1417        .writepages     = f2fs_write_node_pages,
1418        .set_page_dirty = f2fs_set_node_page_dirty,
1419        .invalidatepage = f2fs_invalidate_page,
1420        .releasepage    = f2fs_release_page,
1421};
1422
1423static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1424                                                nid_t n)
1425{
1426        return radix_tree_lookup(&nm_i->free_nid_root, n);
1427}
1428
1429static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1430                                                struct free_nid *i)
1431{
1432        list_del(&i->list);
1433        radix_tree_delete(&nm_i->free_nid_root, i->nid);
1434}
1435
1436static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1437{
1438        struct f2fs_nm_info *nm_i = NM_I(sbi);
1439        struct free_nid *i;
1440        struct nat_entry *ne;
1441        bool allocated = false;
1442
1443        if (!available_free_memory(sbi, FREE_NIDS))
1444                return -1;
1445
1446        /* 0 nid should not be used */
1447        if (unlikely(nid == 0))
1448                return 0;
1449
1450        if (build) {
1451                /* do not add allocated nids */
1452                ne = __lookup_nat_cache(nm_i, nid);
1453                if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1454                                nat_get_blkaddr(ne) != NULL_ADDR))
1455                        allocated = true;
1456                if (allocated)
1457                        return 0;
1458        }
1459
1460        i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1461        i->nid = nid;
1462        i->state = NID_NEW;
1463
1464        if (radix_tree_preload(GFP_NOFS)) {
1465                kmem_cache_free(free_nid_slab, i);
1466                return 0;
1467        }
1468
1469        spin_lock(&nm_i->free_nid_list_lock);
1470        if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1471                spin_unlock(&nm_i->free_nid_list_lock);
1472                radix_tree_preload_end();
1473                kmem_cache_free(free_nid_slab, i);
1474                return 0;
1475        }
1476        list_add_tail(&i->list, &nm_i->free_nid_list);
1477        nm_i->fcnt++;
1478        spin_unlock(&nm_i->free_nid_list_lock);
1479        radix_tree_preload_end();
1480        return 1;
1481}
1482
1483static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1484{
1485        struct free_nid *i;
1486        bool need_free = false;
1487
1488        spin_lock(&nm_i->free_nid_list_lock);
1489        i = __lookup_free_nid_list(nm_i, nid);
1490        if (i && i->state == NID_NEW) {
1491                __del_from_free_nid_list(nm_i, i);
1492                nm_i->fcnt--;
1493                need_free = true;
1494        }
1495        spin_unlock(&nm_i->free_nid_list_lock);
1496
1497        if (need_free)
1498                kmem_cache_free(free_nid_slab, i);
1499}
1500
1501static void scan_nat_page(struct f2fs_sb_info *sbi,
1502                        struct page *nat_page, nid_t start_nid)
1503{
1504        struct f2fs_nm_info *nm_i = NM_I(sbi);
1505        struct f2fs_nat_block *nat_blk = page_address(nat_page);
1506        block_t blk_addr;
1507        int i;
1508
1509        i = start_nid % NAT_ENTRY_PER_BLOCK;
1510
1511        for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1512
1513                if (unlikely(start_nid >= nm_i->max_nid))
1514                        break;
1515
1516                blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1517                f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1518                if (blk_addr == NULL_ADDR) {
1519                        if (add_free_nid(sbi, start_nid, true) < 0)
1520                                break;
1521                }
1522        }
1523}
1524
1525static void build_free_nids(struct f2fs_sb_info *sbi)
1526{
1527        struct f2fs_nm_info *nm_i = NM_I(sbi);
