linux/fs/nfs/dir.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996  Added silly rename for unlink   --okir
   9 * 28 Sep 1996  Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/time.h>
  22#include <linux/errno.h>
  23#include <linux/stat.h>
  24#include <linux/fcntl.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/mm.h>
  29#include <linux/sunrpc/clnt.h>
  30#include <linux/nfs_fs.h>
  31#include <linux/nfs_mount.h>
  32#include <linux/pagemap.h>
  33#include <linux/pagevec.h>
  34#include <linux/namei.h>
  35#include <linux/mount.h>
  36#include <linux/swap.h>
  37#include <linux/sched.h>
  38#include <linux/kmemleak.h>
  39#include <linux/xattr.h>
  40
  41#include "delegation.h"
  42#include "iostat.h"
  43#include "internal.h"
  44#include "fscache.h"
  45
  46#include "nfstrace.h"
  47
  48/* #define NFS_DEBUG_VERBOSE 1 */
  49
  50static int nfs_opendir(struct inode *, struct file *);
  51static int nfs_closedir(struct inode *, struct file *);
  52static int nfs_readdir(struct file *, struct dir_context *);
  53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  55static void nfs_readdir_clear_array(struct page*);
  56
  57const struct file_operations nfs_dir_operations = {
  58        .llseek         = nfs_llseek_dir,
  59        .read           = generic_read_dir,
  60        .iterate        = nfs_readdir,
  61        .open           = nfs_opendir,
  62        .release        = nfs_closedir,
  63        .fsync          = nfs_fsync_dir,
  64};
  65
  66const struct address_space_operations nfs_dir_aops = {
  67        .freepage = nfs_readdir_clear_array,
  68};
  69
  70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
  71{
  72        struct nfs_inode *nfsi = NFS_I(dir);
  73        struct nfs_open_dir_context *ctx;
  74        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  75        if (ctx != NULL) {
  76                ctx->duped = 0;
  77                ctx->attr_gencount = nfsi->attr_gencount;
  78                ctx->dir_cookie = 0;
  79                ctx->dup_cookie = 0;
  80                ctx->cred = get_rpccred(cred);
  81                spin_lock(&dir->i_lock);
  82                list_add(&ctx->list, &nfsi->open_files);
  83                spin_unlock(&dir->i_lock);
  84                return ctx;
  85        }
  86        return  ERR_PTR(-ENOMEM);
  87}
  88
  89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  90{
  91        spin_lock(&dir->i_lock);
  92        list_del(&ctx->list);
  93        spin_unlock(&dir->i_lock);
  94        put_rpccred(ctx->cred);
  95        kfree(ctx);
  96}
  97
  98/*
  99 * Open file
 100 */
 101static int
 102nfs_opendir(struct inode *inode, struct file *filp)
 103{
 104        int res = 0;
 105        struct nfs_open_dir_context *ctx;
 106        struct rpc_cred *cred;
 107
 108        dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 109
 110        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 111
 112        cred = rpc_lookup_cred();
 113        if (IS_ERR(cred))
 114                return PTR_ERR(cred);
 115        ctx = alloc_nfs_open_dir_context(inode, cred);
 116        if (IS_ERR(ctx)) {
 117                res = PTR_ERR(ctx);
 118                goto out;
 119        }
 120        filp->private_data = ctx;
 121        if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
 122                /* This is a mountpoint, so d_revalidate will never
 123                 * have been called, so we need to refresh the
 124                 * inode (for close-open consistency) ourselves.
 125                 */
 126                __nfs_revalidate_inode(NFS_SERVER(inode), inode);
 127        }
 128out:
 129        put_rpccred(cred);
 130        return res;
 131}
 132
 133static int
 134nfs_closedir(struct inode *inode, struct file *filp)
 135{
 136        put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 137        return 0;
 138}
 139
 140struct nfs_cache_array_entry {
 141        u64 cookie;
 142        u64 ino;
 143        struct qstr string;
 144        unsigned char d_type;
 145};
 146
 147struct nfs_cache_array {
 148        int size;
 149        int eof_index;
 150        u64 last_cookie;
 151        struct nfs_cache_array_entry array[0];
 152};
 153
 154typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
 155typedef struct {
 156        struct file     *file;
 157        struct page     *page;
 158        struct dir_context *ctx;
 159        unsigned long   page_index;
 160        u64             *dir_cookie;
 161        u64             last_cookie;
 162        loff_t          current_index;
 163        decode_dirent_t decode;
 164
 165        unsigned long   timestamp;
 166        unsigned long   gencount;
 167        unsigned int    cache_entry_index;
 168        unsigned int    plus:1;
 169        unsigned int    eof:1;
 170} nfs_readdir_descriptor_t;
 171
 172/*
 173 * The caller is responsible for calling nfs_readdir_release_array(page)
 174 */
 175static
 176struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
 177{
 178        void *ptr;
 179        if (page == NULL)
 180                return ERR_PTR(-EIO);
 181        ptr = kmap(page);
 182        if (ptr == NULL)
 183                return ERR_PTR(-ENOMEM);
 184        return ptr;
 185}
 186
 187static
 188void nfs_readdir_release_array(struct page *page)
 189{
 190        kunmap(page);
 191}
 192
 193/*
 194 * we are freeing strings created by nfs_add_to_readdir_array()
 195 */
 196static
 197void nfs_readdir_clear_array(struct page *page)
 198{
 199        struct nfs_cache_array *array;
 200        int i;
 201
 202        array = kmap_atomic(page);
 203        for (i = 0; i < array->size; i++)
 204                kfree(array->array[i].string.name);
 205        kunmap_atomic(array);
 206}
 207
 208/*
 209 * the caller is responsible for freeing qstr.name
 210 * when called by nfs_readdir_add_to_array, the strings will be freed in
 211 * nfs_clear_readdir_array()
 212 */
 213static
 214int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 215{
 216        string->len = len;
 217        string->name = kmemdup(name, len, GFP_KERNEL);
 218        if (string->name == NULL)
 219                return -ENOMEM;
 220        /*
 221         * Avoid a kmemleak false positive. The pointer to the name is stored
 222         * in a page cache page which kmemleak does not scan.
 223         */
 224        kmemleak_not_leak(string->name);
 225        string->hash = full_name_hash(name, len);
 226        return 0;
 227}
 228
 229static
 230int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 231{
 232        struct nfs_cache_array *array = nfs_readdir_get_array(page);
 233        struct nfs_cache_array_entry *cache_entry;
 234        int ret;
 235
 236        if (IS_ERR(array))
 237                return PTR_ERR(array);
 238
 239        cache_entry = &array->array[array->size];
 240
 241        /* Check that this entry lies within the page bounds */
 242        ret = -ENOSPC;
 243        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 244                goto out;
 245
 246        cache_entry->cookie = entry->prev_cookie;
 247        cache_entry->ino = entry->ino;
 248        cache_entry->d_type = entry->d_type;
 249        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 250        if (ret)
 251                goto out;
 252        array->last_cookie = entry->cookie;
 253        array->size++;
 254        if (entry->eof != 0)
 255                array->eof_index = array->size;
 256out:
 257        nfs_readdir_release_array(page);
 258        return ret;
 259}
 260
 261static
 262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 263{
 264        loff_t diff = desc->ctx->pos - desc->current_index;
 265        unsigned int index;
 266
 267        if (diff < 0)
 268                goto out_eof;
 269        if (diff >= array->size) {
 270                if (array->eof_index >= 0)
 271                        goto out_eof;
 272                return -EAGAIN;
 273        }
 274
 275        index = (unsigned int)diff;
 276        *desc->dir_cookie = array->array[index].cookie;
 277        desc->cache_entry_index = index;
 278        return 0;
 279out_eof:
 280        desc->eof = 1;
 281        return -EBADCOOKIE;
 282}
 283
 284static bool
 285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 286{
 287        if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 288                return false;
 289        smp_rmb();
 290        return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 291}
 292
 293static
 294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 295{
 296        int i;
 297        loff_t new_pos;
 298        int status = -EAGAIN;
 299
 300        for (i = 0; i < array->size; i++) {
 301                if (array->array[i].cookie == *desc->dir_cookie) {
 302                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 303                        struct nfs_open_dir_context *ctx = desc->file->private_data;
 304
 305                        new_pos = desc->current_index + i;
 306                        if (ctx->attr_gencount != nfsi->attr_gencount ||
 307                            !nfs_readdir_inode_mapping_valid(nfsi)) {
 308                                ctx->duped = 0;
 309                                ctx->attr_gencount = nfsi->attr_gencount;
 310                        } else if (new_pos < desc->ctx->pos) {
 311                                if (ctx->duped > 0
 312                                    && ctx->dup_cookie == *desc->dir_cookie) {
 313                                        if (printk_ratelimit()) {
 314                                                pr_notice("NFS: directory %pD2 contains a readdir loop."
