linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  21 *
  22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  24 * Papers:
  25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  27 *
  28 * For detailed explanation of Read-Copy Update mechanism see -
  29 *              http://lse.sourceforge.net/locking/rcupdate.html
  30 *
  31 */
  32
  33#ifndef __LINUX_RCUPDATE_H
  34#define __LINUX_RCUPDATE_H
  35
  36#include <linux/types.h>
  37#include <linux/cache.h>
  38#include <linux/spinlock.h>
  39#include <linux/threads.h>
  40#include <linux/cpumask.h>
  41#include <linux/seqlock.h>
  42#include <linux/lockdep.h>
  43#include <linux/completion.h>
  44#include <linux/debugobjects.h>
  45#include <linux/bug.h>
  46#include <linux/compiler.h>
  47#include <linux/ktime.h>
  48
  49#include <asm/barrier.h>
  50
  51#ifndef CONFIG_TINY_RCU
  52extern int rcu_expedited; /* for sysctl */
  53extern int rcu_normal;    /* also for sysctl */
  54#endif /* #ifndef CONFIG_TINY_RCU */
  55
  56#ifdef CONFIG_TINY_RCU
  57/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
  58static inline bool rcu_gp_is_normal(void)  /* Internal RCU use. */
  59{
  60        return true;
  61}
  62static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
  63{
  64        return false;
  65}
  66
  67static inline void rcu_expedite_gp(void)
  68{
  69}
  70
  71static inline void rcu_unexpedite_gp(void)
  72{
  73}
  74#else /* #ifdef CONFIG_TINY_RCU */
  75bool rcu_gp_is_normal(void);     /* Internal RCU use. */
  76bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
  77void rcu_expedite_gp(void);
  78void rcu_unexpedite_gp(void);
  79#endif /* #else #ifdef CONFIG_TINY_RCU */
  80
  81enum rcutorture_type {
  82        RCU_FLAVOR,
  83        RCU_BH_FLAVOR,
  84        RCU_SCHED_FLAVOR,
  85        RCU_TASKS_FLAVOR,
  86        SRCU_FLAVOR,
  87        INVALID_RCU_FLAVOR
  88};
  89
  90#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
  91void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  92                            unsigned long *gpnum, unsigned long *completed);
  93void rcutorture_record_test_transition(void);
  94void rcutorture_record_progress(unsigned long vernum);
  95void do_trace_rcu_torture_read(const char *rcutorturename,
  96                               struct rcu_head *rhp,
  97                               unsigned long secs,
  98                               unsigned long c_old,
  99                               unsigned long c);
 100#else
 101static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
 102                                          int *flags,
 103                                          unsigned long *gpnum,
 104                                          unsigned long *completed)
 105{
 106        *flags = 0;
 107        *gpnum = 0;
 108        *completed = 0;
 109}
 110static inline void rcutorture_record_test_transition(void)
 111{
 112}
 113static inline void rcutorture_record_progress(unsigned long vernum)
 114{
 115}
 116#ifdef CONFIG_RCU_TRACE
 117void do_trace_rcu_torture_read(const char *rcutorturename,
 118                               struct rcu_head *rhp,
 119                               unsigned long secs,
 120                               unsigned long c_old,
 121                               unsigned long c);
 122#else
 123#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 124        do { } while (0)
 125#endif
 126#endif
 127
 128#define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
 129#define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
 130#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
 131#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
 132#define ulong2long(a)           (*(long *)(&(a)))
 133
 134/* Exported common interfaces */
 135
 136#ifdef CONFIG_PREEMPT_RCU
 137
 138/**
 139 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 140 * @head: structure to be used for queueing the RCU updates.
 141 * @func: actual callback function to be invoked after the grace period
 142 *
 143 * The callback function will be invoked some time after a full grace
 144 * period elapses, in other words after all pre-existing RCU read-side
 145 * critical sections have completed.  However, the callback function
 146 * might well execute concurrently with RCU read-side critical sections
 147 * that started after call_rcu() was invoked.  RCU read-side critical
 148 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 149 * and may be nested.
 150 *
 151 * Note that all CPUs must agree that the grace period extended beyond
 152 * all pre-existing RCU read-side critical section.  On systems with more
 153 * than one CPU, this means that when "func()" is invoked, each CPU is
 154 * guaranteed to have executed a full memory barrier since the end of its
 155 * last RCU read-side critical section whose beginning preceded the call
 156 * to call_rcu().  It also means that each CPU executing an RCU read-side
 157 * critical section that continues beyond the start of "func()" must have
 158 * executed a memory barrier after the call_rcu() but before the beginning
 159 * of that RCU read-side critical section.  Note that these guarantees
 160 * include CPUs that are offline, idle, or executing in user mode, as
 161 * well as CPUs that are executing in the kernel.