1528        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1529        struct f2fs_summary_block *sum = curseg->sum_blk;
1530        int i = 0;
1531        nid_t nid = nm_i->next_scan_nid;
1532
1533        /* Enough entries */
1534        if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1535                return;
1536
1537        /* readahead nat pages to be scanned */
1538        ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1539                                                        META_NAT, true);
1540
1541        down_read(&nm_i->nat_tree_lock);
1542
1543        while (1) {
1544                struct page *page = get_current_nat_page(sbi, nid);
1545
1546                scan_nat_page(sbi, page, nid);
1547                f2fs_put_page(page, 1);
1548
1549                nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1550                if (unlikely(nid >= nm_i->max_nid))
1551                        nid = 0;
1552
1553                if (++i >= FREE_NID_PAGES)
1554                        break;
1555        }
1556
1557        /* go to the next free nat pages to find free nids abundantly */
1558        nm_i->next_scan_nid = nid;
1559
1560        /* find free nids from current sum_pages */
1561        mutex_lock(&curseg->curseg_mutex);
1562        for (i = 0; i < nats_in_cursum(sum); i++) {
1563                block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1564                nid = le32_to_cpu(nid_in_journal(sum, i));
1565                if (addr == NULL_ADDR)
1566                        add_free_nid(sbi, nid, true);
1567                else
1568                        remove_free_nid(nm_i, nid);
1569        }
1570        mutex_unlock(&curseg->curseg_mutex);
1571        up_read(&nm_i->nat_tree_lock);
1572
1573        ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1574                                        nm_i->ra_nid_pages, META_NAT, false);
1575}
1576
1577/*
1578 * If this function returns success, caller can obtain a new nid
1579 * from second parameter of this function.
1580 * The returned nid could be used ino as well as nid when inode is created.
1581 */
1582bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1583{
1584        struct f2fs_nm_info *nm_i = NM_I(sbi);
1585        struct free_nid *i = NULL;
1586retry:
1587        if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1588                return false;
1589
1590        spin_lock(&nm_i->free_nid_list_lock);
1591
1592        /* We should not use stale free nids created by build_free_nids */
1593        if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1594                f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1595                list_for_each_entry(i, &nm_i->free_nid_list, list)
1596                        if (i->state == NID_NEW)
1597                                break;
1598
1599                f2fs_bug_on(sbi, i->state != NID_NEW);
1600                *nid = i->nid;
1601                i->state = NID_ALLOC;
1602                nm_i->fcnt--;
1603                spin_unlock(&nm_i->free_nid_list_lock);
1604                return true;
1605        }
1606        spin_unlock(&nm_i->free_nid_list_lock);
1607
1608        /* Let's scan nat pages and its caches to get free nids */
1609        mutex_lock(&nm_i->build_lock);
1610        build_free_nids(sbi);
1611        mutex_unlock(&nm_i->build_lock);
1612        goto retry;
1613}
1614
1615/*
1616 * alloc_nid() should be called prior to this function.
1617 */
1618void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1619{
1620        struct f2fs_nm_info *nm_i = NM_I(sbi);
1621        struct free_nid *i;
1622
1623        spin_lock(&nm_i->free_nid_list_lock);
1624        i = __lookup_free_nid_list(nm_i, nid);
1625        f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1626        __del_from_free_nid_list(nm_i, i);
1627        spin_unlock(&nm_i->free_nid_list_lock);
1628
1629        kmem_cache_free(free_nid_slab, i);
1630}
1631
1632/*
1633 * alloc_nid() should be called prior to this function.
