1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/bug.h> 46#include <linux/compiler.h> 47#include <linux/ktime.h> 48 49#include <asm/barrier.h> 50 51#ifndef CONFIG_TINY_RCU 52extern int rcu_expedited; /* for sysctl */ 53extern int rcu_normal; /* also for sysctl */ 54#endif /* #ifndef CONFIG_TINY_RCU */ 55 56#ifdef CONFIG_TINY_RCU 57/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ 58static inline bool rcu_gp_is_normal(void) /* Internal RCU use. */ 59{ 60 return true; 61} 62static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */ 63{ 64 return false; 65} 66 67static inline void rcu_expedite_gp(void) 68{ 69} 70 71static inline void rcu_unexpedite_gp(void) 72{ 73} 74#else /* #ifdef CONFIG_TINY_RCU */ 75bool rcu_gp_is_normal(void); /* Internal RCU use. */ 76bool rcu_gp_is_expedited(void); /* Internal RCU use. */ 77void rcu_expedite_gp(void); 78void rcu_unexpedite_gp(void); 79#endif /* #else #ifdef CONFIG_TINY_RCU */ 80 81enum rcutorture_type { 82 RCU_FLAVOR, 83 RCU_BH_FLAVOR, 84 RCU_SCHED_FLAVOR, 85 RCU_TASKS_FLAVOR, 86 SRCU_FLAVOR, 87 INVALID_RCU_FLAVOR 88}; 89 90#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 91void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 92 unsigned long *gpnum, unsigned long *completed); 93void rcutorture_record_test_transition(void); 94void rcutorture_record_progress(unsigned long vernum); 95void do_trace_rcu_torture_read(const char *rcutorturename, 96 struct rcu_head *rhp, 97 unsigned long secs, 98 unsigned long c_old, 99 unsigned long c); 100#else 101static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 102 int *flags, 103 unsigned long *gpnum, 104 unsigned long *completed) 105{ 106 *flags = 0; 107 *gpnum = 0; 108 *completed = 0; 109} 110static inline void rcutorture_record_test_transition(void) 111{ 112} 113static inline void rcutorture_record_progress(unsigned long vernum) 114{ 115} 116#ifdef CONFIG_RCU_TRACE 117void do_trace_rcu_torture_read(const char *rcutorturename, 118 struct rcu_head *rhp, 119 unsigned long secs, 120 unsigned long c_old, 121 unsigned long c); 122#else 123#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 124 do { } while (0) 125#endif 126#endif 127 128#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 129#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 130#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 131#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 132#define ulong2long(a) (*(long *)(&(a))) 133 134/* Exported common interfaces */ 135 136#ifdef CONFIG_PREEMPT_RCU 137 138/** 139 * call_rcu() - Queue an RCU callback for invocation after a grace period. 140 * @head: structure to be used for queueing the RCU updates. 141 * @func: actual callback function to be invoked after the grace period 142 * 143 * The callback function will be invoked some time after a full grace 144 * period elapses, in other words after all pre-existing RCU read-side 145 * critical sections have completed. However, the callback function 146 * might well execute concurrently with RCU read-side critical sections 147 * that started after call_rcu() was invoked. RCU read-side critical 148 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 149 * and may be nested. 150 * 151 * Note that all CPUs must agree that the grace period extended beyond 152 * all pre-existing RCU read-side critical section. On systems with more 153 * than one CPU, this means that when "func()" is invoked, each CPU is 154 * guaranteed to have executed a full memory barrier since the end of its 155 * last RCU read-side critical section whose beginning preceded the call 156 * to call_rcu(). It also means that each CPU executing an RCU read-side 157 * critical section that continues beyond the start of "func()" must have 158 * executed a memory barrier after the call_rcu() but before the beginning 159 * of that RCU read-side critical section. Note that these guarantees 160 * include CPUs that are offline, idle, or executing in user mode, as 161 * well as CPUs that are executing in the kernel. 162 * 163 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 164 * resulting RCU callback function "func()", then both CPU A and CPU B are 165 * guaranteed to execute a full memory barrier during the time interval 166 * between the call to call_rcu() and the invocation of "func()" -- even 167 * if CPU A and CPU B are the same CPU (but again only if the system has 168 * more than one CPU). 