linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31#include <linux/blkdev.h>
  32#include <linux/uio.h>
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "aops.h"
  40#include "dlmglue.h"
  41#include "extent_map.h"
  42#include "file.h"
  43#include "inode.h"
  44#include "journal.h"
  45#include "suballoc.h"
  46#include "super.h"
  47#include "symlink.h"
  48#include "refcounttree.h"
  49#include "ocfs2_trace.h"
  50
  51#include "buffer_head_io.h"
  52#include "dir.h"
  53#include "namei.h"
  54#include "sysfile.h"
  55
  56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  57                                   struct buffer_head *bh_result, int create)
  58{
  59        int err = -EIO;
  60        int status;
  61        struct ocfs2_dinode *fe = NULL;
  62        struct buffer_head *bh = NULL;
  63        struct buffer_head *buffer_cache_bh = NULL;
  64        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  65        void *kaddr;
  66
  67        trace_ocfs2_symlink_get_block(
  68                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  69                        (unsigned long long)iblock, bh_result, create);
  70
  71        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  72
  73        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  74                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  75                     (unsigned long long)iblock);
  76                goto bail;
  77        }
  78
  79        status = ocfs2_read_inode_block(inode, &bh);
  80        if (status < 0) {
  81                mlog_errno(status);
  82                goto bail;
  83        }
  84        fe = (struct ocfs2_dinode *) bh->b_data;
  85
  86        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  87                                                    le32_to_cpu(fe->i_clusters))) {
  88                err = -ENOMEM;
  89                mlog(ML_ERROR, "block offset is outside the allocated size: "
  90                     "%llu\n", (unsigned long long)iblock);
  91                goto bail;
  92        }
  93
  94        /* We don't use the page cache to create symlink data, so if
  95         * need be, copy it over from the buffer cache. */
  96        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  97                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  98                            iblock;
  99                buffer_cache_bh = sb_getblk(osb->sb, blkno);
 100                if (!buffer_cache_bh) {
 101                        err = -ENOMEM;
 102                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 103                        goto bail;
 104                }
 105
 106                /* we haven't locked out transactions, so a commit
 107                 * could've happened. Since we've got a reference on
 108                 * the bh, even if it commits while we're doing the
 109                 * copy, the data is still good. */
 110                if (buffer_jbd(buffer_cache_bh)
 111                    && ocfs2_inode_is_new(inode)) {
 112                        kaddr = kmap_atomic(bh_result->b_page);
 113                        if (!kaddr) {
 114                                mlog(ML_ERROR, "couldn't kmap!\n");
 115                                goto bail;
 116                        }
 117                        memcpy(kaddr + (bh_result->b_size * iblock),
 118                               buffer_cache_bh->b_data,
 119                               bh_result->b_size);
 120                        kunmap_atomic(kaddr);
 121                        set_buffer_uptodate(bh_result);
 122                }
 123                brelse(buffer_cache_bh);
 124        }
 125
 126        map_bh(bh_result, inode->i_sb,
 127               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 128
 129        err = 0;
 130
 131bail:
 132        brelse(bh);
 133
 134        return err;
 135}
 136
 137int ocfs2_get_block(struct inode *inode, sector_t iblock,
 138                    struct buffer_head *bh_result, int create)
 139{
 140        int err = 0;
 141        unsigned int ext_flags;
 142        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 143        u64 p_blkno, count, past_eof;
 144        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 145
 146        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 147                              (unsigned long long)iblock, bh_result, create);
 148
 149        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 150                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 151                     inode, inode->i_ino);
 152
 153        if (S_ISLNK(inode->i_mode)) {
 154                /* this always does I/O for some reason. */
 155                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 156                goto bail;
 157        }
 158
 159        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 160                                          &ext_flags);
 161        if (err) {
 162                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 163                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 164                     (unsigned long long)p_blkno);
 165                goto bail;
 166        }
 167
 168        if (max_blocks < count)
 169                count = max_blocks;
 170
 171        /*
 172         * ocfs2 never allocates in this function - the only time we
 173         * need to use BH_New is when we're extending i_size on a file
 174         * system which doesn't support holes, in which case BH_New
 175         * allows __block_write_begin() to zero.
 176         *
 177         * If we see this on a sparse file system, then a truncate has
 178         * raced us and removed the cluster. In this case, we clear
 179         * the buffers dirty and uptodate bits and let the buffer code
 180         * ignore it as a hole.
 181         */
 182        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 183                clear_buffer_dirty(bh_result);
 184                clear_buffer_uptodate(bh_result);
 185                goto bail;
 186        }
 187
 188        /* Treat the unwritten extent as a hole for zeroing purposes. */
 189        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 190                map_bh(bh_result, inode->i_sb, p_blkno);
 191
 192        bh_result->b_size = count << inode->i_blkbits;
 193
 194        if (!ocfs2_sparse_alloc(osb)) {
 195                if (p_blkno == 0) {
 196                        err = -EIO;
 197                        mlog(ML_ERROR,
 198                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 199                             (unsigned long long)iblock,
 200                             (unsigned long long)p_blkno,
 201                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 202                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 203                        dump_stack();
 204                        goto bail;
 205                }
 206        }
 207
 208        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 209
 210        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 211                                  (unsigned long long)past_eof);
 212        if (create && (iblock >= past_eof))
 213                set_buffer_new(bh_result);
 214
 215bail:
 216        if (err < 0)
 217                err = -EIO;
 218
 219        return err;
 220}
 221
 222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 223                           struct buffer_head *di_bh)
 224{
 225        void *kaddr;
 226        loff_t size;
 227        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 228
 229        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 230                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 231                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 232                return -EROFS;
 233        }
 234
 235        size = i_size_read(inode);
 236
 237        if (size > PAGE_CACHE_SIZE ||
 238            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 239                ocfs2_error(inode->i_sb,
 240                            "Inode %llu has with inline data has bad size: %Lu\n",
 241                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 242                            (unsigned long long)size);
 243                return -EROFS;
 244        }
 245
 246        kaddr = kmap_atomic(page);
 247        if (size)
 248                memcpy(kaddr, di->id2.i_data.id_data, size);
 249        /* Clear the remaining part of the page */
 250        memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 251        flush_dcache_page(page);
 252        kunmap_atomic(kaddr);
 253
 254        SetPageUptodate(page);
 255
 256        return 0;
 257}
 258
 259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 260{
 261        int ret;
 262        struct buffer_head *di_bh = NULL;
 263
 264        BUG_ON(!PageLocked(page));
 265        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 266
 267        ret = ocfs2_read_inode_block(inode, &di_bh);
 268        if (ret) {
 269                mlog_errno(ret);
 270                goto out;
 271        }
 272
 273        ret = ocfs2_read_inline_data(inode, page, di_bh);
 274out:
 275        unlock_page(page);
 276
 277        brelse(di_bh);
 278        return ret;
 279}
 280
 281static int ocfs2_readpage(struct file *file, struct page *page)
 282{
 283        struct inode *inode = page->mapping->host;
 284        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 285        loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 286        int ret, unlock = 1;
 287
 288        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 289                             (page ? page->index : 0));
 290
 291        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 292        if (ret != 0) {
 293                if (ret == AOP_TRUNCATED_PAGE)
 294                        unlock = 0;
 295                mlog_errno(ret);
 296                goto out;
 297        }
 298
 299        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 300                /*
 301                 * Unlock the page and cycle ip_alloc_sem so that we don't
 302                 * busyloop waiting for ip_alloc_sem to unlock
 303                 */
 304                ret = AOP_TRUNCATED_PAGE;
 305                unlock_page(page);
 306                unlock = 0;
 307                down_read(&oi->ip_alloc_sem);
 308                up_read(&oi->ip_alloc_sem);
 309                goto out_inode_unlock;
 310        }
 311
 312        /*
 313         * i_size might have just been updated as we grabed the meta lock.  We
 314         * might now be discovering a truncate that hit on another node.
 315         * block_read_full_page->get_block freaks out if it is asked to read
 316         * beyond the end of a file, so we check here.  Callers
 317         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 318         * and notice that the page they just read isn't needed.
 319         *
 320         * XXX sys_readahead() seems to get that wrong?
 321         */
 322        if (start >= i_size_read(inode)) {
 323                zero_user(page, 0, PAGE_SIZE);
 324                SetPageUptodate(page);
 325                ret = 0;
 326                goto out_alloc;
 327        }
 328
 329        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 330                ret = ocfs2_readpage_inline(inode, page);
 331        else
 332                ret = block_read_full_page(page, ocfs2_get_block);
 333        unlock = 0;
 334
 335out_alloc:
 336        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 337out_inode_unlock:
 338        ocfs2_inode_unlock(inode, 0);
 339out:
 340        if (unlock)
 341                unlock_page(page);
 342        return ret;
 343}
 344
 345/*
 346 * This is used only for read-ahead. Failures or difficult to handle
 347 * situations are safe to ignore.
 348 *
 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 350 * are quite large (243 extents on 4k blocks), so most inodes don't
 351 * grow out to a tree. If need be, detecting boundary extents could
 352 * trivially be added in a future version of ocfs2_get_block().