 162 *
 163 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 164 * resulting RCU callback function "func()", then both CPU A and CPU B are
 165 * guaranteed to execute a full memory barrier during the time interval
 166 * between the call to call_rcu() and the invocation of "func()" -- even
 167 * if CPU A and CPU B are the same CPU (but again only if the system has
 168 * more than one CPU).
 169 */
 170void call_rcu(struct rcu_head *head,
 171              rcu_callback_t func);
 172
 173#else /* #ifdef CONFIG_PREEMPT_RCU */
 174
 175/* In classic RCU, call_rcu() is just call_rcu_sched(). */
 176#define call_rcu        call_rcu_sched
 177
 178#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 179
 180/**
 181 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 182 * @head: structure to be used for queueing the RCU updates.
 183 * @func: actual callback function to be invoked after the grace period
 184 *
 185 * The callback function will be invoked some time after a full grace
 186 * period elapses, in other words after all currently executing RCU
 187 * read-side critical sections have completed. call_rcu_bh() assumes
 188 * that the read-side critical sections end on completion of a softirq
 189 * handler. This means that read-side critical sections in process
 190 * context must not be interrupted by softirqs. This interface is to be
 191 * used when most of the read-side critical sections are in softirq context.
 192 * RCU read-side critical sections are delimited by :
 193 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 194 *  OR
 195 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 196 *  These may be nested.
 197 *
 198 * See the description of call_rcu() for more detailed information on
 199 * memory ordering guarantees.
 200 */
 201void call_rcu_bh(struct rcu_head *head,
 202                 rcu_callback_t func);
 203
 204/**
 205 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 206 * @head: structure to be used for queueing the RCU updates.
 207 * @func: actual callback function to be invoked after the grace period
 208 *
 209 * The callback function will be invoked some time after a full grace
 210 * period elapses, in other words after all currently executing RCU
 211 * read-side critical sections have completed. call_rcu_sched() assumes
 212 * that the read-side critical sections end on enabling of preemption
 213 * or on voluntary preemption.
 214 * RCU read-side critical sections are delimited by :
 215 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 216 *  OR
 217 *  anything that disables preemption.
 218 *  These may be nested.
 219 *
 220 * See the description of call_rcu() for more detailed information on
 221 * memory ordering guarantees.
 222 */
 223void call_rcu_sched(struct rcu_head *head,
 224                    rcu_callback_t func);
 225
 226void synchronize_sched(void);
 227
 228/*
 229 * Structure allowing asynchronous waiting on RCU.
 230 */
 231struct rcu_synchronize {
 232        struct rcu_head head;
 233        struct completion completion;
 234};
 235void wakeme_after_rcu(struct rcu_head *head);
 236
 237void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 238                   struct rcu_synchronize *rs_array);
 239
 240#define _wait_rcu_gp(checktiny, ...) \
 241do {                                                                    \
 242        call_rcu_func_t __crcu_array[] = { __VA_ARGS__ };               \
 243        struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)];    \
 244        __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array),              \
 245                        __crcu_array, __rs_array);                      \
 246} while (0)
 247
 248#define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
 249
 250/**
 251 * synchronize_rcu_mult - Wait concurrently for multiple grace periods
 252 * @...: List of call_rcu() functions for the flavors to wait on.
 253 *
 254 * This macro waits concurrently for multiple flavors of RCU grace periods.
 255 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
 256 * on concurrent RCU and RCU-bh grace periods.  Waiting on a give SRCU
 257 * domain requires you to write a wrapper function for that SRCU domain's
 258 * call_srcu() function, supplying the corresponding srcu_struct.
 259 *
 260 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
 261 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
 262 * is automatically a grace period.
 263 */
 264#define synchronize_rcu_mult(...) \
 265        _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
 266
 267/**
 268 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 269 * @head: structure to be used for queueing the RCU updates.
 270 * @func: actual callback function to be invoked after the grace period
 271 *
 272 * The callback function will be invoked some time after a full grace
 273 * period elapses, in other words after all currently executing RCU
 274 * read-side critical sections have completed. call_rcu_tasks() assumes
 275 * that the read-side critical sections end at a voluntary context
 276 * switch (not a preemption!), entry into idle, or transition to usermode
 277 * execution.  As such, there are no read-side primitives analogous to
 278 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
 279 * to determine that all tasks have passed through a safe state, not so
 280 * much for data-strcuture synchronization.
 281 *
 282 * See the description of call_rcu() for more detailed information on
 283 * memory ordering guarantees.