169 */ 170void call_rcu(struct rcu_head *head, 171 rcu_callback_t func); 172 173#else /* #ifdef CONFIG_PREEMPT_RCU */ 174 175/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 176#define call_rcu call_rcu_sched 177 178#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 179 180/** 181 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 182 * @head: structure to be used for queueing the RCU updates. 183 * @func: actual callback function to be invoked after the grace period 184 * 185 * The callback function will be invoked some time after a full grace 186 * period elapses, in other words after all currently executing RCU 187 * read-side critical sections have completed. call_rcu_bh() assumes 188 * that the read-side critical sections end on completion of a softirq 189 * handler. This means that read-side critical sections in process 190 * context must not be interrupted by softirqs. This interface is to be 191 * used when most of the read-side critical sections are in softirq context. 192 * RCU read-side critical sections are delimited by : 193 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 194 * OR 195 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 196 * These may be nested. 197 * 198 * See the description of call_rcu() for more detailed information on 199 * memory ordering guarantees. 200 */ 201void call_rcu_bh(struct rcu_head *head, 202 rcu_callback_t func); 203 204/** 205 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 206 * @head: structure to be used for queueing the RCU updates. 207 * @func: actual callback function to be invoked after the grace period 208 * 209 * The callback function will be invoked some time after a full grace 210 * period elapses, in other words after all currently executing RCU 211 * read-side critical sections have completed. call_rcu_sched() assumes 212 * that the read-side critical sections end on enabling of preemption 213 * or on voluntary preemption. 214 * RCU read-side critical sections are delimited by : 215 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 216 * OR 217 * anything that disables preemption. 218 * These may be nested. 219 * 220 * See the description of call_rcu() for more detailed information on 221 * memory ordering guarantees. 222 */ 223void call_rcu_sched(struct rcu_head *head, 224 rcu_callback_t func); 225 226void synchronize_sched(void); 227 228/* 229 * Structure allowing asynchronous waiting on RCU. 230 */ 231struct rcu_synchronize { 232 struct rcu_head head; 233 struct completion completion; 234}; 235void wakeme_after_rcu(struct rcu_head *head); 236 237void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 238 struct rcu_synchronize *rs_array); 239 240#define _wait_rcu_gp(checktiny, ...) \ 241do { \ 242 call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \ 243 struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)]; \ 244 __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array), \ 245 __crcu_array, __rs_array); \ 246} while (0) 247 248#define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__) 249 250/** 251 * synchronize_rcu_mult - Wait concurrently for multiple grace periods 252 * @...: List of call_rcu() functions for the flavors to wait on. 253 * 254 * This macro waits concurrently for multiple flavors of RCU grace periods. 255 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait 256 * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU 257 * domain requires you to write a wrapper function for that SRCU domain's 258 * call_srcu() function, supplying the corresponding srcu_struct. 259 * 260 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU 261 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called 262 * is automatically a grace period. 263 */ 264#define synchronize_rcu_mult(...) \ 265 _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__) 266 267/** 268 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 269 * @head: structure to be used for queueing the RCU updates. 