linux/fs/proc/base.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
  97/* NOTE:
  98 *      Implementing inode permission operations in /proc is almost
  99 *      certainly an error.  Permission checks need to happen during
 100 *      each system call not at open time.  The reason is that most of
 101 *      what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *      The classic example of a problem is opening file descriptors
 104 *      in /proc for a task before it execs a suid executable.
 105 */
 106
 107struct pid_entry {
 108        const char *name;
 109        int len;
 110        umode_t mode;
 111        const struct inode_operations *iop;
 112        const struct file_operations *fop;
 113        union proc_op op;
 114};
 115
 116#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 117        .name = (NAME),                                 \
 118        .len  = sizeof(NAME) - 1,                       \
 119        .mode = MODE,                                   \
 120        .iop  = IOP,                                    \
 121        .fop  = FOP,                                    \
 122        .op   = OP,                                     \
 123}
 124
 125#define DIR(NAME, MODE, iops, fops)     \
 126        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 127#define LNK(NAME, get_link)                                     \
 128        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 129                &proc_pid_link_inode_operations, NULL,          \
 130                { .proc_get_link = get_link } )
 131#define REG(NAME, MODE, fops)                           \
 132        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 133#define ONE(NAME, MODE, show)                           \
 134        NOD(NAME, (S_IFREG|(MODE)),                     \
 135                NULL, &proc_single_file_operations,     \
 136                { .proc_show = show } )
 137
 138/*
 139 * Count the number of hardlinks for the pid_entry table, excluding the .
 140 * and .. links.
 141 */
 142static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 143        unsigned int n)
 144{
 145        unsigned int i;
 146        unsigned int count;
 147
 148        count = 0;
 149        for (i = 0; i < n; ++i) {
 150                if (S_ISDIR(entries[i].mode))
 151                        ++count;
 152        }
 153
 154        return count;
 155}
 156
 157static int get_task_root(struct task_struct *task, struct path *root)
 158{
 159        int result = -ENOENT;
 160
 161        task_lock(task);
 162        if (task->fs) {
 163                get_fs_root(task->fs, root);
 164                result = 0;
 165        }
 166        task_unlock(task);
 167        return result;
 168}
 169
 170static int proc_cwd_link(struct dentry *dentry, struct path *path)
 171{
 172        struct task_struct *task = get_proc_task(d_inode(dentry));
 173        int result = -ENOENT;
 174
 175        if (task) {
 176                task_lock(task);
 177                if (task->fs) {
 178                        get_fs_pwd(task->fs, path);
 179                        result = 0;
 180                }
 181                task_unlock(task);
 182                put_task_struct(task);
 183        }
 184        return result;
 185}
 186
 187static int proc_root_link(struct dentry *dentry, struct path *path)
 188{
 189        struct task_struct *task = get_proc_task(d_inode(dentry));
 190        int result = -ENOENT;
 191
 192        if (task) {
 193                result = get_task_root(task, path);
 194                put_task_struct(task);
 195        }
 196        return result;
 197}
 198
 199static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 200                                     size_t _count, loff_t *pos)
 201{
 202        struct task_struct *tsk;
 203        struct mm_struct *mm;
 204        char *page;
 205        unsigned long count = _count;
 206        unsigned long arg_start, arg_end, env_start, env_end;
 207        unsigned long len1, len2, len;
 208        unsigned long p;
 209        char c;
 210        ssize_t rv;
 211
 212        BUG_ON(*pos < 0);
 213
 214        tsk = get_proc_task(file_inode(file));
 215        if (!tsk)
 216                return -ESRCH;
 217        mm = get_task_mm(tsk);
 218        put_task_struct(tsk);
 219        if (!mm)
 220                return 0;
 221        /* Check if process spawned far enough to have cmdline. */
 222        if (!mm->env_end) {
 223                rv = 0;
 224                goto out_mmput;
 225        }
 226
 227        page = (char *)__get_free_page(GFP_TEMPORARY);
 228        if (!page) {
 229                rv = -ENOMEM;
 230                goto out_mmput;
 231        }
 232
 233        down_read(&mm->mmap_sem);
 234        arg_start = mm->arg_start;
 235        arg_end = mm->arg_end;
 236        env_start = mm->env_start;
 237        env_end = mm->env_end;
 238        up_read(&mm->mmap_sem);
 239
 240        BUG_ON(arg_start > arg_end);
 241        BUG_ON(env_start > env_end);
 242
 243        len1 = arg_end - arg_start;
 244        len2 = env_end - env_start;
 245
 246        /* Empty ARGV. */
 247        if (len1 == 0) {
 248                rv = 0;
 249                goto out_free_page;
 250        }
 251        /*
 252         * Inherently racy -- command line shares address space
 253         * with code and data.
 254         */
 255        rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 256        if (rv <= 0)
 257                goto out_free_page;
 258
 259        rv = 0;
 260
 261        if (c == '\0') {
 262                /* Command line (set of strings) occupies whole ARGV. */
 263                if (len1 <= *pos)
 264                        goto out_free_page;
 265
 266                p = arg_start + *pos;
 267                len = len1 - *pos;
 268                while (count > 0 && len > 0) {
 269                        unsigned int _count;
 270                        int nr_read;
 271
 272                        _count = min3(count, len, PAGE_SIZE);
 273                        nr_read = access_remote_vm(mm, p, page, _count, 0);
 274                        if (nr_read < 0)
 275                                rv = nr_read;
 276                        if (nr_read <= 0)
 277                                goto out_free_page;
 278
 279                        if (copy_to_user(buf, page, nr_read)) {
 280                                rv = -EFAULT;
 281                                goto out_free_page;
 282                        }
 283
 284                        p       += nr_read;
 285                        len     -= nr_read;
 286                        buf     += nr_read;
 287                        count   -= nr_read;
 288                        rv      += nr_read;
 289                }
 290        } else {
 291                /*
 292                 * Command line (1 string) occupies ARGV and maybe
 293                 * extends into ENVP.
 294                 */
 295                if (len1 + len2 <= *pos)
 296                        goto skip_argv_envp;
 297                if (len1 <= *pos)
 298                        goto skip_argv;
 299
 300                p = arg_start + *pos;
 301                len = len1 - *pos;
 302                while (count > 0 && len > 0) {
 303                        unsigned int _count, l;
 304                        int nr_read;
 305                        bool final;
 306
 307                        _count = min3(count, len, PAGE_SIZE);
 308                        nr_read = access_remote_vm(mm, p, page, _count, 0);
 309                        if (nr_read < 0)
 310                                rv = nr_read;
 311                        if (nr_read <= 0)
 312                                goto out_free_page;
 313
 314                        /*
 315                         * Command line can be shorter than whole ARGV
 316                         * even if last "marker" byte says it is not.
 317                         */
 318                        final = false;
 319                        l = strnlen(page, nr_read);
 320                        if (l < nr_read) {
 321                                nr_read = l;
 322                                final = true;
 323                        }
 324
 325                        if (copy_to_user(buf, page, nr_read)) {
 326                                rv = -EFAULT;
 327                                goto out_free_page;
 328                        }
 329
 330                        p       += nr_read;
 331                        len     -= nr_read;
 332                        buf     += nr_read;
 333                        count   -= nr_read;
 334                        rv      += nr_read;
 335
 336                        if (final)
 337                                goto out_free_page;
 338                }
 339skip_argv:
 340                /*
 341                 * Command line (1 string) occupies ARGV and
 342                 * extends into ENVP.
 343                 */
 344                if (len1 <= *pos) {
 345                        p = env_start + *pos - len1;
 346                        len = len1 + len2 - *pos;
 347                } else {
 348                        p = env_start;
 349                        len = len2;
 350                }
 351                while (count > 0 && len > 0) {
 352                        unsigned int _count, l;
 353                        int nr_read;
 354                        bool final;
 355
 356                        _count = min3(count, len, PAGE_SIZE);
 357                        nr_read = access_remote_vm(mm, p, page, _count, 0);
 358                        if (nr_read < 0)
 359                                rv = nr_read;
 360                        if (nr_read <= 0)
 361                                goto out_free_page;
 362
 363                        /* Find EOS. */
 364                        final = false;
 365                        l = strnlen(page, nr_read);
 366                        if (l < nr_read) {
 367                                nr_read = l;
 368                                final = true;
 369                        }
 370
 371                        if (copy_to_user(buf, page, nr_read)) {
 372                                rv = -EFAULT;
 373                                goto out_free_page;
 374                        }
 375
 376                        p       += nr_read;
 377                        len     -= nr_read;
 378                        buf     += nr_read;
 379                        count   -= nr_read;
 380                        rv      += nr_read;
 381
 382                        if (final)
 383                                goto out_free_page;
 384                }
 385skip_argv_envp:
 386                ;
 387        }
 388
 389out_free_page:
 390        free_page((unsigned long)page);
 391out_mmput:
 392        mmput(mm);
 393        if (rv > 0)
 394                *pos += rv;
 395        return rv;
 396}
 397
 398static const struct file_operations proc_pid_cmdline_ops = {
 399        .read   = proc_pid_cmdline_read,
 400        .llseek = generic_file_llseek,
 401};
 402
 403static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
 404                         struct pid *pid, struct task_struct *task)
 405{
 406        struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
 407        if (mm && !IS_ERR(mm)) {
 408                unsigned int nwords = 0;
 409                do {
 410                        nwords += 2;
 411                } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 412                seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
 413                mmput(mm);
 414                return 0;
 415        } else
 416                return PTR_ERR(mm);
 417}
 418
 419
 420#ifdef CONFIG_KALLSYMS
 421/*
 422 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 423 * Returns the resolved symbol.  If that fails, simply return the address.