1634 */
1635void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1636{
1637        struct f2fs_nm_info *nm_i = NM_I(sbi);
1638        struct free_nid *i;
1639        bool need_free = false;
1640
1641        if (!nid)
1642                return;
1643
1644        spin_lock(&nm_i->free_nid_list_lock);
1645        i = __lookup_free_nid_list(nm_i, nid);
1646        f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1647        if (!available_free_memory(sbi, FREE_NIDS)) {
1648                __del_from_free_nid_list(nm_i, i);
1649                need_free = true;
1650        } else {
1651                i->state = NID_NEW;
1652                nm_i->fcnt++;
1653        }
1654        spin_unlock(&nm_i->free_nid_list_lock);
1655
1656        if (need_free)
1657                kmem_cache_free(free_nid_slab, i);
1658}
1659
1660int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1661{
1662        struct f2fs_nm_info *nm_i = NM_I(sbi);
1663        struct free_nid *i, *next;
1664        int nr = nr_shrink;
1665
1666        if (!mutex_trylock(&nm_i->build_lock))
1667                return 0;
1668
1669        spin_lock(&nm_i->free_nid_list_lock);
1670        list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1671                if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1672                        break;
1673                if (i->state == NID_ALLOC)
1674                        continue;
1675                __del_from_free_nid_list(nm_i, i);
1676                kmem_cache_free(free_nid_slab, i);
1677                nm_i->fcnt--;
1678                nr_shrink--;
1679        }
1680        spin_unlock(&nm_i->free_nid_list_lock);
1681        mutex_unlock(&nm_i->build_lock);
1682
1683        return nr - nr_shrink;
1684}
1685
1686void recover_inline_xattr(struct inode *inode, struct page *page)
1687{
1688        void *src_addr, *dst_addr;
1689        size_t inline_size;
1690        struct page *ipage;
1691        struct f2fs_inode *ri;
1692
1693        ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1694        f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1695
1696        ri = F2FS_INODE(page);
1697        if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1698                clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1699                goto update_inode;
1700        }
1701
1702        dst_addr = inline_xattr_addr(ipage);
1703        src_addr = inline_xattr_addr(page);
1704        inline_size = inline_xattr_size(inode);
1705
1706        f2fs_wait_on_page_writeback(ipage, NODE);
1707        memcpy(dst_addr, src_addr, inline_size);
1708update_inode:
1709        update_inode(inode, ipage);
1710        f2fs_put_page(ipage, 1);
1711}
1712
1713void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1714{
1715        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1716        nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1717        nid_t new_xnid = nid_of_node(page);
1718        struct node_info ni;
1719
1720        /* 1: invalidate the previous xattr nid */
1721        if (!prev_xnid)
1722                goto recover_xnid;
1723
1724        /* Deallocate node address */
1725        get_node_info(sbi, prev_xnid, &ni);
1726        f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1727        invalidate_blocks(sbi, ni.blk_addr);
1728        dec_valid_node_count(sbi, inode);
1729        set_node_addr(sbi, &ni, NULL_ADDR, false);
1730
1731recover_xnid:
1732        /* 2: allocate new xattr nid */
1733        if (unlikely(!inc_valid_node_count(sbi, inode)))
1734                f2fs_bug_on(sbi, 1);
1735
1736        remove_free_nid(NM_I(sbi), new_xnid);
1737        get_node_info(sbi, new_xnid, &ni);
1738        ni.ino = inode->i_ino;
1739        set_node_addr(sbi, &ni, NEW_ADDR, false);
1740        F2FS_I(inode)->i_xattr_nid = new_xnid;
1741
1742        /* 3: update xattr blkaddr */
1743        refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1744        set_node_addr(sbi, &ni, blkaddr, false);
1745
1746        update_inode_page(inode);
1747}
1748
1749int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1750{
1751        struct f2fs_inode *src, *dst;
1752        nid_t ino = ino_of_node(page);
1753        struct node_info old_ni, new_ni;
1754        struct page *ipage;
1755
1756        get_node_info(sbi, ino, &old_ni);
1757
1758        if (unlikely(old_ni.blk_addr != NULL_ADDR))
1759                return -EINVAL;
1760
1761        ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1762        if (!ipage)
1763                return -ENOMEM;
1764
1765        /* Should not use this inode from free nid list */