 284 */
 285void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 286void synchronize_rcu_tasks(void);
 287void rcu_barrier_tasks(void);
 288
 289#ifdef CONFIG_PREEMPT_RCU
 290
 291void __rcu_read_lock(void);
 292void __rcu_read_unlock(void);
 293void rcu_read_unlock_special(struct task_struct *t);
 294void synchronize_rcu(void);
 295
 296/*
 297 * Defined as a macro as it is a very low level header included from
 298 * areas that don't even know about current.  This gives the rcu_read_lock()
 299 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 300 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 301 */
 302#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
 303
 304#else /* #ifdef CONFIG_PREEMPT_RCU */
 305
 306static inline void __rcu_read_lock(void)
 307{
 308        if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
 309                preempt_disable();
 310}
 311
 312static inline void __rcu_read_unlock(void)
 313{
 314        if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
 315                preempt_enable();
 316}
 317
 318static inline void synchronize_rcu(void)
 319{
 320        synchronize_sched();
 321}
 322
 323static inline int rcu_preempt_depth(void)
 324{
 325        return 0;
 326}
 327
 328#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 329
 330/* Internal to kernel */
 331void rcu_init(void);
 332void rcu_sched_qs(void);
 333void rcu_bh_qs(void);
 334void rcu_check_callbacks(int user);
 335struct notifier_block;
 336int rcu_cpu_notify(struct notifier_block *self,
 337                   unsigned long action, void *hcpu);
 338
 339#ifndef CONFIG_TINY_RCU
 340void rcu_end_inkernel_boot(void);
 341#else /* #ifndef CONFIG_TINY_RCU */
 342static inline void rcu_end_inkernel_boot(void) { }
 343#endif /* #ifndef CONFIG_TINY_RCU */
 344
 345#ifdef CONFIG_RCU_STALL_COMMON
 346void rcu_sysrq_start(void);
 347void rcu_sysrq_end(void);
 348#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 349static inline void rcu_sysrq_start(void)
 350{
 351}
 352static inline void rcu_sysrq_end(void)
 353{
 354}
 355#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 356
 357#ifdef CONFIG_NO_HZ_FULL
 358void rcu_user_enter(void);
 359void rcu_user_exit(void);
 360#else
 361static inline void rcu_user_enter(void) { }
 362static inline void rcu_user_exit(void) { }
 363static inline void rcu_user_hooks_switch(struct task_struct *prev,
 364                                         struct task_struct *next) { }
 365#endif /* CONFIG_NO_HZ_FULL */
 366
 367#ifdef CONFIG_RCU_NOCB_CPU
 368void rcu_init_nohz(void);
 369#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 370static inline void rcu_init_nohz(void)
 371{
 372}
 373#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 374
 375/**
 376 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 377 * @a: Code that RCU needs to pay attention to.
 378 *
 379 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 380 * in the inner idle loop, that is, between the rcu_idle_enter() and
 381 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 382 * critical sections.  However, things like powertop need tracepoints
 383 * in the inner idle loop.
 384 *
 385 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 386 * will tell RCU that it needs to pay attending, invoke its argument
 387 * (in this example, a call to the do_something_with_RCU() function),
 388 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 389 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
 390 * quite limited.  If deeper nesting is required, it will be necessary
 391 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
 392 */
 393#define RCU_NONIDLE(a) \
 394        do { \
 395                rcu_irq_enter_irqson(); \
 396                do { a; } while (0); \
 397                rcu_irq_exit_irqson(); \
 398        } while (0)
 399
 400/*
 401 * Note a voluntary context switch for RCU-tasks benefit.  This is a
 402 * macro rather than an inline function to avoid #include hell.
 403 */
 404#ifdef CONFIG_TASKS_RCU
 405#define TASKS_RCU(x) x
 406extern struct srcu_struct tasks_rcu_exit_srcu;
 407#define rcu_note_voluntary_context_switch(t) \
 408        do { \
 409                rcu_all_qs(); \
 410                if (READ_ONCE((t)->rcu_tasks_holdout)) \
 411                        WRITE_ONCE((t)->rcu_tasks_holdout, false); \
 412        } while (0)
 413#else /* #ifdef CONFIG_TASKS_RCU */
 414#define TASKS_RCU(x) do { } while (0)
 415#define rcu_note_voluntary_context_switch(t)    rcu_all_qs()
 416#endif /* #else #ifdef CONFIG_TASKS_RCU */
 417
 418/**
 419 * cond_resched_rcu_qs - Report potential quiescent states to RCU
 420 *
 421 * This macro resembles cond_resched(), except that it is defined to
 422 * report potential quiescent states to RCU-tasks even if the cond_resched()
 423 * machinery were to be shut off, as some advocate for PREEMPT kernels.
 424 */
 425#define cond_resched_rcu_qs() \
 426do { \
 427        if (!cond_resched()) \
 428                rcu_note_voluntary_context_switch(current); \
 429} while (0)
 430
 431#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
 432bool __rcu_is_watching(void);
 433#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
 434
 435/*
 436 * Infrastructure to implement the synchronize_() primitives in
 437 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 438 */
 439
 440#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
 441#include <linux/rcutree.h>
 442#elif defined(CONFIG_TINY_RCU)
 443#include <linux/rcutiny.h>
 444#else
 445#error "Unknown RCU implementation specified to kernel configuration"
 446#endif
 447
 448/*
 449 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 450 * initialization and destruction of rcu_head on the stack. rcu_head structures
 451 * allocated dynamically in the heap or defined statically don't need any
 452 * initialization.
