linux/include/linux/mm.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_H
   2#define _LINUX_MM_H
   3
   4#include <linux/errno.h>
   5
   6#ifdef __KERNEL__
   7
   8#include <linux/mmdebug.h>
   9#include <linux/gfp.h>
  10#include <linux/bug.h>
  11#include <linux/list.h>
  12#include <linux/mmzone.h>
  13#include <linux/rbtree.h>
  14#include <linux/atomic.h>
  15#include <linux/debug_locks.h>
  16#include <linux/mm_types.h>
  17#include <linux/range.h>
  18#include <linux/pfn.h>
  19#include <linux/percpu-refcount.h>
  20#include <linux/bit_spinlock.h>
  21#include <linux/shrinker.h>
  22#include <linux/resource.h>
  23#include <linux/page_ext.h>
  24#include <linux/err.h>
  25
  26struct mempolicy;
  27struct anon_vma;
  28struct anon_vma_chain;
  29struct file_ra_state;
  30struct user_struct;
  31struct writeback_control;
  32struct bdi_writeback;
  33
  34#ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
  35extern unsigned long max_mapnr;
  36
  37static inline void set_max_mapnr(unsigned long limit)
  38{
  39        max_mapnr = limit;
  40}
  41#else
  42static inline void set_max_mapnr(unsigned long limit) { }
  43#endif
  44
  45extern unsigned long totalram_pages;
  46extern void * high_memory;
  47extern int page_cluster;
  48
  49#ifdef CONFIG_SYSCTL
  50extern int sysctl_legacy_va_layout;
  51#else
  52#define sysctl_legacy_va_layout 0
  53#endif
  54
  55#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  56extern const int mmap_rnd_bits_min;
  57extern const int mmap_rnd_bits_max;
  58extern int mmap_rnd_bits __read_mostly;
  59#endif
  60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  61extern const int mmap_rnd_compat_bits_min;
  62extern const int mmap_rnd_compat_bits_max;
  63extern int mmap_rnd_compat_bits __read_mostly;
  64#endif
  65
  66#include <asm/page.h>
  67#include <asm/pgtable.h>
  68#include <asm/processor.h>
  69
  70#ifndef __pa_symbol
  71#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
  72#endif
  73
  74/*
  75 * To prevent common memory management code establishing
  76 * a zero page mapping on a read fault.
  77 * This macro should be defined within <asm/pgtable.h>.
  78 * s390 does this to prevent multiplexing of hardware bits
  79 * related to the physical page in case of virtualization.
  80 */
  81#ifndef mm_forbids_zeropage
  82#define mm_forbids_zeropage(X)  (0)
  83#endif
  84
  85extern unsigned long sysctl_user_reserve_kbytes;
  86extern unsigned long sysctl_admin_reserve_kbytes;
  87
  88extern int sysctl_overcommit_memory;
  89extern int sysctl_overcommit_ratio;
  90extern unsigned long sysctl_overcommit_kbytes;
  91
  92extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  93                                    size_t *, loff_t *);
  94extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  95                                    size_t *, loff_t *);
  96
  97#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  98
  99/* to align the pointer to the (next) page boundary */
 100#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
 101
 102/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
 103#define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
 104
 105/*
 106 * Linux kernel virtual memory manager primitives.
 107 * The idea being to have a "virtual" mm in the same way
 108 * we have a virtual fs - giving a cleaner interface to the
 109 * mm details, and allowing different kinds of memory mappings
 110 * (from shared memory to executable loading to arbitrary
 111 * mmap() functions).
 112 */
 113
 114extern struct kmem_cache *vm_area_cachep;
 115
 116#ifndef CONFIG_MMU
 117extern struct rb_root nommu_region_tree;
 118extern struct rw_semaphore nommu_region_sem;
 119
 120extern unsigned int kobjsize(const void *objp);
 121#endif
 122
 123/*
 124 * vm_flags in vm_area_struct, see mm_types.h.
 125 */
 126#define VM_NONE         0x00000000
 127
 128#define VM_READ         0x00000001      /* currently active flags */
 129#define VM_WRITE        0x00000002
 130#define VM_EXEC         0x00000004
 131#define VM_SHARED       0x00000008
 132
 133/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 134#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
 135#define VM_MAYWRITE     0x00000020
 136#define VM_MAYEXEC      0x00000040
 137#define VM_MAYSHARE     0x00000080
 138
 139#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
 140#define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
 141#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 142#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 143#define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
 144
 145#define VM_LOCKED       0x00002000
 146#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 147
 148                                        /* Used by sys_madvise() */
 149#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 150#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 151
 152#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 153#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 154#define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
 155#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 156#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 157#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 158#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 159#define VM_ARCH_2       0x02000000
 160#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 161
 162#ifdef CONFIG_MEM_SOFT_DIRTY
 163# define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
 164#else
 165# define VM_SOFTDIRTY   0
 166#endif
 167
 168#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 169#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 170#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 171#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 172
 173#if defined(CONFIG_X86)
 174# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 175#elif defined(CONFIG_PPC)
 176# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 177#elif defined(CONFIG_PARISC)
 178# define VM_GROWSUP     VM_ARCH_1
 179#elif defined(CONFIG_METAG)
 180# define VM_GROWSUP     VM_ARCH_1
 181#elif defined(CONFIG_IA64)
 182# define VM_GROWSUP     VM_ARCH_1
 183#elif !defined(CONFIG_MMU)
 184# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 185#endif
 186
 187#if defined(CONFIG_X86)
 188/* MPX specific bounds table or bounds directory */
 189# define VM_MPX         VM_ARCH_2
 190#endif
 191
 192#ifndef VM_GROWSUP
 193# define VM_GROWSUP     VM_NONE
 194#endif
 195
 196/* Bits set in the VMA until the stack is in its final location */
 197#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 198
 199#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 200#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 201#endif
 202
 203#ifdef CONFIG_STACK_GROWSUP
 204#define VM_STACK        VM_GROWSUP
 205#else
 206#define VM_STACK        VM_GROWSDOWN
 207#endif
 208
 209#define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 210
 211/*
 212 * Special vmas that are non-mergable, non-mlock()able.
 213 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 214 */
 215#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 216
 217/* This mask defines which mm->def_flags a process can inherit its parent */
 218#define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
 219
 220/* This mask is used to clear all the VMA flags used by mlock */
 221#define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
 222
 223/*
 224 * mapping from the currently active vm_flags protection bits (the
 225 * low four bits) to a page protection mask..
 226 */
 227extern pgprot_t protection_map[16];
 228
 229#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 230#define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
 231#define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
 232#define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
 233#define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
 234#define FAULT_FLAG_TRIED        0x20    /* Second try */
 235#define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
 236
 237/*
 238 * vm_fault is filled by the the pagefault handler and passed to the vma's
 239 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 240 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 241 *
 242 * MM layer fills up gfp_mask for page allocations but fault handler might
 243 * alter it if its implementation requires a different allocation context.
 244 *
 245 * pgoff should be used in favour of virtual_address, if possible.
 246 */
 247struct vm_fault {
 248        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 249        gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
 250        pgoff_t pgoff;                  /* Logical page offset based on vma */
 251        void __user *virtual_address;   /* Faulting virtual address */
 252
 253        struct page *cow_page;          /* Handler may choose to COW */
 254        struct page *page;              /* ->fault handlers should return a
 255                                         * page here, unless VM_FAULT_NOPAGE
 256                                         * is set (which is also implied by
 257                                         * VM_FAULT_ERROR).
 258                                         */
 259        /* for ->map_pages() only */
 260        pgoff_t max_pgoff;              /* map pages for offset from pgoff till
 261                                         * max_pgoff inclusive */
 262        pte_t *pte;                     /* pte entry associated with ->pgoff */
 263};
 264
 265/*
 266 * These are the virtual MM functions - opening of an area, closing and
 267 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 268 * to the functions called when a no-page or a wp-page exception occurs. 
 269 */
 270struct vm_operations_struct {
 271        void (*open)(struct vm_area_struct * area);
 272        void (*close)(struct vm_area_struct * area);
 273        int (*mremap)(struct vm_area_struct * area);
 274        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 275        int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
 276                                                pmd_t *, unsigned int flags);
 277        void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
 278
 279        /* notification that a previously read-only page is about to become
 280         * writable, if an error is returned it will cause a SIGBUS */
 281        int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 282
 283        /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 284        int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 285
 286        /* called by access_process_vm when get_user_pages() fails, typically
 287         * for use by special VMAs that can switch between memory and hardware
 288         */
 289        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 290                      void *buf, int len, int write);
 291
 292        /* Called by the /proc/PID/maps code to ask the vma whether it
 293         * has a special name.  Returning non-NULL will also cause this
 294         * vma to be dumped unconditionally. */
 295        const char *(*name)(struct vm_area_struct *vma);
 296
 297#ifdef CONFIG_NUMA
 298        /*
 299         * set_policy() op must add a reference to any non-NULL @new mempolicy
 300         * to hold the policy upon return.  Caller should pass NULL @new to
 301         * remove a policy and fall back to surrounding context--i.e. do not
 302         * install a MPOL_DEFAULT policy, nor the task or system default
 303         * mempolicy.