1766        remove_free_nid(NM_I(sbi), ino);
1767
1768        SetPageUptodate(ipage);
1769        fill_node_footer(ipage, ino, ino, 0, true);
1770
1771        src = F2FS_INODE(page);
1772        dst = F2FS_INODE(ipage);
1773
1774        memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1775        dst->i_size = 0;
1776        dst->i_blocks = cpu_to_le64(1);
1777        dst->i_links = cpu_to_le32(1);
1778        dst->i_xattr_nid = 0;
1779        dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1780
1781        new_ni = old_ni;
1782        new_ni.ino = ino;
1783
1784        if (unlikely(!inc_valid_node_count(sbi, NULL)))
1785                WARN_ON(1);
1786        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1787        inc_valid_inode_count(sbi);
1788        set_page_dirty(ipage);
1789        f2fs_put_page(ipage, 1);
1790        return 0;
1791}
1792
1793int restore_node_summary(struct f2fs_sb_info *sbi,
1794                        unsigned int segno, struct f2fs_summary_block *sum)
1795{
1796        struct f2fs_node *rn;
1797        struct f2fs_summary *sum_entry;
1798        block_t addr;
1799        int bio_blocks = MAX_BIO_BLOCKS(sbi);
1800        int i, idx, last_offset, nrpages;
1801
1802        /* scan the node segment */
1803        last_offset = sbi->blocks_per_seg;
1804        addr = START_BLOCK(sbi, segno);
1805        sum_entry = &sum->entries[0];
1806
1807        for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1808                nrpages = min(last_offset - i, bio_blocks);
1809
1810                /* readahead node pages */
1811                ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1812
1813                for (idx = addr; idx < addr + nrpages; idx++) {
1814                        struct page *page = get_tmp_page(sbi, idx);
1815
1816                        rn = F2FS_NODE(page);
1817                        sum_entry->nid = rn->footer.nid;
1818                        sum_entry->version = 0;
1819                        sum_entry->ofs_in_node = 0;
1820                        sum_entry++;
1821                        f2fs_put_page(page, 1);
1822                }
1823
1824                invalidate_mapping_pages(META_MAPPING(sbi), addr,
1825                                                        addr + nrpages);
1826        }
1827        return 0;
1828}
1829
1830static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1831{
1832        struct f2fs_nm_info *nm_i = NM_I(sbi);
1833        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1834        struct f2fs_summary_block *sum = curseg->sum_blk;
1835        int i;
1836
1837        mutex_lock(&curseg->curseg_mutex);
1838        for (i = 0; i < nats_in_cursum(sum); i++) {
1839                struct nat_entry *ne;
1840                struct f2fs_nat_entry raw_ne;
1841                nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1842
1843                raw_ne = nat_in_journal(sum, i);
1844
1845                ne = __lookup_nat_cache(nm_i, nid);
1846                if (!ne) {
1847                        ne = grab_nat_entry(nm_i, nid);
1848                        node_info_from_raw_nat(&ne->ni, &raw_ne);
1849                }
1850                __set_nat_cache_dirty(nm_i, ne);
1851        }
1852        update_nats_in_cursum(sum, -i);
1853        mutex_unlock(&curseg->curseg_mutex);
1854}
1855
1856static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1857                                                struct list_head *head, int max)
1858{
1859        struct nat_entry_set *cur;
1860
1861        if (nes->entry_cnt >= max)
1862                goto add_out;
1863
1864        list_for_each_entry(cur, head, set_list) {
1865                if (cur->entry_cnt >= nes->entry_cnt) {
1866                        list_add(&nes->set_list, cur->set_list.prev);
1867                        return;
1868                }
1869        }
1870add_out:
1871        list_add_tail(&nes->set_list, head);
1872}
1873
1874static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1875                                        struct nat_entry_set *set)
1876{
1877        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1878        struct f2fs_summary_block *sum = curseg->sum_blk;
1879        nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1880        bool to_journal = true;
1881        struct f2fs_nat_block *nat_blk;
1882        struct nat_entry *ne, *cur;
1883        struct page *page = NULL;
1884
1885        /*
1886         * there are two steps to flush nat entries:
1887         * #1, flush nat entries to journal in current hot data summary block.
1888         * #2, flush nat entries to nat page.