 353 */
 354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 355                           struct list_head *pages, unsigned nr_pages)
 356{
 357        int ret, err = -EIO;
 358        struct inode *inode = mapping->host;
 359        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 360        loff_t start;
 361        struct page *last;
 362
 363        /*
 364         * Use the nonblocking flag for the dlm code to avoid page
 365         * lock inversion, but don't bother with retrying.
 366         */
 367        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 368        if (ret)
 369                return err;
 370
 371        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 372                ocfs2_inode_unlock(inode, 0);
 373                return err;
 374        }
 375
 376        /*
 377         * Don't bother with inline-data. There isn't anything
 378         * to read-ahead in that case anyway...
 379         */
 380        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 381                goto out_unlock;
 382
 383        /*
 384         * Check whether a remote node truncated this file - we just
 385         * drop out in that case as it's not worth handling here.
 386         */
 387        last = list_entry(pages->prev, struct page, lru);
 388        start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 389        if (start >= i_size_read(inode))
 390                goto out_unlock;
 391
 392        err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 393
 394out_unlock:
 395        up_read(&oi->ip_alloc_sem);
 396        ocfs2_inode_unlock(inode, 0);
 397
 398        return err;
 399}
 400
 401/* Note: Because we don't support holes, our allocation has
 402 * already happened (allocation writes zeros to the file data)
 403 * so we don't have to worry about ordered writes in
 404 * ocfs2_writepage.
 405 *
 406 * ->writepage is called during the process of invalidating the page cache
 407 * during blocked lock processing.  It can't block on any cluster locks
 408 * to during block mapping.  It's relying on the fact that the block
 409 * mapping can't have disappeared under the dirty pages that it is
 410 * being asked to write back.
 411 */
 412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 413{
 414        trace_ocfs2_writepage(
 415                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 416                page->index);
 417
 418        return block_write_full_page(page, ocfs2_get_block, wbc);
 419}
 420
 421/* Taken from ext3. We don't necessarily need the full blown
 422 * functionality yet, but IMHO it's better to cut and paste the whole
 423 * thing so we can avoid introducing our own bugs (and easily pick up
 424 * their fixes when they happen) --Mark */
 425int walk_page_buffers(  handle_t *handle,
 426                        struct buffer_head *head,
 427                        unsigned from,
 428                        unsigned to,
 429                        int *partial,
 430                        int (*fn)(      handle_t *handle,
 431                                        struct buffer_head *bh))
 432{
 433        struct buffer_head *bh;
 434        unsigned block_start, block_end;
 435        unsigned blocksize = head->b_size;
 436        int err, ret = 0;
 437        struct buffer_head *next;
 438
 439        for (   bh = head, block_start = 0;
 440                ret == 0 && (bh != head || !block_start);
 441                block_start = block_end, bh = next)
 442        {
 443                next = bh->b_this_page;
 444                block_end = block_start + blocksize;
 445                if (block_end <= from || block_start >= to) {
 446                        if (partial && !buffer_uptodate(bh))
 447                                *partial = 1;
 448                        continue;
 449                }
 450                err = (*fn)(handle, bh);
 451                if (!ret)
 452                        ret = err;
 453        }
 454        return ret;
 455}
 456
 457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 458{
 459        sector_t status;
 460        u64 p_blkno = 0;
 461        int err = 0;
 462        struct inode *inode = mapping->host;
 463
 464        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 465                         (unsigned long long)block);
 466
 467        /* We don't need to lock journal system files, since they aren't
 468         * accessed concurrently from multiple nodes.
 469         */
 470        if (!INODE_JOURNAL(inode)) {
 471                err = ocfs2_inode_lock(inode, NULL, 0);
 472                if (err) {
 473                        if (err != -ENOENT)
 474                                mlog_errno(err);
 475                        goto bail;
 476                }
 477                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 478        }
 479
 480        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 481                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 482                                                  NULL);
 483
 484        if (!INODE_JOURNAL(inode)) {
 485                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 486                ocfs2_inode_unlock(inode, 0);
 487        }
 488
 489        if (err) {
 490                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 491                     (unsigned long long)block);
 492                mlog_errno(err);
 493                goto bail;
 494        }
 495
 496bail:
 497        status = err ? 0 : p_blkno;
 498
 499        return status;
 500}
 501
 502/*
 503 * TODO: Make this into a generic get_blocks function.
 504 *
 505 * From do_direct_io in direct-io.c:
 506 *  "So what we do is to permit the ->get_blocks function to populate
 507 *   bh.b_size with the size of IO which is permitted at this offset and
 508 *   this i_blkbits."
 509 *
 510 * This function is called directly from get_more_blocks in direct-io.c.
 511 *
 512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 513 *                                      fs_count, map_bh, dio->rw == WRITE);
 514 */
 515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 516                                     struct buffer_head *bh_result, int create)
 517{
 518        int ret;
 519        u32 cpos = 0;
 520        int alloc_locked = 0;
 521        u64 p_blkno, inode_blocks, contig_blocks;
 522        unsigned int ext_flags;
 523        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 524        unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 525        unsigned long len = bh_result->b_size;
 526        unsigned int clusters_to_alloc = 0, contig_clusters = 0;
 527
 528        cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
 529
 530        /* This function won't even be called if the request isn't all
 531         * nicely aligned and of the right size, so there's no need
 532         * for us to check any of that. */
 533
 534        inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 535
 536        down_read(&OCFS2_I(inode)->ip_alloc_sem);
 537
 538        /* This figures out the size of the next contiguous block, and
 539         * our logical offset */
 540        ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 541                                          &contig_blocks, &ext_flags);
 542        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 543
 544        if (ret) {
 545                mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 546                     (unsigned long long)iblock);
 547                ret = -EIO;
 548                goto bail;
 549        }
 550
 551        /* We should already CoW the refcounted extent in case of create. */
 552        BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
 553
 554        /* allocate blocks if no p_blkno is found, and create == 1 */
 555        if (!p_blkno && create) {
 556                ret = ocfs2_inode_lock(inode, NULL, 1);
 557                if (ret < 0) {
 558                        mlog_errno(ret);
 559                        goto bail;
 560                }
 561
 562                alloc_locked = 1;
 563
 564                down_write(&OCFS2_I(inode)->ip_alloc_sem);
 565
 566                /* fill hole, allocate blocks can't be larger than the size
 567                 * of the hole */
 568                clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
 569                contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
 570                                contig_blocks);
 571                if (clusters_to_alloc > contig_clusters)
 572                        clusters_to_alloc = contig_clusters;
 573
 574                /* allocate extent and insert them into the extent tree */
 575                ret = ocfs2_extend_allocation(inode, cpos,
 576                                clusters_to_alloc, 0);
 577                if (ret < 0) {
 578                        up_write(&OCFS2_I(inode)->ip_alloc_sem);
 579                        mlog_errno(ret);
 580                        goto bail;
 581                }
 582
 583                ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 584                                &contig_blocks, &ext_flags);
 585                if (ret < 0) {
 586                        up_write(&OCFS2_I(inode)->ip_alloc_sem);
 587                        mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 588                                        (unsigned long long)iblock);
 589                        ret = -EIO;
 590                        goto bail;
 591                }
 592                set_buffer_new(bh_result);
 593                up_write(&OCFS2_I(inode)->ip_alloc_sem);
 594        }
 595
 596        /*
 597         * get_more_blocks() expects us to describe a hole by clearing
 598         * the mapped bit on bh_result().
 599         *
 600         * Consider an unwritten extent as a hole.
 601         */
 602        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 603                map_bh(bh_result, inode->i_sb, p_blkno);
 604        else
 605                clear_buffer_mapped(bh_result);
 606
 607        /* make sure we don't map more than max_blocks blocks here as
 608           that's all the kernel will handle at this point. */
 609        if (max_blocks < contig_blocks)
 610                contig_blocks = max_blocks;
 611        bh_result->b_size = contig_blocks << blocksize_bits;
 612bail:
 613        if (alloc_locked)
 614                ocfs2_inode_unlock(inode, 1);
 615        return ret;
 616}
 617
 618/*
 619 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 620 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 621 * to protect io on one node from truncation on another.