 453 */
 454#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 455void init_rcu_head(struct rcu_head *head);
 456void destroy_rcu_head(struct rcu_head *head);
 457void init_rcu_head_on_stack(struct rcu_head *head);
 458void destroy_rcu_head_on_stack(struct rcu_head *head);
 459#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 460static inline void init_rcu_head(struct rcu_head *head)
 461{
 462}
 463
 464static inline void destroy_rcu_head(struct rcu_head *head)
 465{
 466}
 467
 468static inline void init_rcu_head_on_stack(struct rcu_head *head)
 469{
 470}
 471
 472static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
 473{
 474}
 475#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 476
 477#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 478bool rcu_lockdep_current_cpu_online(void);
 479#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 480static inline bool rcu_lockdep_current_cpu_online(void)
 481{
 482        return true;
 483}
 484#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 485
 486#ifdef CONFIG_DEBUG_LOCK_ALLOC
 487
 488static inline void rcu_lock_acquire(struct lockdep_map *map)
 489{
 490        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 491}
 492
 493static inline void rcu_lock_release(struct lockdep_map *map)
 494{
 495        lock_release(map, 1, _THIS_IP_);
 496}
 497
 498extern struct lockdep_map rcu_lock_map;
 499extern struct lockdep_map rcu_bh_lock_map;
 500extern struct lockdep_map rcu_sched_lock_map;
 501extern struct lockdep_map rcu_callback_map;
 502int debug_lockdep_rcu_enabled(void);
 503
 504int rcu_read_lock_held(void);
 505int rcu_read_lock_bh_held(void);
 506
 507/**
 508 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 509 *
 510 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 511 * RCU-sched read-side critical section.  In absence of
 512 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 513 * critical section unless it can prove otherwise.
 514 */
 515#ifdef CONFIG_PREEMPT_COUNT
 516int rcu_read_lock_sched_held(void);
 517#else /* #ifdef CONFIG_PREEMPT_COUNT */
 518static inline int rcu_read_lock_sched_held(void)
 519{
 520        return 1;
 521}
 522#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 523
 524#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 525
 526# define rcu_lock_acquire(a)            do { } while (0)
 527# define rcu_lock_release(a)            do { } while (0)
 528
 529static inline int rcu_read_lock_held(void)
 530{
 531        return 1;
 532}
 533
 534static inline int rcu_read_lock_bh_held(void)
 535{
 536        return 1;
 537}
 538
 539#ifdef CONFIG_PREEMPT_COUNT
 540static inline int rcu_read_lock_sched_held(void)
 541{
 542        return preempt_count() != 0 || irqs_disabled();
 543}
 544#else /* #ifdef CONFIG_PREEMPT_COUNT */
 545static inline int rcu_read_lock_sched_held(void)
 546{
 547        return 1;
 548}
 549#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 550
 551#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 552
 553#ifdef CONFIG_PROVE_RCU
 554
 555/**
 556 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 557 * @c: condition to check
 558 * @s: informative message
 559 */
 560#define RCU_LOCKDEP_WARN(c, s)                                          \
 561        do {                                                            \
 562                static bool __section(.data.unlikely) __warned;         \
 563                if (debug_lockdep_rcu_enabled() && !__warned && (c)) {  \
 564                        __warned = true;                                \
 565                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 566                }                                                       \
 567        } while (0)
 568
 569#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 570static inline void rcu_preempt_sleep_check(void)
 571{
 572        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 573                         "Illegal context switch in RCU read-side critical section");
 574}
 575#else /* #ifdef CONFIG_PROVE_RCU */
 576static inline void rcu_preempt_sleep_check(void)
 577{
 578}
 579#endif /* #else #ifdef CONFIG_PROVE_RCU */
 580
 581#define rcu_sleep_check()                                               \
 582        do {                                                            \
 583                rcu_preempt_sleep_check();                              \
 584                RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
 585                                 "Illegal context switch in RCU-bh read-side critical section"); \
 586                RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 587                                 "Illegal context switch in RCU-sched read-side critical section"); \
 588        } while (0)
 589
 590#else /* #ifdef CONFIG_PROVE_RCU */
 591
 592#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
 593#define rcu_sleep_check() do { } while (0)
 594
 595#endif /* #else #ifdef CONFIG_PROVE_RCU */
 596
 597/*
 598 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 599 * and rcu_assign_pointer().  Some of these could be folded into their
 600 * callers, but they are left separate in order to ease introduction of
 601 * multiple flavors of pointers to match the multiple flavors of RCU
 602 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 603 * the future.