 424 */
 425static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 426                          struct pid *pid, struct task_struct *task)
 427{
 428        unsigned long wchan;
 429        char symname[KSYM_NAME_LEN];
 430
 431        wchan = get_wchan(task);
 432
 433        if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 434                        && !lookup_symbol_name(wchan, symname))
 435                seq_printf(m, "%s", symname);
 436        else
 437                seq_putc(m, '0');
 438
 439        return 0;
 440}
 441#endif /* CONFIG_KALLSYMS */
 442
 443static int lock_trace(struct task_struct *task)
 444{
 445        int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 446        if (err)
 447                return err;
 448        if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 449                mutex_unlock(&task->signal->cred_guard_mutex);
 450                return -EPERM;
 451        }
 452        return 0;
 453}
 454
 455static void unlock_trace(struct task_struct *task)
 456{
 457        mutex_unlock(&task->signal->cred_guard_mutex);
 458}
 459
 460#ifdef CONFIG_STACKTRACE
 461
 462#define MAX_STACK_TRACE_DEPTH   64
 463
 464static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 465                          struct pid *pid, struct task_struct *task)
 466{
 467        struct stack_trace trace;
 468        unsigned long *entries;
 469        int err;
 470        int i;
 471
 472        entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 473        if (!entries)
 474                return -ENOMEM;
 475
 476        trace.nr_entries        = 0;
 477        trace.max_entries       = MAX_STACK_TRACE_DEPTH;
 478        trace.entries           = entries;
 479        trace.skip              = 0;
 480
 481        err = lock_trace(task);
 482        if (!err) {
 483                save_stack_trace_tsk(task, &trace);
 484
 485                for (i = 0; i < trace.nr_entries; i++) {
 486                        seq_printf(m, "[<%pK>] %pS\n",
 487                                   (void *)entries[i], (void *)entries[i]);
 488                }
 489                unlock_trace(task);
 490        }
 491        kfree(entries);
 492
 493        return err;
 494}
 495#endif
 496
 497#ifdef CONFIG_SCHED_INFO
 498/*
 499 * Provides /proc/PID/schedstat
 500 */
 501static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 502                              struct pid *pid, struct task_struct *task)
 503{
 504        if (unlikely(!sched_info_on()))
 505                seq_printf(m, "0 0 0\n");
 506        else
 507                seq_printf(m, "%llu %llu %lu\n",
 508                   (unsigned long long)task->se.sum_exec_runtime,
 509                   (unsigned long long)task->sched_info.run_delay,
 510                   task->sched_info.pcount);
 511
 512        return 0;
 513}
 514#endif
 515
 516#ifdef CONFIG_LATENCYTOP
 517static int lstats_show_proc(struct seq_file *m, void *v)
 518{
 519        int i;
 520        struct inode *inode = m->private;
 521        struct task_struct *task = get_proc_task(inode);
 522
 523        if (!task)
 524                return -ESRCH;
 525        seq_puts(m, "Latency Top version : v0.1\n");
 526        for (i = 0; i < 32; i++) {
 527                struct latency_record *lr = &task->latency_record[i];
 528                if (lr->backtrace[0]) {
 529                        int q;
 530                        seq_printf(m, "%i %li %li",
 531                                   lr->count, lr->time, lr->max);
 532                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 533                                unsigned long bt = lr->backtrace[q];
 534                                if (!bt)
 535                                        break;
 536                                if (bt == ULONG_MAX)
 537                                        break;
 538                                seq_printf(m, " %ps", (void *)bt);
 539                        }
 540                        seq_putc(m, '\n');
 541                }
 542
 543        }
 544        put_task_struct(task);
 545        return 0;
 546}
 547
 548static int lstats_open(struct inode *inode, struct file *file)
 549{
 550        return single_open(file, lstats_show_proc, inode);
 551}
 552
 553static ssize_t lstats_write(struct file *file, const char __user *buf,
 554                            size_t count, loff_t *offs)
 555{
 556        struct task_struct *task = get_proc_task(file_inode(file));
 557
 558        if (!task)
 559                return -ESRCH;
 560        clear_all_latency_tracing(task);
 561        put_task_struct(task);
 562
 563        return count;
 564}
 565
 566static const struct file_operations proc_lstats_operations = {
 567        .open           = lstats_open,
 568        .read           = seq_read,
 569        .write          = lstats_write,
 570        .llseek         = seq_lseek,
 571        .release        = single_release,
 572};
 573
 574#endif
 575
 576static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 577                          struct pid *pid, struct task_struct *task)
 578{
 579        unsigned long totalpages = totalram_pages + total_swap_pages;
 580        unsigned long points = 0;
 581
 582        read_lock(&tasklist_lock);
 583        if (pid_alive(task))
 584                points = oom_badness(task, NULL, NULL, totalpages) *
 585                                                1000 / totalpages;
 586        read_unlock(&tasklist_lock);
 587        seq_printf(m, "%lu\n", points);
 588
 589        return 0;
 590}
 591
 592struct limit_names {
 593        const char *name;
 594        const char *unit;
 595};
 596
 597static const struct limit_names lnames[RLIM_NLIMITS] = {
 598        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 599        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 600        [RLIMIT_DATA] = {"Max data size", "bytes"},
 601        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 602        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 603        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 604        [RLIMIT_NPROC] = {"Max processes", "processes"},
 605        [RLIMIT_NOFILE] = {"Max open files", "files"},
 606        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 607        [RLIMIT_AS] = {"Max address space", "bytes"},
 608        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 609        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 610        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 611        [RLIMIT_NICE] = {"Max nice priority", NULL},
 612        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 613        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 614};
 615
 616/* Display limits for a process */
 617static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 618                           struct pid *pid, struct task_struct *task)
 619{
 620        unsigned int i;
 621        unsigned long flags;
 622
 623        struct rlimit rlim[RLIM_NLIMITS];
 624
 625        if (!lock_task_sighand(task, &flags))
 626                return 0;
 627        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 628        unlock_task_sighand(task, &flags);
 629
 630        /*
 631         * print the file header
 632         */
 633       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 634                  "Limit", "Soft Limit", "Hard Limit", "Units");
 635
 636        for (i = 0; i < RLIM_NLIMITS; i++) {
 637                if (rlim[i].rlim_cur == RLIM_INFINITY)
 638                        seq_printf(m, "%-25s %-20s ",
 639                                   lnames[i].name, "unlimited");
 640                else
 641                        seq_printf(m, "%-25s %-20lu ",
 642                                   lnames[i].name, rlim[i].rlim_cur);
 643
 644                if (rlim[i].rlim_max == RLIM_INFINITY)
 645                        seq_printf(m, "%-20s ", "unlimited");
 646                else
 647                        seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 648
 649                if (lnames[i].unit)
 650                        seq_printf(m, "%-10s\n", lnames[i].unit);
 651                else
 652                        seq_putc(m, '\n');
 653        }
 654
 655        return 0;
 656}
 657
 658#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 659static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 660                            struct pid *pid, struct task_struct *task)
 661{
 662        long nr;
 663        unsigned long args[6], sp, pc;
 664        int res;
 665
 666        res = lock_trace(task);
 667        if (res)
 668                return res;
 669
 670        if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 671                seq_puts(m, "running\n");
 672        else if (nr < 0)
 673                seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 674        else
 675                seq_printf(m,
 676                       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 677                       nr,
 678                       args[0], args[1], args[2], args[3], args[4], args[5],
 679                       sp, pc);
 680        unlock_trace(task);
 681
 682        return 0;
 683}
 684#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 685
 686/************************************************************************/
 687/*                       Here the fs part begins                        */
 688/************************************************************************/
 689
 690/* permission checks */
 691static int proc_fd_access_allowed(struct inode *inode)
 692{
 693        struct task_struct *task;
 694        int allowed = 0;
 695        /* Allow access to a task's file descriptors if it is us or we
 696         * may use ptrace attach to the process and find out that
 697         * information.
 698         */
 699        task = get_proc_task(inode);
 700        if (task) {
 701                allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 702                put_task_struct(task);
 703        }
 704        return allowed;
 705}
 706
 707int proc_setattr(struct dentry *dentry, struct iattr *attr)
 708{
 709        int error;
 710        struct inode *inode = d_inode(dentry);
 711
 712        if (attr->ia_valid & ATTR_MODE)
 713                return -EPERM;
 714
 715        error = inode_change_ok(inode, attr);
 716        if (error)
 717                return error;
 718
 719        setattr_copy(inode, attr);
 720        mark_inode_dirty(inode);
 721        return 0;
 722}
 723
 724/*
 725 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 726 * or euid/egid (for hide_pid_min=2)?
 727 */
 728static bool has_pid_permissions(struct pid_namespace *pid,
 729                                 struct task_struct *task,
 730                                 int hide_pid_min)
 731{
 732        if (pid->hide_pid < hide_pid_min)
 733                return true;
 734        if (in_group_p(pid->pid_gid))
 735                return true;
 736        return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 737}
 738
 739
 740static int proc_pid_permission(struct inode *inode, int mask)
 741{
 742        struct pid_namespace *pid = inode->i_sb->s_fs_info;
 743        struct task_struct *task;
 744        bool has_perms;
 745
 746        task = get_proc_task(inode);
 747        if (!task)
 748                return -ESRCH;
 749        has_perms = has_pid_permissions(pid, task, 1);
 750        put_task_struct(task);
 751
 752        if (!has_perms) {
 753                if (pid->hide_pid == 2) {
 754                        /*
 755                         * Let's make getdents(), stat(), and open()
 756                         * consistent with each other.  If a process
 757                         * may not stat() a file, it shouldn't be seen
 758                         * in procfs at all.
 759                         */
 760                        return -ENOENT;
 761                }
 762
 763                return -EPERM;
 764        }
 765        return generic_permission(inode, mask);
 766}
 767
 768
 769
 770static const struct inode_operations proc_def_inode_operations = {
 771        .setattr        = proc_setattr,
 772};
 773
 774static int proc_single_show(struct seq_file *m, void *v)
 775{
 776        struct inode *inode = m->private;
 777        struct pid_namespace *ns;
 778        struct pid *pid;
 779        struct task_struct *task;
 780        int ret;
 781
 782        ns = inode->i_sb->s_fs_info;
 783        pid = proc_pid(inode);
 784        task = get_pid_task(pid, PIDTYPE_PID);
 785        if (!task)
 786                return -ESRCH;
 787
 788        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 789
 790        put_task_struct(task);
 791        return ret;
 792}
 793
 794static int proc_single_open(struct inode *inode, struct file *filp)
 795{
 796        return single_open(filp, proc_single_show, inode);
 797}
 798
 799static const struct file_operations proc_single_file_operations = {
 800        .open           = proc_single_open,
 801        .read           = seq_read,
 802        .llseek         = seq_lseek,
 803        .release        = single_release,
 804};
 805
 806
 807struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 808{
 809        struct task_struct *task = get_proc_task(inode);
 810        struct mm_struct *mm = ERR_PTR(-ESRCH);
 811
 812        if (task) {
 813                mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 814                put_task_struct(task);
 815
 816                if (!IS_ERR_OR_NULL(mm)) {
 817                        /* ensure this mm_struct can't be freed */
 818                        atomic_inc(&mm->mm_count);
 819                        /* but do not pin its memory */
 820                        mmput(mm);
 821                }
 822        }
 823
 824        return mm;
 825}
 826
 827static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 828{
 829        struct mm_struct *mm = proc_mem_open(inode, mode);
 830
 831        if (IS_ERR(mm))
 832                return PTR_ERR(mm);
 833
 834        file->private_data = mm;
 835        return 0;
 836}
 837
 838static int mem_open(struct inode *inode, struct file *file)
 839{
 840        int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 841
 842        /* OK to pass negative loff_t, we can catch out-of-range */
 843        file->f_mode |= FMODE_UNSIGNED_OFFSET;
 844
 845        return ret;
 846}
 847
 848static ssize_t mem_rw(struct file *file, char __user *buf,
 849                        size_t count, loff_t *ppos, int write)
 850{
 851        struct mm_struct *mm = file->private_data;
 852        unsigned long addr = *ppos;
 853        ssize_t copied;
 854        char *page;
 855
 856        if (!mm)
 857                return 0;
 858
 859        page = (char *)__get_free_page(GFP_TEMPORARY);
 860        if (!page)
 861                return -ENOMEM;
 862
 863        copied = 0;
 864        if (!atomic_inc_not_zero(&mm->mm_users))
 865                goto free;
 866
 867        while (count > 0) {
 868                int this_len = min_t(int, count, PAGE_SIZE);
 869
 870                if (write && copy_from_user(page, buf, this_len)) {
 871                        copied = -EFAULT;
 872                        break;
 873                }
 874
 875                this_len = access_remote_vm(mm, addr, page, this_len, write);
 876                if (!this_len) {
 877                        if (!copied)
 878                                copied = -EIO;
 879                        break;
 880                }
 881
 882                if (!write && copy_to_user(buf, page, this_len)) {
 883                        copied = -EFAULT;
 884                        break;
 885                }
 886
 887                buf += this_len;
 888                addr += this_len;
 889                copied += this_len;
 890                count -= this_len;
 891        }
 892        *ppos = addr;
 893
 894        mmput(mm);
 895free:
 896        free_page((unsigned long) page);
 897        return copied;
 898}
 899
 900static ssize_t mem_read(struct file *file, char __user *buf,
 901                        size_t count, loff_t *ppos)
 902{
 903        return mem_rw(file, buf, count, ppos, 0);
 904}
 905
 906static ssize_t mem_write(struct file *file, const char __user *buf,
 907                         size_t count, loff_t *ppos)
 908{
 909        return mem_rw(file, (char __user*)buf, count, ppos, 1);
 910}
 911
 912loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 913{
 914        switch (orig) {
 915        case 0:
 916                file->f_pos = offset;
 917                break;
 918        case 1:
 919                file->f_pos += offset;
 920                break;
 921        default:
 922                return -EINVAL;
 923        }
 924        force_successful_syscall_return();
 925        return file->f_pos;
 926}
 927
 928static int mem_release(struct inode *inode, struct file *file)
 929{
 930        struct mm_struct *mm = file->private_data;
 931        if (mm)
 932                mmdrop(mm);
 933        return 0;
 934}
 935
 936static const struct file_operations proc_mem_operations = {
 937        .llseek         = mem_lseek,
 938        .read           = mem_read,
 939        .write          = mem_write,
 940        .open           = mem_open,
 941        .release        = mem_release,
 942};
 943
 944static int environ_open(struct inode *inode, struct file *file)
 945{
 946        return __mem_open(inode, file, PTRACE_MODE_READ);
 947}
 948
 949static ssize_t environ_read(struct file *file, char __user *buf,
 950                        size_t count, loff_t *ppos)
 951{
 952        char *page;
 953        unsigned long src = *ppos;
 954        int ret = 0;
 955        struct mm_struct *mm = file->private_data;
 956        unsigned long env_start, env_end;
 957
 958        if (!mm)
 959                return 0;
 960
 961        page = (char *)__get_free_page(GFP_TEMPORARY);
 962        if (!page)
 963                return -ENOMEM;
 964
 965        ret = 0;
 966        if (!atomic_inc_not_zero(&mm->mm_users))
 967                goto free;
 968
 969        down_read(&mm->mmap_sem);
 970        env_start = mm->env_start;
 971        env_end = mm->env_end;
 972        up_read(&mm->mmap_sem);
 973
 974        while (count > 0) {
 975                size_t this_len, max_len;
 976                int retval;
 977
 978                if (src >= (env_end - env_start))
 979                        break;
 980
 981                this_len = env_end - (env_start + src);
 982
 983                max_len = min_t(size_t, PAGE_SIZE, count);
 984                this_len = min(max_len, this_len);
 985
 986                retval = access_remote_vm(mm, (env_start + src),
 987                        page, this_len, 0);
 988
 989                if (retval <= 0) {
 990                        ret = retval;
 991                        break;
 992                }
 993
 994                if (copy_to_user(buf, page, retval)) {
 995                        ret = -EFAULT;
 996                        break;
 997                }
 998
 999                ret += retval;
1000                src += retval;
1001                buf += retval;
1002                count -= retval;
1003        }
1004        *ppos = src;
1005        mmput(mm);
1006
1007free:
1008        free_page((unsigned long) page);
1009        return ret;
1010}
1011
1012static const struct file_operations proc_environ_operations = {
1013        .open           = environ_open,
1014        .read           = environ_read,
1015        .llseek         = generic_file_llseek,
1016        .release        = mem_release,
1017};
1018
1019static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1020                            loff_t *ppos)
1021{
1022        struct task_struct *task = get_proc_task(file_inode(file));
1023        char buffer[PROC_NUMBUF];
1024        int oom_adj = OOM_ADJUST_MIN;
1025        size_t len;
1026        unsigned long flags;
1027
1028        if (!task)
1029                return -ESRCH;
1030        if (lock_task_sighand(task, &flags)) {
1031                if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1032                        oom_adj = OOM_ADJUST_MAX;
1033                else
1034                        oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1035                                  OOM_SCORE_ADJ_MAX;
1036                unlock_task_sighand(task, &flags);
1037        }
1038        put_task_struct(task);
1039        len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1040        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1041}
1042
1043/*
1044 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1045 * kernels.  The effective policy is defined by oom_score_adj, which has a
1046 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1047 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1048 * Processes that become oom disabled via oom_adj will still be oom disabled
1049 * with this implementation.