 304         */
 305        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 306
 307        /*
 308         * get_policy() op must add reference [mpol_get()] to any policy at
 309         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 310         * in mm/mempolicy.c will do this automatically.
 311         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 312         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 313         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 314         * must return NULL--i.e., do not "fallback" to task or system default
 315         * policy.
 316         */
 317        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 318                                        unsigned long addr);
 319#endif
 320        /*
 321         * Called by vm_normal_page() for special PTEs to find the
 322         * page for @addr.  This is useful if the default behavior
 323         * (using pte_page()) would not find the correct page.
 324         */
 325        struct page *(*find_special_page)(struct vm_area_struct *vma,
 326                                          unsigned long addr);
 327};
 328
 329struct mmu_gather;
 330struct inode;
 331
 332#define page_private(page)              ((page)->private)
 333#define set_page_private(page, v)       ((page)->private = (v))
 334
 335#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
 336static inline int pmd_devmap(pmd_t pmd)
 337{
 338        return 0;
 339}
 340#endif
 341
 342/*
 343 * FIXME: take this include out, include page-flags.h in
 344 * files which need it (119 of them)
 345 */
 346#include <linux/page-flags.h>
 347#include <linux/huge_mm.h>
 348
 349/*
 350 * Methods to modify the page usage count.
 351 *
 352 * What counts for a page usage:
 353 * - cache mapping   (page->mapping)
 354 * - private data    (page->private)
 355 * - page mapped in a task's page tables, each mapping
 356 *   is counted separately
 357 *
 358 * Also, many kernel routines increase the page count before a critical
 359 * routine so they can be sure the page doesn't go away from under them.
 360 */
 361
 362/*
 363 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 364 */
 365static inline int put_page_testzero(struct page *page)
 366{
 367        VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
 368        return atomic_dec_and_test(&page->_count);
 369}
 370
 371/*
 372 * Try to grab a ref unless the page has a refcount of zero, return false if
 373 * that is the case.
 374 * This can be called when MMU is off so it must not access
 375 * any of the virtual mappings.
 376 */
 377static inline int get_page_unless_zero(struct page *page)
 378{
 379        return atomic_inc_not_zero(&page->_count);
 380}
 381
 382extern int page_is_ram(unsigned long pfn);
 383
 384enum {
 385        REGION_INTERSECTS,
 386        REGION_DISJOINT,
 387        REGION_MIXED,
 388};
 389
 390int region_intersects(resource_size_t offset, size_t size, const char *type);
 391
 392/* Support for virtually mapped pages */
 393struct page *vmalloc_to_page(const void *addr);
 394unsigned long vmalloc_to_pfn(const void *addr);
 395
 396/*
 397 * Determine if an address is within the vmalloc range
 398 *
 399 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 400 * is no special casing required.
 401 */
 402static inline int is_vmalloc_addr(const void *x)
 403{
 404#ifdef CONFIG_MMU
 405        unsigned long addr = (unsigned long)x;
 406
 407        return addr >= VMALLOC_START && addr < VMALLOC_END;
 408#else
 409        return 0;
 410#endif
 411}
 412#ifdef CONFIG_MMU
 413extern int is_vmalloc_or_module_addr(const void *x);
 414#else
 415static inline int is_vmalloc_or_module_addr(const void *x)
 416{
 417        return 0;
 418}
 419#endif
 420
 421extern void kvfree(const void *addr);
 422
 423static inline atomic_t *compound_mapcount_ptr(struct page *page)
 424{
 425        return &page[1].compound_mapcount;
 426}
 427
 428static inline int compound_mapcount(struct page *page)
 429{
 430        if (!PageCompound(page))
 431                return 0;
 432        page = compound_head(page);
 433        return atomic_read(compound_mapcount_ptr(page)) + 1;
 434}
 435
 436/*
 437 * The atomic page->_mapcount, starts from -1: so that transitions
 438 * both from it and to it can be tracked, using atomic_inc_and_test
 439 * and atomic_add_negative(-1).
 440 */
 441static inline void page_mapcount_reset(struct page *page)
 442{
 443        atomic_set(&(page)->_mapcount, -1);
 444}
 445
 446int __page_mapcount(struct page *page);
 447
 448static inline int page_mapcount(struct page *page)
 449{
 450        VM_BUG_ON_PAGE(PageSlab(page), page);
 451
 452        if (unlikely(PageCompound(page)))
 453                return __page_mapcount(page);
 454        return atomic_read(&page->_mapcount) + 1;
 455}
 456
 457#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 458int total_mapcount(struct page *page);
 459#else
 460static inline int total_mapcount(struct page *page)
 461{
 462        return page_mapcount(page);
 463}
 464#endif
 465
 466static inline int page_count(struct page *page)
 467{
 468        return atomic_read(&compound_head(page)->_count);
 469}
 470
 471static inline struct page *virt_to_head_page(const void *x)
 472{
 473        struct page *page = virt_to_page(x);
 474
 475        return compound_head(page);
 476}
 477
 478/*
 479 * Setup the page count before being freed into the page allocator for
 480 * the first time (boot or memory hotplug)
 481 */
 482static inline void init_page_count(struct page *page)
 483{
 484        atomic_set(&page->_count, 1);
 485}
 486
 487void __put_page(struct page *page);
 488
 489void put_pages_list(struct list_head *pages);
 490
 491void split_page(struct page *page, unsigned int order);
 492int split_free_page(struct page *page);
 493
 494/*
 495 * Compound pages have a destructor function.  Provide a
 496 * prototype for that function and accessor functions.
 497 * These are _only_ valid on the head of a compound page.
 498 */
 499typedef void compound_page_dtor(struct page *);
 500
 501/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
 502enum compound_dtor_id {
 503        NULL_COMPOUND_DTOR,
 504        COMPOUND_PAGE_DTOR,
 505#ifdef CONFIG_HUGETLB_PAGE
 506        HUGETLB_PAGE_DTOR,
 507#endif
 508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 509        TRANSHUGE_PAGE_DTOR,
 510#endif
 511        NR_COMPOUND_DTORS,
 512};
 513extern compound_page_dtor * const compound_page_dtors[];
 514
 515static inline void set_compound_page_dtor(struct page *page,
 516                enum compound_dtor_id compound_dtor)
 517{
 518        VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
 519        page[1].compound_dtor = compound_dtor;
 520}
 521
 522static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 523{
 524        VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
 525        return compound_page_dtors[page[1].compound_dtor];
 526}
 527
 528static inline unsigned int compound_order(struct page *page)
 529{
 530        if (!PageHead(page))
 531                return 0;
 532        return page[1].compound_order;
 533}
 534
 535static inline void set_compound_order(struct page *page, unsigned int order)
 536{
 537        page[1].compound_order = order;
 538}
 539
 540void free_compound_page(struct page *page);
 541
 542#ifdef CONFIG_MMU
 543/*
 544 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 545 * servicing faults for write access.  In the normal case, do always want
 546 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 547 * that do not have writing enabled, when used by access_process_vm.
 548 */
 549static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 550{
 551        if (likely(vma->vm_flags & VM_WRITE))
 552                pte = pte_mkwrite(pte);
 553        return pte;
 554}
 555
 556void do_set_pte(struct vm_area_struct *vma, unsigned long address,
 557                struct page *page, pte_t *pte, bool write, bool anon);
 558#endif
 559
 560/*
 561 * Multiple processes may "see" the same page. E.g. for untouched
 562 * mappings of /dev/null, all processes see the same page full of
 563 * zeroes, and text pages of executables and shared libraries have
 564 * only one copy in memory, at most, normally.
 565 *
 566 * For the non-reserved pages, page_count(page) denotes a reference count.
 567 *   page_count() == 0 means the page is free. page->lru is then used for
 568 *   freelist management in the buddy allocator.
 569 *   page_count() > 0  means the page has been allocated.
 570 *
 571 * Pages are allocated by the slab allocator in order to provide memory
 572 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 573 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 574 * unless a particular usage is carefully commented. (the responsibility of
 575 * freeing the kmalloc memory is the caller's, of course).
 576 *
 577 * A page may be used by anyone else who does a __get_free_page().
 578 * In this case, page_count still tracks the references, and should only
 579 * be used through the normal accessor functions. The top bits of page->flags
 580 * and page->virtual store page management information, but all other fields
 581 * are unused and could be used privately, carefully. The management of this
 582 * page is the responsibility of the one who allocated it, and those who have
 583 * subsequently been given references to it.
 584 *
 585 * The other pages (we may call them "pagecache pages") are completely
 586 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 587 * The following discussion applies only to them.