1889         */
1890        if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1891                to_journal = false;
1892
1893        if (to_journal) {
1894                mutex_lock(&curseg->curseg_mutex);
1895        } else {
1896                page = get_next_nat_page(sbi, start_nid);
1897                nat_blk = page_address(page);
1898                f2fs_bug_on(sbi, !nat_blk);
1899        }
1900
1901        /* flush dirty nats in nat entry set */
1902        list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1903                struct f2fs_nat_entry *raw_ne;
1904                nid_t nid = nat_get_nid(ne);
1905                int offset;
1906
1907                if (nat_get_blkaddr(ne) == NEW_ADDR)
1908                        continue;
1909
1910                if (to_journal) {
1911                        offset = lookup_journal_in_cursum(sum,
1912                                                        NAT_JOURNAL, nid, 1);
1913                        f2fs_bug_on(sbi, offset < 0);
1914                        raw_ne = &nat_in_journal(sum, offset);
1915                        nid_in_journal(sum, offset) = cpu_to_le32(nid);
1916                } else {
1917                        raw_ne = &nat_blk->entries[nid - start_nid];
1918                }
1919                raw_nat_from_node_info(raw_ne, &ne->ni);
1920                nat_reset_flag(ne);
1921                __clear_nat_cache_dirty(NM_I(sbi), ne);
1922                if (nat_get_blkaddr(ne) == NULL_ADDR)
1923                        add_free_nid(sbi, nid, false);
1924        }
1925
1926        if (to_journal)
1927                mutex_unlock(&curseg->curseg_mutex);
1928        else
1929                f2fs_put_page(page, 1);
1930
1931        f2fs_bug_on(sbi, set->entry_cnt);
1932
1933        radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1934        kmem_cache_free(nat_entry_set_slab, set);
1935}
1936
1937/*
1938 * This function is called during the checkpointing process.
1939 */
1940void flush_nat_entries(struct f2fs_sb_info *sbi)
1941{
1942        struct f2fs_nm_info *nm_i = NM_I(sbi);
1943        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1944        struct f2fs_summary_block *sum = curseg->sum_blk;
1945        struct nat_entry_set *setvec[SETVEC_SIZE];
1946        struct nat_entry_set *set, *tmp;
1947        unsigned int found;
1948        nid_t set_idx = 0;
1949        LIST_HEAD(sets);
1950
1951        if (!nm_i->dirty_nat_cnt)
1952                return;
1953
1954        down_write(&nm_i->nat_tree_lock);
1955
1956        /*
1957         * if there are no enough space in journal to store dirty nat
1958         * entries, remove all entries from journal and merge them
1959         * into nat entry set.
1960         */
1961        if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1962                remove_nats_in_journal(sbi);
1963
1964        while ((found = __gang_lookup_nat_set(nm_i,
1965                                        set_idx, SETVEC_SIZE, setvec))) {
1966                unsigned idx;
1967                set_idx = setvec[found - 1]->set + 1;
1968                for (idx = 0; idx < found; idx++)
1969                        __adjust_nat_entry_set(setvec[idx], &sets,
1970                                                        MAX_NAT_JENTRIES(sum));
1971        }
1972
1973        /* flush dirty nats in nat entry set */
1974        list_for_each_entry_safe(set, tmp, &sets, set_list)
1975                __flush_nat_entry_set(sbi, set);
1976
1977        up_write(&nm_i->nat_tree_lock);
1978
1979        f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1980}
1981
1982static int init_node_manager(struct f2fs_sb_info *sbi)
1983{
1984        struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1985        struct f2fs_nm_info *nm_i = NM_I(sbi);
1986        unsigned char *version_bitmap;
1987        unsigned int nat_segs, nat_blocks;
1988
1989        nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1990
1991        /* segment_count_nat includes pair segment so divide to 2. */
1992        nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1993        nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1994
1995        nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1996
1997        /* not used nids: 0, node, meta, (and root counted as valid node) */
1998        nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1999        nm_i->fcnt = 0;
2000        nm_i->nat_cnt = 0;
2001        nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2002        nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2003
2004        INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2005        INIT_LIST_HEAD(&nm_i->free_nid_list);