1050 *
1051 * oom_adj cannot be removed since existing userspace binaries use it.
1052 */
1053static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1054                             size_t count, loff_t *ppos)
1055{
1056        struct task_struct *task;
1057        char buffer[PROC_NUMBUF];
1058        int oom_adj;
1059        unsigned long flags;
1060        int err;
1061
1062        memset(buffer, 0, sizeof(buffer));
1063        if (count > sizeof(buffer) - 1)
1064                count = sizeof(buffer) - 1;
1065        if (copy_from_user(buffer, buf, count)) {
1066                err = -EFAULT;
1067                goto out;
1068        }
1069
1070        err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1071        if (err)
1072                goto out;
1073        if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1074             oom_adj != OOM_DISABLE) {
1075                err = -EINVAL;
1076                goto out;
1077        }
1078
1079        task = get_proc_task(file_inode(file));
1080        if (!task) {
1081                err = -ESRCH;
1082                goto out;
1083        }
1084
1085        task_lock(task);
1086        if (!task->mm) {
1087                err = -EINVAL;
1088                goto err_task_lock;
1089        }
1090
1091        if (!lock_task_sighand(task, &flags)) {
1092                err = -ESRCH;
1093                goto err_task_lock;
1094        }
1095
1096        /*
1097         * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1098         * value is always attainable.
1099         */
1100        if (oom_adj == OOM_ADJUST_MAX)
1101                oom_adj = OOM_SCORE_ADJ_MAX;
1102        else
1103                oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1104
1105        if (oom_adj < task->signal->oom_score_adj &&
1106            !capable(CAP_SYS_RESOURCE)) {
1107                err = -EACCES;
1108                goto err_sighand;
1109        }
1110
1111        /*
1112         * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1113         * /proc/pid/oom_score_adj instead.
1114         */
1115        pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1116                  current->comm, task_pid_nr(current), task_pid_nr(task),
1117                  task_pid_nr(task));
1118
1119        task->signal->oom_score_adj = oom_adj;
1120        trace_oom_score_adj_update(task);
1121err_sighand:
1122        unlock_task_sighand(task, &flags);
1123err_task_lock:
1124        task_unlock(task);
1125        put_task_struct(task);
1126out:
1127        return err < 0 ? err : count;
1128}
1129
1130static const struct file_operations proc_oom_adj_operations = {
1131        .read           = oom_adj_read,
1132        .write          = oom_adj_write,
1133        .llseek         = generic_file_llseek,
1134};
1135
1136static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1137                                        size_t count, loff_t *ppos)
1138{
1139        struct task_struct *task = get_proc_task(file_inode(file));
1140        char buffer[PROC_NUMBUF];
1141        short oom_score_adj = OOM_SCORE_ADJ_MIN;
1142        unsigned long flags;
1143        size_t len;
1144
1145        if (!task)
1146                return -ESRCH;
1147        if (lock_task_sighand(task, &flags)) {
1148                oom_score_adj = task->signal->oom_score_adj;
1149                unlock_task_sighand(task, &flags);
1150        }
1151        put_task_struct(task);
1152        len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1153        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1154}
1155
1156static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1157                                        size_t count, loff_t *ppos)
1158{
1159        struct task_struct *task;
1160        char buffer[PROC_NUMBUF];
1161        unsigned long flags;
1162        int oom_score_adj;
1163        int err;
1164
1165        memset(buffer, 0, sizeof(buffer));
1166        if (count > sizeof(buffer) - 1)
1167                count = sizeof(buffer) - 1;
1168        if (copy_from_user(buffer, buf, count)) {
1169                err = -EFAULT;
1170                goto out;
1171        }
1172
1173        err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1174        if (err)
1175                goto out;
1176        if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1177                        oom_score_adj > OOM_SCORE_ADJ_MAX) {
1178                err = -EINVAL;
1179                goto out;
1180        }
1181
1182        task = get_proc_task(file_inode(file));
1183        if (!task) {
1184                err = -ESRCH;
1185                goto out;
1186        }
1187
1188        task_lock(task);
1189        if (!task->mm) {
1190                err = -EINVAL;
1191                goto err_task_lock;
1192        }
1193
1194        if (!lock_task_sighand(task, &flags)) {
1195                err = -ESRCH;
1196                goto err_task_lock;
1197        }
1198
1199        if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1200                        !capable(CAP_SYS_RESOURCE)) {
1201                err = -EACCES;
1202                goto err_sighand;
1203        }
1204
1205        task->signal->oom_score_adj = (short)oom_score_adj;
1206        if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1207                task->signal->oom_score_adj_min = (short)oom_score_adj;
1208        trace_oom_score_adj_update(task);
1209
1210err_sighand:
1211        unlock_task_sighand(task, &flags);
1212err_task_lock:
1213        task_unlock(task);
1214        put_task_struct(task);
1215out:
1216        return err < 0 ? err : count;
1217}
1218
1219static const struct file_operations proc_oom_score_adj_operations = {
1220        .read           = oom_score_adj_read,
1221        .write          = oom_score_adj_write,
1222        .llseek         = default_llseek,
1223};
1224
1225#ifdef CONFIG_AUDITSYSCALL
1226#define TMPBUFLEN 21
1227static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1228                                  size_t count, loff_t *ppos)
1229{
1230        struct inode * inode = file_inode(file);
1231        struct task_struct *task = get_proc_task(inode);
1232        ssize_t length;
1233        char tmpbuf[TMPBUFLEN];
1234
1235        if (!task)
1236                return -ESRCH;
1237        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1238                           from_kuid(file->f_cred->user_ns,
1239                                     audit_get_loginuid(task)));
1240        put_task_struct(task);
1241        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1242}
1243
1244static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1245                                   size_t count, loff_t *ppos)
1246{
1247        struct inode * inode = file_inode(file);
1248        uid_t loginuid;
1249        kuid_t kloginuid;
1250        int rv;
1251
1252        rcu_read_lock();
1253        if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1254                rcu_read_unlock();
1255                return -EPERM;
1256        }
1257        rcu_read_unlock();
1258
1259        if (*ppos != 0) {
1260                /* No partial writes. */
1261                return -EINVAL;
1262        }
1263
1264        rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1265        if (rv < 0)
1266                return rv;
1267
1268        /* is userspace tring to explicitly UNSET the loginuid? */
1269        if (loginuid == AUDIT_UID_UNSET) {
1270                kloginuid = INVALID_UID;
1271        } else {
1272                kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1273                if (!uid_valid(kloginuid))
1274                        return -EINVAL;
1275        }
1276
1277        rv = audit_set_loginuid(kloginuid);
1278        if (rv < 0)
1279                return rv;
1280        return count;
1281}
1282
1283static const struct file_operations proc_loginuid_operations = {
1284        .read           = proc_loginuid_read,
1285        .write          = proc_loginuid_write,
1286        .llseek         = generic_file_llseek,
1287};
1288
1289static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1290                                  size_t count, loff_t *ppos)
1291{
1292        struct inode * inode = file_inode(file);
1293        struct task_struct *task = get_proc_task(inode);
1294        ssize_t length;
1295        char tmpbuf[TMPBUFLEN];
1296
1297        if (!task)
1298                return -ESRCH;
1299        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1300                                audit_get_sessionid(task));
1301        put_task_struct(task);
1302        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1303}
1304
1305static const struct file_operations proc_sessionid_operations = {
1306        .read           = proc_sessionid_read,
1307        .llseek         = generic_file_llseek,
1308};
1309#endif
1310
1311#ifdef CONFIG_FAULT_INJECTION
1312static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1313                                      size_t count, loff_t *ppos)
1314{
1315        struct task_struct *task = get_proc_task(file_inode(file));
1316        char buffer[PROC_NUMBUF];
1317        size_t len;
1318        int make_it_fail;
1319
1320        if (!task)
1321                return -ESRCH;
1322        make_it_fail = task->make_it_fail;
1323        put_task_struct(task);
1324
1325        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1326
1327        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1328}
1329
1330static ssize_t proc_fault_inject_write(struct file * file,
1331                        const char __user * buf, size_t count, loff_t *ppos)
1332{
1333        struct task_struct *task;
1334        char buffer[PROC_NUMBUF];
1335        int make_it_fail;
1336        int rv;
1337
1338        if (!capable(CAP_SYS_RESOURCE))
1339                return -EPERM;
1340        memset(buffer, 0, sizeof(buffer));
1341        if (count > sizeof(buffer) - 1)
1342                count = sizeof(buffer) - 1;
1343        if (copy_from_user(buffer, buf, count))
1344                return -EFAULT;
1345        rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1346        if (rv < 0)
1347                return rv;
1348        if (make_it_fail < 0 || make_it_fail > 1)
1349                return -EINVAL;
1350
1351        task = get_proc_task(file_inode(file));
1352        if (!task)
1353                return -ESRCH;
1354        task->make_it_fail = make_it_fail;
1355        put_task_struct(task);
1356
1357        return count;
1358}
1359
1360static const struct file_operations proc_fault_inject_operations = {
1361        .read           = proc_fault_inject_read,
1362        .write          = proc_fault_inject_write,
1363        .llseek         = generic_file_llseek,
1364};
1365#endif
1366
1367
1368#ifdef CONFIG_SCHED_DEBUG
1369/*
1370 * Print out various scheduling related per-task fields:
1371 */
1372static int sched_show(struct seq_file *m, void *v)
1373{
1374        struct inode *inode = m->private;
1375        struct task_struct *p;
1376
1377        p = get_proc_task(inode);
1378        if (!p)
1379                return -ESRCH;
1380        proc_sched_show_task(p, m);
1381
1382        put_task_struct(p);
1383
1384        return 0;
1385}
1386
1387static ssize_t
1388sched_write(struct file *file, const char __user *buf,
1389            size_t count, loff_t *offset)
1390{
1391        struct inode *inode = file_inode(file);
1392        struct task_struct *p;
1393
1394        p = get_proc_task(inode);
1395        if (!p)
1396                return -ESRCH;
1397        proc_sched_set_task(p);
1398
1399        put_task_struct(p);
1400
1401        return count;
1402}
1403
1404static int sched_open(struct inode *inode, struct file *filp)
1405{
1406        return single_open(filp, sched_show, inode);
1407}
1408
1409static const struct file_operations proc_pid_sched_operations = {
1410        .open           = sched_open,
1411        .read           = seq_read,
1412        .write          = sched_write,