 315                                                                "Please contact your server vendor.  "
 316                                                                "The file: %.*s has duplicate cookie %llu\n",
 317                                                                desc->file, array->array[i].string.len,
 318                                                                array->array[i].string.name, *desc->dir_cookie);
 319                                        }
 320                                        status = -ELOOP;
 321                                        goto out;
 322                                }
 323                                ctx->dup_cookie = *desc->dir_cookie;
 324                                ctx->duped = -1;
 325                        }
 326                        desc->ctx->pos = new_pos;
 327                        desc->cache_entry_index = i;
 328                        return 0;
 329                }
 330        }
 331        if (array->eof_index >= 0) {
 332                status = -EBADCOOKIE;
 333                if (*desc->dir_cookie == array->last_cookie)
 334                        desc->eof = 1;
 335        }
 336out:
 337        return status;
 338}
 339
 340static
 341int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 342{
 343        struct nfs_cache_array *array;
 344        int status;
 345
 346        array = nfs_readdir_get_array(desc->page);
 347        if (IS_ERR(array)) {
 348                status = PTR_ERR(array);
 349                goto out;
 350        }
 351
 352        if (*desc->dir_cookie == 0)
 353                status = nfs_readdir_search_for_pos(array, desc);
 354        else
 355                status = nfs_readdir_search_for_cookie(array, desc);
 356
 357        if (status == -EAGAIN) {
 358                desc->last_cookie = array->last_cookie;
 359                desc->current_index += array->size;
 360                desc->page_index++;
 361        }
 362        nfs_readdir_release_array(desc->page);
 363out:
 364        return status;
 365}
 366
 367/* Fill a page with xdr information before transferring to the cache page */
 368static
 369int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 370                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 371{
 372        struct nfs_open_dir_context *ctx = file->private_data;
 373        struct rpc_cred *cred = ctx->cred;
 374        unsigned long   timestamp, gencount;
 375        int             error;
 376
 377 again:
 378        timestamp = jiffies;
 379        gencount = nfs_inc_attr_generation_counter();
 380        error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
 381                                          NFS_SERVER(inode)->dtsize, desc->plus);
 382        if (error < 0) {
 383                /* We requested READDIRPLUS, but the server doesn't grok it */
 384                if (error == -ENOTSUPP && desc->plus) {
 385                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 386                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 387                        desc->plus = 0;
 388                        goto again;
 389                }
 390                goto error;
 391        }
 392        desc->timestamp = timestamp;
 393        desc->gencount = gencount;
 394error:
 395        return error;
 396}
 397
 398static int xdr_decode(nfs_readdir_descriptor_t *desc,
 399                      struct nfs_entry *entry, struct xdr_stream *xdr)
 400{
 401        int error;
 402
 403        error = desc->decode(xdr, entry, desc->plus);
 404        if (error)
 405                return error;
 406        entry->fattr->time_start = desc->timestamp;
 407        entry->fattr->gencount = desc->gencount;
 408        return 0;
 409}
 410
 411/* Match file and dirent using either filehandle or fileid
 412 * Note: caller is responsible for checking the fsid
 413 */
 414static
 415int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 416{
 417        struct nfs_inode *nfsi;
 418
 419        if (d_really_is_negative(dentry))
 420                return 0;
 421
 422        nfsi = NFS_I(d_inode(dentry));
 423        if (entry->fattr->fileid == nfsi->fileid)
 424                return 1;
 425        if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
 426                return 1;
 427        return 0;
 428}
 429
 430static
 431bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 432{
 433        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 434                return false;
 435        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 436                return true;
 437        if (ctx->pos == 0)
 438                return true;
 439        return false;
 440}
 441
 442/*
 443 * This function is called by the lookup code to request the use of
 444 * readdirplus to accelerate any future lookups in the same
 445 * directory.
 446 */
 447static
 448void nfs_advise_use_readdirplus(struct inode *dir)
 449{
 450        set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
 451}
 452
 453/*
 454 * This function is mainly for use by nfs_getattr().
 455 *
 456 * If this is an 'ls -l', we want to force use of readdirplus.
 457 * Do this by checking if there is an active file descriptor
 458 * and calling nfs_advise_use_readdirplus, then forcing a
 459 * cache flush.
 460 */
 461void nfs_force_use_readdirplus(struct inode *dir)
 462{
 463        if (!list_empty(&NFS_I(dir)->open_files)) {
 464                nfs_advise_use_readdirplus(dir);
 465                nfs_zap_mapping(dir, dir->i_mapping);
 466        }
 467}
 468
 469static
 470void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 471{
 472        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 473        struct dentry *dentry;
 474        struct dentry *alias;
 475        struct inode *dir = d_inode(parent);
 476        struct inode *inode;
 477        int status;
 478
 479        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 480                return;
 481        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 482                return;
 483        if (filename.name[0] == '.') {
 484                if (filename.len == 1)
 485                        return;
 486                if (filename.len == 2 && filename.name[1] == '.')
 487                        return;
 488        }
 489        filename.hash = full_name_hash(filename.name, filename.len);
 490
 491        dentry = d_lookup(parent, &filename);
 492        if (dentry != NULL) {
 493                /* Is there a mountpoint here? If so, just exit */
 494                if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 495                                        &entry->fattr->fsid))
 496                        goto out;
 497                if (nfs_same_file(dentry, entry)) {
 498                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 499                        status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 500                        if (!status)
 501                                nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 502                        goto out;
 503                } else {
 504                        d_invalidate(dentry);
 505                        dput(dentry);
 506                }
 507        }
 508
 509        dentry = d_alloc(parent, &filename);
 510        if (dentry == NULL)
 511                return;
 512
 513        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 514        if (IS_ERR(inode))
 515                goto out;
 516
 517        alias = d_splice_alias(inode, dentry);
 518        if (IS_ERR(alias))
 519                goto out;
 520        else if (alias) {
 521                nfs_set_verifier(alias, nfs_save_change_attribute(dir));
 522                dput(alias);
 523        } else
 524                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 525
 526out:
 527        dput(dentry);
 528}
 529
 530/* Perform conversion from xdr to cache array */
 531static
 532int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 533                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 534{
 535        struct xdr_stream stream;
 536        struct xdr_buf buf;
 537        struct page *scratch;
 538        struct nfs_cache_array *array;
 539        unsigned int count = 0;
 540        int status;
 541
 542        scratch = alloc_page(GFP_KERNEL);
 543        if (scratch == NULL)
 544                return -ENOMEM;
 545
 546        if (buflen == 0)
 547                goto out_nopages;
 548
 549        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 550        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 551
 552        do {
 553                status = xdr_decode(desc, entry, &stream);
 554                if (status != 0) {
 555                        if (status == -EAGAIN)
 556                                status = 0;
 557                        break;
 558                }
 559
 560                count++;
 561
 562                if (desc->plus != 0)
 563                        nfs_prime_dcache(desc->file->f_path.dentry, entry);
 564
 565                status = nfs_readdir_add_to_array(entry, page);
 566                if (status != 0)
 567                        break;
 568        } while (!entry->eof);
 569
 570out_nopages:
 571        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 572                array = nfs_readdir_get_array(page);
 573                if (!IS_ERR(array)) {
 574                        array->eof_index = array->size;
 575                        status = 0;
 576                        nfs_readdir_release_array(page);
 577                } else
 578                        status = PTR_ERR(array);
 579        }
 580
 581        put_page(scratch);
 582        return status;
 583}
 584
 585static
 586void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
 587{
 588        unsigned int i;
 589        for (i = 0; i < npages; i++)
 590                put_page(pages[i]);
 591}
 592
 593/*
 594 * nfs_readdir_large_page will allocate pages that must be freed with a call
 595 * to nfs_readdir_free_pagearray
 596 */
 597static
 598int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
 599{
 600        unsigned int i;
 601
 602        for (i = 0; i < npages; i++) {
 603                struct page *page = alloc_page(GFP_KERNEL);
 604                if (page == NULL)
 605                        goto out_freepages;
 606                pages[i] = page;
 607        }
 608        return 0;
 609
 610out_freepages:
 611        nfs_readdir_free_pages(pages, i);
 612        return -ENOMEM;
 613}
 614
 615static
 616int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 617{
 618        struct page *pages[NFS_MAX_READDIR_PAGES];
 619        struct nfs_entry entry;
 620        struct file     *file = desc->file;
 621        struct nfs_cache_array *array;
 622        int status = -ENOMEM;
 623        unsigned int array_size = ARRAY_SIZE(pages);
 624
 625        entry.prev_cookie = 0;
 626        entry.cookie = desc->last_cookie;
 627        entry.eof = 0;
 628        entry.fh = nfs_alloc_fhandle();
 629        entry.fattr = nfs_alloc_fattr();
 630        entry.server = NFS_SERVER(inode);
 631        if (entry.fh == NULL || entry.fattr == NULL)
 632                goto out;
 633
 634        entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 635        if (IS_ERR(entry.label)) {
 636                status = PTR_ERR(entry.label);
 637                goto out;
 638        }
 639
 640        array = nfs_readdir_get_array(page);
 641        if (IS_ERR(array)) {
 642                status = PTR_ERR(array);
 643                goto out_label_free;
 644        }
 645        memset(array, 0, sizeof(struct nfs_cache_array));
 646        array->eof_index = -1;
 647
 648        status = nfs_readdir_alloc_pages(pages, array_size);
 649        if (status < 0)
 650                goto out_release_array;
 651        do {
 652                unsigned int pglen;
 653                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 654
 655                if (status < 0)
 656                        break;
 657                pglen = status;
 658                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 659                if (status < 0) {
 660                        if (status == -ENOSPC)
 661                                status = 0;
 662                        break;
 663                }
 664        } while (array->eof_index < 0);
 665
 666        nfs_readdir_free_pages(pages, array_size);
 667out_release_array:
 668        nfs_readdir_release_array(page);
 669out_label_free:
 670        nfs4_label_free(entry.label);
 671out:
 672        nfs_free_fattr(entry.fattr);
 673        nfs_free_fhandle(entry.fh);
 674        return status;
 675}
 676
 677/*
 678 * Now we cache directories properly, by converting xdr information
 679 * to an array that can be used for lookups later.  This results in
 680 * fewer cache pages, since we can store more information on each page.