 588 *
 589 * A pagecache page contains an opaque `private' member, which belongs to the
 590 * page's address_space. Usually, this is the address of a circular list of
 591 * the page's disk buffers. PG_private must be set to tell the VM to call
 592 * into the filesystem to release these pages.
 593 *
 594 * A page may belong to an inode's memory mapping. In this case, page->mapping
 595 * is the pointer to the inode, and page->index is the file offset of the page,
 596 * in units of PAGE_CACHE_SIZE.
 597 *
 598 * If pagecache pages are not associated with an inode, they are said to be
 599 * anonymous pages. These may become associated with the swapcache, and in that
 600 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 601 *
 602 * In either case (swapcache or inode backed), the pagecache itself holds one
 603 * reference to the page. Setting PG_private should also increment the
 604 * refcount. The each user mapping also has a reference to the page.
 605 *
 606 * The pagecache pages are stored in a per-mapping radix tree, which is
 607 * rooted at mapping->page_tree, and indexed by offset.
 608 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 609 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 610 *
 611 * All pagecache pages may be subject to I/O:
 612 * - inode pages may need to be read from disk,
 613 * - inode pages which have been modified and are MAP_SHARED may need
 614 *   to be written back to the inode on disk,
 615 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 616 *   modified may need to be swapped out to swap space and (later) to be read
 617 *   back into memory.
 618 */
 619
 620/*
 621 * The zone field is never updated after free_area_init_core()
 622 * sets it, so none of the operations on it need to be atomic.
 623 */
 624
 625/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
 626#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 627#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 628#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 629#define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
 630
 631/*
 632 * Define the bit shifts to access each section.  For non-existent
 633 * sections we define the shift as 0; that plus a 0 mask ensures
 634 * the compiler will optimise away reference to them.
 635 */
 636#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 637#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 638#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 639#define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
 640
 641/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 642#ifdef NODE_NOT_IN_PAGE_FLAGS
 643#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 644#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 645                                                SECTIONS_PGOFF : ZONES_PGOFF)
 646#else
 647#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 648#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 649                                                NODES_PGOFF : ZONES_PGOFF)
 650#endif
 651
 652#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 653
 654#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 655#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 656#endif
 657
 658#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 659#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 660#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 661#define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
 662#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 663
 664static inline enum zone_type page_zonenum(const struct page *page)
 665{
 666        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 667}
 668
 669#ifdef CONFIG_ZONE_DEVICE
 670void get_zone_device_page(struct page *page);
 671void put_zone_device_page(struct page *page);
 672static inline bool is_zone_device_page(const struct page *page)
 673{
 674        return page_zonenum(page) == ZONE_DEVICE;
 675}
 676#else
 677static inline void get_zone_device_page(struct page *page)
 678{
 679}
 680static inline void put_zone_device_page(struct page *page)
 681{
 682}
 683static inline bool is_zone_device_page(const struct page *page)
 684{
 685        return false;
 686}
 687#endif
 688
 689static inline void get_page(struct page *page)
 690{
 691        page = compound_head(page);
 692        /*
 693         * Getting a normal page or the head of a compound page
 694         * requires to already have an elevated page->_count.
 695         */
 696        VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
 697        atomic_inc(&page->_count);
 698
 699        if (unlikely(is_zone_device_page(page)))
 700                get_zone_device_page(page);
 701}
 702
 703static inline void put_page(struct page *page)
 704{
 705        page = compound_head(page);
 706
 707        if (put_page_testzero(page))
 708                __put_page(page);
 709
 710        if (unlikely(is_zone_device_page(page)))
 711                put_zone_device_page(page);
 712}
 713
 714#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 715#define SECTION_IN_PAGE_FLAGS
 716#endif
 717
 718/*
 719 * The identification function is mainly used by the buddy allocator for
 720 * determining if two pages could be buddies. We are not really identifying
 721 * the zone since we could be using the section number id if we do not have
 722 * node id available in page flags.
 723 * We only guarantee that it will return the same value for two combinable
 724 * pages in a zone.
 725 */
 726static inline int page_zone_id(struct page *page)
 727{
 728        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 729}
 730
 731static inline int zone_to_nid(struct zone *zone)
 732{
 733#ifdef CONFIG_NUMA
 734        return zone->node;
 735#else
 736        return 0;
 737#endif
 738}
 739
 740#ifdef NODE_NOT_IN_PAGE_FLAGS
 741extern int page_to_nid(const struct page *page);
 742#else
 743static inline int page_to_nid(const struct page *page)
 744{
 745        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
 746}
 747#endif
 748
 749#ifdef CONFIG_NUMA_BALANCING
 750static inline int cpu_pid_to_cpupid(int cpu, int pid)
 751{
 752        return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
 753}
 754
 755static inline int cpupid_to_pid(int cpupid)
 756{
 757        return cpupid & LAST__PID_MASK;
 758}
 759
 760static inline int cpupid_to_cpu(int cpupid)
 761{
 762        return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
 763}
 764
 765static inline int cpupid_to_nid(int cpupid)
 766{
 767        return cpu_to_node(cpupid_to_cpu(cpupid));
 768}
 769
 770static inline bool cpupid_pid_unset(int cpupid)
 771{
 772        return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
 773}
 774
 775static inline bool cpupid_cpu_unset(int cpupid)
 776{
 777        return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
 778}
 779
 780static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
 781{
 782        return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
 783}
 784
 785#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
 786#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 787static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 788{
 789        return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
 790}
 791
 792static inline int page_cpupid_last(struct page *page)
 793{
 794        return page->_last_cpupid;
 795}
 796static inline void page_cpupid_reset_last(struct page *page)
 797{
 798        page->_last_cpupid = -1 & LAST_CPUPID_MASK;
 799}
 800#else
 801static inline int page_cpupid_last(struct page *page)
 802{
 803        return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
 804}
 805
 806extern int page_cpupid_xchg_last(struct page *page, int cpupid);
 807
 808static inline void page_cpupid_reset_last(struct page *page)
 809{
 810        int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
 811
 812        page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
 813        page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
 814}
 815#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
 816#else /* !CONFIG_NUMA_BALANCING */
 817static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 818{
 819        return page_to_nid(page); /* XXX */
 820}
 821
 822static inline int page_cpupid_last(struct page *page)
 823{
 824        return page_to_nid(page); /* XXX */
 825}
 826
 827static inline int cpupid_to_nid(int cpupid)
 828{
 829        return -1;
 830}
 831
 832static inline int cpupid_to_pid(int cpupid)
 833{
 834        return -1;
 835}
 836
 837static inline int cpupid_to_cpu(int cpupid)
 838{
 839        return -1;
 840}
 841
 842static inline int cpu_pid_to_cpupid(int nid, int pid)
 843{
 844        return -1;
 845}
 846
 847static inline bool cpupid_pid_unset(int cpupid)
 848{
 849        return 1;
 850}
 851
 852static inline void page_cpupid_reset_last(struct page *page)
 853{
 854}
 855
 856static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
 857{
 858        return false;
 859}
 860#endif /* CONFIG_NUMA_BALANCING */
 861
 862static inline struct zone *page_zone(const struct page *page)
 863{
 864        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 865}
 866
 867#ifdef SECTION_IN_PAGE_FLAGS
 868static inline void set_page_section(struct page *page, unsigned long section)
 869{
 870        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 871        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 872}
 873
 874static inline unsigned long page_to_section(const struct page *page)
 875{
 876        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 877}
 878#endif
 879
 880static inline void set_page_zone(struct page *page, enum zone_type zone)
 881{
 882        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 883        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 884}
 885
 886static inline void set_page_node(struct page *page, unsigned long node)
 887{
 888        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 889        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 890}
 891
 892static inline void set_page_links(struct page *page, enum zone_type zone,
 893        unsigned long node, unsigned long pfn)
 894{
 895        set_page_zone(page, zone);
 896        set_page_node(page, node);
 897#ifdef SECTION_IN_PAGE_FLAGS
 898        set_page_section(page, pfn_to_section_nr(pfn));
 899#endif
 900}
 901
 902#ifdef CONFIG_MEMCG
 903static inline struct mem_cgroup *page_memcg(struct page *page)
 904{
 905        return page->mem_cgroup;
 906}
 907
 908static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
 909{
 910        page->mem_cgroup = memcg;
 911}
 912#else
 913static inline struct mem_cgroup *page_memcg(struct page *page)
 914{
 915        return NULL;
 916}
 917
 918static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
 919{
 920}
 921#endif
 922
 923/*
 924 * Some inline functions in vmstat.h depend on page_zone()
 925 */
 926#include <linux/vmstat.h>
 927
 928static __always_inline void *lowmem_page_address(const struct page *page)
 929{
 930        return __va(PFN_PHYS(page_to_pfn(page)));
 931}
 932
 933#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 934#define HASHED_PAGE_VIRTUAL
 935#endif
 936
 937#if defined(WANT_PAGE_VIRTUAL)
 938static inline void *page_address(const struct page *page)
 939{
 940        return page->virtual;
 941}
 942static inline void set_page_address(struct page *page, void *address)
 943{
 944        page->virtual = address;
 945}
 946#define page_address_init()  do { } while(0)
 947#endif
 948
 949#if defined(HASHED_PAGE_VIRTUAL)
 950void *page_address(const struct page *page);
 951void set_page_address(struct page *page, void *virtual);
 952void page_address_init(void);
 953#endif
 954
 955#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 956#define page_address(page) lowmem_page_address(page)
 957#define set_page_address(page, address)  do { } while(0)
 958#define page_address_init()  do { } while(0)
 959#endif
 960
 961extern void *page_rmapping(struct page *page);
 962extern struct anon_vma *page_anon_vma(struct page *page);
 963extern struct address_space *page_mapping(struct page *page);
 964
 965extern struct address_space *__page_file_mapping(struct page *);
 966
 967static inline
 968struct address_space *page_file_mapping(struct page *page)
 969{
 970        if (unlikely(PageSwapCache(page)))
 971                return __page_file_mapping(page);
 972
 973        return page->mapping;
 974}
 975
 976/*
 977 * Return the pagecache index of the passed page.  Regular pagecache pages
 978 * use ->index whereas swapcache pages use ->private
 979 */
 980static inline pgoff_t page_index(struct page *page)
 981{
 982        if (unlikely(PageSwapCache(page)))
 983                return page_private(page);
 984        return page->index;
 985}
 986
 987extern pgoff_t __page_file_index(struct page *page);
 988
 989/*
 990 * Return the file index of the page. Regular pagecache pages use ->index
 991 * whereas swapcache pages use swp_offset(->private)
 992 */
 993static inline pgoff_t page_file_index(struct page *page)
 994{
 995        if (unlikely(PageSwapCache(page)))
 996                return __page_file_index(page);
 997
 998        return page->index;
 999}
1000
1001/*
1002 * Return true if this page is mapped into pagetables.