270 * @func: actual callback function to be invoked after the grace period 271 * 272 * The callback function will be invoked some time after a full grace 273 * period elapses, in other words after all currently executing RCU 274 * read-side critical sections have completed. call_rcu_tasks() assumes 275 * that the read-side critical sections end at a voluntary context 276 * switch (not a preemption!), entry into idle, or transition to usermode 277 * execution. As such, there are no read-side primitives analogous to 278 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended 279 * to determine that all tasks have passed through a safe state, not so 280 * much for data-strcuture synchronization. 281 * 282 * See the description of call_rcu() for more detailed information on 283 * memory ordering guarantees. 284 */ 285void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 286void synchronize_rcu_tasks(void); 287void rcu_barrier_tasks(void); 288 289#ifdef CONFIG_PREEMPT_RCU 290 291void __rcu_read_lock(void); 292void __rcu_read_unlock(void); 293void rcu_read_unlock_special(struct task_struct *t); 294void synchronize_rcu(void); 295 296/* 297 * Defined as a macro as it is a very low level header included from 298 * areas that don't even know about current. This gives the rcu_read_lock() 299 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 300 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 301 */ 302#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 303 304#else /* #ifdef CONFIG_PREEMPT_RCU */ 305 306static inline void __rcu_read_lock(void) 307{ 308 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 309 preempt_disable(); 310} 311 312static inline void __rcu_read_unlock(void) 313{ 314 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 315 preempt_enable(); 316} 317 318static inline void synchronize_rcu(void) 319{ 320 synchronize_sched(); 321} 322 323static inline int rcu_preempt_depth(void) 324{ 325 return 0; 326} 327 328#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 329 330/* Internal to kernel */ 331void rcu_init(void); 332void rcu_sched_qs(void); 333void rcu_bh_qs(void); 334void rcu_check_callbacks(int user); 335struct notifier_block; 336int rcu_cpu_notify(struct notifier_block *self, 337 unsigned long action, void *hcpu); 338 339#ifndef CONFIG_TINY_RCU 340void rcu_end_inkernel_boot(void); 341#else /* #ifndef CONFIG_TINY_RCU */ 342static inline void rcu_end_inkernel_boot(void) { } 343#endif /* #ifndef CONFIG_TINY_RCU */ 344 345#ifdef CONFIG_RCU_STALL_COMMON 346void rcu_sysrq_start(void); 347void rcu_sysrq_end(void); 348#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 349static inline void rcu_sysrq_start(void) 350{ 351} 352static inline void rcu_sysrq_end(void) 353{ 354} 355#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 356 357#ifdef CONFIG_NO_HZ_FULL 358void rcu_user_enter(void); 359void rcu_user_exit(void); 360#else 361static inline void rcu_user_enter(void) { } 362static inline void rcu_user_exit(void) { } 363static inline void rcu_user_hooks_switch(struct task_struct *prev, 364 struct task_struct *next) { } 365#endif /* CONFIG_NO_HZ_FULL */ 366 367#ifdef CONFIG_RCU_NOCB_CPU 368void rcu_init_nohz(void); 369#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 370static inline void rcu_init_nohz(void) 371{ 372} 373#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 374 375/** 376 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 377 * @a: Code that RCU needs to pay attention to. 378 * 379 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 380 * in the inner idle loop, that is, between the rcu_idle_enter() and 381 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 382 * critical sections. However, things like powertop need tracepoints 383 * in the inner idle loop. 384 * 385 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 386 * will tell RCU that it needs to pay attending, invoke its argument 387 * (in this example, a call to the do_something_with_RCU() function), 388 * and then tell RCU to go back to ignoring this CPU. It is permissible 389 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 390 * quite limited. If deeper nesting is required, it will be necessary 391 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 392 */ 393#define RCU_NONIDLE(a) \ 394 do { \ 395 rcu_irq_enter_irqson(); \ 396 do { a; } while (0); \ 397 rcu_irq_exit_irqson(); \ 398 } while (0) 399 400/* 401 * Note a voluntary context switch for RCU-tasks benefit. This is a 402 * macro rather than an inline function to avoid #include hell. 403 */ 404#ifdef