 681 * We only need to convert from xdr once so future lookups are much simpler
 682 */
 683static
 684int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 685{
 686        struct inode    *inode = file_inode(desc->file);
 687        int ret;
 688
 689        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 690        if (ret < 0)
 691                goto error;
 692        SetPageUptodate(page);
 693
 694        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 695                /* Should never happen */
 696                nfs_zap_mapping(inode, inode->i_mapping);
 697        }
 698        unlock_page(page);
 699        return 0;
 700 error:
 701        unlock_page(page);
 702        return ret;
 703}
 704
 705static
 706void cache_page_release(nfs_readdir_descriptor_t *desc)
 707{
 708        if (!desc->page->mapping)
 709                nfs_readdir_clear_array(desc->page);
 710        page_cache_release(desc->page);
 711        desc->page = NULL;
 712}
 713
 714static
 715struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 716{
 717        return read_cache_page(file_inode(desc->file)->i_mapping,
 718                        desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 719}
 720
 721/*
 722 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 723 */
 724static
 725int find_cache_page(nfs_readdir_descriptor_t *desc)
 726{
 727        int res;
 728
 729        desc->page = get_cache_page(desc);
 730        if (IS_ERR(desc->page))
 731                return PTR_ERR(desc->page);
 732
 733        res = nfs_readdir_search_array(desc);
 734        if (res != 0)
 735                cache_page_release(desc);
 736        return res;
 737}
 738
 739/* Search for desc->dir_cookie from the beginning of the page cache */
 740static inline
 741int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 742{
 743        int res;
 744
 745        if (desc->page_index == 0) {
 746                desc->current_index = 0;
 747                desc->last_cookie = 0;
 748        }
 749        do {
 750                res = find_cache_page(desc);
 751        } while (res == -EAGAIN);
 752        return res;
 753}
 754
 755/*
 756 * Once we've found the start of the dirent within a page: fill 'er up...
 757 */
 758static 
 759int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 760{
 761        struct file     *file = desc->file;
 762        int i = 0;
 763        int res = 0;
 764        struct nfs_cache_array *array = NULL;
 765        struct nfs_open_dir_context *ctx = file->private_data;
 766
 767        array = nfs_readdir_get_array(desc->page);
 768        if (IS_ERR(array)) {
 769                res = PTR_ERR(array);
 770                goto out;
 771        }
 772
 773        for (i = desc->cache_entry_index; i < array->size; i++) {
 774                struct nfs_cache_array_entry *ent;
 775
 776                ent = &array->array[i];
 777                if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 778                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 779                        desc->eof = 1;
 780                        break;
 781                }
 782                desc->ctx->pos++;
 783                if (i < (array->size-1))
 784                        *desc->dir_cookie = array->array[i+1].cookie;
 785                else
 786                        *desc->dir_cookie = array->last_cookie;
 787                if (ctx->duped != 0)
 788                        ctx->duped = 1;
 789        }
 790        if (array->eof_index >= 0)
 791                desc->eof = 1;
 792
 793        nfs_readdir_release_array(desc->page);
 794out:
 795        cache_page_release(desc);
 796        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 797                        (unsigned long long)*desc->dir_cookie, res);
 798        return res;
 799}
 800
 801/*
 802 * If we cannot find a cookie in our cache, we suspect that this is
 803 * because it points to a deleted file, so we ask the server to return
 804 * whatever it thinks is the next entry. We then feed this to filldir.
 805 * If all goes well, we should then be able to find our way round the
 806 * cache on the next call to readdir_search_pagecache();
 807 *
 808 * NOTE: we cannot add the anonymous page to the pagecache because
 809 *       the data it contains might not be page aligned. Besides,
 810 *       we should already have a complete representation of the
 811 *       directory in the page cache by the time we get here.
 812 */
 813static inline
 814int uncached_readdir(nfs_readdir_descriptor_t *desc)
 815{
 816        struct page     *page = NULL;
 817        int             status;
 818        struct inode *inode = file_inode(desc->file);
 819        struct nfs_open_dir_context *ctx = desc->file->private_data;
 820
 821        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 822                        (unsigned long long)*desc->dir_cookie);
 823
 824        page = alloc_page(GFP_HIGHUSER);
 825        if (!page) {
 826                status = -ENOMEM;
 827                goto out;
 828        }
 829
 830        desc->page_index = 0;
 831        desc->last_cookie = *desc->dir_cookie;
 832        desc->page = page;
 833        ctx->duped = 0;
 834
 835        status = nfs_readdir_xdr_to_array(desc, page, inode);
 836        if (status < 0)
 837                goto out_release;
 838
 839        status = nfs_do_filldir(desc);
 840
 841 out:
 842        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 843                        __func__, status);
 844        return status;
 845 out_release:
 846        cache_page_release(desc);
 847        goto out;
 848}
 849
 850static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
 851{
 852        struct nfs_inode *nfsi = NFS_I(dir);
 853
 854        if (nfs_attribute_cache_expired(dir))
 855                return true;
 856        if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
 857                return true;
 858        return false;
 859}
 860
 861/* The file offset position represents the dirent entry number.  A
 862   last cookie cache takes care of the common case of reading the
 863   whole directory.
 864 */
 865static int nfs_readdir(struct file *file, struct dir_context *ctx)
 866{
 867        struct dentry   *dentry = file->f_path.dentry;
 868        struct inode    *inode = d_inode(dentry);
 869        nfs_readdir_descriptor_t my_desc,
 870                        *desc = &my_desc;
 871        struct nfs_open_dir_context *dir_ctx = file->private_data;
 872        int res = 0;
 873
 874        dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 875                        file, (long long)ctx->pos);
 876        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 877
 878        /*
 879         * ctx->pos points to the dirent entry number.
 880         * *desc->dir_cookie has the cookie for the next entry. We have
 881         * to either find the entry with the appropriate number or
 882         * revalidate the cookie.
 883         */
 884        memset(desc, 0, sizeof(*desc));
 885
 886        desc->file = file;
 887        desc->ctx = ctx;
 888        desc->dir_cookie = &dir_ctx->dir_cookie;
 889        desc->decode = NFS_PROTO(inode)->decode_dirent;
 890        desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
 891
 892        nfs_block_sillyrename(dentry);
 893        if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
 894                res = nfs_revalidate_mapping(inode, file->f_mapping);
 895        if (res < 0)
 896                goto out;
 897
 898        do {
 899                res = readdir_search_pagecache(desc);
 900
 901                if (res == -EBADCOOKIE) {
 902                        res = 0;
 903                        /* This means either end of directory */
 904                        if (*desc->dir_cookie && desc->eof == 0) {
 905                                /* Or that the server has 'lost' a cookie */
 906                                res = uncached_readdir(desc);
 907                                if (res == 0)
 908                                        continue;
 909                        }
 910                        break;
 911                }
 912                if (res == -ETOOSMALL && desc->plus) {
 913                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 914                        nfs_zap_caches(inode);
 915                        desc->page_index = 0;
 916                        desc->plus = 0;
 917                        desc->eof = 0;
 918                        continue;
 919                }
 920                if (res < 0)
 921                        break;
 922
 923                res = nfs_do_filldir(desc);
 924                if (res < 0)
 925                        break;
 926        } while (!desc->eof);
 927out:
 928        nfs_unblock_sillyrename(dentry);
 929        if (res > 0)
 930                res = 0;
 931        dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 932        return res;
 933}
 934
 935static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 936{
 937        struct inode *inode = file_inode(filp);
 938        struct nfs_open_dir_context *dir_ctx = filp->private_data;
 939
 940        dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 941                        filp, offset, whence);
 942
 943        inode_lock(inode);
 944        switch (whence) {
 945                case 1:
 946                        offset += filp->f_pos;
 947                case 0:
 948                        if (offset >= 0)
 949                                break;
 950                default:
 951                        offset = -EINVAL;
 952                        goto out;
 953        }
 954        if (offset != filp->f_pos) {
 955                filp->f_pos = offset;
 956                dir_ctx->dir_cookie = 0;
 957                dir_ctx->duped = 0;
 958        }
 959out:
 960        inode_unlock(inode);
 961        return offset;
 962}
 963
 964/*
 965 * All directory operations under NFS are synchronous, so fsync()
 966 * is a dummy operation.
 967 */
 968static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 969                         int datasync)
 970{
 971        struct inode *inode = file_inode(filp);
 972
 973        dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
 974
 975        inode_lock(inode);
 976        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 977        inode_unlock(inode);
 978        return 0;
 979}
 980
 981/**
 982 * nfs_force_lookup_revalidate - Mark the directory as having changed
 983 * @dir - pointer to directory inode
 984 *
 985 * This forces the revalidation code in nfs_lookup_revalidate() to do a
 986 * full lookup on all child dentries of 'dir' whenever a change occurs
 987 * on the server that might have invalidated our dcache.