1413        .llseek         = seq_lseek,
1414        .release        = single_release,
1415};
1416
1417#endif
1418
1419#ifdef CONFIG_SCHED_AUTOGROUP
1420/*
1421 * Print out autogroup related information:
1422 */
1423static int sched_autogroup_show(struct seq_file *m, void *v)
1424{
1425        struct inode *inode = m->private;
1426        struct task_struct *p;
1427
1428        p = get_proc_task(inode);
1429        if (!p)
1430                return -ESRCH;
1431        proc_sched_autogroup_show_task(p, m);
1432
1433        put_task_struct(p);
1434
1435        return 0;
1436}
1437
1438static ssize_t
1439sched_autogroup_write(struct file *file, const char __user *buf,
1440            size_t count, loff_t *offset)
1441{
1442        struct inode *inode = file_inode(file);
1443        struct task_struct *p;
1444        char buffer[PROC_NUMBUF];
1445        int nice;
1446        int err;
1447
1448        memset(buffer, 0, sizeof(buffer));
1449        if (count > sizeof(buffer) - 1)
1450                count = sizeof(buffer) - 1;
1451        if (copy_from_user(buffer, buf, count))
1452                return -EFAULT;
1453
1454        err = kstrtoint(strstrip(buffer), 0, &nice);
1455        if (err < 0)
1456                return err;
1457
1458        p = get_proc_task(inode);
1459        if (!p)
1460                return -ESRCH;
1461
1462        err = proc_sched_autogroup_set_nice(p, nice);
1463        if (err)
1464                count = err;
1465
1466        put_task_struct(p);
1467
1468        return count;
1469}
1470
1471static int sched_autogroup_open(struct inode *inode, struct file *filp)
1472{
1473        int ret;
1474
1475        ret = single_open(filp, sched_autogroup_show, NULL);
1476        if (!ret) {
1477                struct seq_file *m = filp->private_data;
1478
1479                m->private = inode;
1480        }
1481        return ret;
1482}
1483
1484static const struct file_operations proc_pid_sched_autogroup_operations = {
1485        .open           = sched_autogroup_open,
1486        .read           = seq_read,
1487        .write          = sched_autogroup_write,
1488        .llseek         = seq_lseek,
1489        .release        = single_release,
1490};
1491
1492#endif /* CONFIG_SCHED_AUTOGROUP */
1493
1494static ssize_t comm_write(struct file *file, const char __user *buf,
1495                                size_t count, loff_t *offset)
1496{
1497        struct inode *inode = file_inode(file);
1498        struct task_struct *p;
1499        char buffer[TASK_COMM_LEN];
1500        const size_t maxlen = sizeof(buffer) - 1;
1501
1502        memset(buffer, 0, sizeof(buffer));
1503        if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1504                return -EFAULT;
1505
1506        p = get_proc_task(inode);
1507        if (!p)
1508                return -ESRCH;
1509
1510        if (same_thread_group(current, p))
1511                set_task_comm(p, buffer);
1512        else
1513                count = -EINVAL;
1514
1515        put_task_struct(p);
1516
1517        return count;
1518}
1519
1520static int comm_show(struct seq_file *m, void *v)
1521{
1522        struct inode *inode = m->private;
1523        struct task_struct *p;
1524
1525        p = get_proc_task(inode);
1526        if (!p)
1527                return -ESRCH;
1528
1529        task_lock(p);
1530        seq_printf(m, "%s\n", p->comm);
1531        task_unlock(p);
1532
1533        put_task_struct(p);
1534
1535        return 0;
1536}
1537
1538static int comm_open(struct inode *inode, struct file *filp)
1539{
1540        return single_open(filp, comm_show, inode);
1541}
1542
1543static const struct file_operations proc_pid_set_comm_operations = {
1544        .open           = comm_open,
1545        .read           = seq_read,
1546        .write          = comm_write,
1547        .llseek         = seq_lseek,
1548        .release        = single_release,
1549};
1550
1551static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1552{
1553        struct task_struct *task;
1554        struct mm_struct *mm;
1555        struct file *exe_file;
1556
1557        task = get_proc_task(d_inode(dentry));
1558        if (!task)
1559                return -ENOENT;
1560        mm = get_task_mm(task);
1561        put_task_struct(task);
1562        if (!mm)
1563                return -ENOENT;
1564        exe_file = get_mm_exe_file(mm);
1565        mmput(mm);
1566        if (exe_file) {
1567                *exe_path = exe_file->f_path;
1568                path_get(&exe_file->f_path);
1569                fput(exe_file);
1570                return 0;
1571        } else
1572                return -ENOENT;
1573}
1574
1575static const char *proc_pid_get_link(struct dentry *dentry,
1576                                     struct inode *inode,
1577                                     struct delayed_call *done)
1578{
1579        struct path path;
1580        int error = -EACCES;
1581
1582        if (!dentry)
1583                return ERR_PTR(-ECHILD);
1584
1585        /* Are we allowed to snoop on the tasks file descriptors? */
1586        if (!proc_fd_access_allowed(inode))
1587                goto out;
1588
1589        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1590        if (error)
1591                goto out;
1592
1593        nd_jump_link(&path);
1594        return NULL;
1595out:
1596        return ERR_PTR(error);
1597}
1598
1599static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1600{
1601        char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1602        char *pathname;
1603        int len;
1604
1605        if (!tmp)
1606                return -ENOMEM;
1607
1608        pathname = d_path(path, tmp, PAGE_SIZE);
1609        len = PTR_ERR(pathname);
1610        if (IS_ERR(pathname))
1611                goto out;
1612        len = tmp + PAGE_SIZE - 1 - pathname;
1613
1614        if (len > buflen)
1615                len = buflen;
1616        if (copy_to_user(buffer, pathname, len))
1617                len = -EFAULT;
1618 out:
1619        free_page((unsigned long)tmp);
1620        return len;
1621}
1622
1623static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1624{
1625        int error = -EACCES;
1626        struct inode *inode = d_inode(dentry);
1627        struct path path;
1628
1629        /* Are we allowed to snoop on the tasks file descriptors? */
1630        if (!proc_fd_access_allowed(inode))
1631                goto out;
1632
1633        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1634        if (error)
1635                goto out;
1636
1637        error = do_proc_readlink(&path, buffer, buflen);
1638        path_put(&path);
1639out:
1640        return error;
1641}
1642
1643const struct inode_operations proc_pid_link_inode_operations = {
1644        .readlink       = proc_pid_readlink,
1645        .get_link       = proc_pid_get_link,
1646        .setattr        = proc_setattr,
1647};
1648
1649
1650/* building an inode */
1651
1652struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1653{
1654        struct inode * inode;
1655        struct proc_inode *ei;
1656        const struct cred *cred;
1657
1658        /* We need a new inode */
1659
1660        inode = new_inode(sb);
1661        if (!inode)
1662                goto out;
1663
1664        /* Common stuff */
1665        ei = PROC_I(inode);
1666        inode->i_ino = get_next_ino();
1667        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1668        inode->i_op = &proc_def_inode_operations;
1669
1670        /*
1671         * grab the reference to task.
1672         */
1673        ei->pid = get_task_pid(task, PIDTYPE_PID);
1674        if (!ei->pid)
1675                goto out_unlock;
1676
1677        if (task_dumpable(task)) {
1678                rcu_read_lock();
1679                cred = __task_cred(task);
1680                inode->i_uid = cred->euid;
1681                inode->i_gid = cred->egid;
1682                rcu_read_unlock();
1683        }
1684        security_task_to_inode(task, inode);
1685
1686out:
1687        return inode;
1688
1689out_unlock:
1690        iput(inode);
1691        return NULL;
1692}
1693
1694int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1695{
1696        struct inode *inode = d_inode(dentry);
1697        struct task_struct *task;
1698        const struct cred *cred;
1699        struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1700
1701        generic_fillattr(inode, stat);
1702
1703        rcu_read_lock();
1704        stat->uid = GLOBAL_ROOT_UID;
1705        stat->gid = GLOBAL_ROOT_GID;
1706        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1707        if (task) {
1708                if (!has_pid_permissions(pid, task, 2)) {
1709                        rcu_read_unlock();
1710                        /*
1711                         * This doesn't prevent learning whether PID exists,
1712                         * it only makes getattr() consistent with readdir().
1713                         */
1714                        return -ENOENT;
1715                }
1716                if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1717                    task_dumpable(task)) {
1718                        cred = __task_cred(task);
1719                        stat->uid = cred->euid;
1720                        stat->gid = cred->egid;
1721                }
1722        }
1723        rcu_read_unlock();
1724        return 0;
1725}
1726
1727/* dentry stuff */
1728
1729/*
1730 *      Exceptional case: normally we are not allowed to unhash a busy
1731 * directory. In this case, however, we can do it - no aliasing problems
1732 * due to the way we treat inodes.
1733 *
1734 * Rewrite the inode's ownerships here because the owning task may have
1735 * performed a setuid(), etc.
1736 *
1737 * Before the /proc/pid/status file was created the only way to read
1738 * the effective uid of a /process was to stat /proc/pid.  Reading
1739 * /proc/pid/status is slow enough that procps and other packages
1740 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1741 * made this apply to all per process world readable and executable
1742 * directories.
1743 */
1744int pid_revalidate(struct dentry *dentry, unsigned int flags)
1745{
1746        struct inode *inode;
1747        struct task_struct *task;
1748        const struct cred *cred;
1749
1750        if (flags & LOOKUP_RCU)
1751                return -ECHILD;
1752
1753        inode = d_inode(dentry);
1754        task = get_proc_task(inode);
1755
1756        if (task) {
1757                if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1758                    task_dumpable(task)) {
1759                        rcu_read_lock();
1760                        cred = __task_cred(task);
1761                        inode->i_uid = cred->euid;
1762                        inode->i_gid = cred->egid;
1763                        rcu_read_unlock();
1764                } else {
1765                        inode->i_uid = GLOBAL_ROOT_UID;
1766                        inode->i_gid = GLOBAL_ROOT_GID;
1767                }
1768                inode->i_mode &= ~(S_ISUID | S_ISGID);
1769                security_task_to_inode(task, inode);
1770                put_task_struct(task);
1771                return 1;
1772        }
1773        return 0;
1774}
1775
1776static inline bool proc_inode_is_dead(struct inode *inode)
1777{
1778        return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1779}
1780
1781int pid_delete_dentry(const struct dentry *dentry)
1782{
1783        /* Is the task we represent dead?
1784         * If so, then don't put the dentry on the lru list,
1785         * kill it immediately.
1786         */
1787        return proc_inode_is_dead(d_inode(dentry));
1788}
1789
1790const struct dentry_operations pid_dentry_operations =
1791{
1792        .d_revalidate   = pid_revalidate,
1793        .d_delete       = pid_delete_dentry,
1794};
1795
1796/* Lookups */
1797
1798/*
1799 * Fill a directory entry.
1800 *
1801 * If possible create the dcache entry and derive our inode number and
1802 * file type from dcache entry.