 622 */
 623static void ocfs2_dio_end_io(struct kiocb *iocb,
 624                             loff_t offset,
 625                             ssize_t bytes,
 626                             void *private)
 627{
 628        struct inode *inode = file_inode(iocb->ki_filp);
 629        int level;
 630
 631        /* this io's submitter should not have unlocked this before we could */
 632        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 633
 634        if (ocfs2_iocb_is_unaligned_aio(iocb)) {
 635                ocfs2_iocb_clear_unaligned_aio(iocb);
 636
 637                mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
 638        }
 639
 640        /* Let rw unlock to be done later to protect append direct io write */
 641        if (offset + bytes <= i_size_read(inode)) {
 642                ocfs2_iocb_clear_rw_locked(iocb);
 643
 644                level = ocfs2_iocb_rw_locked_level(iocb);
 645                ocfs2_rw_unlock(inode, level);
 646        }
 647}
 648
 649static int ocfs2_releasepage(struct page *page, gfp_t wait)
 650{
 651        if (!page_has_buffers(page))
 652                return 0;
 653        return try_to_free_buffers(page);
 654}
 655
 656static int ocfs2_is_overwrite(struct ocfs2_super *osb,
 657                struct inode *inode, loff_t offset)
 658{
 659        int ret = 0;
 660        u32 v_cpos = 0;
 661        u32 p_cpos = 0;
 662        unsigned int num_clusters = 0;
 663        unsigned int ext_flags = 0;
 664
 665        v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
 666        ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
 667                        &num_clusters, &ext_flags);
 668        if (ret < 0) {
 669                mlog_errno(ret);
 670                return ret;
 671        }
 672
 673        if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 674                return 1;
 675
 676        return 0;
 677}
 678
 679static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
 680                struct inode *inode, loff_t offset,
 681                u64 zero_len, int cluster_align)
 682{
 683        u32 p_cpos = 0;
 684        u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
 685        unsigned int num_clusters = 0;
 686        unsigned int ext_flags = 0;
 687        int ret = 0;
 688
 689        if (offset <= i_size_read(inode) || cluster_align)
 690                return 0;
 691
 692        ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
 693                        &ext_flags);
 694        if (ret < 0) {
 695                mlog_errno(ret);
 696                return ret;
 697        }
 698
 699        if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
 700                u64 s = i_size_read(inode);
 701                sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
 702                        (do_div(s, osb->s_clustersize) >> 9);
 703
 704                ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
 705                                zero_len >> 9, GFP_NOFS, false);
 706                if (ret < 0)
 707                        mlog_errno(ret);
 708        }
 709
 710        return ret;
 711}
 712
 713static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
 714                struct inode *inode, loff_t offset)
 715{
 716        u64 zero_start, zero_len, total_zero_len;
 717        u32 p_cpos = 0, clusters_to_add;
 718        u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
 719        unsigned int num_clusters = 0;
 720        unsigned int ext_flags = 0;
 721        u32 size_div, offset_div;
 722        int ret = 0;
 723
 724        {
 725                u64 o = offset;
 726                u64 s = i_size_read(inode);
 727
 728                offset_div = do_div(o, osb->s_clustersize);
 729                size_div = do_div(s, osb->s_clustersize);
 730        }
 731
 732        if (offset <= i_size_read(inode))
 733                return 0;
 734
 735        clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
 736                ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
 737        total_zero_len = offset - i_size_read(inode);
 738        if (clusters_to_add)
 739                total_zero_len -= offset_div;
 740
 741        /* Allocate clusters to fill out holes, and this is only needed
 742         * when we add more than one clusters. Otherwise the cluster will
 743         * be allocated during direct IO */
 744        if (clusters_to_add > 1) {
 745                ret = ocfs2_extend_allocation(inode,
 746                                OCFS2_I(inode)->ip_clusters,
 747                                clusters_to_add - 1, 0);
 748                if (ret) {
 749                        mlog_errno(ret);
 750                        goto out;
 751                }
 752        }
 753
 754        while (total_zero_len) {
 755                ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
 756                                &ext_flags);
 757                if (ret < 0) {
 758                        mlog_errno(ret);
 759                        goto out;
 760                }
 761
 762                zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
 763                        size_div;
 764                zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
 765                        size_div;
 766                zero_len = min(total_zero_len, zero_len);
 767
 768                if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
 769                        ret = blkdev_issue_zeroout(osb->sb->s_bdev,
 770                                        zero_start >> 9, zero_len >> 9,
 771                                        GFP_NOFS, false);
 772                        if (ret < 0) {
 773                                mlog_errno(ret);
 774                                goto out;
 775                        }
 776                }
 777
 778                total_zero_len -= zero_len;
 779                v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
 780
 781                /* Only at first iteration can be cluster not aligned.
 782                 * So set size_div to 0 for the rest */
 783                size_div = 0;
 784        }
 785
 786out:
 787        return ret;
 788}
 789
 790static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
 791                struct iov_iter *iter,
 792                loff_t offset)
 793{
 794        ssize_t ret = 0;
 795        ssize_t written = 0;
 796        bool orphaned = false;
 797        int is_overwrite = 0;
 798        struct file *file = iocb->ki_filp;
 799        struct inode *inode = file_inode(file)->i_mapping->host;
 800        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 801        struct buffer_head *di_bh = NULL;
 802        size_t count = iter->count;
 803        journal_t *journal = osb->journal->j_journal;
 804        u64 zero_len_head, zero_len_tail;
 805        int cluster_align_head, cluster_align_tail;
 806        loff_t final_size = offset + count;
 807        int append_write = offset >= i_size_read(inode) ? 1 : 0;
 808        unsigned int num_clusters = 0;
 809        unsigned int ext_flags = 0;
 810
 811        {
 812                u64 o = offset;
 813                u64 s = i_size_read(inode);
 814
 815                zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
 816                cluster_align_head = !zero_len_head;
 817
 818                zero_len_tail = osb->s_clustersize -
 819                        do_div(s, osb->s_clustersize);
 820                if ((offset - i_size_read(inode)) < zero_len_tail)
 821                        zero_len_tail = offset - i_size_read(inode);
 822                cluster_align_tail = !zero_len_tail;
 823        }
 824
 825        /*
 826         * when final_size > inode->i_size, inode->i_size will be
 827         * updated after direct write, so add the inode to orphan
 828         * dir first.
 829         */
 830        if (final_size > i_size_read(inode)) {
 831                ret = ocfs2_add_inode_to_orphan(osb, inode);
 832                if (ret < 0) {
 833                        mlog_errno(ret);
 834                        goto out;
 835                }
 836                orphaned = true;
 837        }
 838
 839        if (append_write) {
 840                ret = ocfs2_inode_lock(inode, NULL, 1);
 841                if (ret < 0) {
 842                        mlog_errno(ret);
 843                        goto clean_orphan;
 844                }
 845
 846                /* zeroing out the previously allocated cluster tail
 847                 * that but not zeroed */
 848                if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
 849                        down_read(&OCFS2_I(inode)->ip_alloc_sem);
 850                        ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
 851                                        zero_len_tail, cluster_align_tail);
 852                        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 853                } else {
 854                        down_write(&OCFS2_I(inode)->ip_alloc_sem);
 855                        ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
 856                                        offset);
 857                        up_write(&OCFS2_I(inode)->ip_alloc_sem);
 858                }
 859                if (ret < 0) {
 860                        mlog_errno(ret);
 861                        ocfs2_inode_unlock(inode, 1);
 862                        goto clean_orphan;
 863                }
 864
 865                is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
 866                if (is_overwrite < 0) {
 867                        mlog_errno(is_overwrite);
 868                        ret = is_overwrite;
 869                        ocfs2_inode_unlock(inode, 1);
 870                        goto clean_orphan;
 871                }
 872
 873                ocfs2_inode_unlock(inode, 1);
 874        }
 875
 876        written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
 877                                       offset, ocfs2_direct_IO_get_blocks,
 878                                       ocfs2_dio_end_io, NULL, 0);
 879        /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
 880        if ((written < 0) && (written != -EIOCBQUEUED)) {
 881                loff_t i_size = i_size_read(inode);
 882
 883                if (offset + count > i_size) {
 884                        ret = ocfs2_inode_lock(inode, &di_bh, 1);
 885                        if (ret < 0) {
 886                                mlog_errno(ret);
 887                                goto clean_orphan;
 888                        }
 889
 890                        if (i_size == i_size_read(inode)) {
 891                                ret = ocfs2_truncate_file(inode, di_bh,
 892                                                i_size);
 893                                if (ret < 0) {
 894                                        if (ret != -ENOSPC)
 895                                                mlog_errno(ret);
 896
 897                                        ocfs2_inode_unlock(inode, 1);
 898                                        brelse(di_bh);
 899                                        di_bh = NULL;
 900                                        goto clean_orphan;
 901                                }
 902                        }
 903
 904                        ocfs2_inode_unlock(inode, 1);
 905                        brelse(di_bh);
 906                        di_bh = NULL;
 907
 908                        ret = jbd2_journal_force_commit(journal);
 909                        if (ret < 0)
 910                                mlog_errno(ret);
 911                }
 912        } else if (written > 0 && append_write && !is_overwrite &&
 913                        !cluster_align_head) {
 914                /* zeroing out the allocated cluster head */
 915                u32 p_cpos = 0;
 916                u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
 917
 918                ret = ocfs2_inode_lock(inode, NULL, 0);
 919                if (ret < 0) {
 920                        mlog_errno(ret);
 921                        goto clean_orphan;
 922                }
 923
 924                ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
 925                                &num_clusters, &ext_flags);
 926                if (ret < 0) {
 927                        mlog_errno(ret);
 928                        ocfs2_inode_unlock(inode, 0);
 929                        goto clean_orphan;
 930                }
 931
 932                BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
 933
 934                ret = blkdev_issue_zeroout(osb->sb->s_bdev,
 935                                (u64)p_cpos << (osb->s_clustersize_bits - 9),
 936                                zero_len_head >> 9, GFP_NOFS, false);
 937                if (ret < 0)
 938                        mlog_errno(ret);
 939
 940                ocfs2_inode_unlock(inode, 0);
 941        }
 942
 943clean_orphan:
 944        if (orphaned) {
 945                int tmp_ret;
 946                int update_isize = written > 0 ? 1 : 0;
 947                loff_t end = update_isize ? offset + written : 0;
 948
 949                tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
 950                if (tmp_ret < 0) {
 951                        ret = tmp_ret;
 952                        mlog_errno(ret);
 953                        goto out;
 954                }
 955
 956                tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
 957                                update_isize, end);
 958                if (tmp_ret < 0) {
 959                        ocfs2_inode_unlock(inode, 1);
 960                        ret = tmp_ret;
 961                        mlog_errno(ret);
 962                        brelse(di_bh);
 963                        goto out;
 964                }
 965
 966                ocfs2_inode_unlock(inode, 1);
 967                brelse(di_bh);
 968
 969                tmp_ret = jbd2_journal_force_commit(journal);
 970                if (tmp_ret < 0) {
 971                        ret = tmp_ret;
 972                        mlog_errno(tmp_ret);
 973                }
 974        }
 975
 976out:
 977        if (ret >= 0)
 978                ret = written;
 979        return ret;
 980}
 981
 982static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
 983                               loff_t offset)
 984{
 985        struct file *file = iocb->ki_filp;
 986        struct inode *inode = file_inode(file)->i_mapping->host;
 987        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 988        int full_coherency = !(osb->s_mount_opt &
 989                        OCFS2_MOUNT_COHERENCY_BUFFERED);
 990
 991        /*
 992         * Fallback to buffered I/O if we see an inode without
 993         * extents.