 988 *
 989 * The caller should be holding dir->i_lock
 990 */
 991void nfs_force_lookup_revalidate(struct inode *dir)
 992{
 993        NFS_I(dir)->cache_change_attribute++;
 994}
 995EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
 996
 997/*
 998 * A check for whether or not the parent directory has changed.
 999 * In the case it has, we assume that the dentries are untrustworthy
1000 * and may need to be looked up again.
1001 * If rcu_walk prevents us from performing a full check, return 0.
1002 */
1003static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1004                              int rcu_walk)
1005{
1006        int ret;
1007
1008        if (IS_ROOT(dentry))
1009                return 1;
1010        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1011                return 0;
1012        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1013                return 0;
1014        /* Revalidate nfsi->cache_change_attribute before we declare a match */
1015        if (rcu_walk)
1016                ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1017        else
1018                ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1019        if (ret < 0)
1020                return 0;
1021        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1022                return 0;
1023        return 1;
1024}
1025
1026/*
1027 * Use intent information to check whether or not we're going to do
1028 * an O_EXCL create using this path component.
1029 */
1030static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1031{
1032        if (NFS_PROTO(dir)->version == 2)
1033                return 0;
1034        return flags & LOOKUP_EXCL;
1035}
1036
1037/*
1038 * Inode and filehandle revalidation for lookups.
1039 *
1040 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1041 * or if the intent information indicates that we're about to open this
1042 * particular file and the "nocto" mount flag is not set.
1043 *
1044 */
1045static
1046int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1047{
1048        struct nfs_server *server = NFS_SERVER(inode);
1049        int ret;
1050
1051        if (IS_AUTOMOUNT(inode))
1052                return 0;
1053        /* VFS wants an on-the-wire revalidation */
1054        if (flags & LOOKUP_REVAL)
1055                goto out_force;
1056        /* This is an open(2) */
1057        if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1058            (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1059                goto out_force;
1060out:
1061        return (inode->i_nlink == 0) ? -ENOENT : 0;
1062out_force:
1063        if (flags & LOOKUP_RCU)
1064                return -ECHILD;
1065        ret = __nfs_revalidate_inode(server, inode);
1066        if (ret != 0)
1067                return ret;
1068        goto out;
1069}
1070
1071/*
1072 * We judge how long we want to trust negative
1073 * dentries by looking at the parent inode mtime.
1074 *
1075 * If parent mtime has changed, we revalidate, else we wait for a
1076 * period corresponding to the parent's attribute cache timeout value.
1077 *
1078 * If LOOKUP_RCU prevents us from performing a full check, return 1
1079 * suggesting a reval is needed.
1080 */
1081static inline
1082int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1083                       unsigned int flags)
1084{
1085        /* Don't revalidate a negative dentry if we're creating a new file */
1086        if (flags & LOOKUP_CREATE)
1087                return 0;
1088        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1089                return 1;
1090        return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1091}
1092
1093/*
1094 * This is called every time the dcache has a lookup hit,
1095 * and we should check whether we can really trust that
1096 * lookup.
1097 *
1098 * NOTE! The hit can be a negative hit too, don't assume
1099 * we have an inode!
1100 *
1101 * If the parent directory is seen to have changed, we throw out the
1102 * cached dentry and do a new lookup.
1103 */
1104static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1105{
1106        struct inode *dir;
1107        struct inode *inode;
1108        struct dentry *parent;
1109        struct nfs_fh *fhandle = NULL;
1110        struct nfs_fattr *fattr = NULL;
1111        struct nfs4_label *label = NULL;
1112        int error;
1113
1114        if (flags & LOOKUP_RCU) {
1115                parent = ACCESS_ONCE(dentry->d_parent);
1116                dir = d_inode_rcu(parent);
1117                if (!dir)
1118                        return -ECHILD;
1119        } else {
1120                parent = dget_parent(dentry);
1121                dir = d_inode(parent);
1122        }
1123        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1124        inode = d_inode(dentry);
1125
1126        if (!inode) {
1127                if (nfs_neg_need_reval(dir, dentry, flags)) {
1128                        if (flags & LOOKUP_RCU)
1129                                return -ECHILD;
1130                        goto out_bad;
1131                }
1132                goto out_valid_noent;
1133        }
1134
1135        if (is_bad_inode(inode)) {
1136                if (flags & LOOKUP_RCU)
1137                        return -ECHILD;
1138                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1139                                __func__, dentry);
1140                goto out_bad;
1141        }
1142
1143        if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1144                goto out_set_verifier;
1145
1146        /* Force a full look up iff the parent directory has changed */
1147        if (!nfs_is_exclusive_create(dir, flags) &&
1148            nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1149
1150                if (nfs_lookup_verify_inode(inode, flags)) {
1151                        if (flags & LOOKUP_RCU)
1152                                return -ECHILD;
1153                        goto out_zap_parent;
1154                }
1155                goto out_valid;
1156        }
1157
1158        if (flags & LOOKUP_RCU)
1159                return -ECHILD;
1160
1161        if (NFS_STALE(inode))
1162                goto out_bad;
1163
1164        error = -ENOMEM;
1165        fhandle = nfs_alloc_fhandle();
1166        fattr = nfs_alloc_fattr();
1167        if (fhandle == NULL || fattr == NULL)
1168                goto out_error;
1169
1170        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1171        if (IS_ERR(label))
1172                goto out_error;
1173
1174        trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1175        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1176        trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1177        if (error)
1178                goto out_bad;
1179        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1180                goto out_bad;
1181        if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1182                goto out_bad;
1183
1184        nfs_setsecurity(inode, fattr, label);
1185
1186        nfs_free_fattr(fattr);
1187        nfs_free_fhandle(fhandle);
1188        nfs4_label_free(label);
1189
1190out_set_verifier:
1191        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1192 out_valid:
1193        /* Success: notify readdir to use READDIRPLUS */
1194        nfs_advise_use_readdirplus(dir);
1195 out_valid_noent:
1196        if (flags & LOOKUP_RCU) {
1197                if (parent != ACCESS_ONCE(dentry->d_parent))
1198                        return -ECHILD;
1199        } else
1200                dput(parent);
1201        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1202                        __func__, dentry);
1203        return 1;
1204out_zap_parent:
1205        nfs_zap_caches(dir);
1206 out_bad:
1207        WARN_ON(flags & LOOKUP_RCU);
1208        nfs_free_fattr(fattr);
1209        nfs_free_fhandle(fhandle);
1210        nfs4_label_free(label);
1211        nfs_mark_for_revalidate(dir);
1212        if (inode && S_ISDIR(inode->i_mode)) {
1213                /* Purge readdir caches. */
1214                nfs_zap_caches(inode);
1215                /*
1216                 * We can't d_drop the root of a disconnected tree:
1217                 * its d_hash is on the s_anon list and d_drop() would hide
1218                 * it from shrink_dcache_for_unmount(), leading to busy
1219                 * inodes on unmount and further oopses.
1220                 */
1221                if (IS_ROOT(dentry))
1222                        goto out_valid;
1223        }
1224        dput(parent);
1225        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1226                        __func__, dentry);
1227        return 0;
1228out_error:
1229        WARN_ON(flags & LOOKUP_RCU);
1230        nfs_free_fattr(fattr);
1231        nfs_free_fhandle(fhandle);
1232        nfs4_label_free(label);
1233        dput(parent);
1234        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1235                        __func__, dentry, error);
1236        return error;
1237}
1238
1239/*
1240 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1241 * when we don't really care about the dentry name. This is called when a
1242 * pathwalk ends on a dentry that was not found via a normal lookup in the
1243 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1244 *
1245 * In this situation, we just want to verify that the inode itself is OK
1246 * since the dentry might have changed on the server.
1247 */
1248static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1249{
1250        int error;
1251        struct inode *inode = d_inode(dentry);
1252
1253        /*
1254         * I believe we can only get a negative dentry here in the case of a
1255         * procfs-style symlink. Just assume it's correct for now, but we may
1256         * eventually need to do something more here.
1257         */
1258        if (!inode) {
1259                dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1260                                __func__, dentry);
1261                return 1;
1262        }
1263
1264        if (is_bad_inode(inode)) {
1265                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1266                                __func__, dentry);
1267                return 0;
1268        }
1269
1270        error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1271        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1272                        __func__, inode->i_ino, error ? "invalid" : "valid");
1273        return !error;
1274}
1275
1276/*
1277 * This is called from dput() when d_count is going to 0.
1278 */
1279static int nfs_dentry_delete(const struct dentry *dentry)
1280{
1281        dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1282                dentry, dentry->d_flags);
1283
1284        /* Unhash any dentry with a stale inode */
1285        if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1286                return 1;
1287
1288        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1289                /* Unhash it, so that ->d_iput() would be called */
1290                return 1;
1291        }
1292        if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1293                /* Unhash it, so that ancestors of killed async unlink
1294                 * files will be cleaned up during umount */
1295                return 1;
1296        }
1297        return 0;
1298
1299}
1300
1301/* Ensure that we revalidate inode->i_nlink */
1302static void nfs_drop_nlink(struct inode *inode)
1303{
1304        spin_lock(&inode->i_lock);
1305        /* drop the inode if we're reasonably sure this is the last link */
1306        if (inode->i_nlink == 1)
1307                clear_nlink(inode);
1308        NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1309        spin_unlock(&inode->i_lock);
1310}
1311
1312/*
1313 * Called when the dentry loses inode.