1003 * For compound page it returns true if any subpage of compound page is mapped.
1004 */
1005static inline bool page_mapped(struct page *page)
1006{
1007        int i;
1008        if (likely(!PageCompound(page)))
1009                return atomic_read(&page->_mapcount) >= 0;
1010        page = compound_head(page);
1011        if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1012                return true;
1013        for (i = 0; i < hpage_nr_pages(page); i++) {
1014                if (atomic_read(&page[i]._mapcount) >= 0)
1015                        return true;
1016        }
1017        return false;
1018}
1019
1020/*
1021 * Return true only if the page has been allocated with
1022 * ALLOC_NO_WATERMARKS and the low watermark was not
1023 * met implying that the system is under some pressure.
1024 */
1025static inline bool page_is_pfmemalloc(struct page *page)
1026{
1027        /*
1028         * Page index cannot be this large so this must be
1029         * a pfmemalloc page.
1030         */
1031        return page->index == -1UL;
1032}
1033
1034/*
1035 * Only to be called by the page allocator on a freshly allocated
1036 * page.
1037 */
1038static inline void set_page_pfmemalloc(struct page *page)
1039{
1040        page->index = -1UL;
1041}
1042
1043static inline void clear_page_pfmemalloc(struct page *page)
1044{
1045        page->index = 0;
1046}
1047
1048/*
1049 * Different kinds of faults, as returned by handle_mm_fault().
1050 * Used to decide whether a process gets delivered SIGBUS or
1051 * just gets major/minor fault counters bumped up.
1052 */
1053
1054#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
1055
1056#define VM_FAULT_OOM    0x0001
1057#define VM_FAULT_SIGBUS 0x0002
1058#define VM_FAULT_MAJOR  0x0004
1059#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1060#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1061#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1062#define VM_FAULT_SIGSEGV 0x0040
1063
1064#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1065#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1066#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1067#define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1068
1069#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1070
1071#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1072                         VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1073                         VM_FAULT_FALLBACK)
1074
1075/* Encode hstate index for a hwpoisoned large page */
1076#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1077#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1078
1079/*
1080 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1081 */
1082extern void pagefault_out_of_memory(void);
1083
1084#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1085
1086/*
1087 * Flags passed to show_mem() and show_free_areas() to suppress output in
1088 * various contexts.
1089 */
1090#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1091
1092extern void show_free_areas(unsigned int flags);
1093extern bool skip_free_areas_node(unsigned int flags, int nid);
1094
1095int shmem_zero_setup(struct vm_area_struct *);
1096#ifdef CONFIG_SHMEM
1097bool shmem_mapping(struct address_space *mapping);
1098#else
1099static inline bool shmem_mapping(struct address_space *mapping)
1100{
1101        return false;
1102}
1103#endif
1104
1105extern bool can_do_mlock(void);
1106extern int user_shm_lock(size_t, struct user_struct *);
1107extern void user_shm_unlock(size_t, struct user_struct *);
1108
1109/*
1110 * Parameter block passed down to zap_pte_range in exceptional cases.
1111 */
1112struct zap_details {
1113        struct address_space *check_mapping;    /* Check page->mapping if set */
1114        pgoff_t first_index;                    /* Lowest page->index to unmap */
1115        pgoff_t last_index;                     /* Highest page->index to unmap */
1116};
1117
1118struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1119                pte_t pte);
1120
1121int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1122                unsigned long size);
1123void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1124                unsigned long size, struct zap_details *);
1125void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1126                unsigned long start, unsigned long end);
1127
1128/**
1129 * mm_walk - callbacks for walk_page_range
1130 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1131 *             this handler is required to be able to handle
1132 *             pmd_trans_huge() pmds.  They may simply choose to
1133 *             split_huge_page() instead of handling it explicitly.
1134 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1135 * @pte_hole: if set, called for each hole at all levels
1136 * @hugetlb_entry: if set, called for each hugetlb entry
1137 * @test_walk: caller specific callback function to determine whether
1138 *             we walk over the current vma or not. A positive returned
1139 *             value means "do page table walk over the current vma,"
1140 *             and a negative one means "abort current page table walk
1141 *             right now." 0 means "skip the current vma."
1142 * @mm:        mm_struct representing the target process of page table walk
1143 * @vma:       vma currently walked (NULL if walking outside vmas)
1144 * @private:   private data for callbacks' usage
1145 *
1146 * (see the comment on walk_page_range() for more details)
1147 */
1148struct mm_walk {
1149        int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1150                         unsigned long next, struct mm_walk *walk);
1151        int (*pte_entry)(pte_t *pte, unsigned long addr,
1152                         unsigned long next, struct mm_walk *walk);
1153        int (*pte_hole)(unsigned long addr, unsigned long next,
1154                        struct mm_walk *walk);
1155        int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1156                             unsigned long addr, unsigned long next,
1157                             struct mm_walk *walk);
1158        int (*test_walk)(unsigned long addr, unsigned long next,
1159                        struct mm_walk *walk);
1160        struct mm_struct *mm;
1161        struct vm_area_struct *vma;
1162        void *private;
1163};
1164
1165int walk_page_range(unsigned long addr, unsigned long end,
1166                struct mm_walk *walk);
1167int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1168void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1169                unsigned long end, unsigned long floor, unsigned long ceiling);
1170int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1171                        struct vm_area_struct *vma);
1172void unmap_mapping_range(struct address_space *mapping,
1173                loff_t const holebegin, loff_t const holelen, int even_cows);
1174int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1175        unsigned long *pfn);
1176int follow_phys(struct vm_area_struct *vma, unsigned long address,
1177                unsigned int flags, unsigned long *prot, resource_size_t *phys);
1178int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1179                        void *buf, int len, int write);
1180
1181static inline void unmap_shared_mapping_range(struct address_space *mapping,
1182                loff_t const holebegin, loff_t const holelen)
1183{
1184        unmap_mapping_range(mapping, holebegin, holelen, 0);
1185}
1186
1187extern void truncate_pagecache(struct inode *inode, loff_t new);
1188extern void truncate_setsize(struct inode *inode, loff_t newsize);
1189void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1190void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1191int truncate_inode_page(struct address_space *mapping, struct page *page);
1192int generic_error_remove_page(struct address_space *mapping, struct page *page);
1193int invalidate_inode_page(struct page *page);
1194
1195#ifdef CONFIG_MMU
1196extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1197                        unsigned long address, unsigned int flags);
1198extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1199                            unsigned long address, unsigned int fault_flags,
1200                            bool *unlocked);
1201#else
1202static inline int handle_mm_fault(struct mm_struct *mm,
1203                        struct vm_area_struct *vma, unsigned long address,
1204                        unsigned int flags)
1205{
1206        /* should never happen if there's no MMU */
1207        BUG();
1208        return VM_FAULT_SIGBUS;
1209}
1210static inline int fixup_user_fault(struct task_struct *tsk,
1211                struct mm_struct *mm, unsigned long address,
1212                unsigned int fault_flags, bool *unlocked)
1213{
1214        /* should never happen if there's no MMU */
1215        BUG();
1216        return -EFAULT;
1217}
1218#endif
1219
1220extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1221extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1222                void *buf, int len, int write);
1223
1224long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1225                      unsigned long start, unsigned long nr_pages,
1226                      unsigned int foll_flags, struct page **pages,
1227                      struct vm_area_struct **vmas, int *nonblocking);
1228long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1229                    unsigned long start, unsigned long nr_pages,
1230                    int write, int force, struct page **pages,
1231                    struct vm_area_struct **vmas);
1232long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1233                    unsigned long start, unsigned long nr_pages,
1234                    int write, int force, struct page **pages,
1235                    int *locked);
1236long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1237                               unsigned long start, unsigned long nr_pages,
1238                               int write, int force, struct page **pages,
1239                               unsigned int gup_flags);
1240long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1241                    unsigned long start, unsigned long nr_pages,