 994         */
 995        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 996                return 0;
 997
 998        /* Fallback to buffered I/O if we are appending and
 999         * concurrent O_DIRECT writes are allowed.
1000         */
1001        if (i_size_read(inode) <= offset && !full_coherency)
1002                return 0;
1003
1004        if (iov_iter_rw(iter) == READ)
1005                return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1006                                            iter, offset,
1007                                            ocfs2_direct_IO_get_blocks,
1008                                            ocfs2_dio_end_io, NULL, 0);
1009        else
1010                return ocfs2_direct_IO_write(iocb, iter, offset);
1011}
1012
1013static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1014                                            u32 cpos,
1015                                            unsigned int *start,
1016                                            unsigned int *end)
1017{
1018        unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1019
1020        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1021                unsigned int cpp;
1022
1023                cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1024
1025                cluster_start = cpos % cpp;
1026                cluster_start = cluster_start << osb->s_clustersize_bits;
1027
1028                cluster_end = cluster_start + osb->s_clustersize;
1029        }
1030
1031        BUG_ON(cluster_start > PAGE_SIZE);
1032        BUG_ON(cluster_end > PAGE_SIZE);
1033
1034        if (start)
1035                *start = cluster_start;
1036        if (end)
1037                *end = cluster_end;
1038}
1039
1040/*
1041 * 'from' and 'to' are the region in the page to avoid zeroing.
1042 *
1043 * If pagesize > clustersize, this function will avoid zeroing outside
1044 * of the cluster boundary.
1045 *
1046 * from == to == 0 is code for "zero the entire cluster region"
1047 */
1048static void ocfs2_clear_page_regions(struct page *page,
1049                                     struct ocfs2_super *osb, u32 cpos,
1050                                     unsigned from, unsigned to)
1051{
1052        void *kaddr;
1053        unsigned int cluster_start, cluster_end;
1054
1055        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1056
1057        kaddr = kmap_atomic(page);
1058
1059        if (from || to) {
1060                if (from > cluster_start)
1061                        memset(kaddr + cluster_start, 0, from - cluster_start);
1062                if (to < cluster_end)
1063                        memset(kaddr + to, 0, cluster_end - to);
1064        } else {
1065                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1066        }
1067
1068        kunmap_atomic(kaddr);
1069}
1070
1071/*
1072 * Nonsparse file systems fully allocate before we get to the write
1073 * code. This prevents ocfs2_write() from tagging the write as an
1074 * allocating one, which means ocfs2_map_page_blocks() might try to
1075 * read-in the blocks at the tail of our file. Avoid reading them by
1076 * testing i_size against each block offset.
1077 */
1078static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1079                                 unsigned int block_start)
1080{
1081        u64 offset = page_offset(page) + block_start;
1082
1083        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1084                return 1;
1085
1086        if (i_size_read(inode) > offset)
1087                return 1;
1088
1089        return 0;
1090}
1091
1092/*
1093 * Some of this taken from __block_write_begin(). We already have our
1094 * mapping by now though, and the entire write will be allocating or
1095 * it won't, so not much need to use BH_New.
1096 *
1097 * This will also skip zeroing, which is handled externally.
1098 */
1099int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1100                          struct inode *inode, unsigned int from,
1101                          unsigned int to, int new)
1102{
1103        int ret = 0;
1104        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1105        unsigned int block_end, block_start;
1106        unsigned int bsize = 1 << inode->i_blkbits;
1107
1108        if (!page_has_buffers(page))
1109                create_empty_buffers(page, bsize, 0);
1110
1111        head = page_buffers(page);
1112        for (bh = head, block_start = 0; bh != head || !block_start;
1113             bh = bh->b_this_page, block_start += bsize) {
1114                block_end = block_start + bsize;
1115
1116                clear_buffer_new(bh);
1117
1118                /*
1119                 * Ignore blocks outside of our i/o range -
1120                 * they may belong to unallocated clusters.
1121                 */
1122                if (block_start >= to || block_end <= from) {
1123                        if (PageUptodate(page))
1124                                set_buffer_uptodate(bh);
1125                        continue;
1126                }
1127
1128                /*
1129                 * For an allocating write with cluster size >= page
1130                 * size, we always write the entire page.
1131                 */
1132                if (new)
1133                        set_buffer_new(bh);
1134
1135                if (!buffer_mapped(bh)) {
1136                        map_bh(bh, inode->i_sb, *p_blkno);
1137                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1138                }
1139
1140                if (PageUptodate(page)) {
1141                        if (!buffer_uptodate(bh))
1142                                set_buffer_uptodate(bh);
1143                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1144                           !buffer_new(bh) &&
1145                           ocfs2_should_read_blk(inode, page, block_start) &&
1146                           (block_start < from || block_end > to)) {
1147                        ll_rw_block(READ, 1, &bh);
1148                        *wait_bh++=bh;
1149                }
1150
1151                *p_blkno = *p_blkno + 1;
1152        }
1153
1154        /*
1155         * If we issued read requests - let them complete.
1156         */
1157        while(wait_bh > wait) {
1158                wait_on_buffer(*--wait_bh);
1159                if (!buffer_uptodate(*wait_bh))
1160                        ret = -EIO;
1161        }
1162
1163        if (ret == 0 || !new)
1164                return ret;
1165
1166        /*
1167         * If we get -EIO above, zero out any newly allocated blocks
1168         * to avoid exposing stale data.
1169         */
1170        bh = head;
1171        block_start = 0;
1172        do {
1173                block_end = block_start + bsize;
1174                if (block_end <= from)
1175                        goto next_bh;
1176                if (block_start >= to)
1177                        break;
1178
1179                zero_user(page, block_start, bh->b_size);
1180                set_buffer_uptodate(bh);
1181                mark_buffer_dirty(bh);
1182
1183next_bh:
1184                block_start = block_end;
1185                bh = bh->b_this_page;
1186        } while (bh != head);
1187
1188        return ret;
1189}
1190
1191#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1192#define OCFS2_MAX_CTXT_PAGES    1
1193#else
1194#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1195#endif
1196
1197#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1198
1199/*
1200 * Describe the state of a single cluster to be written to.
1201 */
1202struct ocfs2_write_cluster_desc {
1203        u32             c_cpos;
1204        u32             c_phys;
1205        /*
1206         * Give this a unique field because c_phys eventually gets
1207         * filled.
1208         */
1209        unsigned        c_new;
1210        unsigned        c_unwritten;
1211        unsigned        c_needs_zero;
1212};
1213
1214struct ocfs2_write_ctxt {
1215        /* Logical cluster position / len of write */
1216        u32                             w_cpos;
1217        u32                             w_clen;
1218
1219        /* First cluster allocated in a nonsparse extend */
1220        u32                             w_first_new_cpos;
1221
1222        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1223
1224        /*
1225         * This is true if page_size > cluster_size.
1226         *
1227         * It triggers a set of special cases during write which might
1228         * have to deal with allocating writes to partial pages.
1229         */
1230        unsigned int                    w_large_pages;
1231
1232        /*
1233         * Pages involved in this write.
1234         *
1235         * w_target_page is the page being written to by the user.
1236         *
1237         * w_pages is an array of pages which always contains
1238         * w_target_page, and in the case of an allocating write with
1239         * page_size < cluster size, it will contain zero'd and mapped
1240         * pages adjacent to w_target_page which need to be written
1241         * out in so that future reads from that region will get
1242         * zero's.
1243         */
1244        unsigned int                    w_num_pages;
1245        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1246        struct page                     *w_target_page;
1247
1248        /*
1249         * w_target_locked is used for page_mkwrite path indicating no unlocking
1250         * against w_target_page in ocfs2_write_end_nolock.