1803 *
1804 * Since all of the proc inode numbers are dynamically generated, the inode
1805 * numbers do not exist until the inode is cache.  This means creating the
1806 * the dcache entry in readdir is necessary to keep the inode numbers
1807 * reported by readdir in sync with the inode numbers reported
1808 * by stat.
1809 */
1810bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1811        const char *name, int len,
1812        instantiate_t instantiate, struct task_struct *task, const void *ptr)
1813{
1814        struct dentry *child, *dir = file->f_path.dentry;
1815        struct qstr qname = QSTR_INIT(name, len);
1816        struct inode *inode;
1817        unsigned type;
1818        ino_t ino;
1819
1820        child = d_hash_and_lookup(dir, &qname);
1821        if (!child) {
1822                child = d_alloc(dir, &qname);
1823                if (!child)
1824                        goto end_instantiate;
1825                if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1826                        dput(child);
1827                        goto end_instantiate;
1828                }
1829        }
1830        inode = d_inode(child);
1831        ino = inode->i_ino;
1832        type = inode->i_mode >> 12;
1833        dput(child);
1834        return dir_emit(ctx, name, len, ino, type);
1835
1836end_instantiate:
1837        return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1838}
1839
1840/*
1841 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1842 * which represent vma start and end addresses.
1843 */
1844static int dname_to_vma_addr(struct dentry *dentry,
1845                             unsigned long *start, unsigned long *end)
1846{
1847        if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1848                return -EINVAL;
1849
1850        return 0;
1851}
1852
1853static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1854{
1855        unsigned long vm_start, vm_end;
1856        bool exact_vma_exists = false;
1857        struct mm_struct *mm = NULL;
1858        struct task_struct *task;
1859        const struct cred *cred;
1860        struct inode *inode;
1861        int status = 0;
1862
1863        if (flags & LOOKUP_RCU)
1864                return -ECHILD;
1865
1866        inode = d_inode(dentry);
1867        task = get_proc_task(inode);
1868        if (!task)
1869                goto out_notask;
1870
1871        mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1872        if (IS_ERR_OR_NULL(mm))
1873                goto out;
1874
1875        if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1876                down_read(&mm->mmap_sem);
1877                exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1878                up_read(&mm->mmap_sem);
1879        }
1880
1881        mmput(mm);
1882
1883        if (exact_vma_exists) {
1884                if (task_dumpable(task)) {
1885                        rcu_read_lock();
1886                        cred = __task_cred(task);
1887                        inode->i_uid = cred->euid;
1888                        inode->i_gid = cred->egid;
1889                        rcu_read_unlock();
1890                } else {
1891                        inode->i_uid = GLOBAL_ROOT_UID;
1892                        inode->i_gid = GLOBAL_ROOT_GID;
1893                }
1894                security_task_to_inode(task, inode);
1895                status = 1;
1896        }
1897
1898out:
1899        put_task_struct(task);
1900
1901out_notask:
1902        return status;
1903}
1904
1905static const struct dentry_operations tid_map_files_dentry_operations = {
1906        .d_revalidate   = map_files_d_revalidate,
1907        .d_delete       = pid_delete_dentry,
1908};
1909
1910static int map_files_get_link(struct dentry *dentry, struct path *path)
1911{
1912        unsigned long vm_start, vm_end;
1913        struct vm_area_struct *vma;
1914        struct task_struct *task;
1915        struct mm_struct *mm;
1916        int rc;
1917
1918        rc = -ENOENT;
1919        task = get_proc_task(d_inode(dentry));
1920        if (!task)
1921                goto out;
1922
1923        mm = get_task_mm(task);
1924        put_task_struct(task);
1925        if (!mm)
1926                goto out;
1927
1928        rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1929        if (rc)
1930                goto out_mmput;
1931
1932        rc = -ENOENT;
1933        down_read(&mm->mmap_sem);
1934        vma = find_exact_vma(mm, vm_start, vm_end);
1935        if (vma && vma->vm_file) {
1936                *path = vma->vm_file->f_path;
1937                path_get(path);
1938                rc = 0;
1939        }
1940        up_read(&mm->mmap_sem);
1941
1942out_mmput:
1943        mmput(mm);
1944out:
1945        return rc;
1946}
1947
1948struct map_files_info {
1949        fmode_t         mode;
1950        unsigned long   len;
1951        unsigned char   name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1952};
1953
1954/*
1955 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1956 * symlinks may be used to bypass permissions on ancestor directories in the
1957 * path to the file in question.
1958 */
1959static const char *
1960proc_map_files_get_link(struct dentry *dentry,
1961                        struct inode *inode,
1962                        struct delayed_call *done)
1963{
1964        if (!capable(CAP_SYS_ADMIN))
1965                return ERR_PTR(-EPERM);
1966
1967        return proc_pid_get_link(dentry, inode, done);
1968}
1969
1970/*
1971 * Identical to proc_pid_link_inode_operations except for get_link()
1972 */
1973static const struct inode_operations proc_map_files_link_inode_operations = {
1974        .readlink       = proc_pid_readlink,
1975        .get_link       = proc_map_files_get_link,
1976        .setattr        = proc_setattr,
1977};
1978
1979static int
1980proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1981                           struct task_struct *task, const void *ptr)
1982{
1983        fmode_t mode = (fmode_t)(unsigned long)ptr;
1984        struct proc_inode *ei;
1985        struct inode *inode;
1986
1987        inode = proc_pid_make_inode(dir->i_sb, task);
1988        if (!inode)
1989                return -ENOENT;
1990
1991        ei = PROC_I(inode);
1992        ei->op.proc_get_link = map_files_get_link;
1993
1994        inode->i_op = &proc_map_files_link_inode_operations;
1995        inode->i_size = 64;
1996        inode->i_mode = S_IFLNK;
1997
1998        if (mode & FMODE_READ)
1999                inode->i_mode |= S_IRUSR;
2000        if (mode & FMODE_WRITE)
2001                inode->i_mode |= S_IWUSR;
2002
2003        d_set_d_op(dentry, &tid_map_files_dentry_operations);
2004        d_add(dentry, inode);
2005
2006        return 0;
2007}
2008
2009static struct dentry *proc_map_files_lookup(struct inode *dir,
2010                struct dentry *dentry, unsigned int flags)
2011{
2012        unsigned long vm_start, vm_end;
2013        struct vm_area_struct *vma;
2014        struct task_struct *task;
2015        int result;
2016        struct mm_struct *mm;
2017
2018        result = -ENOENT;
2019        task = get_proc_task(dir);
2020        if (!task)
2021                goto out;
2022
2023        result = -EACCES;
2024        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2025                goto out_put_task;
2026
2027        result = -ENOENT;
2028        if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2029                goto out_put_task;
2030
2031        mm = get_task_mm(task);
2032        if (!mm)
2033                goto out_put_task;
2034
2035        down_read(&mm->mmap_sem);
2036        vma = find_exact_vma(mm, vm_start, vm_end);
2037        if (!vma)
2038                goto out_no_vma;
2039
2040        if (vma->vm_file)
2041                result = proc_map_files_instantiate(dir, dentry, task,
2042                                (void *)(unsigned long)vma->vm_file->f_mode);
2043
2044out_no_vma:
2045        up_read(&mm->mmap_sem);
2046        mmput(mm);
2047out_put_task:
2048        put_task_struct(task);
2049out:
2050        return ERR_PTR(result);
2051}
2052
2053static const struct inode_operations proc_map_files_inode_operations = {
2054        .lookup         = proc_map_files_lookup,
2055        .permission     = proc_fd_permission,
2056        .setattr        = proc_setattr,
2057};
2058
2059static int
2060proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2061{
2062        struct vm_area_struct *vma;
2063        struct task_struct *task;
2064        struct mm_struct *mm;
2065        unsigned long nr_files, pos, i;
2066        struct flex_array *fa = NULL;
2067        struct map_files_info info;
2068        struct map_files_info *p;
2069        int ret;
2070
2071        ret = -ENOENT;
2072        task = get_proc_task(file_inode(file));
2073        if (!task)
2074                goto out;
2075
2076        ret = -EACCES;
2077        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2078                goto out_put_task;
2079
2080        ret = 0;
2081        if (!dir_emit_dots(file, ctx))
2082                goto out_put_task;
2083
2084        mm = get_task_mm(task);
2085        if (!mm)
2086                goto out_put_task;
2087        down_read(&mm->mmap_sem);
2088
2089        nr_files = 0;
2090
2091        /*
2092         * We need two passes here:
2093         *
2094         *  1) Collect vmas of mapped files with mmap_sem taken
2095         *  2) Release mmap_sem and instantiate entries
2096         *
2097         * otherwise we get lockdep complained, since filldir()
2098         * routine might require mmap_sem taken in might_fault().
2099         */
2100
2101        for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2102                if (vma->vm_file && ++pos > ctx->pos)
2103                        nr_files++;
2104        }
2105
2106        if (nr_files) {
2107                fa = flex_array_alloc(sizeof(info), nr_files,
2108                                        GFP_KERNEL);
2109                if (!fa || flex_array_prealloc(fa, 0, nr_files,
2110                                                GFP_KERNEL)) {
2111                        ret = -ENOMEM;
2112                        if (fa)
2113                                flex_array_free(fa);
2114                        up_read(&mm->mmap_sem);
2115                        mmput(mm);
2116                        goto out_put_task;
2117                }
2118                for (i = 0, vma = mm->mmap, pos = 2; vma;
2119                                vma = vma->vm_next) {
2120                        if (!vma->vm_file)
2121                                continue;
2122                        if (++pos <= ctx->pos)
2123                                continue;
2124
2125                        info.mode = vma->vm_file->f_mode;
2126                        info.len = snprintf(info.name,
2127                                        sizeof(info.name), "%lx-%lx",
2128                                        vma->vm_start, vma->vm_end);
2129                        if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2130                                BUG();
2131                }
2132        }
2133        up_read(&mm->mmap_sem);
2134
2135        for (i = 0; i < nr_files; i++) {
2136                p = flex_array_get(fa, i);
2137                if (!proc_fill_cache(file, ctx,
2138                                      p->name, p->len,
2139                                      proc_map_files_instantiate,
2140                                      task,
2141                                      (void *)(unsigned long)p->mode))
2142                        break;
2143                ctx->pos++;
2144        }
2145        if (fa)
2146                flex_array_free(fa);
2147        mmput(mm);
2148
2149out_put_task:
2150        put_task_struct(task);
2151out:
2152        return ret;
2153}
2154
2155static const struct file_operations proc_map_files_operations = {
2156        .read           = generic_read_dir,
2157        .iterate        = proc_map_files_readdir,
2158        .llseek         = default_llseek,
2159};
2160
2161struct timers_private {
2162        struct pid *pid;
2163        struct task_struct *task;
2164        struct sighand_struct *sighand;
2165        struct pid_namespace *ns;
2166        unsigned long flags;
2167};
2168
2169static void *timers_start(struct seq_file *m, loff_t *pos)
2170{
2171        struct timers_private *tp = m->private;
2172
2173        tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2174        if (!tp->task)
2175                return ERR_PTR(-ESRCH);
2176
2177        tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2178        if (!tp->sighand)
2179                return ERR_PTR(-ESRCH);
2180
2181        return seq_list_start(&tp->task->signal->posix_timers, *pos);
2182}
2183
2184static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2185{
2186        struct timers_private *tp = m->private;
2187        return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2188}
2189
2190static void timers_stop(struct seq_file *m, void *v)
2191{
2192        struct timers_private *tp = m->private;
2193
2194        if (tp->sighand) {
2195                unlock_task_sighand(tp->task, &tp->flags);
2196                tp->sighand = NULL;
2197        }
2198
2199        if (tp->task) {
2200                put_task_struct(tp->task);
2201                tp->task = NULL;
2202        }
2203}
2204
2205static int show_timer(struct seq_file *m, void *v)
2206{
2207        struct k_itimer *timer;
2208        struct timers_private *tp = m->private;
2209        int notify;
2210        static const char * const nstr[] = {
2211                [SIGEV_SIGNAL] = "signal",
2212                [SIGEV_NONE] = "none",
2213                [SIGEV_THREAD] = "thread",
2214        };
2215
2216        timer = list_entry((struct list_head *)v, struct k_itimer, list);
2217        notify = timer->it_sigev_notify;
2218
2219        seq_printf(m, "ID: %d\n", timer->it_id);
2220        seq_printf(m, "signal: %d/%p\n",
2221                   timer->sigq->info.si_signo,
2222                   timer->sigq->info.si_value.sival_ptr);
2223        seq_printf(m, "notify: %s/%s.%d\n",
2224                   nstr[notify & ~SIGEV_THREAD_ID],
2225                   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2226                   pid_nr_ns(timer->it_pid, tp->ns));
2227        seq_printf(m, "ClockID: %d\n", timer->it_clock);
2228
2229        return 0;
2230}
2231
2232static const struct seq_operations proc_timers_seq_ops = {
2233        .start  = timers_start,
2234        .next   = timers_next,
2235        .stop   = timers_stop,
2236        .show   = show_timer,
2237};
2238
2239static int proc_timers_open(struct inode *inode, struct file *file)
2240{
2241        struct timers_private *tp;
2242
2243        tp = __seq_open_private(file, &proc_timers_seq_ops,
2244                        sizeof(struct timers_private));
2245        if (!tp)
2246                return -ENOMEM;
2247
2248        tp->pid = proc_pid(inode);
2249        tp->ns = inode->i_sb->s_fs_info;
2250        return 0;
2251}
2252
2253static const struct file_operations proc_timers_operations = {
2254        .open           = proc_timers_open,
2255        .read           = seq_read,
2256        .llseek         = seq_lseek,
2257        .release        = seq_release_private,
2258};
2259
2260static int proc_pident_instantiate(struct inode *dir,
2261        struct dentry *dentry, struct task_struct *task, const void *ptr)
2262{
2263        const struct pid_entry *p = ptr;
2264        struct inode *inode;
2265        struct proc_inode *ei;
2266
2267        inode = proc_pid_make_inode(dir->i_sb, task);
2268        if (!inode)
2269                goto out;
2270
2271        ei = PROC_I(inode);
2272        inode->i_mode = p->mode;
2273        if (S_ISDIR(inode->i_mode))
2274                set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2275        if (p->iop)
2276                inode->i_op = p->iop;
2277        if (p->fop)
2278                inode->i_fop = p->fop;
2279        ei->op = p->op;
2280        d_set_d_op(dentry, &pid_dentry_operations);
2281        d_add(dentry, inode);
2282        /* Close the race of the process dying before we return the dentry */
2283        if (pid_revalidate(dentry, 0))
2284                return 0;
2285out:
2286        return -ENOENT;
2287}
2288
2289static struct dentry *proc_pident_lookup(struct inode *dir, 
2290                                         struct dentry *dentry,
2291                                         const struct pid_entry *ents,
2292                                         unsigned int nents)
2293{
2294        int error;
2295        struct task_struct *task = get_proc_task(dir);
2296        const struct pid_entry *p, *last;
2297
2298        error = -ENOENT;
2299
2300        if (!task)
2301                goto out_no_task;
2302
2303        /*
2304         * Yes, it does not scale. And it should not. Don't add
2305         * new entries into /proc/<tgid>/ without very good reasons.