1242                    int write, int force, struct page **pages);
1243int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1244                        struct page **pages);
1245
1246/* Container for pinned pfns / pages */
1247struct frame_vector {
1248        unsigned int nr_allocated;      /* Number of frames we have space for */
1249        unsigned int nr_frames; /* Number of frames stored in ptrs array */
1250        bool got_ref;           /* Did we pin pages by getting page ref? */
1251        bool is_pfns;           /* Does array contain pages or pfns? */
1252        void *ptrs[0];          /* Array of pinned pfns / pages. Use
1253                                 * pfns_vector_pages() or pfns_vector_pfns()
1254                                 * for access */
1255};
1256
1257struct frame_vector *frame_vector_create(unsigned int nr_frames);
1258void frame_vector_destroy(struct frame_vector *vec);
1259int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1260                     bool write, bool force, struct frame_vector *vec);
1261void put_vaddr_frames(struct frame_vector *vec);
1262int frame_vector_to_pages(struct frame_vector *vec);
1263void frame_vector_to_pfns(struct frame_vector *vec);
1264
1265static inline unsigned int frame_vector_count(struct frame_vector *vec)
1266{
1267        return vec->nr_frames;
1268}
1269
1270static inline struct page **frame_vector_pages(struct frame_vector *vec)
1271{
1272        if (vec->is_pfns) {
1273                int err = frame_vector_to_pages(vec);
1274
1275                if (err)
1276                        return ERR_PTR(err);
1277        }
1278        return (struct page **)(vec->ptrs);
1279}
1280
1281static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1282{
1283        if (!vec->is_pfns)
1284                frame_vector_to_pfns(vec);
1285        return (unsigned long *)(vec->ptrs);
1286}
1287
1288struct kvec;
1289int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1290                        struct page **pages);
1291int get_kernel_page(unsigned long start, int write, struct page **pages);
1292struct page *get_dump_page(unsigned long addr);
1293
1294extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1295extern void do_invalidatepage(struct page *page, unsigned int offset,
1296                              unsigned int length);
1297
1298int __set_page_dirty_nobuffers(struct page *page);
1299int __set_page_dirty_no_writeback(struct page *page);
1300int redirty_page_for_writepage(struct writeback_control *wbc,
1301                                struct page *page);
1302void account_page_dirtied(struct page *page, struct address_space *mapping,
1303                          struct mem_cgroup *memcg);
1304void account_page_cleaned(struct page *page, struct address_space *mapping,
1305                          struct mem_cgroup *memcg, struct bdi_writeback *wb);
1306int set_page_dirty(struct page *page);
1307int set_page_dirty_lock(struct page *page);
1308void cancel_dirty_page(struct page *page);
1309int clear_page_dirty_for_io(struct page *page);
1310
1311int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1312
1313/* Is the vma a continuation of the stack vma above it? */
1314static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1315{
1316        return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1317}
1318
1319static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1320{
1321        return !vma->vm_ops;
1322}
1323
1324static inline int stack_guard_page_start(struct vm_area_struct *vma,
1325                                             unsigned long addr)
1326{
1327        return (vma->vm_flags & VM_GROWSDOWN) &&
1328                (vma->vm_start == addr) &&
1329                !vma_growsdown(vma->vm_prev, addr);
1330}
1331
1332/* Is the vma a continuation of the stack vma below it? */
1333static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1334{
1335        return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1336}
1337
1338static inline int stack_guard_page_end(struct vm_area_struct *vma,
1339                                           unsigned long addr)
1340{
1341        return (vma->vm_flags & VM_GROWSUP) &&
1342                (vma->vm_end == addr) &&
1343                !vma_growsup(vma->vm_next, addr);
1344}
1345
1346int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1347
1348extern unsigned long move_page_tables(struct vm_area_struct *vma,
1349                unsigned long old_addr, struct vm_area_struct *new_vma,
1350                unsigned long new_addr, unsigned long len,
1351                bool need_rmap_locks);
1352extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1353                              unsigned long end, pgprot_t newprot,
1354                              int dirty_accountable, int prot_numa);
1355extern int mprotect_fixup(struct vm_area_struct *vma,
1356                          struct vm_area_struct **pprev, unsigned long start,
1357                          unsigned long end, unsigned long newflags);
1358
1359/*
1360 * doesn't attempt to fault and will return short.
1361 */
1362int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1363                          struct page **pages);
1364/*
1365 * per-process(per-mm_struct) statistics.
1366 */
1367static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1368{
1369        long val = atomic_long_read(&mm->rss_stat.count[member]);
1370
1371#ifdef SPLIT_RSS_COUNTING
1372        /*
1373         * counter is updated in asynchronous manner and may go to minus.
1374         * But it's never be expected number for users.
1375         */
1376        if (val < 0)
1377                val = 0;
1378#endif
1379        return (unsigned long)val;
1380}
1381
1382static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1383{
1384        atomic_long_add(value, &mm->rss_stat.count[member]);
1385}
1386
1387static inline void inc_mm_counter(struct mm_struct *mm, int member)
1388{
1389        atomic_long_inc(&mm->rss_stat.count[member]);
1390}
1391
1392static inline void dec_mm_counter(struct mm_struct *mm, int member)
1393{
1394        atomic_long_dec(&mm->rss_stat.count[member]);
1395}
1396
1397/* Optimized variant when page is already known not to be PageAnon */
1398static inline int mm_counter_file(struct page *page)
1399{
1400        if (PageSwapBacked(page))
1401                return MM_SHMEMPAGES;
1402        return MM_FILEPAGES;
1403}
1404
1405static inline int mm_counter(struct page *page)
1406{
1407        if (PageAnon(page))
1408                return MM_ANONPAGES;
1409        return mm_counter_file(page);
1410}
1411
1412static inline unsigned long get_mm_rss(struct mm_struct *mm)
1413{
1414        return get_mm_counter(mm, MM_FILEPAGES) +
1415                get_mm_counter(mm, MM_ANONPAGES) +
1416                get_mm_counter(mm, MM_SHMEMPAGES);
1417}
1418
1419static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1420{
1421        return max(mm->hiwater_rss, get_mm_rss(mm));
1422}
1423
1424static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1425{
1426        return max(mm->hiwater_vm, mm->total_vm);
1427}
1428
1429static inline void update_hiwater_rss(struct mm_struct *mm)
1430{
1431        unsigned long _rss = get_mm_rss(mm);
1432
1433        if ((mm)->hiwater_rss < _rss)
1434                (mm)->hiwater_rss = _rss;
1435}
1436
1437static inline void update_hiwater_vm(struct mm_struct *mm)
1438{
1439        if (mm->hiwater_vm < mm->total_vm)
1440                mm->hiwater_vm = mm->total_vm;
1441}
1442
1443static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1444{
1445        mm->hiwater_rss = get_mm_rss(mm);
1446}
1447
1448static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1449                                         struct mm_struct *mm)
1450{
1451        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1452
1453        if (*maxrss < hiwater_rss)
1454                *maxrss = hiwater_rss;
1455}
1456
1457#if defined(SPLIT_RSS_COUNTING)
1458void sync_mm_rss(struct mm_struct *mm);
1459#else
1460static inline void sync_mm_rss(struct mm_struct *mm)
1461{
1462}
1463#endif
1464
1465#ifndef __HAVE_ARCH_PTE_DEVMAP
1466static inline int pte_devmap(pte_t pte)
1467{
1468        return 0;
1469}
1470#endif
1471
1472int vma_wants_writenotify(struct vm_area_struct *vma);
1473
1474extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1475                               spinlock_t **ptl);
1476static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1477                                    spinlock_t **ptl)
1478{
1479        pte_t *ptep;
1480        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1481        return ptep;
1482}
1483
1484#ifdef __PAGETABLE_PUD_FOLDED
1485static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1486                                                unsigned long address)
1487{
1488        return 0;
1489}
1490#else
1491int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1492#endif
1493
1494#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1495static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1496                                                unsigned long address)
1497{
1498        return 0;
1499}
1500
1501static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1502
1503static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1504{
1505        return 0;
1506}
1507
1508static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1509static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1510
1511#else
1512int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1513
1514static inline void mm_nr_pmds_init(struct mm_struct *mm)
1515{
1516        atomic_long_set(&mm->nr_pmds, 0);
1517}
1518
1519static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1520{
1521        return atomic_long_read(&mm->nr_pmds);
1522}
1523
1524static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1525{
1526        atomic_long_inc(&mm->nr_pmds);
1527}
1528
1529static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1530{
1531        atomic_long_dec(&mm->nr_pmds);
1532}
1533#endif
1534
1535int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1536                pmd_t *pmd, unsigned long address);
1537int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1538
1539/*
1540 * The following ifdef needed to get the 4level-fixup.h header to work.