1314 * We use it to clean up silly-renamed files.
1315 */
1316static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1317{
1318        if (S_ISDIR(inode->i_mode))
1319                /* drop any readdir cache as it could easily be old */
1320                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1321
1322        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1323                nfs_complete_unlink(dentry, inode);
1324                nfs_drop_nlink(inode);
1325        }
1326        iput(inode);
1327}
1328
1329static void nfs_d_release(struct dentry *dentry)
1330{
1331        /* free cached devname value, if it survived that far */
1332        if (unlikely(dentry->d_fsdata)) {
1333                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1334                        WARN_ON(1);
1335                else
1336                        kfree(dentry->d_fsdata);
1337        }
1338}
1339
1340const struct dentry_operations nfs_dentry_operations = {
1341        .d_revalidate   = nfs_lookup_revalidate,
1342        .d_weak_revalidate      = nfs_weak_revalidate,
1343        .d_delete       = nfs_dentry_delete,
1344        .d_iput         = nfs_dentry_iput,
1345        .d_automount    = nfs_d_automount,
1346        .d_release      = nfs_d_release,
1347};
1348EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1349
1350struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1351{
1352        struct dentry *res;
1353        struct dentry *parent;
1354        struct inode *inode = NULL;
1355        struct nfs_fh *fhandle = NULL;
1356        struct nfs_fattr *fattr = NULL;
1357        struct nfs4_label *label = NULL;
1358        int error;
1359
1360        dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1361        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1362
1363        res = ERR_PTR(-ENAMETOOLONG);
1364        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1365                goto out;
1366
1367        /*
1368         * If we're doing an exclusive create, optimize away the lookup
1369         * but don't hash the dentry.
1370         */
1371        if (nfs_is_exclusive_create(dir, flags)) {
1372                d_instantiate(dentry, NULL);
1373                res = NULL;
1374                goto out;
1375        }
1376
1377        res = ERR_PTR(-ENOMEM);
1378        fhandle = nfs_alloc_fhandle();
1379        fattr = nfs_alloc_fattr();
1380        if (fhandle == NULL || fattr == NULL)
1381                goto out;
1382
1383        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1384        if (IS_ERR(label))
1385                goto out;
1386
1387        parent = dentry->d_parent;
1388        /* Protect against concurrent sillydeletes */
1389        trace_nfs_lookup_enter(dir, dentry, flags);
1390        nfs_block_sillyrename(parent);
1391        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1392        if (error == -ENOENT)
1393                goto no_entry;
1394        if (error < 0) {
1395                res = ERR_PTR(error);
1396                goto out_unblock_sillyrename;
1397        }
1398        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1399        res = ERR_CAST(inode);
1400        if (IS_ERR(res))
1401                goto out_unblock_sillyrename;
1402
1403        /* Success: notify readdir to use READDIRPLUS */
1404        nfs_advise_use_readdirplus(dir);
1405
1406no_entry:
1407        res = d_splice_alias(inode, dentry);
1408        if (res != NULL) {
1409                if (IS_ERR(res))
1410                        goto out_unblock_sillyrename;
1411                dentry = res;
1412        }
1413        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1414out_unblock_sillyrename:
1415        nfs_unblock_sillyrename(parent);
1416        trace_nfs_lookup_exit(dir, dentry, flags, error);
1417        nfs4_label_free(label);
1418out:
1419        nfs_free_fattr(fattr);
1420        nfs_free_fhandle(fhandle);
1421        return res;
1422}
1423EXPORT_SYMBOL_GPL(nfs_lookup);
1424
1425#if IS_ENABLED(CONFIG_NFS_V4)
1426static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1427
1428const struct dentry_operations nfs4_dentry_operations = {
1429        .d_revalidate   = nfs4_lookup_revalidate,
1430        .d_delete       = nfs_dentry_delete,
1431        .d_iput         = nfs_dentry_iput,
1432        .d_automount    = nfs_d_automount,
1433        .d_release      = nfs_d_release,
1434};
1435EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1436
1437static fmode_t flags_to_mode(int flags)
1438{
1439        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1440        if ((flags & O_ACCMODE) != O_WRONLY)
1441                res |= FMODE_READ;
1442        if ((flags & O_ACCMODE) != O_RDONLY)
1443                res |= FMODE_WRITE;
1444        return res;
1445}
1446
1447static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1448{
1449        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1450}
1451
1452static int do_open(struct inode *inode, struct file *filp)
1453{
1454        nfs_fscache_open_file(inode, filp);
1455        return 0;
1456}
1457
1458static int nfs_finish_open(struct nfs_open_context *ctx,
1459                           struct dentry *dentry,
1460                           struct file *file, unsigned open_flags,
1461                           int *opened)
1462{
1463        int err;
1464
1465        err = finish_open(file, dentry, do_open, opened);
1466        if (err)
1467                goto out;
1468        nfs_file_set_open_context(file, ctx);
1469
1470out:
1471        return err;
1472}
1473
1474int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1475                    struct file *file, unsigned open_flags,
1476                    umode_t mode, int *opened)
1477{
1478        struct nfs_open_context *ctx;
1479        struct dentry *res;
1480        struct iattr attr = { .ia_valid = ATTR_OPEN };
1481        struct inode *inode;
1482        unsigned int lookup_flags = 0;
1483        int err;
1484
1485        /* Expect a negative dentry */
1486        BUG_ON(d_inode(dentry));
1487
1488        dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1489                        dir->i_sb->s_id, dir->i_ino, dentry);
1490
1491        err = nfs_check_flags(open_flags);
1492        if (err)
1493                return err;
1494
1495        /* NFS only supports OPEN on regular files */
1496        if ((open_flags & O_DIRECTORY)) {
1497                if (!d_unhashed(dentry)) {
1498                        /*
1499                         * Hashed negative dentry with O_DIRECTORY: dentry was
1500                         * revalidated and is fine, no need to perform lookup
1501                         * again
1502                         */
1503                        return -ENOENT;
1504                }
1505                lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1506                goto no_open;
1507        }
1508
1509        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1510                return -ENAMETOOLONG;
1511
1512        if (open_flags & O_CREAT) {
1513                attr.ia_valid |= ATTR_MODE;
1514                attr.ia_mode = mode & ~current_umask();
1515        }
1516        if (open_flags & O_TRUNC) {
1517                attr.ia_valid |= ATTR_SIZE;
1518                attr.ia_size = 0;
1519        }
1520
1521        ctx = create_nfs_open_context(dentry, open_flags);
1522        err = PTR_ERR(ctx);
1523        if (IS_ERR(ctx))
1524                goto out;
1525
1526        trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1527        nfs_block_sillyrename(dentry->d_parent);
1528        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1529        nfs_unblock_sillyrename(dentry->d_parent);
1530        if (IS_ERR(inode)) {
1531                err = PTR_ERR(inode);
1532                trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1533                put_nfs_open_context(ctx);
1534                switch (err) {
1535                case -ENOENT:
1536                        d_drop(dentry);
1537                        d_add(dentry, NULL);
1538                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1539                        break;
1540                case -EISDIR:
1541                case -ENOTDIR:
1542                        goto no_open;
1543                case -ELOOP:
1544                        if (!(open_flags & O_NOFOLLOW))
1545                                goto no_open;
1546                        break;
1547                        /* case -EINVAL: */
1548                default:
1549                        break;
1550                }
1551                goto out;
1552        }
1553
1554        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1555        trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1556        put_nfs_open_context(ctx);
1557out:
1558        return err;
1559
1560no_open:
1561        res = nfs_lookup(dir, dentry, lookup_flags);
1562        err = PTR_ERR(res);
1563        if (IS_ERR(res))
1564                goto out;
1565
1566        return finish_no_open(file, res);
1567}
1568EXPORT_SYMBOL_GPL(nfs_atomic_open);
1569
1570static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1571{
1572        struct inode *inode;
1573        int ret = 0;
1574
1575        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1576                goto no_open;
1577        if (d_mountpoint(dentry))
1578                goto no_open;
1579        if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1580                goto no_open;
1581
1582        inode = d_inode(dentry);
1583
1584        /* We can't create new files in nfs_open_revalidate(), so we
1585         * optimize away revalidation of negative dentries.
1586         */
1587        if (inode == NULL) {
1588                struct dentry *parent;
1589                struct inode *dir;
1590
1591                if (flags & LOOKUP_RCU) {
1592                        parent = ACCESS_ONCE(dentry->d_parent);
1593                        dir = d_inode_rcu(parent);
1594                        if (!dir)
1595                                return -ECHILD;
1596                } else {
1597                        parent = dget_parent(dentry);
1598                        dir = d_inode(parent);
1599                }
1600                if (!nfs_neg_need_reval(dir, dentry, flags))
1601                        ret = 1;
1602                else if (flags & LOOKUP_RCU)
1603                        ret = -ECHILD;
1604                if (!(flags & LOOKUP_RCU))
1605                        dput(parent);
1606                else if (parent != ACCESS_ONCE(dentry->d_parent))
1607                        return -ECHILD;
1608                goto out;
1609        }
1610
1611        /* NFS only supports OPEN on regular files */
1612        if (!S_ISREG(inode->i_mode))
1613                goto no_open;
1614        /* We cannot do exclusive creation on a positive dentry */
1615        if (flags & LOOKUP_EXCL)
1616                goto no_open;
1617
1618        /* Let f_op->open() actually open (and revalidate) the file */
1619        ret = 1;
1620
1621out:
1622        return ret;
1623
1624no_open:
1625        return nfs_lookup_revalidate(dentry, flags);
1626}
1627
1628#endif /* CONFIG_NFSV4 */
1629
1630/*
1631 * Code common to create, mkdir, and mknod.
