linux/include/linux/dmaengine.h
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the Free
   6 * Software Foundation; either version 2 of the License, or (at your option)
   7 * any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in the
  15 * file called COPYING.
  16 */
  17#ifndef LINUX_DMAENGINE_H
  18#define LINUX_DMAENGINE_H
  19
  20#include <linux/device.h>
  21#include <linux/err.h>
  22#include <linux/uio.h>
  23#include <linux/bug.h>
  24#include <linux/scatterlist.h>
  25#include <linux/bitmap.h>
  26#include <linux/types.h>
  27#include <asm/page.h>
  28
  29/**
  30 * typedef dma_cookie_t - an opaque DMA cookie
  31 *
  32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  33 */
  34typedef s32 dma_cookie_t;
  35#define DMA_MIN_COOKIE  1
  36
  37static inline int dma_submit_error(dma_cookie_t cookie)
  38{
  39        return cookie < 0 ? cookie : 0;
  40}
  41
  42/**
  43 * enum dma_status - DMA transaction status
  44 * @DMA_COMPLETE: transaction completed
  45 * @DMA_IN_PROGRESS: transaction not yet processed
  46 * @DMA_PAUSED: transaction is paused
  47 * @DMA_ERROR: transaction failed
  48 */
  49enum dma_status {
  50        DMA_COMPLETE,
  51        DMA_IN_PROGRESS,
  52        DMA_PAUSED,
  53        DMA_ERROR,
  54};
  55
  56/**
  57 * enum dma_transaction_type - DMA transaction types/indexes
  58 *
  59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
  60 * automatically set as dma devices are registered.
  61 */
  62enum dma_transaction_type {
  63        DMA_MEMCPY,
  64        DMA_XOR,
  65        DMA_PQ,
  66        DMA_XOR_VAL,
  67        DMA_PQ_VAL,
  68        DMA_MEMSET,
  69        DMA_MEMSET_SG,
  70        DMA_INTERRUPT,
  71        DMA_SG,
  72        DMA_PRIVATE,
  73        DMA_ASYNC_TX,
  74        DMA_SLAVE,
  75        DMA_CYCLIC,
  76        DMA_INTERLEAVE,
  77/* last transaction type for creation of the capabilities mask */
  78        DMA_TX_TYPE_END,
  79};
  80
  81/**
  82 * enum dma_transfer_direction - dma transfer mode and direction indicator
  83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
  84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  87 */
  88enum dma_transfer_direction {
  89        DMA_MEM_TO_MEM,
  90        DMA_MEM_TO_DEV,
  91        DMA_DEV_TO_MEM,
  92        DMA_DEV_TO_DEV,
  93        DMA_TRANS_NONE,
  94};
  95
  96/**
  97 * Interleaved Transfer Request
  98 * ----------------------------
  99 * A chunk is collection of contiguous bytes to be transfered.
 100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
 101 * ICGs may or maynot change between chunks.
 102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
 103 *  that when repeated an integral number of times, specifies the transfer.
 104 * A transfer template is specification of a Frame, the number of times
 105 *  it is to be repeated and other per-transfer attributes.
 106 *
 107 * Practically, a client driver would have ready a template for each
 108 *  type of transfer it is going to need during its lifetime and
 109 *  set only 'src_start' and 'dst_start' before submitting the requests.
 110 *
 111 *
 112 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
 113 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
 114 *
 115 *    ==  Chunk size
 116 *    ... ICG
 117 */
 118
 119/**
 120 * struct data_chunk - Element of scatter-gather list that makes a frame.
 121 * @size: Number of bytes to read from source.
 122 *        size_dst := fn(op, size_src), so doesn't mean much for destination.
 123 * @icg: Number of bytes to jump after last src/dst address of this
 124 *       chunk and before first src/dst address for next chunk.
 125 *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
 126 *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
 127 * @dst_icg: Number of bytes to jump after last dst address of this
 128 *       chunk and before the first dst address for next chunk.
 129 *       Ignored if dst_inc is true and dst_sgl is false.
 130 * @src_icg: Number of bytes to jump after last src address of this
 131 *       chunk and before the first src address for next chunk.
 132 *       Ignored if src_inc is true and src_sgl is false.
 133 */
 134struct data_chunk {
 135        size_t size;
 136        size_t icg;
 137        size_t dst_icg;
 138        size_t src_icg;
 139};
 140
 141/**
 142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
 143 *       and attributes.
 144 * @src_start: Bus address of source for the first chunk.
 145 * @dst_start: Bus address of destination for the first chunk.
 146 * @dir: Specifies the type of Source and Destination.
 147 * @src_inc: If the source address increments after reading from it.
 148 * @dst_inc: If the destination address increments after writing to it.
 149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
 150 *              Otherwise, source is read contiguously (icg ignored).
 151 *              Ignored if src_inc is false.
 152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
 153 *              Otherwise, destination is filled contiguously (icg ignored).
 154 *              Ignored if dst_inc is false.
 155 * @numf: Number of frames in this template.
 156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
 157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
 158 */
 159struct dma_interleaved_template {
 160        dma_addr_t src_start;
 161        dma_addr_t dst_start;
 162        enum dma_transfer_direction dir;
 163        bool src_inc;
 164        bool dst_inc;
 165        bool src_sgl;
 166        bool dst_sgl;
 167        size_t numf;
 168        size_t frame_size;
 169        struct data_chunk sgl[0];
 170};
 171
 172/**
 173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
 174 *  control completion, and communicate status.