1541 * Remove it when 4level-fixup.h has been removed.
1542 */
1543#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1544static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1545{
1546        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1547                NULL: pud_offset(pgd, address);
1548}
1549
1550static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1551{
1552        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1553                NULL: pmd_offset(pud, address);
1554}
1555#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1556
1557#if USE_SPLIT_PTE_PTLOCKS
1558#if ALLOC_SPLIT_PTLOCKS
1559void __init ptlock_cache_init(void);
1560extern bool ptlock_alloc(struct page *page);
1561extern void ptlock_free(struct page *page);
1562
1563static inline spinlock_t *ptlock_ptr(struct page *page)
1564{
1565        return page->ptl;
1566}
1567#else /* ALLOC_SPLIT_PTLOCKS */
1568static inline void ptlock_cache_init(void)
1569{
1570}
1571
1572static inline bool ptlock_alloc(struct page *page)
1573{
1574        return true;
1575}
1576
1577static inline void ptlock_free(struct page *page)
1578{
1579}
1580
1581static inline spinlock_t *ptlock_ptr(struct page *page)
1582{
1583        return &page->ptl;
1584}
1585#endif /* ALLOC_SPLIT_PTLOCKS */
1586
1587static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1588{
1589        return ptlock_ptr(pmd_page(*pmd));
1590}
1591
1592static inline bool ptlock_init(struct page *page)
1593{
1594        /*
1595         * prep_new_page() initialize page->private (and therefore page->ptl)
1596         * with 0. Make sure nobody took it in use in between.
1597         *
1598         * It can happen if arch try to use slab for page table allocation:
1599         * slab code uses page->slab_cache, which share storage with page->ptl.
1600         */
1601        VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1602        if (!ptlock_alloc(page))
1603                return false;
1604        spin_lock_init(ptlock_ptr(page));
1605        return true;
1606}
1607
1608/* Reset page->mapping so free_pages_check won't complain. */
1609static inline void pte_lock_deinit(struct page *page)
1610{
1611        page->mapping = NULL;
1612        ptlock_free(page);
1613}
1614
1615#else   /* !USE_SPLIT_PTE_PTLOCKS */
1616/*
1617 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1618 */
1619static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1620{
1621        return &mm->page_table_lock;
1622}
1623static inline void ptlock_cache_init(void) {}
1624static inline bool ptlock_init(struct page *page) { return true; }
1625static inline void pte_lock_deinit(struct page *page) {}
1626#endif /* USE_SPLIT_PTE_PTLOCKS */
1627
1628static inline void pgtable_init(void)
1629{
1630        ptlock_cache_init();
1631        pgtable_cache_init();
1632}
1633
1634static inline bool pgtable_page_ctor(struct page *page)
1635{
1636        if (!ptlock_init(page))
1637                return false;
1638        inc_zone_page_state(page, NR_PAGETABLE);
1639        return true;
1640}
1641
1642static inline void pgtable_page_dtor(struct page *page)
1643{
1644        pte_lock_deinit(page);
1645        dec_zone_page_state(page, NR_PAGETABLE);
1646}
1647
1648#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1649({                                                      \
1650        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1651        pte_t *__pte = pte_offset_map(pmd, address);    \
1652        *(ptlp) = __ptl;                                \
1653        spin_lock(__ptl);                               \
1654        __pte;                                          \
1655})
1656
1657#define pte_unmap_unlock(pte, ptl)      do {            \
1658        spin_unlock(ptl);                               \
1659        pte_unmap(pte);                                 \
1660} while (0)
1661
1662#define pte_alloc_map(mm, vma, pmd, address)                            \
1663        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1664                                                        pmd, address))? \
1665         NULL: pte_offset_map(pmd, address))
1666
1667#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1668        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1669                                                        pmd, address))? \
1670                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1671
1672#define pte_alloc_kernel(pmd, address)                  \
1673        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1674                NULL: pte_offset_kernel(pmd, address))
1675
1676#if USE_SPLIT_PMD_PTLOCKS
1677
1678static struct page *pmd_to_page(pmd_t *pmd)
1679{
1680        unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1681        return virt_to_page((void *)((unsigned long) pmd & mask));
1682}
1683
1684static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1685{
1686        return ptlock_ptr(pmd_to_page(pmd));
1687}
1688
1689static inline bool pgtable_pmd_page_ctor(struct page *page)
1690{
1691#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1692        page->pmd_huge_pte = NULL;
1693#endif
1694        return ptlock_init(page);
1695}
1696
1697static inline void pgtable_pmd_page_dtor(struct page *page)
1698{
1699#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1700        VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1701#endif
1702        ptlock_free(page);
1703}
1704
1705#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1706
1707#else
1708
1709static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1710{
1711        return &mm->page_table_lock;
1712}
1713
1714static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1715static inline void pgtable_pmd_page_dtor(struct page *page) {}
1716
1717#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1718
1719#endif
1720
1721static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1722{
1723        spinlock_t *ptl = pmd_lockptr(mm, pmd);
1724        spin_lock(ptl);
1725        return ptl;
1726}
1727
1728extern void free_area_init(unsigned long * zones_size);
1729extern void free_area_init_node(int nid, unsigned long * zones_size,
1730                unsigned long zone_start_pfn, unsigned long *zholes_size);
1731extern void free_initmem(void);
1732
1733/*
1734 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1735 * into the buddy system. The freed pages will be poisoned with pattern
1736 * "poison" if it's within range [0, UCHAR_MAX].
1737 * Return pages freed into the buddy system.
1738 */
1739extern unsigned long free_reserved_area(void *start, void *end,
1740                                        int poison, char *s);
1741
1742#ifdef  CONFIG_HIGHMEM
1743/*
1744 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1745 * and totalram_pages.
1746 */
1747extern void free_highmem_page(struct page *page);
1748#endif
1749
1750extern void adjust_managed_page_count(struct page *page, long count);
1751extern void mem_init_print_info(const char *str);
1752
1753extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1754
1755/* Free the reserved page into the buddy system, so it gets managed. */
1756static inline void __free_reserved_page(struct page *page)
1757{
1758        ClearPageReserved(page);
1759        init_page_count(page);
1760        __free_page(page);
1761}
1762
1763static inline void free_reserved_page(struct page *page)
1764{
1765        __free_reserved_page(page);
1766        adjust_managed_page_count(page, 1);
1767}
1768
1769static inline void mark_page_reserved(struct page *page)
1770{
1771        SetPageReserved(page);
1772        adjust_managed_page_count(page, -1);
1773}
1774
1775/*
1776 * Default method to free all the __init memory into the buddy system.
1777 * The freed pages will be poisoned with pattern "poison" if it's within
1778 * range [0, UCHAR_MAX].
1779 * Return pages freed into the buddy system.
1780 */
1781static inline unsigned long free_initmem_default(int poison)
1782{
1783        extern char __init_begin[], __init_end[];
1784
1785        return free_reserved_area(&__init_begin, &__init_end,
1786                                  poison, "unused kernel");
1787}
1788
1789static inline unsigned long get_num_physpages(void)
1790{
1791        int nid;
1792        unsigned long phys_pages = 0;
1793
1794        for_each_online_node(nid)
1795                phys_pages += node_present_pages(nid);
1796
1797        return phys_pages;
1798}
1799
1800#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1801/*
1802 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1803 * zones, allocate the backing mem_map and account for memory holes in a more
1804 * architecture independent manner. This is a substitute for creating the
1805 * zone_sizes[] and zholes_size[] arrays and passing them to
1806 * free_area_init_node()
1807 *
1808 * An architecture is expected to register range of page frames backed by
1809 * physical memory with memblock_add[_node]() before calling
1810 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1811 * usage, an architecture is expected to do something like
1812 *
1813 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1814 *                                                       max_highmem_pfn};
1815 * for_each_valid_physical_page_range()
1816 *      memblock_add_node(base, size, nid)
1817 * free_area_init_nodes(max_zone_pfns);
1818 *
1819 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1820 * registered physical page range.  Similarly
1821 * sparse_memory_present_with_active_regions() calls memory_present() for
1822 * each range when SPARSEMEM is enabled.