1632 */
1633int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1634                                struct nfs_fattr *fattr,
1635                                struct nfs4_label *label)
1636{
1637        struct dentry *parent = dget_parent(dentry);
1638        struct inode *dir = d_inode(parent);
1639        struct inode *inode;
1640        int error = -EACCES;
1641
1642        d_drop(dentry);
1643
1644        /* We may have been initialized further down */
1645        if (d_really_is_positive(dentry))
1646                goto out;
1647        if (fhandle->size == 0) {
1648                error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1649                if (error)
1650                        goto out_error;
1651        }
1652        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1653        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1654                struct nfs_server *server = NFS_SB(dentry->d_sb);
1655                error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1656                if (error < 0)
1657                        goto out_error;
1658        }
1659        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1660        error = PTR_ERR(inode);
1661        if (IS_ERR(inode))
1662                goto out_error;
1663        d_add(dentry, inode);
1664out:
1665        dput(parent);
1666        return 0;
1667out_error:
1668        nfs_mark_for_revalidate(dir);
1669        dput(parent);
1670        return error;
1671}
1672EXPORT_SYMBOL_GPL(nfs_instantiate);
1673
1674/*
1675 * Following a failed create operation, we drop the dentry rather
1676 * than retain a negative dentry. This avoids a problem in the event
1677 * that the operation succeeded on the server, but an error in the
1678 * reply path made it appear to have failed.
1679 */
1680int nfs_create(struct inode *dir, struct dentry *dentry,
1681                umode_t mode, bool excl)
1682{
1683        struct iattr attr;
1684        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1685        int error;
1686
1687        dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1688                        dir->i_sb->s_id, dir->i_ino, dentry);
1689
1690        attr.ia_mode = mode;
1691        attr.ia_valid = ATTR_MODE;
1692
1693        trace_nfs_create_enter(dir, dentry, open_flags);
1694        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1695        trace_nfs_create_exit(dir, dentry, open_flags, error);
1696        if (error != 0)
1697                goto out_err;
1698        return 0;
1699out_err:
1700        d_drop(dentry);
1701        return error;
1702}
1703EXPORT_SYMBOL_GPL(nfs_create);
1704
1705/*
1706 * See comments for nfs_proc_create regarding failed operations.
1707 */
1708int
1709nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1710{
1711        struct iattr attr;
1712        int status;
1713
1714        dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1715                        dir->i_sb->s_id, dir->i_ino, dentry);
1716
1717        attr.ia_mode = mode;
1718        attr.ia_valid = ATTR_MODE;
1719
1720        trace_nfs_mknod_enter(dir, dentry);
1721        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1722        trace_nfs_mknod_exit(dir, dentry, status);
1723        if (status != 0)
1724                goto out_err;
1725        return 0;
1726out_err:
1727        d_drop(dentry);
1728        return status;
1729}
1730EXPORT_SYMBOL_GPL(nfs_mknod);
1731
1732/*
1733 * See comments for nfs_proc_create regarding failed operations.
1734 */
1735int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1736{
1737        struct iattr attr;
1738        int error;
1739
1740        dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1741                        dir->i_sb->s_id, dir->i_ino, dentry);
1742
1743        attr.ia_valid = ATTR_MODE;
1744        attr.ia_mode = mode | S_IFDIR;
1745
1746        trace_nfs_mkdir_enter(dir, dentry);
1747        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1748        trace_nfs_mkdir_exit(dir, dentry, error);
1749        if (error != 0)
1750                goto out_err;
1751        return 0;
1752out_err:
1753        d_drop(dentry);
1754        return error;
1755}
1756EXPORT_SYMBOL_GPL(nfs_mkdir);
1757
1758static void nfs_dentry_handle_enoent(struct dentry *dentry)
1759{
1760        if (simple_positive(dentry))
1761                d_delete(dentry);
1762}
1763
1764int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1765{
1766        int error;
1767
1768        dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1769                        dir->i_sb->s_id, dir->i_ino, dentry);
1770
1771        trace_nfs_rmdir_enter(dir, dentry);
1772        if (d_really_is_positive(dentry)) {
1773                nfs_wait_on_sillyrename(dentry);
1774                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1775                /* Ensure the VFS deletes this inode */
1776                switch (error) {
1777                case 0:
1778                        clear_nlink(d_inode(dentry));
1779                        break;
1780                case -ENOENT:
1781                        nfs_dentry_handle_enoent(dentry);
1782                }
1783        } else
1784                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1785        trace_nfs_rmdir_exit(dir, dentry, error);
1786
1787        return error;
1788}
1789EXPORT_SYMBOL_GPL(nfs_rmdir);
1790
1791/*
1792 * Remove a file after making sure there are no pending writes,
1793 * and after checking that the file has only one user. 
1794 *
1795 * We invalidate the attribute cache and free the inode prior to the operation
1796 * to avoid possible races if the server reuses the inode.
1797 */
1798static int nfs_safe_remove(struct dentry *dentry)
1799{
1800        struct inode *dir = d_inode(dentry->d_parent);
1801        struct inode *inode = d_inode(dentry);
1802        int error = -EBUSY;
1803                
1804        dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1805
1806        /* If the dentry was sillyrenamed, we simply call d_delete() */
1807        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1808                error = 0;
1809                goto out;
1810        }
1811
1812        trace_nfs_remove_enter(dir, dentry);
1813        if (inode != NULL) {
1814                NFS_PROTO(inode)->return_delegation(inode);
1815                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1816                if (error == 0)
1817                        nfs_drop_nlink(inode);
1818        } else
1819                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1820        if (error == -ENOENT)
1821                nfs_dentry_handle_enoent(dentry);
1822        trace_nfs_remove_exit(dir, dentry, error);
1823out:
1824        return error;
1825}
1826
1827/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1828 *  belongs to an active ".nfs..." file and we return -EBUSY.
1829 *
1830 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1831 */
1832int nfs_unlink(struct inode *dir, struct dentry *dentry)
1833{
1834        int error;
1835        int need_rehash = 0;
1836
1837        dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1838                dir->i_ino, dentry);
1839
1840        trace_nfs_unlink_enter(dir, dentry);
1841        spin_lock(&dentry->d_lock);
1842        if (d_count(dentry) > 1) {
1843                spin_unlock(&dentry->d_lock);
1844                /* Start asynchronous writeout of the inode */
1845                write_inode_now(d_inode(dentry), 0);
1846                error = nfs_sillyrename(dir, dentry);
1847                goto out;
1848        }
1849        if (!d_unhashed(dentry)) {
1850                __d_drop(dentry);
1851                need_rehash = 1;
1852        }
1853        spin_unlock(&dentry->d_lock);
1854        error = nfs_safe_remove(dentry);
1855        if (!error || error == -ENOENT) {
1856                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1857        } else if (need_rehash)
1858                d_rehash(dentry);
1859out:
1860        trace_nfs_unlink_exit(dir, dentry, error);
1861        return error;
1862}
1863EXPORT_SYMBOL_GPL(nfs_unlink);
1864
1865/*
1866 * To create a symbolic link, most file systems instantiate a new inode,
1867 * add a page to it containing the path, then write it out to the disk
1868 * using prepare_write/commit_write.
1869 *
1870 * Unfortunately the NFS client can't create the in-core inode first
1871 * because it needs a file handle to create an in-core inode (see
1872 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1873 * symlink request has completed on the server.
1874 *
1875 * So instead we allocate a raw page, copy the symname into it, then do
1876 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1877 * now have a new file handle and can instantiate an in-core NFS inode
1878 * and move the raw page into its mapping.
1879 */
1880int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1881{
1882        struct page *page;
1883        char *kaddr;
1884        struct iattr attr;
1885        unsigned int pathlen = strlen(symname);
1886        int error;
1887
1888        dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1889                dir->i_ino, dentry, symname);
1890
1891        if (pathlen > PAGE_SIZE)
1892                return -ENAMETOOLONG;
1893
1894        attr.ia_mode = S_IFLNK | S_IRWXUGO;
1895        attr.ia_valid = ATTR_MODE;
1896
1897        page = alloc_page(GFP_USER);
1898        if (!page)
1899                return -ENOMEM;
1900
1901        kaddr = page_address(page);
1902        memcpy(kaddr, symname, pathlen);
1903        if (pathlen < PAGE_SIZE)
1904                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1905
1906        trace_nfs_symlink_enter(dir, dentry);
1907        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1908        trace_nfs_symlink_exit(dir, dentry, error);
1909        if (error != 0) {
1910                dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1911                        dir->i_sb->s_id, dir->i_ino,
1912                        dentry, symname, error);
1913                d_drop(dentry);
1914                __free_page(page);
1915                return error;
1916        }
1917
1918        /*
1919         * No big deal if we can't add this page to the page cache here.
1920         * READLINK will get the missing page from the server if needed.