 175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
 176 *  this transaction
 177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
 178 *  acknowledges receipt, i.e. has has a chance to establish any dependency
 179 *  chains
 180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
 181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
 182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
 183 *  sources that were the result of a previous operation, in the case of a PQ
 184 *  operation it continues the calculation with new sources
 185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
 186 *  on the result of this operation
 187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
 188 *  cleared or freed
 189 */
 190enum dma_ctrl_flags {
 191        DMA_PREP_INTERRUPT = (1 << 0),
 192        DMA_CTRL_ACK = (1 << 1),
 193        DMA_PREP_PQ_DISABLE_P = (1 << 2),
 194        DMA_PREP_PQ_DISABLE_Q = (1 << 3),
 195        DMA_PREP_CONTINUE = (1 << 4),
 196        DMA_PREP_FENCE = (1 << 5),
 197        DMA_CTRL_REUSE = (1 << 6),
 198};
 199
 200/**
 201 * enum sum_check_bits - bit position of pq_check_flags
 202 */
 203enum sum_check_bits {
 204        SUM_CHECK_P = 0,
 205        SUM_CHECK_Q = 1,
 206};
 207
 208/**
 209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
 210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
 211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
 212 */
 213enum sum_check_flags {
 214        SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
 215        SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
 216};
 217
 218
 219/**
 220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
 221 * See linux/cpumask.h
 222 */
 223typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
 224
 225/**
 226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
 227 * @memcpy_count: transaction counter
 228 * @bytes_transferred: byte counter
 229 */
 230
 231struct dma_chan_percpu {
 232        /* stats */
 233        unsigned long memcpy_count;
 234        unsigned long bytes_transferred;
 235};
 236
 237/**
 238 * struct dma_router - DMA router structure
 239 * @dev: pointer to the DMA router device
 240 * @route_free: function to be called when the route can be disconnected
 241 */
 242struct dma_router {
 243        struct device *dev;
 244        void (*route_free)(struct device *dev, void *route_data);
 245};
 246
 247/**
 248 * struct dma_chan - devices supply DMA channels, clients use them
 249 * @device: ptr to the dma device who supplies this channel, always !%NULL
 250 * @cookie: last cookie value returned to client
 251 * @completed_cookie: last completed cookie for this channel
 252 * @chan_id: channel ID for sysfs
 253 * @dev: class device for sysfs
 254 * @device_node: used to add this to the device chan list
 255 * @local: per-cpu pointer to a struct dma_chan_percpu
 256 * @client_count: how many clients are using this channel
 257 * @table_count: number of appearances in the mem-to-mem allocation table
 258 * @router: pointer to the DMA router structure
 259 * @route_data: channel specific data for the router
 260 * @private: private data for certain client-channel associations
 261 */
 262struct dma_chan {
 263        struct dma_device *device;
 264        dma_cookie_t cookie;
 265        dma_cookie_t completed_cookie;
 266
 267        /* sysfs */
 268        int chan_id;
 269        struct dma_chan_dev *dev;
 270
 271        struct list_head device_node;
 272        struct dma_chan_percpu __percpu *local;
 273        int client_count;
 274        int table_count;
 275
 276        /* DMA router */
 277        struct dma_router *router;
 278        void *route_data;
 279
 280        void *private;
 281};
 282
 283/**
 284 * struct dma_chan_dev - relate sysfs device node to backing channel device
 285 * @chan: driver channel device
 286 * @device: sysfs device
 287 * @dev_id: parent dma_device dev_id
 288 * @idr_ref: reference count to gate release of dma_device dev_id
 289 */
 290struct dma_chan_dev {
 291        struct dma_chan *chan;
 292        struct device device;
 293        int dev_id;
 294        atomic_t *idr_ref;
 295};
 296
 297/**
 298 * enum dma_slave_buswidth - defines bus width of the DMA slave
 299 * device, source or target buses
 300 */
 301enum dma_slave_buswidth {
 302        DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
 303        DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
 304        DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
 305        DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
 306        DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
 307        DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
 308        DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
 309        DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
 310        DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
 311};
 312
 313/**
 314 * struct dma_slave_config - dma slave channel runtime config
 315 * @direction: whether the data shall go in or out on this slave
 316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
 317 * legal values. DEPRECATED, drivers should use the direction argument
 318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
 319 * the dir field in the dma_interleaved_template structure.
 320 * @src_addr: this is the physical address where DMA slave data
 321 * should be read (RX), if the source is memory this argument is
 322 * ignored.
 323 * @dst_addr: this is the physical address where DMA slave data
 324 * should be written (TX), if the source is memory this argument
 325 * is ignored.
 326 * @src_addr_width: this is the width in bytes of the source (RX)
 327 * register where DMA data shall be read. If the source
 328 * is memory this may be ignored depending on architecture.
 329 * Legal values: 1, 2, 4, 8.
 330 * @dst_addr_width: same as src_addr_width but for destination
 331 * target (TX) mutatis mutandis.
 332 * @src_maxburst: the maximum number of words (note: words, as in
 333 * units of the src_addr_width member, not bytes) that can be sent
 334 * in one burst to the device. Typically something like half the
 335 * FIFO depth on I/O peripherals so you don't overflow it. This
 336 * may or may not be applicable on memory sources.