2006        INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2007        INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2008        INIT_LIST_HEAD(&nm_i->nat_entries);
2009
2010        mutex_init(&nm_i->build_lock);
2011        spin_lock_init(&nm_i->free_nid_list_lock);
2012        init_rwsem(&nm_i->nat_tree_lock);
2013
2014        nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2015        nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2016        version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2017        if (!version_bitmap)
2018                return -EFAULT;
2019
2020        nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2021                                        GFP_KERNEL);
2022        if (!nm_i->nat_bitmap)
2023                return -ENOMEM;
2024        return 0;
2025}
2026
2027int build_node_manager(struct f2fs_sb_info *sbi)
2028{
2029        int err;
2030
2031        sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2032        if (!sbi->nm_info)
2033                return -ENOMEM;
2034
2035        err = init_node_manager(sbi);
2036        if (err)
2037                return err;
2038
2039        build_free_nids(sbi);
2040        return 0;
2041}
2042
2043void destroy_node_manager(struct f2fs_sb_info *sbi)
2044{
2045        struct f2fs_nm_info *nm_i = NM_I(sbi);
2046        struct free_nid *i, *next_i;
2047        struct nat_entry *natvec[NATVEC_SIZE];
2048        struct nat_entry_set *setvec[SETVEC_SIZE];
2049        nid_t nid = 0;
2050        unsigned int found;
2051
2052        if (!nm_i)
2053                return;
2054
2055        /* destroy free nid list */
2056        spin_lock(&nm_i->free_nid_list_lock);
2057        list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2058                f2fs_bug_on(sbi, i->state == NID_ALLOC);
2059                __del_from_free_nid_list(nm_i, i);
2060                nm_i->fcnt--;
2061                spin_unlock(&nm_i->free_nid_list_lock);
2062                kmem_cache_free(free_nid_slab, i);
2063                spin_lock(&nm_i->free_nid_list_lock);
2064        }
2065        f2fs_bug_on(sbi, nm_i->fcnt);
2066        spin_unlock(&nm_i->free_nid_list_lock);
2067
2068        /* destroy nat cache */
2069        down_write(&nm_i->nat_tree_lock);
2070        while ((found = __gang_lookup_nat_cache(nm_i,
2071                                        nid, NATVEC_SIZE, natvec))) {
2072                unsigned idx;
2073
2074                nid = nat_get_nid(natvec[found - 1]) + 1;
2075                for (idx = 0; idx < found; idx++)
2076                        __del_from_nat_cache(nm_i, natvec[idx]);
2077        }
2078        f2fs_bug_on(sbi, nm_i->nat_cnt);
2079
2080        /* destroy nat set cache */
2081        nid = 0;
2082        while ((found = __gang_lookup_nat_set(nm_i,
2083                                        nid, SETVEC_SIZE, setvec))) {
2084                unsigned idx;
2085
2086                nid = setvec[found - 1]->set + 1;
2087                for (idx = 0; idx < found; idx++) {
2088                        /* entry_cnt is not zero, when cp_error was occurred */
2089                        f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2090                        radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2091                        kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2092                }
2093        }
2094        up_write(&nm_i->nat_tree_lock);
2095
2096        kfree(nm_i->nat_bitmap);
2097        sbi->nm_info = NULL;
2098        kfree(nm_i);
2099}
2100
2101int __init create_node_manager_caches(void)
2102{
2103        nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2104                        sizeof(struct nat_entry));
2105        if (!nat_entry_slab)
2106                goto fail;
2107
2108        free_nid_slab = f2fs_kmem_cache_create("free_nid",
2109                        sizeof(struct free_nid));
2110        if (!free_nid_slab)
2111                goto destroy_nat_entry;
2112
2113        nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2114                        sizeof(struct nat_entry_set));
2115        if (!nat_entry_set_slab)
2116                goto destroy_free_nid;
2117        return 0;
2118
2119destroy_free_nid:
2120        kmem_cache_destroy(free_nid_slab);
2121destroy_nat_entry:
2122        kmem_cache_destroy(nat_entry_slab);
2123fail:
2124        return -ENOMEM;
2125}
2126
2127void destroy_node_manager_caches(void)
2128{
2129        kmem_cache_destroy(nat_entry_set_slab);
2130        kmem_cache_destroy(free_nid_slab);
2131        kmem_cache_destroy(nat_entry_slab);
2132}
2133