1823 *
1824 * See mm/page_alloc.c for more information on each function exposed by
1825 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1826 */
1827extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1828unsigned long node_map_pfn_alignment(void);
1829unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1830                                                unsigned long end_pfn);
1831extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1832                                                unsigned long end_pfn);
1833extern void get_pfn_range_for_nid(unsigned int nid,
1834                        unsigned long *start_pfn, unsigned long *end_pfn);
1835extern unsigned long find_min_pfn_with_active_regions(void);
1836extern void free_bootmem_with_active_regions(int nid,
1837                                                unsigned long max_low_pfn);
1838extern void sparse_memory_present_with_active_regions(int nid);
1839
1840#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1841
1842#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1843    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1844static inline int __early_pfn_to_nid(unsigned long pfn,
1845                                        struct mminit_pfnnid_cache *state)
1846{
1847        return 0;
1848}
1849#else
1850/* please see mm/page_alloc.c */
1851extern int __meminit early_pfn_to_nid(unsigned long pfn);
1852/* there is a per-arch backend function. */
1853extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1854                                        struct mminit_pfnnid_cache *state);
1855#endif
1856
1857extern void set_dma_reserve(unsigned long new_dma_reserve);
1858extern void memmap_init_zone(unsigned long, int, unsigned long,
1859                                unsigned long, enum memmap_context);
1860extern void setup_per_zone_wmarks(void);
1861extern int __meminit init_per_zone_wmark_min(void);
1862extern void mem_init(void);
1863extern void __init mmap_init(void);
1864extern void show_mem(unsigned int flags);
1865extern void si_meminfo(struct sysinfo * val);
1866extern void si_meminfo_node(struct sysinfo *val, int nid);
1867
1868extern __printf(3, 4)
1869void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1870                const char *fmt, ...);
1871
1872extern void setup_per_cpu_pageset(void);
1873
1874extern void zone_pcp_update(struct zone *zone);
1875extern void zone_pcp_reset(struct zone *zone);
1876
1877/* page_alloc.c */
1878extern int min_free_kbytes;
1879
1880/* nommu.c */
1881extern atomic_long_t mmap_pages_allocated;
1882extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1883
1884/* interval_tree.c */
1885void vma_interval_tree_insert(struct vm_area_struct *node,
1886                              struct rb_root *root);
1887void vma_interval_tree_insert_after(struct vm_area_struct *node,
1888                                    struct vm_area_struct *prev,
1889                                    struct rb_root *root);
1890void vma_interval_tree_remove(struct vm_area_struct *node,
1891                              struct rb_root *root);
1892struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1893                                unsigned long start, unsigned long last);
1894struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1895                                unsigned long start, unsigned long last);
1896
1897#define vma_interval_tree_foreach(vma, root, start, last)               \
1898        for (vma = vma_interval_tree_iter_first(root, start, last);     \
1899             vma; vma = vma_interval_tree_iter_next(vma, start, last))
1900
1901void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1902                                   struct rb_root *root);
1903void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1904                                   struct rb_root *root);
1905struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1906        struct rb_root *root, unsigned long start, unsigned long last);
1907struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1908        struct anon_vma_chain *node, unsigned long start, unsigned long last);
1909#ifdef CONFIG_DEBUG_VM_RB
1910void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1911#endif
1912
1913#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1914        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1915             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1916
1917/* mmap.c */
1918extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1919extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1920        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1921extern struct vm_area_struct *vma_merge(struct mm_struct *,
1922        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1923        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1924        struct mempolicy *, struct vm_userfaultfd_ctx);
1925extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1926extern int split_vma(struct mm_struct *,
1927        struct vm_area_struct *, unsigned long addr, int new_below);
1928extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1929extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1930        struct rb_node **, struct rb_node *);
1931extern void unlink_file_vma(struct vm_area_struct *);
1932extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1933        unsigned long addr, unsigned long len, pgoff_t pgoff,
1934        bool *need_rmap_locks);
1935extern void exit_mmap(struct mm_struct *);
1936
1937static inline int check_data_rlimit(unsigned long rlim,
1938                                    unsigned long new,
1939                                    unsigned long start,
1940                                    unsigned long end_data,
1941                                    unsigned long start_data)
1942{
1943        if (rlim < RLIM_INFINITY) {
1944                if (((new - start) + (end_data - start_data)) > rlim)
1945                        return -ENOSPC;
1946        }
1947
1948        return 0;
1949}
1950
1951extern int mm_take_all_locks(struct mm_struct *mm);
1952extern void mm_drop_all_locks(struct mm_struct *mm);
1953
1954extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1955extern struct file *get_mm_exe_file(struct mm_struct *mm);
1956
1957extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1958extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1959
1960extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1961                                   unsigned long addr, unsigned long len,
1962                                   unsigned long flags,
1963                                   const struct vm_special_mapping *spec);
1964/* This is an obsolete alternative to _install_special_mapping. */
1965extern int install_special_mapping(struct mm_struct *mm,
1966                                   unsigned long addr, unsigned long len,
1967                                   unsigned long flags, struct page **pages);
1968
1969extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1970
1971extern unsigned long mmap_region(struct file *file, unsigned long addr,
1972        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1973extern unsigned long do_mmap(struct file *file, unsigned long addr,
1974        unsigned long len, unsigned long prot, unsigned long flags,
1975        vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1976extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1977
1978static inline unsigned long
1979do_mmap_pgoff(struct file *file, unsigned long addr,
1980        unsigned long len, unsigned long prot, unsigned long flags,
1981        unsigned long pgoff, unsigned long *populate)
1982{
1983        return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1984}
1985
1986#ifdef CONFIG_MMU
1987extern int __mm_populate(unsigned long addr, unsigned long len,
1988                         int ignore_errors);
1989static inline void mm_populate(unsigned long addr, unsigned long len)
1990{
1991        /* Ignore errors */
1992        (void) __mm_populate(addr, len, 1);
1993}
1994#else
1995static inline void mm_populate(unsigned long addr, unsigned long len) {}
1996#endif
1997
1998/* These take the mm semaphore themselves */
1999extern unsigned long vm_brk(unsigned long, unsigned long);
2000extern int vm_munmap(unsigned long, size_t);
2001extern unsigned long vm_mmap(struct file *, unsigned long,
2002        unsigned long, unsigned long,
2003        unsigned long, unsigned long);
2004
2005struct vm_unmapped_area_info {
2006#define VM_UNMAPPED_AREA_TOPDOWN 1
2007        unsigned long flags;
2008        unsigned long length;
2009        unsigned long low_limit;
2010        unsigned long high_limit;
2011        unsigned long align_mask;
2012        unsigned long align_offset;
2013};
2014
2015extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2016extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2017
2018/*
2019 * Search for an unmapped address range.
2020 *
2021 * We are looking for a range that:
2022 * - does not intersect with any VMA;
2023 * - is contained within the [low_limit, high_limit) interval;
2024 * - is at least the desired size.