2306         */
2307        last = &ents[nents - 1];
2308        for (p = ents; p <= last; p++) {
2309                if (p->len != dentry->d_name.len)
2310                        continue;
2311                if (!memcmp(dentry->d_name.name, p->name, p->len))
2312                        break;
2313        }
2314        if (p > last)
2315                goto out;
2316
2317        error = proc_pident_instantiate(dir, dentry, task, p);
2318out:
2319        put_task_struct(task);
2320out_no_task:
2321        return ERR_PTR(error);
2322}
2323
2324static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2325                const struct pid_entry *ents, unsigned int nents)
2326{
2327        struct task_struct *task = get_proc_task(file_inode(file));
2328        const struct pid_entry *p;
2329
2330        if (!task)
2331                return -ENOENT;
2332
2333        if (!dir_emit_dots(file, ctx))
2334                goto out;
2335
2336        if (ctx->pos >= nents + 2)
2337                goto out;
2338
2339        for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2340                if (!proc_fill_cache(file, ctx, p->name, p->len,
2341                                proc_pident_instantiate, task, p))
2342                        break;
2343                ctx->pos++;
2344        }
2345out:
2346        put_task_struct(task);
2347        return 0;
2348}
2349
2350#ifdef CONFIG_SECURITY
2351static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2352                                  size_t count, loff_t *ppos)
2353{
2354        struct inode * inode = file_inode(file);
2355        char *p = NULL;
2356        ssize_t length;
2357        struct task_struct *task = get_proc_task(inode);
2358
2359        if (!task)
2360                return -ESRCH;
2361
2362        length = security_getprocattr(task,
2363                                      (char*)file->f_path.dentry->d_name.name,
2364                                      &p);
2365        put_task_struct(task);
2366        if (length > 0)
2367                length = simple_read_from_buffer(buf, count, ppos, p, length);
2368        kfree(p);
2369        return length;
2370}
2371
2372static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2373                                   size_t count, loff_t *ppos)
2374{
2375        struct inode * inode = file_inode(file);
2376        void *page;
2377        ssize_t length;
2378        struct task_struct *task = get_proc_task(inode);
2379
2380        length = -ESRCH;
2381        if (!task)
2382                goto out_no_task;
2383        if (count > PAGE_SIZE)
2384                count = PAGE_SIZE;
2385
2386        /* No partial writes. */
2387        length = -EINVAL;
2388        if (*ppos != 0)
2389                goto out;
2390
2391        page = memdup_user(buf, count);
2392        if (IS_ERR(page)) {
2393                length = PTR_ERR(page);
2394                goto out;
2395        }
2396
2397        /* Guard against adverse ptrace interaction */
2398        length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2399        if (length < 0)
2400                goto out_free;
2401
2402        length = security_setprocattr(task,
2403                                      (char*)file->f_path.dentry->d_name.name,
2404                                      page, count);
2405        mutex_unlock(&task->signal->cred_guard_mutex);
2406out_free:
2407        kfree(page);
2408out:
2409        put_task_struct(task);
2410out_no_task:
2411        return length;
2412}
2413
2414static const struct file_operations proc_pid_attr_operations = {
2415        .read           = proc_pid_attr_read,
2416        .write          = proc_pid_attr_write,
2417        .llseek         = generic_file_llseek,
2418};
2419
2420static const struct pid_entry attr_dir_stuff[] = {
2421        REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2422        REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2423        REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2424        REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2425        REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2426        REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2427};
2428
2429static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2430{
2431        return proc_pident_readdir(file, ctx, 
2432                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2433}
2434
2435static const struct file_operations proc_attr_dir_operations = {
2436        .read           = generic_read_dir,
2437        .iterate        = proc_attr_dir_readdir,
2438        .llseek         = default_llseek,
2439};
2440
2441static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2442                                struct dentry *dentry, unsigned int flags)
2443{
2444        return proc_pident_lookup(dir, dentry,
2445                                  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2446}
2447
2448static const struct inode_operations proc_attr_dir_inode_operations = {
2449        .lookup         = proc_attr_dir_lookup,
2450        .getattr        = pid_getattr,
2451        .setattr        = proc_setattr,
2452};
2453
2454#endif
2455
2456#ifdef CONFIG_ELF_CORE
2457static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2458                                         size_t count, loff_t *ppos)
2459{
2460        struct task_struct *task = get_proc_task(file_inode(file));
2461        struct mm_struct *mm;
2462        char buffer[PROC_NUMBUF];
2463        size_t len;
2464        int ret;
2465
2466        if (!task)
2467                return -ESRCH;
2468
2469        ret = 0;
2470        mm = get_task_mm(task);
2471        if (mm) {
2472                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2473                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2474                                MMF_DUMP_FILTER_SHIFT));
2475                mmput(mm);
2476                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2477        }
2478
2479        put_task_struct(task);
2480
2481        return ret;
2482}
2483
2484static ssize_t proc_coredump_filter_write(struct file *file,
2485                                          const char __user *buf,
2486                                          size_t count,
2487                                          loff_t *ppos)
2488{
2489        struct task_struct *task;
2490        struct mm_struct *mm;
2491        unsigned int val;
2492        int ret;
2493        int i;
2494        unsigned long mask;
2495
2496        ret = kstrtouint_from_user(buf, count, 0, &val);
2497        if (ret < 0)
2498                return ret;
2499
2500        ret = -ESRCH;
2501        task = get_proc_task(file_inode(file));
2502        if (!task)
2503                goto out_no_task;
2504
2505        mm = get_task_mm(task);
2506        if (!mm)
2507                goto out_no_mm;
2508        ret = 0;
2509
2510        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2511                if (val & mask)
2512                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2513                else
2514                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2515        }
2516
2517        mmput(mm);
2518 out_no_mm:
2519        put_task_struct(task);
2520 out_no_task:
2521        if (ret < 0)
2522                return ret;
2523        return count;
2524}
2525
2526static const struct file_operations proc_coredump_filter_operations = {
2527        .read           = proc_coredump_filter_read,
2528        .write          = proc_coredump_filter_write,
2529        .llseek         = generic_file_llseek,
2530};
2531#endif
2532
2533#ifdef CONFIG_TASK_IO_ACCOUNTING
2534static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2535{
2536        struct task_io_accounting acct = task->ioac;
2537        unsigned long flags;
2538        int result;
2539
2540        result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2541        if (result)
2542                return result;
2543
2544        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2545                result = -EACCES;
2546                goto out_unlock;
2547        }
2548
2549        if (whole && lock_task_sighand(task, &flags)) {
2550                struct task_struct *t = task;
2551
2552                task_io_accounting_add(&acct, &task->signal->ioac);
2553                while_each_thread(task, t)
2554                        task_io_accounting_add(&acct, &t->ioac);
2555
2556                unlock_task_sighand(task, &flags);
2557        }
2558        seq_printf(m,
2559                   "rchar: %llu\n"
2560                   "wchar: %llu\n"
2561                   "syscr: %llu\n"
2562                   "syscw: %llu\n"
2563                   "read_bytes: %llu\n"
2564                   "write_bytes: %llu\n"
2565                   "cancelled_write_bytes: %llu\n",
2566                   (unsigned long long)acct.rchar,
2567                   (unsigned long long)acct.wchar,
2568                   (unsigned long long)acct.syscr,
2569                   (unsigned long long)acct.syscw,
2570                   (unsigned long long)acct.read_bytes,
2571                   (unsigned long long)acct.write_bytes,
2572                   (unsigned long long)acct.cancelled_write_bytes);
2573        result = 0;
2574
2575out_unlock:
2576        mutex_unlock(&task->signal->cred_guard_mutex);
2577        return result;
2578}
2579
2580static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2581                                  struct pid *pid, struct task_struct *task)
2582{
2583        return do_io_accounting(task, m, 0);
2584}
2585
2586static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2587                                   struct pid *pid, struct task_struct *task)
2588{
2589        return do_io_accounting(task, m, 1);
2590}
2591#endif /* CONFIG_TASK_IO_ACCOUNTING */
2592
2593#ifdef CONFIG_USER_NS
2594static int proc_id_map_open(struct inode *inode, struct file *file,
2595        const struct seq_operations *seq_ops)
2596{
2597        struct user_namespace *ns = NULL;
2598        struct task_struct *task;
2599        struct seq_file *seq;
2600        int ret = -EINVAL;
2601
2602        task = get_proc_task(inode);
2603        if (task) {
2604                rcu_read_lock();
2605                ns = get_user_ns(task_cred_xxx(task, user_ns));
2606                rcu_read_unlock();
2607                put_task_struct(task);
2608        }
2609        if (!ns)
2610                goto err;
2611
2612        ret = seq_open(file, seq_ops);
2613        if (ret)
2614                goto err_put_ns;
2615
2616        seq = file->private_data;
2617        seq->private = ns;
2618
2619        return 0;
2620err_put_ns:
2621        put_user_ns(ns);
2622err:
2623        return ret;
2624}
2625
2626static int proc_id_map_release(struct inode *inode, struct file *file)
2627{
2628        struct seq_file *seq = file->private_data;
2629        struct user_namespace *ns = seq->private;
2630        put_user_ns(ns);
2631        return seq_release(inode, file);
2632}
2633
2634static int proc_uid_map_open(struct inode *inode, struct file *file)
2635{
2636        return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2637}
2638
2639static int proc_gid_map_open(struct inode *inode, struct file *file)
2640{
2641        return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2642}
2643
2644static int proc_projid_map_open(struct inode *inode, struct file *file)
2645{
2646        return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2647}
2648
2649static const struct file_operations proc_uid_map_operations = {
2650        .open           = proc_uid_map_open,
2651        .write          = proc_uid_map_write,
2652        .read           = seq_read,
2653        .llseek         = seq_lseek,
2654        .release        = proc_id_map_release,
2655};
2656
2657static const struct file_operations proc_gid_map_operations = {
2658        .open           = proc_gid_map_open,
2659        .write          = proc_gid_map_write,
2660        .read           = seq_read,
2661        .llseek         = seq_lseek,
2662        .release        = proc_id_map_release,
2663};
2664
2665static const struct file_operations proc_projid_map_operations = {
2666        .open           = proc_projid_map_open,
2667        .write          = proc_projid_map_write,
2668        .read           = seq_read,
2669        .llseek         = seq_lseek,
2670        .release        = proc_id_map_release,
2671};
2672
2673static int proc_setgroups_open(struct inode *inode, struct file *file)
2674{
2675        struct user_namespace *ns = NULL;
2676        struct task_struct *task;