 337 * @dst_maxburst: same as src_maxburst but for destination target
 338 * mutatis mutandis.
 339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
 340 * with 'true' if peripheral should be flow controller. Direction will be
 341 * selected at Runtime.
 342 * @slave_id: Slave requester id. Only valid for slave channels. The dma
 343 * slave peripheral will have unique id as dma requester which need to be
 344 * pass as slave config.
 345 *
 346 * This struct is passed in as configuration data to a DMA engine
 347 * in order to set up a certain channel for DMA transport at runtime.
 348 * The DMA device/engine has to provide support for an additional
 349 * callback in the dma_device structure, device_config and this struct
 350 * will then be passed in as an argument to the function.
 351 *
 352 * The rationale for adding configuration information to this struct is as
 353 * follows: if it is likely that more than one DMA slave controllers in
 354 * the world will support the configuration option, then make it generic.
 355 * If not: if it is fixed so that it be sent in static from the platform
 356 * data, then prefer to do that.
 357 */
 358struct dma_slave_config {
 359        enum dma_transfer_direction direction;
 360        dma_addr_t src_addr;
 361        dma_addr_t dst_addr;
 362        enum dma_slave_buswidth src_addr_width;
 363        enum dma_slave_buswidth dst_addr_width;
 364        u32 src_maxburst;
 365        u32 dst_maxburst;
 366        bool device_fc;
 367        unsigned int slave_id;
 368};
 369
 370/**
 371 * enum dma_residue_granularity - Granularity of the reported transfer residue
 372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
 373 *  DMA channel is only able to tell whether a descriptor has been completed or
 374 *  not, which means residue reporting is not supported by this channel. The
 375 *  residue field of the dma_tx_state field will always be 0.
 376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
 377 *  completed segment of the transfer (For cyclic transfers this is after each
 378 *  period). This is typically implemented by having the hardware generate an
 379 *  interrupt after each transferred segment and then the drivers updates the
 380 *  outstanding residue by the size of the segment. Another possibility is if
 381 *  the hardware supports scatter-gather and the segment descriptor has a field
 382 *  which gets set after the segment has been completed. The driver then counts
 383 *  the number of segments without the flag set to compute the residue.
 384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
 385 *  burst. This is typically only supported if the hardware has a progress
 386 *  register of some sort (E.g. a register with the current read/write address
 387 *  or a register with the amount of bursts/beats/bytes that have been
 388 *  transferred or still need to be transferred).
 389 */
 390enum dma_residue_granularity {
 391        DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
 392        DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
 393        DMA_RESIDUE_GRANULARITY_BURST = 2,
 394};
 395
 396/* struct dma_slave_caps - expose capabilities of a slave channel only
 397 *
 398 * @src_addr_widths: bit mask of src addr widths the channel supports
 399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
 400 * @directions: bit mask of slave direction the channel supported
 401 *      since the enum dma_transfer_direction is not defined as bits for each
 402 *      type of direction, the dma controller should fill (1 << <TYPE>) and same
 403 *      should be checked by controller as well
 404 * @cmd_pause: true, if pause and thereby resume is supported
 405 * @cmd_terminate: true, if terminate cmd is supported
 406 * @residue_granularity: granularity of the reported transfer residue
 407 * @descriptor_reuse: if a descriptor can be reused by client and
 408 * resubmitted multiple times
 409 */
 410struct dma_slave_caps {
 411        u32 src_addr_widths;
 412        u32 dst_addr_widths;
 413        u32 directions;
 414        bool cmd_pause;
 415        bool cmd_terminate;
 416        enum dma_residue_granularity residue_granularity;
 417        bool descriptor_reuse;
 418};
 419
 420static inline const char *dma_chan_name(struct dma_chan *chan)
 421{
 422        return dev_name(&chan->dev->device);
 423}
 424
 425void dma_chan_cleanup(struct kref *kref);
 426
 427/**
 428 * typedef dma_filter_fn - callback filter for dma_request_channel
 429 * @chan: channel to be reviewed
 430 * @filter_param: opaque parameter passed through dma_request_channel
 431 *
 432 * When this optional parameter is specified in a call to dma_request_channel a
 433 * suitable channel is passed to this routine for further dispositioning before
 434 * being returned.  Where 'suitable' indicates a non-busy channel that
 435 * satisfies the given capability mask.  It returns 'true' to indicate that the
 436 * channel is suitable.