2025 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2026 */
2027static inline unsigned long
2028vm_unmapped_area(struct vm_unmapped_area_info *info)
2029{
2030        if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2031                return unmapped_area_topdown(info);
2032        else
2033                return unmapped_area(info);
2034}
2035
2036/* truncate.c */
2037extern void truncate_inode_pages(struct address_space *, loff_t);
2038extern void truncate_inode_pages_range(struct address_space *,
2039                                       loff_t lstart, loff_t lend);
2040extern void truncate_inode_pages_final(struct address_space *);
2041
2042/* generic vm_area_ops exported for stackable file systems */
2043extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2044extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2045extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2046
2047/* mm/page-writeback.c */
2048int write_one_page(struct page *page, int wait);
2049void task_dirty_inc(struct task_struct *tsk);
2050
2051/* readahead.c */
2052#define VM_MAX_READAHEAD        128     /* kbytes */
2053#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
2054
2055int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2056                        pgoff_t offset, unsigned long nr_to_read);
2057
2058void page_cache_sync_readahead(struct address_space *mapping,
2059                               struct file_ra_state *ra,
2060                               struct file *filp,
2061                               pgoff_t offset,
2062                               unsigned long size);
2063
2064void page_cache_async_readahead(struct address_space *mapping,
2065                                struct file_ra_state *ra,
2066                                struct file *filp,
2067                                struct page *pg,
2068                                pgoff_t offset,
2069                                unsigned long size);
2070
2071/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2072extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2073
2074/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2075extern int expand_downwards(struct vm_area_struct *vma,
2076                unsigned long address);
2077#if VM_GROWSUP
2078extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2079#else
2080  #define expand_upwards(vma, address) (0)
2081#endif
2082
2083/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2084extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2085extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2086                                             struct vm_area_struct **pprev);
2087
2088/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2089   NULL if none.  Assume start_addr < end_addr. */
2090static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2091{
2092        struct vm_area_struct * vma = find_vma(mm,start_addr);
2093
2094        if (vma && end_addr <= vma->vm_start)
2095                vma = NULL;
2096        return vma;
2097}
2098
2099static inline unsigned long vma_pages(struct vm_area_struct *vma)
2100{
2101        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2102}
2103
2104/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2105static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2106                                unsigned long vm_start, unsigned long vm_end)
2107{
2108        struct vm_area_struct *vma = find_vma(mm, vm_start);
2109
2110        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2111                vma = NULL;
2112
2113        return vma;
2114}
2115
2116#ifdef CONFIG_MMU
2117pgprot_t vm_get_page_prot(unsigned long vm_flags);
2118void vma_set_page_prot(struct vm_area_struct *vma);
2119#else
2120static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2121{
2122        return __pgprot(0);
2123}
2124static inline void vma_set_page_prot(struct vm_area_struct *vma)
2125{
2126        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2127}
2128#endif
2129
2130#ifdef CONFIG_NUMA_BALANCING
2131unsigned long change_prot_numa(struct vm_area_struct *vma,
2132                        unsigned long start, unsigned long end);
2133#endif
2134
2135struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2136int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2137                        unsigned long pfn, unsigned long size, pgprot_t);
2138int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2139int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2140                        unsigned long pfn);
2141int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2142                        pfn_t pfn);
2143int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2144
2145
2146struct page *follow_page_mask(struct vm_area_struct *vma,
2147                              unsigned long address, unsigned int foll_flags,
2148                              unsigned int *page_mask);
2149
2150static inline struct page *follow_page(struct vm_area_struct *vma,
2151                unsigned long address, unsigned int foll_flags)
2152{
2153        unsigned int unused_page_mask;
2154        return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2155}
2156
2157#define FOLL_WRITE      0x01    /* check pte is writable */
2158#define FOLL_TOUCH      0x02    /* mark page accessed */
2159#define FOLL_GET        0x04    /* do get_page on page */
2160#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2161#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2162#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2163                                 * and return without waiting upon it */
2164#define FOLL_POPULATE   0x40    /* fault in page */
2165#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2166#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2167#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2168#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2169#define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2170#define FOLL_MLOCK      0x1000  /* lock present pages */
2171
2172typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2173                        void *data);
2174extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2175                               unsigned long size, pte_fn_t fn, void *data);
2176
2177
2178#ifdef CONFIG_DEBUG_PAGEALLOC
2179extern bool _debug_pagealloc_enabled;
2180extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2181
2182static inline bool debug_pagealloc_enabled(void)
2183{
2184        return _debug_pagealloc_enabled;
2185}
2186
2187static inline void
2188kernel_map_pages(struct page *page, int numpages, int enable)
2189{
2190        if (!debug_pagealloc_enabled())
2191                return;
2192
2193        __kernel_map_pages(page, numpages, enable);
2194}
2195#ifdef CONFIG_HIBERNATION
2196extern bool kernel_page_present(struct page *page);
2197#endif /* CONFIG_HIBERNATION */
2198#else
2199static inline void
2200kernel_map_pages(struct page *page, int numpages, int enable) {}
2201#ifdef CONFIG_HIBERNATION
2202static inline bool kernel_page_present(struct page *page) { return true; }
2203#endif /* CONFIG_HIBERNATION */
2204#endif
2205
2206#ifdef __HAVE_ARCH_GATE_AREA
2207extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2208extern int in_gate_area_no_mm(unsigned long addr);
2209extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2210#else
2211static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2212{
2213        return NULL;
2214}
2215static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2216static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2217{
2218        return 0;
2219}
2220#endif  /* __HAVE_ARCH_GATE_AREA */
2221
2222#ifdef CONFIG_SYSCTL
2223extern int sysctl_drop_caches;
2224int drop_caches_sysctl_handler(struct ctl_table *, int,
2225                                        void __user *, size_t *, loff_t *);
2226#endif
2227
2228void drop_slab(void);
2229void drop_slab_node(int nid);
2230
2231#ifndef CONFIG_MMU
2232#define randomize_va_space 0
2233#else
2234extern int randomize_va_space;
2235#endif
2236
2237const char * arch_vma_name(struct vm_area_struct *vma);
2238void print_vma_addr(char *prefix, unsigned long rip);
2239
2240void sparse_mem_maps_populate_node(struct page **map_map,
2241                                   unsigned long pnum_begin,
2242                                   unsigned long pnum_end,
2243                                   unsigned long map_count,
2244                                   int nodeid);
2245
2246struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2247pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2248pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2249pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2250pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2251void *vmemmap_alloc_block(unsigned long size, int node);
2252struct vmem_altmap;
2253void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2254                struct vmem_altmap *altmap);
2255static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2256{
2257        return __vmemmap_alloc_block_buf(size, node, NULL);
2258}
2259
2260void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2261int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2262                               int node);
2263int vmemmap_populate(unsigned long start, unsigned long end, int node);
2264void vmemmap_populate_print_last(void);
2265#ifdef CONFIG_MEMORY_HOTPLUG
2266void vmemmap_free(unsigned long start, unsigned long end);
2267#endif
2268void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2269                                  unsigned long size);
2270
2271enum mf_flags {
2272        MF_COUNT_INCREASED = 1 << 0,
2273        MF_ACTION_REQUIRED = 1 << 1,
2274        MF_MUST_KILL = 1 << 2,
2275        MF_SOFT_OFFLINE = 1 << 3,
2276};
2277extern int memory_failure(unsigned long pfn, int trapno, int flags);
2278extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2279extern int unpoison_memory(unsigned long pfn);
2280extern int get_hwpoison_page(struct page *page);
2281#define put_hwpoison_page(page) put_page(page)
2282extern int sysctl_memory_failure_early_kill;
2283extern int sysctl_memory_failure_recovery;
2284extern void shake_page(struct page *p, int access);
2285extern atomic_long_t num_poisoned_pages;
2286extern int soft_offline_page(struct page *page, int flags);
2287
2288
2289/*
2290 * Error handlers for various types of pages.
2291 */
2292enum mf_result {
2293        MF_IGNORED,     /* Error: cannot be handled */
2294        MF_FAILED,      /* Error: handling failed */
2295        MF_DELAYED,     /* Will be handled later */
2296        MF_RECOVERED,   /* Successfully recovered */
2297};
2298
2299enum mf_action_page_type {
2300        MF_MSG_KERNEL,
2301        MF_MSG_KERNEL_HIGH_ORDER,
2302        MF_MSG_SLAB,
2303        MF_MSG_DIFFERENT_COMPOUND,
2304        MF_MSG_POISONED_HUGE,
2305        MF_MSG_HUGE,
2306        MF_MSG_FREE_HUGE,
2307        MF_MSG_UNMAP_FAILED,
2308        MF_MSG_DIRTY_SWAPCACHE,
2309        MF_MSG_CLEAN_SWAPCACHE,
2310        MF_MSG_DIRTY_MLOCKED_LRU,
2311        MF_MSG_CLEAN_MLOCKED_LRU,
2312        MF_MSG_DIRTY_UNEVICTABLE_LRU,
2313        MF_MSG_CLEAN_UNEVICTABLE_LRU,
2314        MF_MSG_DIRTY_LRU,
2315        MF_MSG_CLEAN_LRU,
2316        MF_MSG_TRUNCATED_LRU,
2317        MF_MSG_BUDDY,
2318        MF_MSG_BUDDY_2ND,
2319        MF_MSG_UNKNOWN,
2320};
2321
2322#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2323extern void clear_huge_page(struct page *page,
2324                            unsigned long addr,
2325                            unsigned int pages_per_huge_page);
2326extern void copy_user_huge_page(struct page *dst, struct page *src,
2327                                unsigned long addr, struct vm_area_struct *vma,
2328                                unsigned int pages_per_huge_page);
2329#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2330
2331extern struct page_ext_operations debug_guardpage_ops;
2332extern struct page_ext_operations page_poisoning_ops;
2333
2334#ifdef CONFIG_DEBUG_PAGEALLOC
2335extern unsigned int _debug_guardpage_minorder;
2336extern bool _debug_guardpage_enabled;
2337
2338static inline unsigned int debug_guardpage_minorder(void)
2339{
2340        return _debug_guardpage_minorder;
2341}
2342
2343static inline bool debug_guardpage_enabled(void)
2344{
2345        return _debug_guardpage_enabled;
2346}
2347
2348static inline bool page_is_guard(struct page *page)
2349{
2350        struct page_ext *page_ext;
2351
2352        if (!debug_guardpage_enabled())
2353                return false;
2354
2355        page_ext = lookup_page_ext(page);
2356        return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2357}
2358#else
2359static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2360static inline bool debug_guardpage_enabled(void) { return false; }
2361static inline bool page_is_guard(struct page *page) { return false; }
2362#endif /* CONFIG_DEBUG_PAGEALLOC */
2363
2364#if MAX_NUMNODES > 1
2365void __init setup_nr_node_ids(void);
2366#else
2367static inline void setup_nr_node_ids(void) {}
2368#endif
2369
2370#endif /* __KERNEL__ */
2371#endif /* _LINUX_MM_H */
2372