 604 */
 605
 606#ifdef __CHECKER__
 607#define rcu_dereference_sparse(p, space) \
 608        ((void)(((typeof(*p) space *)p) == p))
 609#else /* #ifdef __CHECKER__ */
 610#define rcu_dereference_sparse(p, space)
 611#endif /* #else #ifdef __CHECKER__ */
 612
 613#define __rcu_access_pointer(p, space) \
 614({ \
 615        typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 616        rcu_dereference_sparse(p, space); \
 617        ((typeof(*p) __force __kernel *)(_________p1)); \
 618})
 619#define __rcu_dereference_check(p, c, space) \
 620({ \
 621        /* Dependency order vs. p above. */ \
 622        typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
 623        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 624        rcu_dereference_sparse(p, space); \
 625        ((typeof(*p) __force __kernel *)(________p1)); \
 626})
 627#define __rcu_dereference_protected(p, c, space) \
 628({ \
 629        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 630        rcu_dereference_sparse(p, space); \
 631        ((typeof(*p) __force __kernel *)(p)); \
 632})
 633
 634/**
 635 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 636 * @v: The value to statically initialize with.
 637 */
 638#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 639
 640/**
 641 * rcu_assign_pointer() - assign to RCU-protected pointer
 642 * @p: pointer to assign to
 643 * @v: value to assign (publish)
 644 *
 645 * Assigns the specified value to the specified RCU-protected
 646 * pointer, ensuring that any concurrent RCU readers will see
 647 * any prior initialization.
 648 *
 649 * Inserts memory barriers on architectures that require them
 650 * (which is most of them), and also prevents the compiler from
 651 * reordering the code that initializes the structure after the pointer
 652 * assignment.  More importantly, this call documents which pointers
 653 * will be dereferenced by RCU read-side code.
 654 *
 655 * In some special cases, you may use RCU_INIT_POINTER() instead
 656 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 657 * to the fact that it does not constrain either the CPU or the compiler.
 658 * That said, using RCU_INIT_POINTER() when you should have used
 659 * rcu_assign_pointer() is a very bad thing that results in
 660 * impossible-to-diagnose memory corruption.  So please be careful.
 661 * See the RCU_INIT_POINTER() comment header for details.
 662 *
 663 * Note that rcu_assign_pointer() evaluates each of its arguments only
 664 * once, appearances notwithstanding.  One of the "extra" evaluations
 665 * is in typeof() and the other visible only to sparse (__CHECKER__),
 666 * neither of which actually execute the argument.  As with most cpp
 667 * macros, this execute-arguments-only-once property is important, so
 668 * please be careful when making changes to rcu_assign_pointer() and the
 669 * other macros that it invokes.
 670 */
 671#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
 672
 673/**
 674 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 675 * @p: The pointer to read
 676 *
 677 * Return the value of the specified RCU-protected pointer, but omit the
 678 * smp_read_barrier_depends() and keep the READ_ONCE().  This is useful
 679 * when the value of this pointer is accessed, but the pointer is not
 680 * dereferenced, for example, when testing an RCU-protected pointer against
 681 * NULL.  Although rcu_access_pointer() may also be used in cases where
 682 * update-side locks prevent the value of the pointer from changing, you
 683 * should instead use rcu_dereference_protected() for this use case.
 684 *
 685 * It is also permissible to use rcu_access_pointer() when read-side
 686 * access to the pointer was removed at least one grace period ago, as
 687 * is the case in the context of the RCU callback that is freeing up
 688 * the data, or after a synchronize_rcu() returns.  This can be useful
 689 * when tearing down multi-linked structures after a grace period
 690 * has elapsed.
 691 */
 692#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 693
 694/**
 695 * rcu_dereference_check() - rcu_dereference with debug checking
 696 * @p: The pointer to read, prior to dereferencing
 697 * @c: The conditions under which the dereference will take place
 698 *
 699 * Do an rcu_dereference(), but check that the conditions under which the
 700 * dereference will take place are correct.  Typically the conditions
 701 * indicate the various locking conditions that should be held at that
 702 * point.  The check should return true if the conditions are satisfied.
 703 * An implicit check for being in an RCU read-side critical section
 704 * (rcu_read_lock()) is included.
 705 *
 706 * For example:
 707 *
 708 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 709 *
 710 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 711 * if either rcu_read_lock() is held, or that the lock required to replace
 712 * the bar struct at foo->bar is held.
 713 *
 714 * Note that the list of conditions may also include indications of when a lock
 715 * need not be held, for example during initialisation or destruction of the
 716 * target struct:
 717 *
 718 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 719 *                                            atomic_read(&foo->usage) == 0);
 720 *
 721 * Inserts memory barriers on architectures that require them
 722 * (currently only the Alpha), prevents the compiler from refetching
 723 * (and from merging fetches), and, more importantly, documents exactly
 724 * which pointers are protected by RCU and checks that the pointer is
 725 * annotated as __rcu.
 726 */
 727#define rcu_dereference_check(p, c) \
 728        __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 729
 730/**
 731 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 732 * @p: The pointer to read, prior to dereferencing
 733 * @c: The conditions under which the dereference will take place
 734 *
 735 * This is the RCU-bh counterpart to rcu_dereference_check().