1251         */
1252        unsigned int                    w_target_locked:1;
1253
1254        /*
1255         * ocfs2_write_end() uses this to know what the real range to
1256         * write in the target should be.
1257         */
1258        unsigned int                    w_target_from;
1259        unsigned int                    w_target_to;
1260
1261        /*
1262         * We could use journal_current_handle() but this is cleaner,
1263         * IMHO -Mark
1264         */
1265        handle_t                        *w_handle;
1266
1267        struct buffer_head              *w_di_bh;
1268
1269        struct ocfs2_cached_dealloc_ctxt w_dealloc;
1270};
1271
1272void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1273{
1274        int i;
1275
1276        for(i = 0; i < num_pages; i++) {
1277                if (pages[i]) {
1278                        unlock_page(pages[i]);
1279                        mark_page_accessed(pages[i]);
1280                        page_cache_release(pages[i]);
1281                }
1282        }
1283}
1284
1285static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1286{
1287        int i;
1288
1289        /*
1290         * w_target_locked is only set to true in the page_mkwrite() case.
1291         * The intent is to allow us to lock the target page from write_begin()
1292         * to write_end(). The caller must hold a ref on w_target_page.
1293         */
1294        if (wc->w_target_locked) {
1295                BUG_ON(!wc->w_target_page);
1296                for (i = 0; i < wc->w_num_pages; i++) {
1297                        if (wc->w_target_page == wc->w_pages[i]) {
1298                                wc->w_pages[i] = NULL;
1299                                break;
1300                        }
1301                }
1302                mark_page_accessed(wc->w_target_page);
1303                page_cache_release(wc->w_target_page);
1304        }
1305        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1306}
1307
1308static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1309{
1310        ocfs2_unlock_pages(wc);
1311        brelse(wc->w_di_bh);
1312        kfree(wc);
1313}
1314
1315static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1316                                  struct ocfs2_super *osb, loff_t pos,
1317                                  unsigned len, struct buffer_head *di_bh)
1318{
1319        u32 cend;
1320        struct ocfs2_write_ctxt *wc;
1321
1322        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1323        if (!wc)
1324                return -ENOMEM;
1325
1326        wc->w_cpos = pos >> osb->s_clustersize_bits;
1327        wc->w_first_new_cpos = UINT_MAX;
1328        cend = (pos + len - 1) >> osb->s_clustersize_bits;
1329        wc->w_clen = cend - wc->w_cpos + 1;
1330        get_bh(di_bh);
1331        wc->w_di_bh = di_bh;
1332
1333        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1334                wc->w_large_pages = 1;
1335        else
1336                wc->w_large_pages = 0;
1337
1338        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1339
1340        *wcp = wc;
1341
1342        return 0;
1343}
1344
1345/*
1346 * If a page has any new buffers, zero them out here, and mark them uptodate
1347 * and dirty so they'll be written out (in order to prevent uninitialised
1348 * block data from leaking). And clear the new bit.
1349 */
1350static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1351{
1352        unsigned int block_start, block_end;
1353        struct buffer_head *head, *bh;
1354
1355        BUG_ON(!PageLocked(page));
1356        if (!page_has_buffers(page))
1357                return;
1358
1359        bh = head = page_buffers(page);
1360        block_start = 0;
1361        do {
1362                block_end = block_start + bh->b_size;
1363
1364                if (buffer_new(bh)) {
1365                        if (block_end > from && block_start < to) {
1366                                if (!PageUptodate(page)) {
1367                                        unsigned start, end;
1368
1369                                        start = max(from, block_start);
1370                                        end = min(to, block_end);
1371
1372                                        zero_user_segment(page, start, end);
1373                                        set_buffer_uptodate(bh);
1374                                }
1375
1376                                clear_buffer_new(bh);
1377                                mark_buffer_dirty(bh);
1378                        }
1379                }
1380
1381                block_start = block_end;
1382                bh = bh->b_this_page;
1383        } while (bh != head);
1384}
1385
1386/*
1387 * Only called when we have a failure during allocating write to write
1388 * zero's to the newly allocated region.
1389 */
1390static void ocfs2_write_failure(struct inode *inode,
1391                                struct ocfs2_write_ctxt *wc,
1392                                loff_t user_pos, unsigned user_len)
1393{
1394        int i;
1395        unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1396                to = user_pos + user_len;
1397        struct page *tmppage;
1398
1399        ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1400
1401        for(i = 0; i < wc->w_num_pages; i++) {
1402                tmppage = wc->w_pages[i];
1403
1404                if (page_has_buffers(tmppage)) {
1405                        if (ocfs2_should_order_data(inode))
1406                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
1407
1408                        block_commit_write(tmppage, from, to);
1409                }
1410        }
1411}
1412
1413static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1414                                        struct ocfs2_write_ctxt *wc,
1415                                        struct page *page, u32 cpos,
1416                                        loff_t user_pos, unsigned user_len,
1417                                        int new)
1418{
1419        int ret;
1420        unsigned int map_from = 0, map_to = 0;
1421        unsigned int cluster_start, cluster_end;
1422        unsigned int user_data_from = 0, user_data_to = 0;
1423
1424        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1425                                        &cluster_start, &cluster_end);
1426
1427        /* treat the write as new if the a hole/lseek spanned across
1428         * the page boundary.
1429         */
1430        new = new | ((i_size_read(inode) <= page_offset(page)) &&
1431                        (page_offset(page) <= user_pos));
1432
1433        if (page == wc->w_target_page) {
1434                map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1435                map_to = map_from + user_len;
1436
1437                if (new)
1438                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1439                                                    cluster_start, cluster_end,
1440                                                    new);
1441                else
1442                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1443                                                    map_from, map_to, new);
1444                if (ret) {
1445                        mlog_errno(ret);
1446                        goto out;
1447                }
1448
1449                user_data_from = map_from;
1450                user_data_to = map_to;
1451                if (new) {
1452                        map_from = cluster_start;
1453                        map_to = cluster_end;
1454                }
1455        } else {
1456                /*
1457                 * If we haven't allocated the new page yet, we
1458                 * shouldn't be writing it out without copying user
1459                 * data. This is likely a math error from the caller.
1460                 */
1461                BUG_ON(!new);
1462
1463                map_from = cluster_start;
1464                map_to = cluster_end;
1465
1466                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1467                                            cluster_start, cluster_end, new);
1468                if (ret) {
1469                        mlog_errno(ret);
1470                        goto out;
1471                }
1472        }
1473
1474        /*
1475         * Parts of newly allocated pages need to be zero'd.
1476         *
1477         * Above, we have also rewritten 'to' and 'from' - as far as
1478         * the rest of the function is concerned, the entire cluster
1479         * range inside of a page needs to be written.
1480         *
1481         * We can skip this if the page is up to date - it's already
1482         * been zero'd from being read in as a hole.
1483         */
1484        if (new && !PageUptodate(page))
1485                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1486                                         cpos, user_data_from, user_data_to);
1487
1488        flush_dcache_page(page);
1489
1490out:
1491        return ret;
1492}
1493
1494/*
1495 * This function will only grab one clusters worth of pages.
1496 */
1497static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1498                                      struct ocfs2_write_ctxt *wc,
1499                                      u32 cpos, loff_t user_pos,
1500                                      unsigned user_len, int new,
1501                                      struct page *mmap_page)
1502{
1503        int ret = 0, i;
1504        unsigned long start, target_index, end_index, index;
1505        struct inode *inode = mapping->host;
1506        loff_t last_byte;
1507
1508        target_index = user_pos >> PAGE_CACHE_SHIFT;
1509
1510        /*
1511         * Figure out how many pages we'll be manipulating here. For
1512         * non allocating write, we just change the one
1513         * page. Otherwise, we'll need a whole clusters worth.  If we're
1514         * writing past i_size, we only need enough pages to cover the
1515         * last page of the write.
1516         */
1517        if (new) {
1518                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1519                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1520                /*
1521                 * We need the index *past* the last page we could possibly
1522                 * touch.  This is the page past the end of the write or
1523                 * i_size, whichever is greater.
1524                 */
1525                last_byte = max(user_pos + user_len, i_size_read(inode));
1526                BUG_ON(last_byte < 1);
1527                end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1528                if ((start + wc->w_num_pages) > end_index)
1529                        wc->w_num_pages = end_index - start;
1530        } else {
1531                wc->w_num_pages = 1;
1532                start = target_index;
1533        }
1534
1535        for(i = 0; i < wc->w_num_pages; i++) {
1536                index = start + i;
1537
1538                if (index == target_index && mmap_page) {
1539                        /*
1540                         * ocfs2_pagemkwrite() is a little different
1541                         * and wants us to directly use the page
1542                         * passed in.