1921         */
1922        if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1923                                                        GFP_KERNEL)) {
1924                SetPageUptodate(page);
1925                unlock_page(page);
1926                /*
1927                 * add_to_page_cache_lru() grabs an extra page refcount.
1928                 * Drop it here to avoid leaking this page later.
1929                 */
1930                page_cache_release(page);
1931        } else
1932                __free_page(page);
1933
1934        return 0;
1935}
1936EXPORT_SYMBOL_GPL(nfs_symlink);
1937
1938int
1939nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1940{
1941        struct inode *inode = d_inode(old_dentry);
1942        int error;
1943
1944        dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1945                old_dentry, dentry);
1946
1947        trace_nfs_link_enter(inode, dir, dentry);
1948        NFS_PROTO(inode)->return_delegation(inode);
1949
1950        d_drop(dentry);
1951        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1952        if (error == 0) {
1953                ihold(inode);
1954                d_add(dentry, inode);
1955        }
1956        trace_nfs_link_exit(inode, dir, dentry, error);
1957        return error;
1958}
1959EXPORT_SYMBOL_GPL(nfs_link);
1960
1961/*
1962 * RENAME
1963 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1964 * different file handle for the same inode after a rename (e.g. when
1965 * moving to a different directory). A fail-safe method to do so would
1966 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1967 * rename the old file using the sillyrename stuff. This way, the original
1968 * file in old_dir will go away when the last process iput()s the inode.
1969 *
1970 * FIXED.
1971 * 
1972 * It actually works quite well. One needs to have the possibility for
1973 * at least one ".nfs..." file in each directory the file ever gets
1974 * moved or linked to which happens automagically with the new
1975 * implementation that only depends on the dcache stuff instead of
1976 * using the inode layer
1977 *
1978 * Unfortunately, things are a little more complicated than indicated
1979 * above. For a cross-directory move, we want to make sure we can get
1980 * rid of the old inode after the operation.  This means there must be
1981 * no pending writes (if it's a file), and the use count must be 1.
1982 * If these conditions are met, we can drop the dentries before doing
1983 * the rename.
1984 */
1985int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1986                      struct inode *new_dir, struct dentry *new_dentry)
1987{
1988        struct inode *old_inode = d_inode(old_dentry);
1989        struct inode *new_inode = d_inode(new_dentry);
1990        struct dentry *dentry = NULL, *rehash = NULL;
1991        struct rpc_task *task;
1992        int error = -EBUSY;
1993
1994        dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1995                 old_dentry, new_dentry,
1996                 d_count(new_dentry));
1997
1998        trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1999        /*
2000         * For non-directories, check whether the target is busy and if so,
2001         * make a copy of the dentry and then do a silly-rename. If the
2002         * silly-rename succeeds, the copied dentry is hashed and becomes
2003         * the new target.
2004         */
2005        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2006                /*
2007                 * To prevent any new references to the target during the
2008                 * rename, we unhash the dentry in advance.
2009                 */
2010                if (!d_unhashed(new_dentry)) {
2011                        d_drop(new_dentry);
2012                        rehash = new_dentry;
2013                }
2014
2015                if (d_count(new_dentry) > 2) {
2016                        int err;
2017
2018                        /* copy the target dentry's name */
2019                        dentry = d_alloc(new_dentry->d_parent,
2020                                         &new_dentry->d_name);
2021                        if (!dentry)
2022                                goto out;
2023
2024                        /* silly-rename the existing target ... */
2025                        err = nfs_sillyrename(new_dir, new_dentry);
2026                        if (err)
2027                                goto out;
2028
2029                        new_dentry = dentry;
2030                        rehash = NULL;
2031                        new_inode = NULL;
2032                }
2033        }
2034
2035        NFS_PROTO(old_inode)->return_delegation(old_inode);
2036        if (new_inode != NULL)
2037                NFS_PROTO(new_inode)->return_delegation(new_inode);
2038
2039        task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2040        if (IS_ERR(task)) {
2041                error = PTR_ERR(task);
2042                goto out;
2043        }
2044
2045        error = rpc_wait_for_completion_task(task);
2046        if (error == 0)
2047                error = task->tk_status;
2048        rpc_put_task(task);
2049        nfs_mark_for_revalidate(old_inode);
2050out:
2051        if (rehash)
2052                d_rehash(rehash);
2053        trace_nfs_rename_exit(old_dir, old_dentry,
2054                        new_dir, new_dentry, error);
2055        if (!error) {
2056                if (new_inode != NULL)
2057                        nfs_drop_nlink(new_inode);
2058                d_move(old_dentry, new_dentry);
2059                nfs_set_verifier(new_dentry,
2060                                        nfs_save_change_attribute(new_dir));
2061        } else if (error == -ENOENT)
2062                nfs_dentry_handle_enoent(old_dentry);
2063
2064        /* new dentry created? */
2065        if (dentry)
2066                dput(dentry);
2067        return error;
2068}
2069EXPORT_SYMBOL_GPL(nfs_rename);
2070
2071static DEFINE_SPINLOCK(nfs_access_lru_lock);
2072static LIST_HEAD(nfs_access_lru_list);
2073static atomic_long_t nfs_access_nr_entries;
2074
2075static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2076module_param(nfs_access_max_cachesize, ulong, 0644);
2077MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2078
2079static void nfs_access_free_entry(struct nfs_access_entry *entry)
2080{
2081        put_rpccred(entry->cred);
2082        kfree_rcu(entry, rcu_head);
2083        smp_mb__before_atomic();
2084        atomic_long_dec(&nfs_access_nr_entries);
2085        smp_mb__after_atomic();
2086}
2087
2088static void nfs_access_free_list(struct list_head *head)
2089{
2090        struct nfs_access_entry *cache;
2091
2092        while (!list_empty(head)) {
2093                cache = list_entry(head->next, struct nfs_access_entry, lru);
2094                list_del(&cache->lru);
2095                nfs_access_free_entry(cache);
2096        }
2097}
2098
2099static unsigned long
2100nfs_do_access_cache_scan(unsigned int nr_to_scan)
2101{
2102        LIST_HEAD(head);
2103        struct nfs_inode *nfsi, *next;
2104        struct nfs_access_entry *cache;
2105        long freed = 0;
2106
2107        spin_lock(&nfs_access_lru_lock);
2108        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2109                struct inode *inode;
2110
2111                if (nr_to_scan-- == 0)
2112                        break;
2113                inode = &nfsi->vfs_inode;
2114                spin_lock(&inode->i_lock);
2115                if (list_empty(&nfsi->access_cache_entry_lru))
2116                        goto remove_lru_entry;
2117                cache = list_entry(nfsi->access_cache_entry_lru.next,
2118                                struct nfs_access_entry, lru);
2119                list_move(&cache->lru, &head);
2120                rb_erase(&cache->rb_node, &nfsi->access_cache);
2121                freed++;
2122                if (!list_empty(&nfsi->access_cache_entry_lru))
2123                        list_move_tail(&nfsi->access_cache_inode_lru,
2124                                        &nfs_access_lru_list);
2125                else {
2126remove_lru_entry:
2127                        list_del_init(&nfsi->access_cache_inode_lru);
2128                        smp_mb__before_atomic();
2129                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2130                        smp_mb__after_atomic();
2131                }
2132                spin_unlock(&inode->i_lock);
2133        }
2134        spin_unlock(&nfs_access_lru_lock);
2135        nfs_access_free_list(&head);
2136        return freed;
2137}
2138
2139unsigned long
2140nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2141{
2142        int nr_to_scan = sc->nr_to_scan;
2143        gfp_t gfp_mask = sc->gfp_mask;
2144
2145        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2146                return SHRINK_STOP;
2147        return nfs_do_access_cache_scan(nr_to_scan);
2148}
2149
2150
2151unsigned long
2152nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2153{
2154        return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2155}
2156
2157static void
2158nfs_access_cache_enforce_limit(void)
2159{
2160        long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2161        unsigned long diff;
2162        unsigned int nr_to_scan;
2163
2164        if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2165                return;
2166        nr_to_scan = 100;
2167        diff = nr_entries - nfs_access_max_cachesize;
2168        if (diff < nr_to_scan)
2169                nr_to_scan = diff;
2170        nfs_do_access_cache_scan(nr_to_scan);
2171}
2172
2173static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2174{
2175        struct rb_root *root_node = &nfsi->access_cache;
2176        struct rb_node *n;
2177        struct nfs_access_entry *entry;
2178
2179        /* Unhook entries from the cache */
2180        while ((n = rb_first(root_node)) != NULL) {
2181                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2182                rb_erase(n, root_node);
2183                list_move(&entry->lru, head);
2184        }
2185        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2186}
2187
2188void nfs_access_zap_cache(struct inode *inode)
2189{
2190        LIST_HEAD(head);
2191
2192        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2193                return;
2194        /* Remove from global LRU init */
2195        spin_lock(&nfs_access_lru_lock);
2196        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2197                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2198
2199        spin_lock(&inode->i_lock);
2200        __nfs_access_zap_cache(NFS_I(inode), &head);
2201        spin_unlock(&inode->i_lock);
2202        spin_unlock(&nfs_access_lru_lock);
2203        nfs_access_free_list(&head);
2204}
2205EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2206
2207static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2208{
2209        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2210        struct nfs_access_entry *entry;
2211
2212        while (n != NULL) {
2213                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2214
2215                if (cred < entry->cred)
2216                        n = n->rb_left;
2217                else if (cred > entry->cred)
2218                        n = n->rb_right;
2219                else
2220                        return entry;
2221        }
2222        return NULL;
2223}
2224
2225static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2226{
2227        struct nfs_inode *nfsi = NFS_I(inode);
2228        struct nfs_access_entry *cache;
2229        int err = -ENOENT;
2230
2231        spin_lock(&inode->i_lock);
2232        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2233                goto out_zap;
2234        cache = nfs_access_search_rbtree(inode, cred);
2235        if (cache == NULL)
2236                goto out;
2237        if (!nfs_have_delegated_attributes(inode) &&
2238            !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2239                goto out_stale;
2240        res->jiffies = cache->jiffies;
2241        res->cred = cache->cred;
2242        res->mask = cache->mask;
2243        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2244        err = 0;
2245out:
2246        spin_unlock(&inode->i_lock);
2247        return err;
2248out_stale:
2249        rb_erase(&cache->rb_node, &nfsi->access_cache);
2250        list_del(&cache->lru);
2251        spin_unlock(&inode->i_lock);
2252        nfs_access_free_entry(cache);
2253        return -ENOENT;
2254out_zap:
2255        spin_unlock(&inode->i_lock);
2256        nfs_access_zap_cache(inode);
2257        return -ENOENT;
2258}
2259
2260static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2261{
2262        /* Only check the most recently returned cache entry,
2263         * but do it without locking.