 736 */
 737#define rcu_dereference_bh_check(p, c) \
 738        __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 739
 740/**
 741 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 742 * @p: The pointer to read, prior to dereferencing
 743 * @c: The conditions under which the dereference will take place
 744 *
 745 * This is the RCU-sched counterpart to rcu_dereference_check().
 746 */
 747#define rcu_dereference_sched_check(p, c) \
 748        __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 749                                __rcu)
 750
 751#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
 752
 753/*
 754 * The tracing infrastructure traces RCU (we want that), but unfortunately
 755 * some of the RCU checks causes tracing to lock up the system.
 756 *
 757 * The no-tracing version of rcu_dereference_raw() must not call
 758 * rcu_read_lock_held().
 759 */
 760#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
 761
 762/**
 763 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 764 * @p: The pointer to read, prior to dereferencing
 765 * @c: The conditions under which the dereference will take place
 766 *
 767 * Return the value of the specified RCU-protected pointer, but omit
 768 * both the smp_read_barrier_depends() and the READ_ONCE().  This
 769 * is useful in cases where update-side locks prevent the value of the
 770 * pointer from changing.  Please note that this primitive does -not-
 771 * prevent the compiler from repeating this reference or combining it
 772 * with other references, so it should not be used without protection
 773 * of appropriate locks.
 774 *
 775 * This function is only for update-side use.  Using this function
 776 * when protected only by rcu_read_lock() will result in infrequent
 777 * but very ugly failures.
 778 */
 779#define rcu_dereference_protected(p, c) \
 780        __rcu_dereference_protected((p), (c), __rcu)
 781
 782
 783/**
 784 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 785 * @p: The pointer to read, prior to dereferencing
 786 *
 787 * This is a simple wrapper around rcu_dereference_check().
 788 */
 789#define rcu_dereference(p) rcu_dereference_check(p, 0)
 790
 791/**
 792 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 793 * @p: The pointer to read, prior to dereferencing
 794 *
 795 * Makes rcu_dereference_check() do the dirty work.
 796 */
 797#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 798
 799/**
 800 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 801 * @p: The pointer to read, prior to dereferencing
 802 *
 803 * Makes rcu_dereference_check() do the dirty work.
 804 */
 805#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 806
 807/**
 808 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 809 * @p: The pointer to hand off
 810 *
 811 * This is simply an identity function, but it documents where a pointer
 812 * is handed off from RCU to some other synchronization mechanism, for
 813 * example, reference counting or locking.  In C11, it would map to
 814 * kill_dependency().  It could be used as follows:
 815 *
 816 *      rcu_read_lock();
 817 *      p = rcu_dereference(gp);
 818 *      long_lived = is_long_lived(p);
 819 *      if (long_lived) {
 820 *              if (!atomic_inc_not_zero(p->refcnt))
 821 *                      long_lived = false;
 822 *              else
 823 *                      p = rcu_pointer_handoff(p);
 824 *      }
 825 *      rcu_read_unlock();
 826 */
 827#define rcu_pointer_handoff(p) (p)
 828
 829/**
 830 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 831 *
 832 * When synchronize_rcu() is invoked on one CPU while other CPUs
 833 * are within RCU read-side critical sections, then the
 834 * synchronize_rcu() is guaranteed to block until after all the other
 835 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 836 * on one CPU while other CPUs are within RCU read-side critical
 837 * sections, invocation of the corresponding RCU callback is deferred
 838 * until after the all the other CPUs exit their critical sections.
 839 *
 840 * Note, however, that RCU callbacks are permitted to run concurrently
 841 * with new RCU read-side critical sections.  One way that this can happen
 842 * is via the following sequence of events: (1) CPU 0 enters an RCU
 843 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 844 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 845 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 846 * callback is invoked.  This is legal, because the RCU read-side critical
 847 * section that was running concurrently with the call_rcu() (and which
 848 * therefore might be referencing something that the corresponding RCU
 849 * callback would free up) has completed before the corresponding
 850 * RCU callback is invoked.
 851 *
 852 * RCU read-side critical sections may be nested.  Any deferred actions
 853 * will be deferred until the outermost RCU read-side critical section
 854 * completes.
 855 *
 856 * You can avoid reading and understanding the next paragraph by
 857 * following this rule: don't put anything in an rcu_read_lock() RCU
 858 * read-side critical section that would block in a !PREEMPT kernel.
 859 * But if you want the full story, read on!
 860 *
 861 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 862 * it is illegal to block while in an RCU read-side critical section.
 863 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
 864 * kernel builds, RCU read-side critical sections may be preempted,
 865 * but explicit blocking is illegal.  Finally, in preemptible RCU
 866 * implementations in real-time (with -rt patchset) kernel builds, RCU
 867 * read-side critical sections may be preempted and they may also block, but
 868 * only when acquiring spinlocks that are subject to priority inheritance.