 437 */
 438typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
 439
 440typedef void (*dma_async_tx_callback)(void *dma_async_param);
 441
 442struct dmaengine_unmap_data {
 443        u8 map_cnt;
 444        u8 to_cnt;
 445        u8 from_cnt;
 446        u8 bidi_cnt;
 447        struct device *dev;
 448        struct kref kref;
 449        size_t len;
 450        dma_addr_t addr[0];
 451};
 452
 453/**
 454 * struct dma_async_tx_descriptor - async transaction descriptor
 455 * ---dma generic offload fields---
 456 * @cookie: tracking cookie for this transaction, set to -EBUSY if
 457 *      this tx is sitting on a dependency list
 458 * @flags: flags to augment operation preparation, control completion, and
 459 *      communicate status
 460 * @phys: physical address of the descriptor
 461 * @chan: target channel for this operation
 462 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
 463 * descriptor pending. To be pushed on .issue_pending() call
 464 * @callback: routine to call after this operation is complete
 465 * @callback_param: general parameter to pass to the callback routine
 466 * ---async_tx api specific fields---
 467 * @next: at completion submit this descriptor
 468 * @parent: pointer to the next level up in the dependency chain
 469 * @lock: protect the parent and next pointers
 470 */
 471struct dma_async_tx_descriptor {
 472        dma_cookie_t cookie;
 473        enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
 474        dma_addr_t phys;
 475        struct dma_chan *chan;
 476        dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
 477        int (*desc_free)(struct dma_async_tx_descriptor *tx);
 478        dma_async_tx_callback callback;
 479        void *callback_param;
 480        struct dmaengine_unmap_data *unmap;
 481#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 482        struct dma_async_tx_descriptor *next;
 483        struct dma_async_tx_descriptor *parent;
 484        spinlock_t lock;
 485#endif
 486};
 487
 488#ifdef CONFIG_DMA_ENGINE
 489static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 490                                 struct dmaengine_unmap_data *unmap)
 491{
 492        kref_get(&unmap->kref);
 493        tx->unmap = unmap;
 494}
 495
 496struct dmaengine_unmap_data *
 497dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
 498void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
 499#else
 500static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 501                                 struct dmaengine_unmap_data *unmap)
 502{
 503}
 504static inline struct dmaengine_unmap_data *
 505dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
 506{
 507        return NULL;
 508}
 509static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
 510{
 511}
 512#endif
 513
 514static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
 515{
 516        if (tx->unmap) {
 517                dmaengine_unmap_put(tx->unmap);
 518                tx->unmap = NULL;
 519        }
 520}
 521
 522#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 523static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 524{
 525}
 526static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 527{
 528}
 529static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 530{
 531        BUG();
 532}
 533static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 534{
 535}
 536static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 537{
 538}
 539static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 540{
 541        return NULL;
 542}
 543static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 544{
 545        return NULL;
 546}
 547
 548#else
 549static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 550{
 551        spin_lock_bh(&txd->lock);
 552}
 553static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 554{
 555        spin_unlock_bh(&txd->lock);
 556}
 557static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 558{
 559        txd->next = next;
 560        next->parent = txd;
 561}
 562static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 563{
 564        txd->parent = NULL;
 565}
 566static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 567{
 568        txd->next = NULL;
 569}
 570static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 571{
 572        return txd->parent;
 573}
 574static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 575{
 576        return txd->next;
 577}
 578#endif
 579
 580/**
 581 * struct dma_tx_state - filled in to report the status of
 582 * a transfer.
 583 * @last: last completed DMA cookie
 584 * @used: last issued DMA cookie (i.e. the one in progress)
 585 * @residue: the remaining number of bytes left to transmit
 586 *      on the selected transfer for states DMA_IN_PROGRESS and
 587 *      DMA_PAUSED if this is implemented in the driver, else 0
 588 */
 589struct dma_tx_state {
 590        dma_cookie_t last;
 591        dma_cookie_t used;
 592        u32 residue;
 593};
 594
 595/**
 596 * enum dmaengine_alignment - defines alignment of the DMA async tx
 597 * buffers
 598 */
 599enum dmaengine_alignment {
 600        DMAENGINE_ALIGN_1_BYTE = 0,
 601        DMAENGINE_ALIGN_2_BYTES = 1,
 602        DMAENGINE_ALIGN_4_BYTES = 2,
 603        DMAENGINE_ALIGN_8_BYTES = 3,
 604        DMAENGINE_ALIGN_16_BYTES = 4,
 605        DMAENGINE_ALIGN_32_BYTES = 5,
 606        DMAENGINE_ALIGN_64_BYTES = 6,
 607};
 608
 609/**
 610 * struct dma_slave_map - associates slave device and it's slave channel with
 611 * parameter to be used by a filter function
 612 * @devname: name of the device
 613 * @slave: slave channel name
 614 * @param: opaque parameter to pass to struct dma_filter.fn
 615 */
 616struct dma_slave_map {
 617        const char *devname;
 618        const char *slave;
 619        void *param;
 620};
 621
 622/**
 623 * struct dma_filter - information for slave device/channel to filter_fn/param
 624 * mapping
 625 * @fn: filter function callback
 626 * @mapcnt: number of slave device/channel in the map
 627 * @map: array of channel to filter mapping data
 628 */
 629struct dma_filter {
 630        dma_filter_fn fn;
 631        int mapcnt;
 632        const struct dma_slave_map *map;
 633};
 634
 635/**
 636 * struct dma_device - info on the entity supplying DMA services
 637 * @chancnt: how many DMA channels are supported
 638 * @privatecnt: how many DMA channels are requested by dma_request_channel
 639 * @channels: the list of struct dma_chan
 640 * @global_node: list_head for global dma_device_list
 641 * @filter: information for device/slave to filter function/param mapping
 642 * @cap_mask: one or more dma_capability flags
 643 * @max_xor: maximum number of xor sources, 0 if no capability
 644 * @max_pq: maximum number of PQ sources and PQ-continue capability
 645 * @copy_align: alignment shift for memcpy operations
 646 * @xor_align: alignment shift for xor operations
 647 * @pq_align: alignment shift for pq operations
 648 * @fill_align: alignment shift for memset operations
 649 * @dev_id: unique device ID
 650 * @dev: struct device reference for dma mapping api
 651 * @src_addr_widths: bit mask of src addr widths the device supports
 652 * @dst_addr_widths: bit mask of dst addr widths the device supports
 653 * @directions: bit mask of slave direction the device supports since
 654 *      the enum dma_transfer_direction is not defined as bits for
 655 *      each type of direction, the dma controller should fill (1 <<
 656 *      <TYPE>) and same should be checked by controller as well
 657 * @residue_granularity: granularity of the transfer residue reported
 658 *      by tx_status
 659 * @device_alloc_chan_resources: allocate resources and return the
 660 *      number of allocated descriptors
 661 * @device_free_chan_resources: release DMA channel's resources
 662 * @device_prep_dma_memcpy: prepares a memcpy operation
 663 * @device_prep_dma_xor: prepares a xor operation
 664 * @device_prep_dma_xor_val: prepares a xor validation operation
 665 * @device_prep_dma_pq: prepares a pq operation
 666 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
 667 * @device_prep_dma_memset: prepares a memset operation
 668 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
 669 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
 670 * @device_prep_slave_sg: prepares a slave dma operation
 671 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
 672 *      The function takes a buffer of size buf_len. The callback function will
 673 *      be called after period_len bytes have been transferred.