1543                         */
1544                        lock_page(mmap_page);
1545
1546                        /* Exit and let the caller retry */
1547                        if (mmap_page->mapping != mapping) {
1548                                WARN_ON(mmap_page->mapping);
1549                                unlock_page(mmap_page);
1550                                ret = -EAGAIN;
1551                                goto out;
1552                        }
1553
1554                        page_cache_get(mmap_page);
1555                        wc->w_pages[i] = mmap_page;
1556                        wc->w_target_locked = true;
1557                } else {
1558                        wc->w_pages[i] = find_or_create_page(mapping, index,
1559                                                             GFP_NOFS);
1560                        if (!wc->w_pages[i]) {
1561                                ret = -ENOMEM;
1562                                mlog_errno(ret);
1563                                goto out;
1564                        }
1565                }
1566                wait_for_stable_page(wc->w_pages[i]);
1567
1568                if (index == target_index)
1569                        wc->w_target_page = wc->w_pages[i];
1570        }
1571out:
1572        if (ret)
1573                wc->w_target_locked = false;
1574        return ret;
1575}
1576
1577/*
1578 * Prepare a single cluster for write one cluster into the file.
1579 */
1580static int ocfs2_write_cluster(struct address_space *mapping,
1581                               u32 phys, unsigned int unwritten,
1582                               unsigned int should_zero,
1583                               struct ocfs2_alloc_context *data_ac,
1584                               struct ocfs2_alloc_context *meta_ac,
1585                               struct ocfs2_write_ctxt *wc, u32 cpos,
1586                               loff_t user_pos, unsigned user_len)
1587{
1588        int ret, i, new;
1589        u64 v_blkno, p_blkno;
1590        struct inode *inode = mapping->host;
1591        struct ocfs2_extent_tree et;
1592
1593        new = phys == 0 ? 1 : 0;
1594        if (new) {
1595                u32 tmp_pos;
1596
1597                /*
1598                 * This is safe to call with the page locks - it won't take
1599                 * any additional semaphores or cluster locks.
1600                 */
1601                tmp_pos = cpos;
1602                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1603                                           &tmp_pos, 1, 0, wc->w_di_bh,
1604                                           wc->w_handle, data_ac,
1605                                           meta_ac, NULL);
1606                /*
1607                 * This shouldn't happen because we must have already
1608                 * calculated the correct meta data allocation required. The
1609                 * internal tree allocation code should know how to increase
1610                 * transaction credits itself.
1611                 *
1612                 * If need be, we could handle -EAGAIN for a
1613                 * RESTART_TRANS here.
1614                 */
1615                mlog_bug_on_msg(ret == -EAGAIN,
1616                                "Inode %llu: EAGAIN return during allocation.\n",
1617                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1618                if (ret < 0) {
1619                        mlog_errno(ret);
1620                        goto out;
1621                }
1622        } else if (unwritten) {
1623                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1624                                              wc->w_di_bh);
1625                ret = ocfs2_mark_extent_written(inode, &et,
1626                                                wc->w_handle, cpos, 1, phys,
1627                                                meta_ac, &wc->w_dealloc);
1628                if (ret < 0) {
1629                        mlog_errno(ret);
1630                        goto out;
1631                }
1632        }
1633
1634        if (should_zero)
1635                v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1636        else
1637                v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1638
1639        /*
1640         * The only reason this should fail is due to an inability to
1641         * find the extent added.
1642         */
1643        ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1644                                          NULL);
1645        if (ret < 0) {
1646                mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1647                            "at logical block %llu",
1648                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
1649                            (unsigned long long)v_blkno);
1650                goto out;
1651        }
1652
1653        BUG_ON(p_blkno == 0);
1654
1655        for(i = 0; i < wc->w_num_pages; i++) {
1656                int tmpret;
1657
1658                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1659                                                      wc->w_pages[i], cpos,
1660                                                      user_pos, user_len,
1661                                                      should_zero);
1662                if (tmpret) {
1663                        mlog_errno(tmpret);
1664                        if (ret == 0)
1665                                ret = tmpret;
1666                }
1667        }
1668
1669        /*
1670         * We only have cleanup to do in case of allocating write.
1671         */
1672        if (ret && new)
1673                ocfs2_write_failure(inode, wc, user_pos, user_len);
1674
1675out:
1676
1677        return ret;
1678}
1679
1680static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1681                                       struct ocfs2_alloc_context *data_ac,
1682                                       struct ocfs2_alloc_context *meta_ac,
1683                                       struct ocfs2_write_ctxt *wc,
1684                                       loff_t pos, unsigned len)
1685{
1686        int ret, i;
1687        loff_t cluster_off;
1688        unsigned int local_len = len;
1689        struct ocfs2_write_cluster_desc *desc;
1690        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1691
1692        for (i = 0; i < wc->w_clen; i++) {
1693                desc = &wc->w_desc[i];
1694
1695                /*
1696                 * We have to make sure that the total write passed in
1697                 * doesn't extend past a single cluster.
1698                 */
1699                local_len = len;
1700                cluster_off = pos & (osb->s_clustersize - 1);
1701                if ((cluster_off + local_len) > osb->s_clustersize)
1702                        local_len = osb->s_clustersize - cluster_off;
1703
1704                ret = ocfs2_write_cluster(mapping, desc->c_phys,
1705                                          desc->c_unwritten,
1706                                          desc->c_needs_zero,
1707                                          data_ac, meta_ac,
1708                                          wc, desc->c_cpos, pos, local_len);
1709                if (ret) {
1710                        mlog_errno(ret);
1711                        goto out;
1712                }
1713
1714                len -= local_len;
1715                pos += local_len;
1716        }
1717
1718        ret = 0;
1719out:
1720        return ret;
1721}
1722
1723/*
1724 * ocfs2_write_end() wants to know which parts of the target page it
1725 * should complete the write on. It's easiest to compute them ahead of
1726 * time when a more complete view of the write is available.
1727 */
1728static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1729                                        struct ocfs2_write_ctxt *wc,
1730                                        loff_t pos, unsigned len, int alloc)
1731{
1732        struct ocfs2_write_cluster_desc *desc;
1733
1734        wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1735        wc->w_target_to = wc->w_target_from + len;
1736
1737        if (alloc == 0)
1738                return;
1739
1740        /*
1741         * Allocating write - we may have different boundaries based
1742         * on page size and cluster size.
1743         *
1744         * NOTE: We can no longer compute one value from the other as
1745         * the actual write length and user provided length may be
1746         * different.
1747         */
1748
1749        if (wc->w_large_pages) {
1750                /*
1751                 * We only care about the 1st and last cluster within
1752                 * our range and whether they should be zero'd or not. Either
1753                 * value may be extended out to the start/end of a
1754                 * newly allocated cluster.
1755                 */
1756                desc = &wc->w_desc[0];
1757                if (desc->c_needs_zero)
1758                        ocfs2_figure_cluster_boundaries(osb,
1759                                                        desc->c_cpos,
1760                                                        &wc->w_target_from,
1761                                                        NULL);
1762
1763                desc = &wc->w_desc[wc->w_clen - 1];
1764                if (desc->c_needs_zero)
1765                        ocfs2_figure_cluster_boundaries(osb,
1766                                                        desc->c_cpos,
1767                                                        NULL,
1768                                                        &wc->w_target_to);
1769        } else {
1770                wc->w_target_from = 0;
1771                wc->w_target_to = PAGE_CACHE_SIZE;
1772        }
1773}
1774
1775/*
1776 * Populate each single-cluster write descriptor in the write context
1777 * with information about the i/o to be done.
1778 *
1779 * Returns the number of clusters that will have to be allocated, as
1780 * well as a worst case estimate of the number of extent records that
1781 * would have to be created during a write to an unwritten region.
1782 */
1783static int ocfs2_populate_write_desc(struct inode *inode,
1784                                     struct ocfs2_write_ctxt *wc,
1785                                     unsigned int *clusters_to_alloc,
1786                                     unsigned int *extents_to_split)
1787{
1788        int ret;
1789        struct ocfs2_write_cluster_desc *desc;
1790        unsigned int num_clusters = 0;
1791        unsigned int ext_flags = 0;
1792        u32 phys = 0;
1793        int i;
1794
1795        *clusters_to_alloc = 0;
1796        *extents_to_split = 0;
1797
1798        for (i = 0; i < wc->w_clen; i++) {
1799                desc = &wc->w_desc[i];
1800                desc->c_cpos = wc->w_cpos + i;
1801
1802                if (num_clusters == 0) {
1803                        /*
1804                         * Need to look up the next extent record.
1805                         */
1806                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1807                                                 &num_clusters, &ext_flags);
1808                        if (ret) {
1809                                mlog_errno(ret);
1810                                goto out;
1811                        }
1812
1813                        /* We should already CoW the refcountd extent. */
1814                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1815
1816                        /*
1817                         * Assume worst case - that we're writing in
1818                         * the middle of the extent.
1819                         *
1820                         * We can assume that the write proceeds from
1821                         * left to right, in which case the extent
1822                         * insert code is smart enough to coalesce the
1823                         * next splits into the previous records created.
1824                         */
1825                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1826                                *extents_to_split = *extents_to_split + 2;
1827                } else if (phys) {
1828                        /*
1829                         * Only increment phys if it doesn't describe
1830                         * a hole.
1831                         */
1832                        phys++;
1833                }
1834
1835                /*
1836                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1837                 * file that got extended.  w_first_new_cpos tells us
1838                 * where the newly allocated clusters are so we can
1839                 * zero them.