2677        int ret;
2678
2679        ret = -ESRCH;
2680        task = get_proc_task(inode);
2681        if (task) {
2682                rcu_read_lock();
2683                ns = get_user_ns(task_cred_xxx(task, user_ns));
2684                rcu_read_unlock();
2685                put_task_struct(task);
2686        }
2687        if (!ns)
2688                goto err;
2689
2690        if (file->f_mode & FMODE_WRITE) {
2691                ret = -EACCES;
2692                if (!ns_capable(ns, CAP_SYS_ADMIN))
2693                        goto err_put_ns;
2694        }
2695
2696        ret = single_open(file, &proc_setgroups_show, ns);
2697        if (ret)
2698                goto err_put_ns;
2699
2700        return 0;
2701err_put_ns:
2702        put_user_ns(ns);
2703err:
2704        return ret;
2705}
2706
2707static int proc_setgroups_release(struct inode *inode, struct file *file)
2708{
2709        struct seq_file *seq = file->private_data;
2710        struct user_namespace *ns = seq->private;
2711        int ret = single_release(inode, file);
2712        put_user_ns(ns);
2713        return ret;
2714}
2715
2716static const struct file_operations proc_setgroups_operations = {
2717        .open           = proc_setgroups_open,
2718        .write          = proc_setgroups_write,
2719        .read           = seq_read,
2720        .llseek         = seq_lseek,
2721        .release        = proc_setgroups_release,
2722};
2723#endif /* CONFIG_USER_NS */
2724
2725static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2726                                struct pid *pid, struct task_struct *task)
2727{
2728        int err = lock_trace(task);
2729        if (!err) {
2730                seq_printf(m, "%08x\n", task->personality);
2731                unlock_trace(task);
2732        }
2733        return err;
2734}
2735
2736/*
2737 * Thread groups
2738 */
2739static const struct file_operations proc_task_operations;
2740static const struct inode_operations proc_task_inode_operations;
2741
2742static const struct pid_entry tgid_base_stuff[] = {
2743        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2744        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2745        DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2746        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2747        DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2748#ifdef CONFIG_NET
2749        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2750#endif
2751        REG("environ",    S_IRUSR, proc_environ_operations),
2752        ONE("auxv",       S_IRUSR, proc_pid_auxv),
2753        ONE("status",     S_IRUGO, proc_pid_status),
2754        ONE("personality", S_IRUSR, proc_pid_personality),
2755        ONE("limits",     S_IRUGO, proc_pid_limits),
2756#ifdef CONFIG_SCHED_DEBUG
2757        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2758#endif
2759#ifdef CONFIG_SCHED_AUTOGROUP
2760        REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2761#endif
2762        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2763#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2764        ONE("syscall",    S_IRUSR, proc_pid_syscall),
2765#endif
2766        REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2767        ONE("stat",       S_IRUGO, proc_tgid_stat),
2768        ONE("statm",      S_IRUGO, proc_pid_statm),
2769        REG("maps",       S_IRUGO, proc_pid_maps_operations),
2770#ifdef CONFIG_NUMA
2771        REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2772#endif
2773        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2774        LNK("cwd",        proc_cwd_link),
2775        LNK("root",       proc_root_link),
2776        LNK("exe",        proc_exe_link),
2777        REG("mounts",     S_IRUGO, proc_mounts_operations),
2778        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2779        REG("mountstats", S_IRUSR, proc_mountstats_operations),
2780#ifdef CONFIG_PROC_PAGE_MONITOR
2781        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2782        REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2783        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2784#endif
2785#ifdef CONFIG_SECURITY
2786        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2787#endif
2788#ifdef CONFIG_KALLSYMS
2789        ONE("wchan",      S_IRUGO, proc_pid_wchan),
2790#endif
2791#ifdef CONFIG_STACKTRACE
2792        ONE("stack",      S_IRUSR, proc_pid_stack),
2793#endif
2794#ifdef CONFIG_SCHED_INFO
2795        ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2796#endif
2797#ifdef CONFIG_LATENCYTOP
2798        REG("latency",  S_IRUGO, proc_lstats_operations),
2799#endif
2800#ifdef CONFIG_PROC_PID_CPUSET
2801        ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2802#endif
2803#ifdef CONFIG_CGROUPS
2804        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2805#endif
2806        ONE("oom_score",  S_IRUGO, proc_oom_score),
2807        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2808        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2809#ifdef CONFIG_AUDITSYSCALL
2810        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2811        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2812#endif
2813#ifdef CONFIG_FAULT_INJECTION
2814        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2815#endif
2816#ifdef CONFIG_ELF_CORE
2817        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2818#endif
2819#ifdef CONFIG_TASK_IO_ACCOUNTING
2820        ONE("io",       S_IRUSR, proc_tgid_io_accounting),
2821#endif
2822#ifdef CONFIG_HARDWALL
2823        ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2824#endif
2825#ifdef CONFIG_USER_NS
2826        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2827        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2828        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2829        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2830#endif
2831#ifdef CONFIG_CHECKPOINT_RESTORE
2832        REG("timers",     S_IRUGO, proc_timers_operations),
2833#endif
2834};
2835
2836static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2837{
2838        return proc_pident_readdir(file, ctx,
2839                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2840}
2841
2842static const struct file_operations proc_tgid_base_operations = {
2843        .read           = generic_read_dir,
2844        .iterate        = proc_tgid_base_readdir,
2845        .llseek         = default_llseek,
2846};
2847
2848static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2849{
2850        return proc_pident_lookup(dir, dentry,
2851                                  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2852}
2853
2854static const struct inode_operations proc_tgid_base_inode_operations = {
2855        .lookup         = proc_tgid_base_lookup,
2856        .getattr        = pid_getattr,
2857        .setattr        = proc_setattr,
2858        .permission     = proc_pid_permission,
2859};
2860
2861static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2862{
2863        struct dentry *dentry, *leader, *dir;
2864        char buf[PROC_NUMBUF];
2865        struct qstr name;
2866
2867        name.name = buf;
2868        name.len = snprintf(buf, sizeof(buf), "%d", pid);
2869        /* no ->d_hash() rejects on procfs */
2870        dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2871        if (dentry) {
2872                d_invalidate(dentry);
2873                dput(dentry);
2874        }
2875
2876        if (pid == tgid)
2877                return;
2878
2879        name.name = buf;
2880        name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2881        leader = d_hash_and_lookup(mnt->mnt_root, &name);
2882        if (!leader)
2883                goto out;
2884
2885        name.name = "task";
2886        name.len = strlen(name.name);
2887        dir = d_hash_and_lookup(leader, &name);
2888        if (!dir)
2889                goto out_put_leader;
2890
2891        name.name = buf;
2892        name.len = snprintf(buf, sizeof(buf), "%d", pid);
2893        dentry = d_hash_and_lookup(dir, &name);
2894        if (dentry) {
2895                d_invalidate(dentry);
2896                dput(dentry);
2897        }
2898
2899        dput(dir);
2900out_put_leader:
2901        dput(leader);
2902out:
2903        return;
2904}
2905
2906/**
2907 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2908 * @task: task that should be flushed.
2909 *
2910 * When flushing dentries from proc, one needs to flush them from global
2911 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2912 * in. This call is supposed to do all of this job.
2913 *
2914 * Looks in the dcache for
2915 * /proc/@pid
2916 * /proc/@tgid/task/@pid
2917 * if either directory is present flushes it and all of it'ts children
2918 * from the dcache.
2919 *
2920 * It is safe and reasonable to cache /proc entries for a task until
2921 * that task exits.  After that they just clog up the dcache with
2922 * useless entries, possibly causing useful dcache entries to be
2923 * flushed instead.  This routine is proved to flush those useless
2924 * dcache entries at process exit time.
2925 *
2926 * NOTE: This routine is just an optimization so it does not guarantee
2927 *       that no dcache entries will exist at process exit time it
2928 *       just makes it very unlikely that any will persist.
2929 */
2930
2931void proc_flush_task(struct task_struct *task)
2932{
2933        int i;
2934        struct pid *pid, *tgid;
2935        struct upid *upid;
2936
2937        pid = task_pid(task);
2938        tgid = task_tgid(task);
2939
2940        for (i = 0; i <= pid->level; i++) {
2941                upid = &pid->numbers[i];
2942                proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2943                                        tgid->numbers[i].nr);
2944        }
2945}
2946
2947static int proc_pid_instantiate(struct inode *dir,
2948                                   struct dentry * dentry,
2949                                   struct task_struct *task, const void *ptr)
2950{
2951        struct inode *inode;
2952
2953        inode = proc_pid_make_inode(dir->i_sb, task);
2954        if (!inode)
2955                goto out;
2956
2957        inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2958        inode->i_op = &proc_tgid_base_inode_operations;
2959        inode->i_fop = &proc_tgid_base_operations;
2960        inode->i_flags|=S_IMMUTABLE;
2961
2962        set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2963                                                  ARRAY_SIZE(tgid_base_stuff)));
2964
2965        d_set_d_op(dentry, &pid_dentry_operations);
2966
2967        d_add(dentry, inode);
2968        /* Close the race of the process dying before we return the dentry */
2969        if (pid_revalidate(dentry, 0))
2970                return 0;
2971out:
2972        return -ENOENT;
2973}
2974
2975struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2976{
2977        int result = -ENOENT;
2978        struct task_struct *task;
2979        unsigned tgid;
2980        struct pid_namespace *ns;
2981
2982        tgid = name_to_int(&dentry->d_name);
2983        if (tgid == ~0U)
2984                goto out;
2985
2986        ns = dentry->d_sb->s_fs_info;
2987        rcu_read_lock();
2988        task = find_task_by_pid_ns(tgid, ns);
2989        if (task)
2990                get_task_struct(task);
2991        rcu_read_unlock();
2992        if (!task)
2993                goto out;
2994
2995        result = proc_pid_instantiate(dir, dentry, task, NULL);
2996        put_task_struct(task);
2997out:
2998        return ERR_PTR(result);
2999}
3000
3001/*
3002 * Find the first task with tgid >= tgid
3003 *
3004 */
3005struct tgid_iter {
3006        unsigned int tgid;
3007        struct task_struct *task;
3008};
3009static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3010{
3011        struct pid *pid;
3012
3013        if (iter.task)
3014                put_task_struct(iter.task);
3015        rcu_read_lock();
3016retry:
3017        iter.task = NULL;
3018        pid = find_ge_pid(iter.tgid, ns);
3019        if (pid) {
3020                iter.tgid = pid_nr_ns(pid, ns);
3021                iter.task = pid_task(pid, PIDTYPE_PID);
3022                /* What we to know is if the pid we have find is the
3023                 * pid of a thread_group_leader.  Testing for task
3024                 * being a thread_group_leader is the obvious thing
3025                 * todo but there is a window when it fails, due to
3026                 * the pid transfer logic in de_thread.