 674 * @device_prep_interleaved_dma: Transfer expression in a generic way.
 675 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
 676 * @device_config: Pushes a new configuration to a channel, return 0 or an error
 677 *      code
 678 * @device_pause: Pauses any transfer happening on a channel. Returns
 679 *      0 or an error code
 680 * @device_resume: Resumes any transfer on a channel previously
 681 *      paused. Returns 0 or an error code
 682 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
 683 *      or an error code
 684 * @device_synchronize: Synchronizes the termination of a transfers to the
 685 *  current context.
 686 * @device_tx_status: poll for transaction completion, the optional
 687 *      txstate parameter can be supplied with a pointer to get a
 688 *      struct with auxiliary transfer status information, otherwise the call
 689 *      will just return a simple status code
 690 * @device_issue_pending: push pending transactions to hardware
 691 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
 692 */
 693struct dma_device {
 694
 695        unsigned int chancnt;
 696        unsigned int privatecnt;
 697        struct list_head channels;
 698        struct list_head global_node;
 699        struct dma_filter filter;
 700        dma_cap_mask_t  cap_mask;
 701        unsigned short max_xor;
 702        unsigned short max_pq;
 703        enum dmaengine_alignment copy_align;
 704        enum dmaengine_alignment xor_align;
 705        enum dmaengine_alignment pq_align;
 706        enum dmaengine_alignment fill_align;
 707        #define DMA_HAS_PQ_CONTINUE (1 << 15)
 708
 709        int dev_id;
 710        struct device *dev;
 711
 712        u32 src_addr_widths;
 713        u32 dst_addr_widths;
 714        u32 directions;
 715        bool descriptor_reuse;
 716        enum dma_residue_granularity residue_granularity;
 717
 718        int (*device_alloc_chan_resources)(struct dma_chan *chan);
 719        void (*device_free_chan_resources)(struct dma_chan *chan);
 720
 721        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
 722                struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 723                size_t len, unsigned long flags);
 724        struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
 725                struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
 726                unsigned int src_cnt, size_t len, unsigned long flags);
 727        struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
 728                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 729                size_t len, enum sum_check_flags *result, unsigned long flags);
 730        struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
 731                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 732                unsigned int src_cnt, const unsigned char *scf,
 733                size_t len, unsigned long flags);
 734        struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
 735                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 736                unsigned int src_cnt, const unsigned char *scf, size_t len,
 737                enum sum_check_flags *pqres, unsigned long flags);
 738        struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
 739                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 740                unsigned long flags);
 741        struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
 742                struct dma_chan *chan, struct scatterlist *sg,
 743                unsigned int nents, int value, unsigned long flags);
 744        struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
 745                struct dma_chan *chan, unsigned long flags);
 746        struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
 747                struct dma_chan *chan,
 748                struct scatterlist *dst_sg, unsigned int dst_nents,
 749                struct scatterlist *src_sg, unsigned int src_nents,
 750                unsigned long flags);
 751
 752        struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
 753                struct dma_chan *chan, struct scatterlist *sgl,
 754                unsigned int sg_len, enum dma_transfer_direction direction,
 755                unsigned long flags, void *context);
 756        struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
 757                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 758                size_t period_len, enum dma_transfer_direction direction,
 759                unsigned long flags);
 760        struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
 761                struct dma_chan *chan, struct dma_interleaved_template *xt,
 762                unsigned long flags);
 763        struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
 764                struct dma_chan *chan, dma_addr_t dst, u64 data,
 765                unsigned long flags);
 766
 767        int (*device_config)(struct dma_chan *chan,
 768                             struct dma_slave_config *config);
 769        int (*device_pause)(struct dma_chan *chan);
 770        int (*device_resume)(struct dma_chan *chan);
 771        int (*device_terminate_all)(struct dma_chan *chan);
 772        void (*device_synchronize)(struct dma_chan *chan);
 773
 774        enum dma_status (*device_tx_status)(struct dma_chan *chan,
 775                                            dma_cookie_t cookie,
 776                                            struct dma_tx_state *txstate);
 777        void (*device_issue_pending)(struct dma_chan *chan);
 778};
 779
 780static inline int dmaengine_slave_config(struct dma_chan *chan,
 781                                          struct dma_slave_config *config)
 782{
 783        if (chan->device->device_config)
 784                return chan->device->device_config(chan, config);
 785
 786        return -ENOSYS;
 787}
 788
 789static inline bool is_slave_direction(enum dma_transfer_direction direction)
 790{
 791        return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
 792}
 793
 794static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
 795        struct dma_chan *chan, dma_addr_t buf, size_t len,