 869 */
 870static inline void rcu_read_lock(void)
 871{
 872        __rcu_read_lock();
 873        __acquire(RCU);
 874        rcu_lock_acquire(&rcu_lock_map);
 875        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 876                         "rcu_read_lock() used illegally while idle");
 877}
 878
 879/*
 880 * So where is rcu_write_lock()?  It does not exist, as there is no
 881 * way for writers to lock out RCU readers.  This is a feature, not
 882 * a bug -- this property is what provides RCU's performance benefits.
 883 * Of course, writers must coordinate with each other.  The normal
 884 * spinlock primitives work well for this, but any other technique may be
 885 * used as well.  RCU does not care how the writers keep out of each
 886 * others' way, as long as they do so.
 887 */
 888
 889/**
 890 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 891 *
 892 * In most situations, rcu_read_unlock() is immune from deadlock.
 893 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 894 * is responsible for deboosting, which it does via rt_mutex_unlock().
 895 * Unfortunately, this function acquires the scheduler's runqueue and
 896 * priority-inheritance spinlocks.  This means that deadlock could result
 897 * if the caller of rcu_read_unlock() already holds one of these locks or
 898 * any lock that is ever acquired while holding them; or any lock which
 899 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
 900 * does not disable irqs while taking ->wait_lock.
 901 *
 902 * That said, RCU readers are never priority boosted unless they were
 903 * preempted.  Therefore, one way to avoid deadlock is to make sure
 904 * that preemption never happens within any RCU read-side critical
 905 * section whose outermost rcu_read_unlock() is called with one of
 906 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 907 * a number of ways, for example, by invoking preempt_disable() before
 908 * critical section's outermost rcu_read_lock().
 909 *
 910 * Given that the set of locks acquired by rt_mutex_unlock() might change
 911 * at any time, a somewhat more future-proofed approach is to make sure
 912 * that that preemption never happens within any RCU read-side critical
 913 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 914 * This approach relies on the fact that rt_mutex_unlock() currently only
 915 * acquires irq-disabled locks.
 916 *
 917 * The second of these two approaches is best in most situations,
 918 * however, the first approach can also be useful, at least to those
 919 * developers willing to keep abreast of the set of locks acquired by
 920 * rt_mutex_unlock().
 921 *
 922 * See rcu_read_lock() for more information.
 923 */
 924static inline void rcu_read_unlock(void)
 925{
 926        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 927                         "rcu_read_unlock() used illegally while idle");
 928        __release(RCU);
 929        __rcu_read_unlock();
 930        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 931}
 932
 933/**
 934 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 935 *
 936 * This is equivalent of rcu_read_lock(), but to be used when updates
 937 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 938 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 939 * softirq handler to be a quiescent state, a process in RCU read-side
 940 * critical section must be protected by disabling softirqs. Read-side
 941 * critical sections in interrupt context can use just rcu_read_lock(),
 942 * though this should at least be commented to avoid confusing people
 943 * reading the code.
 944 *
 945 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 946 * must occur in the same context, for example, it is illegal to invoke
 947 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 948 * was invoked from some other task.
 949 */
 950static inline void rcu_read_lock_bh(void)
 951{
 952        local_bh_disable();
 953        __acquire(RCU_BH);
 954        rcu_lock_acquire(&rcu_bh_lock_map);
 955        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 956                         "rcu_read_lock_bh() used illegally while idle");
 957}
 958
 959/*
 960 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 961 *
 962 * See rcu_read_lock_bh() for more information.
 963 */
 964static inline void rcu_read_unlock_bh(void)
 965{
 966        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 967                         "rcu_read_unlock_bh() used illegally while idle");
 968        rcu_lock_release(&rcu_bh_lock_map);
 969        __release(RCU_BH);
 970        local_bh_enable();
 971}
 972
 973/**
 974 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 975 *
 976 * This is equivalent of rcu_read_lock(), but to be used when updates
 977 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 978 * Read-side critical sections can also be introduced by anything that
 979 * disables preemption, including local_irq_disable() and friends.
 980 *
 981 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 982 * must occur in the same context, for example, it is illegal to invoke
 983 * rcu_read_unlock_sched() from process context if the matching
 984 * rcu_read_lock_sched() was invoked from an NMI handler.
 985 */
 986static inline void rcu_read_lock_sched(void)
 987{
 988        preempt_disable();
 989        __acquire(RCU_SCHED);
 990        rcu_lock_acquire(&rcu_sched_lock_map);
 991        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 992                         "rcu_read_lock_sched() used illegally while idle");
 993}
 994
 995/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 996static inline notrace void rcu_read_lock_sched_notrace(void)
 997{
 998        preempt_disable_notrace();
 999        __acquire(RCU_SCHED);
1000}
1001
1002/*
1003 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1004 *
1005 * See rcu_read_lock_sched for more information.