1840                 */
1841                if (desc->c_cpos >= wc->w_first_new_cpos) {
1842                        BUG_ON(phys == 0);
1843                        desc->c_needs_zero = 1;
1844                }
1845
1846                desc->c_phys = phys;
1847                if (phys == 0) {
1848                        desc->c_new = 1;
1849                        desc->c_needs_zero = 1;
1850                        *clusters_to_alloc = *clusters_to_alloc + 1;
1851                }
1852
1853                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1854                        desc->c_unwritten = 1;
1855                        desc->c_needs_zero = 1;
1856                }
1857
1858                num_clusters--;
1859        }
1860
1861        ret = 0;
1862out:
1863        return ret;
1864}
1865
1866static int ocfs2_write_begin_inline(struct address_space *mapping,
1867                                    struct inode *inode,
1868                                    struct ocfs2_write_ctxt *wc)
1869{
1870        int ret;
1871        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1872        struct page *page;
1873        handle_t *handle;
1874        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1875
1876        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1877        if (IS_ERR(handle)) {
1878                ret = PTR_ERR(handle);
1879                mlog_errno(ret);
1880                goto out;
1881        }
1882
1883        page = find_or_create_page(mapping, 0, GFP_NOFS);
1884        if (!page) {
1885                ocfs2_commit_trans(osb, handle);
1886                ret = -ENOMEM;
1887                mlog_errno(ret);
1888                goto out;
1889        }
1890        /*
1891         * If we don't set w_num_pages then this page won't get unlocked
1892         * and freed on cleanup of the write context.
1893         */
1894        wc->w_pages[0] = wc->w_target_page = page;
1895        wc->w_num_pages = 1;
1896
1897        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1898                                      OCFS2_JOURNAL_ACCESS_WRITE);
1899        if (ret) {
1900                ocfs2_commit_trans(osb, handle);
1901
1902                mlog_errno(ret);
1903                goto out;
1904        }
1905
1906        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1907                ocfs2_set_inode_data_inline(inode, di);
1908
1909        if (!PageUptodate(page)) {
1910                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1911                if (ret) {
1912                        ocfs2_commit_trans(osb, handle);
1913
1914                        goto out;
1915                }
1916        }
1917
1918        wc->w_handle = handle;
1919out:
1920        return ret;
1921}
1922
1923int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1924{
1925        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1926
1927        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1928                return 1;
1929        return 0;
1930}
1931
1932static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1933                                          struct inode *inode, loff_t pos,
1934                                          unsigned len, struct page *mmap_page,
1935                                          struct ocfs2_write_ctxt *wc)
1936{
1937        int ret, written = 0;
1938        loff_t end = pos + len;
1939        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1940        struct ocfs2_dinode *di = NULL;
1941
1942        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1943                                             len, (unsigned long long)pos,
1944                                             oi->ip_dyn_features);
1945
1946        /*
1947         * Handle inodes which already have inline data 1st.
1948         */
1949        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1950                if (mmap_page == NULL &&
1951                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1952                        goto do_inline_write;
1953
1954                /*
1955                 * The write won't fit - we have to give this inode an
1956                 * inline extent list now.
1957                 */
1958                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1959                if (ret)
1960                        mlog_errno(ret);
1961                goto out;
1962        }
1963
1964        /*
1965         * Check whether the inode can accept inline data.
1966         */
1967        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1968                return 0;
1969
1970        /*
1971         * Check whether the write can fit.
1972         */
1973        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1974        if (mmap_page ||
1975            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1976                return 0;
1977
1978do_inline_write:
1979        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1980        if (ret) {
1981                mlog_errno(ret);
1982                goto out;
1983        }
1984
1985        /*
1986         * This signals to the caller that the data can be written
1987         * inline.
1988         */
1989        written = 1;
1990out:
1991        return written ? written : ret;
1992}
1993
1994/*
1995 * This function only does anything for file systems which can't
1996 * handle sparse files.
1997 *
1998 * What we want to do here is fill in any hole between the current end
1999 * of allocation and the end of our write. That way the rest of the
2000 * write path can treat it as an non-allocating write, which has no
2001 * special case code for sparse/nonsparse files.
2002 */
2003static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2004                                        struct buffer_head *di_bh,
2005                                        loff_t pos, unsigned len,
2006                                        struct ocfs2_write_ctxt *wc)
2007{
2008        int ret;
2009        loff_t newsize = pos + len;
2010
2011        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2012
2013        if (newsize <= i_size_read(inode))
2014                return 0;
2015
2016        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
2017        if (ret)
2018                mlog_errno(ret);
2019
2020        wc->w_first_new_cpos =
2021                ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2022
2023        return ret;
2024}
2025
2026static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2027                           loff_t pos)
2028{
2029        int ret = 0;
2030
2031        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2032        if (pos > i_size_read(inode))
2033                ret = ocfs2_zero_extend(inode, di_bh, pos);
2034
2035        return ret;
2036}
2037
2038/*
2039 * Try to flush truncate logs if we can free enough clusters from it.
2040 * As for return value, "< 0" means error, "0" no space and "1" means
2041 * we have freed enough spaces and let the caller try to allocate again.
2042 */
2043static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2044                                          unsigned int needed)
2045{
2046        tid_t target;
2047        int ret = 0;
2048        unsigned int truncated_clusters;
2049
2050        inode_lock(osb->osb_tl_inode);
2051        truncated_clusters = osb->truncated_clusters;
2052        inode_unlock(osb->osb_tl_inode);
2053
2054        /*
2055         * Check whether we can succeed in allocating if we free
2056         * the truncate log.
2057         */
2058        if (truncated_clusters < needed)
2059                goto out;
2060
2061        ret = ocfs2_flush_truncate_log(osb);
2062        if (ret) {
2063                mlog_errno(ret);
2064                goto out;
2065        }
2066
2067        if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2068                jbd2_log_wait_commit(osb->journal->j_journal, target);
2069                ret = 1;
2070        }
2071out:
2072        return ret;
2073}
2074
2075int ocfs2_write_begin_nolock(struct file *filp,
2076                             struct address_space *mapping,
2077                             loff_t pos, unsigned len, unsigned flags,
2078                             struct page **pagep, void **fsdata,
2079                             struct buffer_head *di_bh, struct page *mmap_page)
2080{
2081        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2082        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2083        struct ocfs2_write_ctxt *wc;
2084        struct inode *inode = mapping->host;
2085        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2086        struct ocfs2_dinode *di;
2087        struct ocfs2_alloc_context *data_ac = NULL;
2088        struct ocfs2_alloc_context *meta_ac = NULL;
2089        handle_t *handle;
2090        struct ocfs2_extent_tree et;
2091        int try_free = 1, ret1;
2092
2093try_again:
2094        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2095        if (ret) {
2096                mlog_errno(ret);
2097                return ret;
2098        }
2099
2100        if (ocfs2_supports_inline_data(osb)) {
2101                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2102                                                     mmap_page, wc);
2103                if (ret == 1) {
2104                        ret = 0;
2105                        goto success;
2106                }
2107                if (ret < 0) {
2108                        mlog_errno(ret);
2109                        goto out;
2110                }
2111        }
2112
2113        if (ocfs2_sparse_alloc(osb))
2114                ret = ocfs2_zero_tail(inode, di_bh, pos);
2115        else
2116                ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2117                                                   wc);
2118        if (ret) {
2119                mlog_errno(ret);
2120                goto out;
2121        }
2122
2123        ret = ocfs2_check_range_for_refcount(inode, pos, len);
2124        if (ret < 0) {
2125                mlog_errno(ret);
2126                goto out;
2127        } else if (ret == 1) {
2128                clusters_need = wc->w_clen;
2129                ret = ocfs2_refcount_cow(inode, di_bh,
2130                                         wc->w_cpos, wc->w_clen, UINT_MAX);
2131                if (ret) {
2132                        mlog_errno(ret);
2133                        goto out;
2134                }
2135        }
2136
2137        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2138                                        &extents_to_split);
2139        if (ret) {
2140                mlog_errno(ret);
2141                goto out;
2142        }
2143        clusters_need += clusters_to_alloc;
2144
2145        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2146
2147        trace_ocfs2_write_begin_nolock(
2148                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
2149                        (long long)i_size_read(inode),
2150                        le32_to_cpu(di->i_clusters),
2151                        pos, len, flags, mmap_page,
2152                        clusters_to_alloc, extents_to_split);
2153
2154        /*
2155         * We set w_target_from, w_target_to here so that
2156         * ocfs2_write_end() knows which range in the target page to
2157         * write out. An allocation requires that we write the entire
2158         * cluster range.
2159         */
2160        if (clusters_to_alloc || extents_to_split) {
2161                /*
2162                 * XXX: We are stretching the limits of
2163                 * ocfs2_lock_allocators(). It greatly over-estimates
2164                 * the work to be done.
2165                 */
2166                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2167                                              wc->w_di_bh);
2168                ret = ocfs2_lock_allocators(inode, &et,
2169                                            clusters_to_alloc, extents_to_split,
2170                                            &data_ac, &meta_ac);
2171                if (ret) {
2172                        mlog_errno(ret);
2173                        goto out;
2174                }
2175
2176                if (data_ac)
2177                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2178
2179                credits = ocfs2_calc_extend_credits(inode->i_sb,
2180                                                    &di->id2.i_list);
2181
2182        }
2183
2184        /*
2185         * We have to zero sparse allocated clusters, unwritten extent clusters,
2186         * and non-sparse clusters we just extended.  For non-sparse writes,
2187         * we know zeros will only be needed in the first and/or last cluster.