 796        enum dma_transfer_direction dir, unsigned long flags)
 797{
 798        struct scatterlist sg;
 799        sg_init_table(&sg, 1);
 800        sg_dma_address(&sg) = buf;
 801        sg_dma_len(&sg) = len;
 802
 803        return chan->device->device_prep_slave_sg(chan, &sg, 1,
 804                                                  dir, flags, NULL);
 805}
 806
 807static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
 808        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 809        enum dma_transfer_direction dir, unsigned long flags)
 810{
 811        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 812                                                  dir, flags, NULL);
 813}
 814
 815#ifdef CONFIG_RAPIDIO_DMA_ENGINE
 816struct rio_dma_ext;
 817static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
 818        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 819        enum dma_transfer_direction dir, unsigned long flags,
 820        struct rio_dma_ext *rio_ext)
 821{
 822        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 823                                                  dir, flags, rio_ext);
 824}
 825#endif
 826
 827static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
 828                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 829                size_t period_len, enum dma_transfer_direction dir,
 830                unsigned long flags)
 831{
 832        return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
 833                                                period_len, dir, flags);
 834}
 835
 836static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
 837                struct dma_chan *chan, struct dma_interleaved_template *xt,
 838                unsigned long flags)
 839{
 840        return chan->device->device_prep_interleaved_dma(chan, xt, flags);
 841}
 842
 843static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
 844                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 845                unsigned long flags)
 846{
 847        if (!chan || !chan->device)
 848                return NULL;
 849
 850        return chan->device->device_prep_dma_memset(chan, dest, value,
 851                                                    len, flags);
 852}
 853
 854static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
 855                struct dma_chan *chan,
 856                struct scatterlist *dst_sg, unsigned int dst_nents,
 857                struct scatterlist *src_sg, unsigned int src_nents,
 858                unsigned long flags)
 859{
 860        return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
 861                        src_sg, src_nents, flags);
 862}
 863
 864/**
 865 * dmaengine_terminate_all() - Terminate all active DMA transfers
 866 * @chan: The channel for which to terminate the transfers
 867 *
 868 * This function is DEPRECATED use either dmaengine_terminate_sync() or
 869 * dmaengine_terminate_async() instead.
 870 */
 871static inline int dmaengine_terminate_all(struct dma_chan *chan)
 872{
 873        if (chan->device->device_terminate_all)
 874                return chan->device->device_terminate_all(chan);
 875
 876        return -ENOSYS;
 877}
 878
 879/**
 880 * dmaengine_terminate_async() - Terminate all active DMA transfers
 881 * @chan: The channel for which to terminate the transfers
 882 *
 883 * Calling this function will terminate all active and pending descriptors
 884 * that have previously been submitted to the channel. It is not guaranteed
 885 * though that the transfer for the active descriptor has stopped when the
 886 * function returns. Furthermore it is possible the complete callback of a
 887 * submitted transfer is still running when this function returns.
 888 *
 889 * dmaengine_synchronize() needs to be called before it is safe to free
 890 * any memory that is accessed by previously submitted descriptors or before
 891 * freeing any resources accessed from within the completion callback of any
 892 * perviously submitted descriptors.
 893 *
 894 * This function can be called from atomic context as well as from within a
 895 * complete callback of a descriptor submitted on the same channel.
 896 *
 897 * If none of the two conditions above apply consider using
 898 * dmaengine_terminate_sync() instead.
 899 */
 900static inline int dmaengine_terminate_async(struct dma_chan *chan)
 901{
 902        if (chan->device->device_terminate_all)
 903                return chan->device->device_terminate_all(chan);
 904
 905        return -EINVAL;
 906}
 907
 908/**
 909 * dmaengine_synchronize() - Synchronize DMA channel termination
 910 * @chan: The channel to synchronize
 911 *
 912 * Synchronizes to the DMA channel termination to the current context. When this
 913 * function returns it is guaranteed that all transfers for previously issued
 914 * descriptors have stopped and and it is safe to free the memory assoicated
 915 * with them. Furthermore it is guaranteed that all complete callback functions
 916 * for a previously submitted descriptor have finished running and it is safe to
 917 * free resources accessed from within the complete callbacks.
 918 *
 919 * The behavior of this function is undefined if dma_async_issue_pending() has
 920 * been called between dmaengine_terminate_async() and this function.
 921 *
 922 * This function must only be called from non-atomic context and must not be
 923 * called from within a complete callback of a descriptor submitted on the same
 924 * channel.
 925 */
 926static inline void dmaengine_synchronize(struct dma_chan *chan)
 927{
 928        might_sleep();
 929
 930        if (chan->device->device_synchronize)
 931                chan->device->device_synchronize(chan);
 932}
 933
 934/**
 935 * dmaengine_terminate_sync() - Terminate all active DMA transfers
 936 * @chan: The channel for which to terminate the transfers
 937 *
 938 * Calling this function will terminate all active and pending transfers
 939 * that have previously been submitted to the channel. It is similar to
 940 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
 941 * stopped and that all complete callbacks have finished running when the
 942 * function returns.