1006 */
1007static inline void rcu_read_unlock_sched(void)
1008{
1009        RCU_LOCKDEP_WARN(!rcu_is_watching(),
1010                         "rcu_read_unlock_sched() used illegally while idle");
1011        rcu_lock_release(&rcu_sched_lock_map);
1012        __release(RCU_SCHED);
1013        preempt_enable();
1014}
1015
1016/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1017static inline notrace void rcu_read_unlock_sched_notrace(void)
1018{
1019        __release(RCU_SCHED);
1020        preempt_enable_notrace();
1021}
1022
1023/**
1024 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1025 *
1026 * Initialize an RCU-protected pointer in special cases where readers
1027 * do not need ordering constraints on the CPU or the compiler.  These
1028 * special cases are:
1029 *
1030 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1031 * 2.   The caller has taken whatever steps are required to prevent
1032 *      RCU readers from concurrently accessing this pointer -or-
1033 * 3.   The referenced data structure has already been exposed to
1034 *      readers either at compile time or via rcu_assign_pointer() -and-
1035 *      a.      You have not made -any- reader-visible changes to
1036 *              this structure since then -or-
1037 *      b.      It is OK for readers accessing this structure from its
1038 *              new location to see the old state of the structure.  (For
1039 *              example, the changes were to statistical counters or to
1040 *              other state where exact synchronization is not required.)
1041 *
1042 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1043 * result in impossible-to-diagnose memory corruption.  As in the structures
1044 * will look OK in crash dumps, but any concurrent RCU readers might
1045 * see pre-initialized values of the referenced data structure.  So
1046 * please be very careful how you use RCU_INIT_POINTER()!!!
1047 *
1048 * If you are creating an RCU-protected linked structure that is accessed
1049 * by a single external-to-structure RCU-protected pointer, then you may
1050 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1051 * pointers, but you must use rcu_assign_pointer() to initialize the
1052 * external-to-structure pointer -after- you have completely initialized
1053 * the reader-accessible portions of the linked structure.
1054 *
1055 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1056 * ordering guarantees for either the CPU or the compiler.
1057 */
1058#define RCU_INIT_POINTER(p, v) \
1059        do { \
1060                rcu_dereference_sparse(p, __rcu); \
1061                WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1062        } while (0)
1063
1064/**
1065 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1066 *
1067 * GCC-style initialization for an RCU-protected pointer in a structure field.
1068 */
1069#define RCU_POINTER_INITIALIZER(p, v) \
1070                .p = RCU_INITIALIZER(v)
1071
1072/*
1073 * Does the specified offset indicate that the corresponding rcu_head
1074 * structure can be handled by kfree_rcu()?
1075 */
1076#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1077
1078/*
1079 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1080 */
1081#define __kfree_rcu(head, offset) \
1082        do { \
1083                BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1084                kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1085        } while (0)
1086
1087/**
1088 * kfree_rcu() - kfree an object after a grace period.
1089 * @ptr:        pointer to kfree
1090 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
1091 *
1092 * Many rcu callbacks functions just call kfree() on the base structure.
1093 * These functions are trivial, but their size adds up, and furthermore
1094 * when they are used in a kernel module, that module must invoke the
1095 * high-latency rcu_barrier() function at module-unload time.
1096 *
1097 * The kfree_rcu() function handles this issue.  Rather than encoding a
1098 * function address in the embedded rcu_head structure, kfree_rcu() instead
1099 * encodes the offset of the rcu_head structure within the base structure.
1100 * Because the functions are not allowed in the low-order 4096 bytes of
1101 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1102 * If the offset is larger than 4095 bytes, a compile-time error will
1103 * be generated in __kfree_rcu().  If this error is triggered, you can
1104 * either fall back to use of call_rcu() or rearrange the structure to
1105 * position the rcu_head structure into the first 4096 bytes.
1106 *
1107 * Note that the allowable offset might decrease in the future, for example,
1108 * to allow something like kmem_cache_free_rcu().
1109 *
1110 * The BUILD_BUG_ON check must not involve any function calls, hence the
1111 * checks are done in macros here.
1112 */
1113#define kfree_rcu(ptr, rcu_head)                                        \
1114        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1115
1116#ifdef CONFIG_TINY_RCU
1117static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1118{
1119        *nextevt = KTIME_MAX;
1120        return 0;
1121}
1122#endif /* #ifdef CONFIG_TINY_RCU */
1123
1124#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1125static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1126#elif defined(CONFIG_RCU_NOCB_CPU)
1127bool rcu_is_nocb_cpu(int cpu);
1128#else
1129static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1130#endif
1131
1132
1133/* Only for use by adaptive-ticks code. */
1134#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1135bool rcu_sys_is_idle(void);
1136void rcu_sysidle_force_exit(void);
1137#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1138
1139static inline bool rcu_sys_is_idle(void)
1140{
1141        return false;
1142}
1143
1144static inline void rcu_sysidle_force_exit(void)
1145{
1146}
1147
1148#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1149
1150
1151#endif /* __LINUX_RCUPDATE_H */
1152