CONFIG_TASKS_RCU 405#define TASKS_RCU(x) x 406extern struct srcu_struct tasks_rcu_exit_srcu; 407#define rcu_note_voluntary_context_switch(t) \ 408 do { \ 409 rcu_all_qs(); \ 410 if (READ_ONCE((t)->rcu_tasks_holdout)) \ 411 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 412 } while (0) 413#else /* #ifdef CONFIG_TASKS_RCU */ 414#define TASKS_RCU(x) do { } while (0) 415#define rcu_note_voluntary_context_switch(t) rcu_all_qs() 416#endif /* #else #ifdef CONFIG_TASKS_RCU */ 417 418/** 419 * cond_resched_rcu_qs - Report potential quiescent states to RCU 420 * 421 * This macro resembles cond_resched(), except that it is defined to 422 * report potential quiescent states to RCU-tasks even if the cond_resched() 423 * machinery were to be shut off, as some advocate for PREEMPT kernels. 424 */ 425#define cond_resched_rcu_qs() \ 426do { \ 427 if (!cond_resched()) \ 428 rcu_note_voluntary_context_switch(current); \ 429} while (0) 430 431#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) 432bool __rcu_is_watching(void); 433#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */ 434 435/* 436 * Infrastructure to implement the synchronize_() primitives in 437 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 438 */ 439 440#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 441#include <linux/rcutree.h> 442#elif defined(CONFIG_TINY_RCU) 443#include <linux/rcutiny.h> 444#else 445#error "Unknown RCU implementation specified to kernel configuration" 446#endif 447 448/* 449 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 450 * initialization and destruction of rcu_head on the stack. rcu_head structures 451 * allocated dynamically in the heap or defined statically don't need any 452 * initialization. 453 */ 454#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 455void init_rcu_head(struct rcu_head *head); 456void destroy_rcu_head(struct rcu_head *head); 457void init_rcu_head_on_stack(struct rcu_head *head); 458void destroy_rcu_head_on_stack(struct rcu_head *head); 459#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 460static inline void init_rcu_head(struct rcu_head *head) 461{ 462} 463 464static inline void destroy_rcu_head(struct rcu_head *head) 465{ 466} 467 468static inline void init_rcu_head_on_stack(struct rcu_head *head) 469{ 470} 471 472static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 473{ 474} 475#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 476 477#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 478bool rcu_lockdep_current_cpu_online(void); 479#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 480static inline bool rcu_lockdep_current_cpu_online(void) 481{ 482 return true; 483} 484#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 485 486#ifdef CONFIG_DEBUG_LOCK_ALLOC 487 488static inline void rcu_lock_acquire(struct lockdep_map *map) 489{ 490 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 491} 492 493static inline void rcu_lock_release(struct lockdep_map *map) 494{ 495 lock_release(map, 1, _THIS_IP_); 496} 497 498extern struct lockdep_map rcu_lock_map; 499extern struct lockdep_map rcu_bh_lock_map; 500extern struct lockdep_map rcu_sched_lock_map; 501extern struct lockdep_map rcu_callback_map; 502int debug_lockdep_rcu_enabled(void); 503 504int rcu_read_lock_held(void); 505int rcu_read_lock_bh_held(void); 506 507/** 508 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 509 * 510 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 511 * RCU-sched read-side critical section. In absence of 512 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 513 * critical section unless it can prove otherwise. 514 */ 515#ifdef CONFIG_PREEMPT_COUNT 516int rcu_read_lock_sched_held(void); 517#else /* #ifdef CONFIG_PREEMPT_COUNT */ 518static inline int rcu_read_lock_sched_held(void) 519{ 520 return 1; 521} 522#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 523 524#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 525 526# define rcu_lock_acquire(a) do { } while (0) 527# define rcu_lock_release(a) do { } while (0) 528 529static inline int rcu_read_lock_held(void) 530{ 531 return 1; 532} 533 534static inline int rcu_read_lock_bh_held(void) 535{ 536 return 1; 537} 538 539#ifdef CONFIG_PREEMPT_COUNT 540static inline int rcu_read_lock_sched_held(void) 541{ 542 return preempt_count() != 