 943 *
 944 * This function must only be called from non-atomic context and must not be
 945 * called from within a complete callback of a descriptor submitted on the same
 946 * channel.
 947 */
 948static inline int dmaengine_terminate_sync(struct dma_chan *chan)
 949{
 950        int ret;
 951
 952        ret = dmaengine_terminate_async(chan);
 953        if (ret)
 954                return ret;
 955
 956        dmaengine_synchronize(chan);
 957
 958        return 0;
 959}
 960
 961static inline int dmaengine_pause(struct dma_chan *chan)
 962{
 963        if (chan->device->device_pause)
 964                return chan->device->device_pause(chan);
 965
 966        return -ENOSYS;
 967}
 968
 969static inline int dmaengine_resume(struct dma_chan *chan)
 970{
 971        if (chan->device->device_resume)
 972                return chan->device->device_resume(chan);
 973
 974        return -ENOSYS;
 975}
 976
 977static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
 978        dma_cookie_t cookie, struct dma_tx_state *state)
 979{
 980        return chan->device->device_tx_status(chan, cookie, state);
 981}
 982
 983static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
 984{
 985        return desc->tx_submit(desc);
 986}
 987
 988static inline bool dmaengine_check_align(enum dmaengine_alignment align,
 989                                         size_t off1, size_t off2, size_t len)
 990{
 991        size_t mask;
 992
 993        if (!align)
 994                return true;
 995        mask = (1 << align) - 1;
 996        if (mask & (off1 | off2 | len))
 997                return false;
 998        return true;
 999}
1000
1001static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1002                                       size_t off2, size_t len)
1003{
1004        return dmaengine_check_align(dev->copy_align, off1, off2, len);
1005}
1006
1007static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1008                                      size_t off2, size_t len)
1009{
1010        return dmaengine_check_align(dev->xor_align, off1, off2, len);
1011}
1012
1013static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1014                                     size_t off2, size_t len)
1015{
1016        return dmaengine_check_align(dev->pq_align, off1, off2, len);
1017}
1018
1019static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1020                                       size_t off2, size_t len)
1021{
1022        return dmaengine_check_align(dev->fill_align, off1, off2, len);
1023}
1024
1025static inline void
1026dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1027{
1028        dma->max_pq = maxpq;
1029        if (has_pq_continue)
1030                dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1031}
1032
1033static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1034{
1035        return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1036}
1037
1038static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1039{
1040        enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1041
1042        return (flags & mask) == mask;
1043}
1044
1045static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1046{
1047        return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1048}
1049
1050static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1051{
1052        return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1053}
1054
1055/* dma_maxpq - reduce maxpq in the face of continued operations
1056 * @dma - dma device with PQ capability
1057 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1058 *
1059 * When an engine does not support native continuation we need 3 extra
1060 * source slots to reuse P and Q with the following coefficients:
1061 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1062 * 2/ {01} * Q : use Q to continue Q' calculation
1063 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1064 *
1065 * In the case where P is disabled we only need 1 extra source:
1066 * 1/ {01} * Q : use Q to continue Q' calculation
1067 */
1068static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1069{
1070        if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1071                return dma_dev_to_maxpq(dma);
1072        else if (dmaf_p_disabled_continue(flags))
1073                return dma_dev_to_maxpq(dma) - 1;
1074        else if (dmaf_continue(flags))
1075                return dma_dev_to_maxpq(dma) - 3;
1076        BUG();
1077}
1078
1079static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1080                                      size_t dir_icg)
1081{
1082        if (inc) {
1083                if (dir_icg)
1084                        return dir_icg;
1085                else if (sgl)
1086                        return icg;
1087        }
1088
1089        return 0;
1090}
1091
1092static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1093                                           struct data_chunk *chunk)
1094{
1095        return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1096                                 chunk->icg, chunk->dst_icg);
1097}
1098
1099static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1100                                           struct data_chunk *chunk)
1101{
1102        return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1103                                 chunk->icg, chunk->src_icg);
1104}
1105
1106/* --- public DMA engine API --- */
1107
1108#ifdef CONFIG_DMA_ENGINE
1109void dmaengine_get(void);
1110void dmaengine_put(void);
1111#else
1112static inline void dmaengine_get(void)
1113{
1114}
1115static inline void dmaengine_put(void)
1116{
1117}
1118#endif
1119
1120#ifdef CONFIG_ASYNC_TX_DMA
1121#define async_dmaengine_get()   dmaengine_get()
1122#define async_dmaengine_put()   dmaengine_put()
1123#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1124#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1125#else
1126#define async_dma_find_channel(type) dma_find_channel(type)
1127#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1128#else
1129static inline void async_dmaengine_get(void)
1130{
1131}
1132static inline void async_dmaengine_put(void)
1133{
1134}
1135static inline struct dma_chan *
1136async_dma_find_channel(enum dma_transaction_type type)
1137{
1138        return NULL;
1139}
1140#endif /* CONFIG_ASYNC_TX_DMA */
1141void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1142                                  struct dma_chan *chan);
1143
1144static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1145{
1146        tx->flags |= DMA_CTRL_ACK;
1147}
1148
1149static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1150{
1151        tx->flags &= ~DMA_CTRL_ACK;
1152}
1153
1154static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1155{
1156        return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1157}
1158
1159#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1160static inline void
1161__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1162{
1163        set_bit(tx_type, dstp->bits);
1164}
1165
1166#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1167static inline void
1168__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1169{
1170        clear_bit(tx_type, dstp->bits);
1171}
1172
1173#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1174static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1175{
1176        bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1177}
1178
1179#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1180static inline int
1181__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1182{
1183        return test_bit(tx_type, srcp->bits);
1184}
1185
1186#define for_each_dma_cap_mask(cap, mask) \
1187        for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1188
1189/**
1190 * dma_async_issue_pending - flush pending transactions to HW
1191 * @chan: target DMA channel
1192 *
1193 * This allows drivers to push copies to HW in batches,
1194 * reducing MMIO writes where possible.