3027                 *
3028                 * So we perform the straight forward test of seeing
3029                 * if the pid we have found is the pid of a thread
3030                 * group leader, and don't worry if the task we have
3031                 * found doesn't happen to be a thread group leader.
3032                 * As we don't care in the case of readdir.
3033                 */
3034                if (!iter.task || !has_group_leader_pid(iter.task)) {
3035                        iter.tgid += 1;
3036                        goto retry;
3037                }
3038                get_task_struct(iter.task);
3039        }
3040        rcu_read_unlock();
3041        return iter;
3042}
3043
3044#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3045
3046/* for the /proc/ directory itself, after non-process stuff has been done */
3047int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3048{
3049        struct tgid_iter iter;
3050        struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3051        loff_t pos = ctx->pos;
3052
3053        if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3054                return 0;
3055
3056        if (pos == TGID_OFFSET - 2) {
3057                struct inode *inode = d_inode(ns->proc_self);
3058                if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3059                        return 0;
3060                ctx->pos = pos = pos + 1;
3061        }
3062        if (pos == TGID_OFFSET - 1) {
3063                struct inode *inode = d_inode(ns->proc_thread_self);
3064                if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3065                        return 0;
3066                ctx->pos = pos = pos + 1;
3067        }
3068        iter.tgid = pos - TGID_OFFSET;
3069        iter.task = NULL;
3070        for (iter = next_tgid(ns, iter);
3071             iter.task;
3072             iter.tgid += 1, iter = next_tgid(ns, iter)) {
3073                char name[PROC_NUMBUF];
3074                int len;
3075                if (!has_pid_permissions(ns, iter.task, 2))
3076                        continue;
3077
3078                len = snprintf(name, sizeof(name), "%d", iter.tgid);
3079                ctx->pos = iter.tgid + TGID_OFFSET;
3080                if (!proc_fill_cache(file, ctx, name, len,
3081                                     proc_pid_instantiate, iter.task, NULL)) {
3082                        put_task_struct(iter.task);
3083                        return 0;
3084                }
3085        }
3086        ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3087        return 0;
3088}
3089
3090/*
3091 * Tasks
3092 */
3093static const struct pid_entry tid_base_stuff[] = {
3094        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3095        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3096        DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3097#ifdef CONFIG_NET
3098        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3099#endif
3100        REG("environ",   S_IRUSR, proc_environ_operations),
3101        ONE("auxv",      S_IRUSR, proc_pid_auxv),
3102        ONE("status",    S_IRUGO, proc_pid_status),
3103        ONE("personality", S_IRUSR, proc_pid_personality),
3104        ONE("limits",    S_IRUGO, proc_pid_limits),
3105#ifdef CONFIG_SCHED_DEBUG
3106        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3107#endif
3108        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3109#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3110        ONE("syscall",   S_IRUSR, proc_pid_syscall),
3111#endif
3112        REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3113        ONE("stat",      S_IRUGO, proc_tid_stat),
3114        ONE("statm",     S_IRUGO, proc_pid_statm),
3115        REG("maps",      S_IRUGO, proc_tid_maps_operations),
3116#ifdef CONFIG_PROC_CHILDREN
3117        REG("children",  S_IRUGO, proc_tid_children_operations),
3118#endif
3119#ifdef CONFIG_NUMA
3120        REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3121#endif
3122        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3123        LNK("cwd",       proc_cwd_link),
3124        LNK("root",      proc_root_link),
3125        LNK("exe",       proc_exe_link),
3126        REG("mounts",    S_IRUGO, proc_mounts_operations),
3127        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3128#ifdef CONFIG_PROC_PAGE_MONITOR
3129        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3130        REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3131        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3132#endif
3133#ifdef CONFIG_SECURITY
3134        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3135#endif
3136#ifdef CONFIG_KALLSYMS
3137        ONE("wchan",     S_IRUGO, proc_pid_wchan),
3138#endif
3139#ifdef CONFIG_STACKTRACE
3140        ONE("stack",      S_IRUSR, proc_pid_stack),
3141#endif
3142#ifdef CONFIG_SCHED_INFO
3143        ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3144#endif
3145#ifdef CONFIG_LATENCYTOP
3146        REG("latency",  S_IRUGO, proc_lstats_operations),
3147#endif
3148#ifdef CONFIG_PROC_PID_CPUSET
3149        ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3150#endif
3151#ifdef CONFIG_CGROUPS
3152        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3153#endif
3154        ONE("oom_score", S_IRUGO, proc_oom_score),
3155        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3156        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3157#ifdef CONFIG_AUDITSYSCALL
3158        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3159        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3160#endif
3161#ifdef CONFIG_FAULT_INJECTION
3162        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3163#endif
3164#ifdef CONFIG_TASK_IO_ACCOUNTING
3165        ONE("io",       S_IRUSR, proc_tid_io_accounting),
3166#endif
3167#ifdef CONFIG_HARDWALL
3168        ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3169#endif
3170#ifdef CONFIG_USER_NS
3171        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3172        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3173        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3174        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3175#endif
3176};
3177
3178static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3179{
3180        return proc_pident_readdir(file, ctx,
3181                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3182}
3183
3184static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3185{
3186        return proc_pident_lookup(dir, dentry,
3187                                  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3188}
3189
3190static const struct file_operations proc_tid_base_operations = {
3191        .read           = generic_read_dir,
3192        .iterate        = proc_tid_base_readdir,
3193        .llseek         = default_llseek,
3194};
3195
3196static const struct inode_operations proc_tid_base_inode_operations = {
3197        .lookup         = proc_tid_base_lookup,
3198        .getattr        = pid_getattr,
3199        .setattr        = proc_setattr,
3200};
3201
3202static int proc_task_instantiate(struct inode *dir,
3203        struct dentry *dentry, struct task_struct *task, const void *ptr)
3204{
3205        struct inode *inode;
3206        inode = proc_pid_make_inode(dir->i_sb, task);
3207
3208        if (!inode)
3209                goto out;
3210        inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3211        inode->i_op = &proc_tid_base_inode_operations;
3212        inode->i_fop = &proc_tid_base_operations;
3213        inode->i_flags|=S_IMMUTABLE;
3214
3215        set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3216                                                  ARRAY_SIZE(tid_base_stuff)));
3217
3218        d_set_d_op(dentry, &pid_dentry_operations);
3219
3220        d_add(dentry, inode);
3221        /* Close the race of the process dying before we return the dentry */
3222        if (pid_revalidate(dentry, 0))
3223                return 0;
3224out:
3225        return -ENOENT;
3226}
3227
3228static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3229{
3230        int result = -ENOENT;
3231        struct task_struct *task;
3232        struct task_struct *leader = get_proc_task(dir);
3233        unsigned tid;
3234        struct pid_namespace *ns;
3235
3236        if (!leader)
3237                goto out_no_task;
3238
3239        tid = name_to_int(&dentry->d_name);
3240        if (tid == ~0U)
3241                goto out;
3242
3243        ns = dentry->d_sb->s_fs_info;
3244        rcu_read_lock();
3245        task = find_task_by_pid_ns(tid, ns);
3246        if (task)
3247                get_task_struct(task);
3248        rcu_read_unlock();
3249        if (!task)
3250                goto out;
3251        if (!same_thread_group(leader, task))
3252                goto out_drop_task;
3253
3254        result = proc_task_instantiate(dir, dentry, task, NULL);
3255out_drop_task:
3256        put_task_struct(task);
3257out:
3258        put_task_struct(leader);
3259out_no_task:
3260        return ERR_PTR(result);
3261}
3262
3263/*
3264 * Find the first tid of a thread group to return to user space.
3265 *
3266 * Usually this is just the thread group leader, but if the users
3267 * buffer was too small or there was a seek into the middle of the
3268 * directory we have more work todo.
3269 *
3270 * In the case of a short read we start with find_task_by_pid.
3271 *
3272 * In the case of a seek we start with the leader and walk nr
3273 * threads past it.
3274 */
3275static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3276                                        struct pid_namespace *ns)
3277{
3278        struct task_struct *pos, *task;
3279        unsigned long nr = f_pos;
3280
3281        if (nr != f_pos)        /* 32bit overflow? */
3282                return NULL;
3283
3284        rcu_read_lock();
3285        task = pid_task(pid, PIDTYPE_PID);
3286        if (!task)
3287                goto fail;
3288
3289        /* Attempt to start with the tid of a thread */
3290        if (tid && nr) {
3291                pos = find_task_by_pid_ns(tid, ns);
3292                if (pos && same_thread_group(pos, task))
3293                        goto found;
3294        }
3295
3296        /* If nr exceeds the number of threads there is nothing todo */
3297        if (nr >= get_nr_threads(task))
3298                goto fail;
3299
3300        /* If we haven't found our starting place yet start
3301         * with the leader and walk nr threads forward.
3302         */
3303        pos = task = task->group_leader;
3304        do {
3305                if (!nr--)
3306                        goto found;
3307        } while_each_thread(task, pos);
3308fail:
3309        pos = NULL;
3310        goto out;
3311found:
3312        get_task_struct(pos);
3313out:
3314        rcu_read_unlock();
3315        return pos;
3316}
3317
3318/*
3319 * Find the next thread in the thread list.
3320 * Return NULL if there is an error or no next thread.
3321 *
3322 * The reference to the input task_struct is released.
3323 */
3324static struct task_struct *next_tid(struct task_struct *start)
3325{
3326        struct task_struct *pos = NULL;
3327        rcu_read_lock();
3328        if (pid_alive(start)) {
3329                pos = next_thread(start);
3330                if (thread_group_leader(pos))
3331                        pos = NULL;
3332                else
3333                        get_task_struct(pos);
3334        }
3335        rcu_read_unlock();
3336        put_task_struct(start);
3337        return pos;
3338}
3339
3340/* for the /proc/TGID/task/ directories */
3341static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3342{
3343        struct inode *inode = file_inode(file);
3344        struct task_struct *task;
3345        struct pid_namespace *ns;
3346        int tid;
3347
3348        if (proc_inode_is_dead(inode))
3349                return -ENOENT;
3350
3351        if (!dir_emit_dots(file, ctx))
3352                return 0;
3353
3354        /* f_version caches the tgid value that the last readdir call couldn't
3355         * return. lseek aka telldir automagically resets f_version to 0.
3356         */
3357        ns = inode->i_sb->s_fs_info;
3358        tid = (int)file->f_version;
3359        file->f_version = 0;
3360        for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3361             task;
3362             task = next_tid(task), ctx->pos++) {
3363                char name[PROC_NUMBUF];
3364                int len;
3365                tid = task_pid_nr_ns(task, ns);
3366                len = snprintf(name, sizeof(name), "%d", tid);
3367                if (!proc_fill_cache(file, ctx, name, len,
3368                                proc_task_instantiate, task, NULL)) {
3369                        /* returning this tgid failed, save it as the first
3370                         * pid for the next readir call */
3371                        file->f_version = (u64)tid;
3372                        put_task_struct(task);
3373                        break;
3374                }
3375        }
3376
3377        return 0;
3378}
3379
3380static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3381{
3382        struct inode *inode = d_inode(dentry);
3383        struct task_struct *p = get_proc_task(inode);
3384        generic_fillattr(inode, stat);
3385
3386        if (p) {
3387                stat->nlink += get_nr_threads(p);
3388                put_task_struct(p);
3389        }
3390
3391        return 0;
3392}
3393
3394static const struct inode_operations proc_task_inode_operations = {
3395        .lookup         = proc_task_lookup,
3396        .getattr        = proc_task_getattr,
3397        .setattr        = proc_setattr,
3398        .permission     = proc_pid_permission,
3399};
3400
3401static const struct file_operations proc_task_operations = {
3402        .read           = generic_read_dir,
3403        .iterate        = proc_task_readdir,
3404        .llseek         = default_llseek,
3405};
3406