2188         */
2189        if (clusters_to_alloc || extents_to_split ||
2190            (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2191                            wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2192                cluster_of_pages = 1;
2193        else
2194                cluster_of_pages = 0;
2195
2196        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2197
2198        handle = ocfs2_start_trans(osb, credits);
2199        if (IS_ERR(handle)) {
2200                ret = PTR_ERR(handle);
2201                mlog_errno(ret);
2202                goto out;
2203        }
2204
2205        wc->w_handle = handle;
2206
2207        if (clusters_to_alloc) {
2208                ret = dquot_alloc_space_nodirty(inode,
2209                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2210                if (ret)
2211                        goto out_commit;
2212        }
2213
2214        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2215                                      OCFS2_JOURNAL_ACCESS_WRITE);
2216        if (ret) {
2217                mlog_errno(ret);
2218                goto out_quota;
2219        }
2220
2221        /*
2222         * Fill our page array first. That way we've grabbed enough so
2223         * that we can zero and flush if we error after adding the
2224         * extent.
2225         */
2226        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2227                                         cluster_of_pages, mmap_page);
2228        if (ret && ret != -EAGAIN) {
2229                mlog_errno(ret);
2230                goto out_quota;
2231        }
2232
2233        /*
2234         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2235         * the target page. In this case, we exit with no error and no target
2236         * page. This will trigger the caller, page_mkwrite(), to re-try
2237         * the operation.
2238         */
2239        if (ret == -EAGAIN) {
2240                BUG_ON(wc->w_target_page);
2241                ret = 0;
2242                goto out_quota;
2243        }
2244
2245        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2246                                          len);
2247        if (ret) {
2248                mlog_errno(ret);
2249                goto out_quota;
2250        }
2251
2252        if (data_ac)
2253                ocfs2_free_alloc_context(data_ac);
2254        if (meta_ac)
2255                ocfs2_free_alloc_context(meta_ac);
2256
2257success:
2258        *pagep = wc->w_target_page;
2259        *fsdata = wc;
2260        return 0;
2261out_quota:
2262        if (clusters_to_alloc)
2263                dquot_free_space(inode,
2264                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2265out_commit:
2266        ocfs2_commit_trans(osb, handle);
2267
2268out:
2269        ocfs2_free_write_ctxt(wc);
2270
2271        if (data_ac) {
2272                ocfs2_free_alloc_context(data_ac);
2273                data_ac = NULL;
2274        }
2275        if (meta_ac) {
2276                ocfs2_free_alloc_context(meta_ac);
2277                meta_ac = NULL;
2278        }
2279
2280        if (ret == -ENOSPC && try_free) {
2281                /*
2282                 * Try to free some truncate log so that we can have enough
2283                 * clusters to allocate.
2284                 */
2285                try_free = 0;
2286
2287                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2288                if (ret1 == 1)
2289                        goto try_again;
2290
2291                if (ret1 < 0)
2292                        mlog_errno(ret1);
2293        }
2294
2295        return ret;
2296}
2297
2298static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2299                             loff_t pos, unsigned len, unsigned flags,
2300                             struct page **pagep, void **fsdata)
2301{
2302        int ret;
2303        struct buffer_head *di_bh = NULL;
2304        struct inode *inode = mapping->host;
2305
2306        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2307        if (ret) {
2308                mlog_errno(ret);
2309                return ret;
2310        }
2311
2312        /*
2313         * Take alloc sem here to prevent concurrent lookups. That way
2314         * the mapping, zeroing and tree manipulation within
2315         * ocfs2_write() will be safe against ->readpage(). This
2316         * should also serve to lock out allocation from a shared
2317         * writeable region.
2318         */
2319        down_write(&OCFS2_I(inode)->ip_alloc_sem);
2320
2321        ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2322                                       fsdata, di_bh, NULL);
2323        if (ret) {
2324                mlog_errno(ret);
2325                goto out_fail;
2326        }
2327
2328        brelse(di_bh);
2329
2330        return 0;
2331
2332out_fail:
2333        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2334
2335        brelse(di_bh);
2336        ocfs2_inode_unlock(inode, 1);
2337
2338        return ret;
2339}
2340
2341static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2342                                   unsigned len, unsigned *copied,
2343                                   struct ocfs2_dinode *di,
2344                                   struct ocfs2_write_ctxt *wc)
2345{
2346        void *kaddr;
2347
2348        if (unlikely(*copied < len)) {
2349                if (!PageUptodate(wc->w_target_page)) {
2350                        *copied = 0;
2351                        return;
2352                }
2353        }
2354
2355        kaddr = kmap_atomic(wc->w_target_page);
2356        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2357        kunmap_atomic(kaddr);
2358
2359        trace_ocfs2_write_end_inline(
2360             (unsigned long long)OCFS2_I(inode)->ip_blkno,
2361             (unsigned long long)pos, *copied,
2362             le16_to_cpu(di->id2.i_data.id_count),
2363             le16_to_cpu(di->i_dyn_features));
2364}
2365
2366int ocfs2_write_end_nolock(struct address_space *mapping,
2367                           loff_t pos, unsigned len, unsigned copied,
2368                           struct page *page, void *fsdata)
2369{
2370        int i, ret;
2371        unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2372        struct inode *inode = mapping->host;
2373        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2374        struct ocfs2_write_ctxt *wc = fsdata;
2375        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2376        handle_t *handle = wc->w_handle;
2377        struct page *tmppage;
2378
2379        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2380                        OCFS2_JOURNAL_ACCESS_WRITE);
2381        if (ret) {
2382                copied = ret;
2383                mlog_errno(ret);
2384                goto out;
2385        }
2386
2387        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2388                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2389                goto out_write_size;
2390        }
2391
2392        if (unlikely(copied < len)) {
2393                if (!PageUptodate(wc->w_target_page))
2394                        copied = 0;
2395
2396                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2397                                       start+len);
2398        }
2399        flush_dcache_page(wc->w_target_page);
2400
2401        for(i = 0; i < wc->w_num_pages; i++) {
2402                tmppage = wc->w_pages[i];
2403
2404                if (tmppage == wc->w_target_page) {
2405                        from = wc->w_target_from;
2406                        to = wc->w_target_to;
2407
2408                        BUG_ON(from > PAGE_CACHE_SIZE ||
2409                               to > PAGE_CACHE_SIZE ||
2410                               to < from);
2411                } else {
2412                        /*
2413                         * Pages adjacent to the target (if any) imply
2414                         * a hole-filling write in which case we want
2415                         * to flush their entire range.
2416                         */
2417                        from = 0;
2418                        to = PAGE_CACHE_SIZE;
2419                }
2420
2421                if (page_has_buffers(tmppage)) {
2422                        if (ocfs2_should_order_data(inode))
2423                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
2424                        block_commit_write(tmppage, from, to);
2425                }
2426        }
2427
2428out_write_size:
2429        pos += copied;
2430        if (pos > i_size_read(inode)) {
2431                i_size_write(inode, pos);
2432                mark_inode_dirty(inode);
2433        }
2434        inode->i_blocks = ocfs2_inode_sector_count(inode);
2435        di->i_size = cpu_to_le64((u64)i_size_read(inode));
2436        inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2437        di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2438        di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2439        ocfs2_update_inode_fsync_trans(handle, inode, 1);
2440        ocfs2_journal_dirty(handle, wc->w_di_bh);
2441
2442out:
2443        /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2444         * lock, or it will cause a deadlock since journal commit threads holds
2445         * this lock and will ask for the page lock when flushing the data.
2446         * put it here to preserve the unlock order.
2447         */
2448        ocfs2_unlock_pages(wc);
2449
2450        ocfs2_commit_trans(osb, handle);
2451
2452        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2453
2454        brelse(wc->w_di_bh);
2455        kfree(wc);
2456
2457        return copied;
2458}
2459
2460static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2461                           loff_t pos, unsigned len, unsigned copied,
2462                           struct page *page, void *fsdata)
2463{
2464        int ret;
2465        struct inode *inode = mapping->host;
2466
2467        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2468
2469        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2470        ocfs2_inode_unlock(inode, 1);
2471
2472        return ret;
2473}
2474
2475const struct address_space_operations ocfs2_aops = {
2476        .readpage               = ocfs2_readpage,
2477        .readpages              = ocfs2_readpages,
2478        .writepage              = ocfs2_writepage,
2479        .write_begin            = ocfs2_write_begin,
2480        .write_end              = ocfs2_write_end,
2481        .bmap                   = ocfs2_bmap,
2482        .direct_IO              = ocfs2_direct_IO,
2483        .invalidatepage         = block_invalidatepage,
2484        .releasepage            = ocfs2_releasepage,
2485        .migratepage            = buffer_migrate_page,
2486        .is_partially_uptodate  = block_is_partially_uptodate,
2487        .error_remove_page      = generic_error_remove_page,
2488};
2489