1195 */
1196static inline void dma_async_issue_pending(struct dma_chan *chan)
1197{
1198        chan->device->device_issue_pending(chan);
1199}
1200
1201/**
1202 * dma_async_is_tx_complete - poll for transaction completion
1203 * @chan: DMA channel
1204 * @cookie: transaction identifier to check status of
1205 * @last: returns last completed cookie, can be NULL
1206 * @used: returns last issued cookie, can be NULL
1207 *
1208 * If @last and @used are passed in, upon return they reflect the driver
1209 * internal state and can be used with dma_async_is_complete() to check
1210 * the status of multiple cookies without re-checking hardware state.
1211 */
1212static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1213        dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1214{
1215        struct dma_tx_state state;
1216        enum dma_status status;
1217
1218        status = chan->device->device_tx_status(chan, cookie, &state);
1219        if (last)
1220                *last = state.last;
1221        if (used)
1222                *used = state.used;
1223        return status;
1224}
1225
1226/**
1227 * dma_async_is_complete - test a cookie against chan state
1228 * @cookie: transaction identifier to test status of
1229 * @last_complete: last know completed transaction
1230 * @last_used: last cookie value handed out
1231 *
1232 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1233 * the test logic is separated for lightweight testing of multiple cookies
1234 */
1235static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1236                        dma_cookie_t last_complete, dma_cookie_t last_used)
1237{
1238        if (last_complete <= last_used) {
1239                if ((cookie <= last_complete) || (cookie > last_used))
1240                        return DMA_COMPLETE;
1241        } else {
1242                if ((cookie <= last_complete) && (cookie > last_used))
1243                        return DMA_COMPLETE;
1244        }
1245        return DMA_IN_PROGRESS;
1246}
1247
1248static inline void
1249dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1250{
1251        if (st) {
1252                st->last = last;
1253                st->used = used;
1254                st->residue = residue;
1255        }
1256}
1257
1258#ifdef CONFIG_DMA_ENGINE
1259struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1260enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1261enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1262void dma_issue_pending_all(void);
1263struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1264                                        dma_filter_fn fn, void *fn_param);
1265struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1266
1267struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1268struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1269
1270void dma_release_channel(struct dma_chan *chan);
1271int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1272#else
1273static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1274{
1275        return NULL;
1276}
1277static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1278{
1279        return DMA_COMPLETE;
1280}
1281static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1282{
1283        return DMA_COMPLETE;
1284}
1285static inline void dma_issue_pending_all(void)
1286{
1287}
1288static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1289                                              dma_filter_fn fn, void *fn_param)
1290{
1291        return NULL;
1292}
1293static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1294                                                         const char *name)
1295{
1296        return NULL;
1297}
1298static inline struct dma_chan *dma_request_chan(struct device *dev,
1299                                                const char *name)
1300{
1301        return ERR_PTR(-ENODEV);
1302}
1303static inline struct dma_chan *dma_request_chan_by_mask(
1304                                                const dma_cap_mask_t *mask)
1305{
1306        return ERR_PTR(-ENODEV);
1307}
1308static inline void dma_release_channel(struct dma_chan *chan)
1309{
1310}
1311static inline int dma_get_slave_caps(struct dma_chan *chan,
1312                                     struct dma_slave_caps *caps)
1313{
1314        return -ENXIO;
1315}
1316#endif
1317
1318#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1319
1320static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1321{
1322        struct dma_slave_caps caps;
1323
1324        dma_get_slave_caps(tx->chan, &caps);
1325
1326        if (caps.descriptor_reuse) {
1327                tx->flags |= DMA_CTRL_REUSE;
1328                return 0;
1329        } else {
1330                return -EPERM;
1331        }
1332}
1333
1334static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1335{
1336        tx->flags &= ~DMA_CTRL_REUSE;
1337}
1338
1339static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1340{
1341        return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1342}
1343
1344static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1345{
1346        /* this is supported for reusable desc, so check that */
1347        if (dmaengine_desc_test_reuse(desc))
1348                return desc->desc_free(desc);
1349        else
1350                return -EPERM;
1351}
1352
1353/* --- DMA device --- */
1354
1355int dma_async_device_register(struct dma_device *device);
1356void dma_async_device_unregister(struct dma_device *device);
1357void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1358struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1359struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1360#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1361#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1362        __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1363
1364static inline struct dma_chan
1365*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1366                                  dma_filter_fn fn, void *fn_param,
1367                                  struct device *dev, const char *name)
1368{
1369        struct dma_chan *chan;
1370
1371        chan = dma_request_slave_channel(dev, name);
1372        if (chan)
1373                return chan;
1374
1375        if (!fn || !fn_param)
1376                return NULL;
1377
1378        return __dma_request_channel(mask, fn, fn_param);
1379}
1380#endif /* DMAENGINE_H */
1381