2264         */
2265        struct nfs_inode *nfsi = NFS_I(inode);
2266        struct nfs_access_entry *cache;
2267        int err = -ECHILD;
2268        struct list_head *lh;
2269
2270        rcu_read_lock();
2271        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2272                goto out;
2273        lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2274        cache = list_entry(lh, struct nfs_access_entry, lru);
2275        if (lh == &nfsi->access_cache_entry_lru ||
2276            cred != cache->cred)
2277                cache = NULL;
2278        if (cache == NULL)
2279                goto out;
2280        if (!nfs_have_delegated_attributes(inode) &&
2281            !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2282                goto out;
2283        res->jiffies = cache->jiffies;
2284        res->cred = cache->cred;
2285        res->mask = cache->mask;
2286        err = 0;
2287out:
2288        rcu_read_unlock();
2289        return err;
2290}
2291
2292static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2293{
2294        struct nfs_inode *nfsi = NFS_I(inode);
2295        struct rb_root *root_node = &nfsi->access_cache;
2296        struct rb_node **p = &root_node->rb_node;
2297        struct rb_node *parent = NULL;
2298        struct nfs_access_entry *entry;
2299
2300        spin_lock(&inode->i_lock);
2301        while (*p != NULL) {
2302                parent = *p;
2303                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2304
2305                if (set->cred < entry->cred)
2306                        p = &parent->rb_left;
2307                else if (set->cred > entry->cred)
2308                        p = &parent->rb_right;
2309                else
2310                        goto found;
2311        }
2312        rb_link_node(&set->rb_node, parent, p);
2313        rb_insert_color(&set->rb_node, root_node);
2314        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2315        spin_unlock(&inode->i_lock);
2316        return;
2317found:
2318        rb_replace_node(parent, &set->rb_node, root_node);
2319        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2320        list_del(&entry->lru);
2321        spin_unlock(&inode->i_lock);
2322        nfs_access_free_entry(entry);
2323}
2324
2325void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2326{
2327        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2328        if (cache == NULL)
2329                return;
2330        RB_CLEAR_NODE(&cache->rb_node);
2331        cache->jiffies = set->jiffies;
2332        cache->cred = get_rpccred(set->cred);
2333        cache->mask = set->mask;
2334
2335        /* The above field assignments must be visible
2336         * before this item appears on the lru.  We cannot easily
2337         * use rcu_assign_pointer, so just force the memory barrier.
2338         */
2339        smp_wmb();
2340        nfs_access_add_rbtree(inode, cache);
2341
2342        /* Update accounting */
2343        smp_mb__before_atomic();
2344        atomic_long_inc(&nfs_access_nr_entries);
2345        smp_mb__after_atomic();
2346
2347        /* Add inode to global LRU list */
2348        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2349                spin_lock(&nfs_access_lru_lock);
2350                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2351                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2352                                        &nfs_access_lru_list);
2353                spin_unlock(&nfs_access_lru_lock);
2354        }
2355        nfs_access_cache_enforce_limit();
2356}
2357EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2358
2359void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2360{
2361        entry->mask = 0;
2362        if (access_result & NFS4_ACCESS_READ)
2363                entry->mask |= MAY_READ;
2364        if (access_result &
2365            (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2366                entry->mask |= MAY_WRITE;
2367        if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2368                entry->mask |= MAY_EXEC;
2369}
2370EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2371
2372static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2373{
2374        struct nfs_access_entry cache;
2375        int status;
2376
2377        trace_nfs_access_enter(inode);
2378
2379        status = nfs_access_get_cached_rcu(inode, cred, &cache);
2380        if (status != 0)
2381                status = nfs_access_get_cached(inode, cred, &cache);
2382        if (status == 0)
2383                goto out_cached;
2384
2385        status = -ECHILD;
2386        if (mask & MAY_NOT_BLOCK)
2387                goto out;
2388
2389        /* Be clever: ask server to check for all possible rights */
2390        cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2391        cache.cred = cred;
2392        cache.jiffies = jiffies;
2393        status = NFS_PROTO(inode)->access(inode, &cache);
2394        if (status != 0) {
2395                if (status == -ESTALE) {
2396                        nfs_zap_caches(inode);
2397                        if (!S_ISDIR(inode->i_mode))
2398                                set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2399                }
2400                goto out;
2401        }
2402        nfs_access_add_cache(inode, &cache);
2403out_cached:
2404        if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2405                status = -EACCES;
2406out:
2407        trace_nfs_access_exit(inode, status);
2408        return status;
2409}
2410
2411static int nfs_open_permission_mask(int openflags)
2412{
2413        int mask = 0;
2414
2415        if (openflags & __FMODE_EXEC) {
2416                /* ONLY check exec rights */
2417                mask = MAY_EXEC;
2418        } else {
2419                if ((openflags & O_ACCMODE) != O_WRONLY)
2420                        mask |= MAY_READ;
2421                if ((openflags & O_ACCMODE) != O_RDONLY)
2422                        mask |= MAY_WRITE;
2423        }
2424
2425        return mask;
2426}
2427
2428int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2429{
2430        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2431}
2432EXPORT_SYMBOL_GPL(nfs_may_open);
2433
2434static int nfs_execute_ok(struct inode *inode, int mask)
2435{
2436        struct nfs_server *server = NFS_SERVER(inode);
2437        int ret;
2438
2439        if (mask & MAY_NOT_BLOCK)
2440                ret = nfs_revalidate_inode_rcu(server, inode);
2441        else
2442                ret = nfs_revalidate_inode(server, inode);
2443        if (ret == 0 && !execute_ok(inode))
2444                ret = -EACCES;
2445        return ret;
2446}
2447
2448int nfs_permission(struct inode *inode, int mask)
2449{
2450        struct rpc_cred *cred;
2451        int res = 0;
2452
2453        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2454
2455        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2456                goto out;
2457        /* Is this sys_access() ? */
2458        if (mask & (MAY_ACCESS | MAY_CHDIR))
2459                goto force_lookup;
2460
2461        switch (inode->i_mode & S_IFMT) {
2462                case S_IFLNK:
2463                        goto out;
2464                case S_IFREG:
2465                        if ((mask & MAY_OPEN) &&
2466                           nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2467                                return 0;
2468                        break;
2469                case S_IFDIR:
2470                        /*
2471                         * Optimize away all write operations, since the server
2472                         * will check permissions when we perform the op.
2473                         */
2474                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2475                                goto out;
2476        }
2477
2478force_lookup:
2479        if (!NFS_PROTO(inode)->access)
2480                goto out_notsup;
2481
2482        /* Always try fast lookups first */
2483        rcu_read_lock();
2484        cred = rpc_lookup_cred_nonblock();
2485        if (!IS_ERR(cred))
2486                res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2487        else
2488                res = PTR_ERR(cred);
2489        rcu_read_unlock();
2490        if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2491                /* Fast lookup failed, try the slow way */
2492                cred = rpc_lookup_cred();
2493                if (!IS_ERR(cred)) {
2494                        res = nfs_do_access(inode, cred, mask);
2495                        put_rpccred(cred);
2496                } else
2497                        res = PTR_ERR(cred);
2498        }
2499out:
2500        if (!res && (mask & MAY_EXEC))
2501                res = nfs_execute_ok(inode, mask);
2502
2503        dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2504                inode->i_sb->s_id, inode->i_ino, mask, res);
2505        return res;
2506out_notsup:
2507        if (mask & MAY_NOT_BLOCK)
2508                return -ECHILD;
2509
2510        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2511        if (res == 0)
2512                res = generic_permission(inode, mask);
2513        goto out;
2514}
2515EXPORT_SYMBOL_GPL(nfs_permission);
2516
2517/*
2518 * Local variables:
2519 *  version-control: t
2520 *  kept-new-versions: 5
2521 * End:
2522 */
2523