0 || irqs_disabled(); 543} 544#else /* #ifdef CONFIG_PREEMPT_COUNT */ 545static inline int rcu_read_lock_sched_held(void) 546{ 547 return 1; 548} 549#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 550 551#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 552 553#ifdef CONFIG_PROVE_RCU 554 555/** 556 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 557 * @c: condition to check 558 * @s: informative message 559 */ 560#define RCU_LOCKDEP_WARN(c, s) \ 561 do { \ 562 static bool __section(.data.unlikely) __warned; \ 563 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 564 __warned = true; \ 565 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 566 } \ 567 } while (0) 568 569#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 570static inline void rcu_preempt_sleep_check(void) 571{ 572 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 573 "Illegal context switch in RCU read-side critical section"); 574} 575#else /* #ifdef CONFIG_PROVE_RCU */ 576static inline void rcu_preempt_sleep_check(void) 577{ 578} 579#endif /* #else #ifdef CONFIG_PROVE_RCU */ 580 581#define rcu_sleep_check() \ 582 do { \ 583 rcu_preempt_sleep_check(); \ 584 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 585 "Illegal context switch in RCU-bh read-side critical section"); \ 586 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 587 "Illegal context switch in RCU-sched read-side critical section"); \ 588 } while (0) 589 590#else /* #ifdef CONFIG_PROVE_RCU */ 591 592#define RCU_LOCKDEP_WARN(c, s) do { } while (0) 593#define rcu_sleep_check() do { } while (0) 594 595#endif /* #else #ifdef CONFIG_PROVE_RCU */ 596 597/* 598 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 599 * and rcu_assign_pointer(). Some of these could be folded into their 600 * callers, but they are left separate in order to ease introduction of 601 * multiple flavors of pointers to match the multiple flavors of RCU 602 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 603 * the future. 604 */ 605 606#ifdef __CHECKER__ 607#define rcu_dereference_sparse(p, space) \ 608 ((void)(((typeof(*p) space *)p) == p)) 609#else /* #ifdef __CHECKER__ */ 610#define rcu_dereference_sparse(p, space) 611#endif /* #else #ifdef __CHECKER__ */ 612 613#define __rcu_access_pointer(p, space) \ 614({ \ 615 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 616 rcu_dereference_sparse(p, space); \ 617 ((typeof(*p) __force __kernel *)(_________p1)); \ 618}) 619#define __rcu_dereference_check(p, c, space) \ 620({ \ 621 /* Dependency order vs. p above. */ \ 622 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \ 623 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 624 rcu_dereference_sparse(p, space); \ 625 ((typeof(*p) __force __kernel *)(________p1)); \ 626}) 627#define __rcu_dereference_protected(p, c, space) \ 628({ \ 629 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 630 rcu_dereference_sparse(p, space); \ 631 ((typeof(*p) __force __kernel *)(p)); \ 632}) 633 634/** 635 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 636 * @v: The value to statically initialize with. 637 */ 638#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 639 640/** 641 * rcu_assign_pointer() - assign to RCU-protected pointer 642 * @p: pointer to assign to 643 * @v: value to assign (publish) 644 * 645 * Assigns the specified value to the specified RCU-protected 646 * pointer, ensuring that any concurrent RCU readers will see 647 * any prior initialization. 648 * 649 * Inserts memory barriers on architectures that require them 650 * (which is most of them), and also prevents the compiler from 651 * reordering the code that initializes the structure after the pointer 652 * assignment. More importantly, this call documents which pointers 653 * will be dereferenced by RCU read-side code. 654 * 655 * In some special cases, you may use RCU_INIT_POINTER() instead 656 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 657 * to the fact that it does not constrain either the CPU or the compiler. 658 * That said, using RCU_INIT_POINTER() when you should have used 659 * rcu_assign_pointer() is a very bad thing that results in 660 * impossible-to-diagnose memory corruption. So please be careful. 661 * See the RCU_INIT_POINTER() comment header for details. 662 * 663 * Note that rcu_assign_pointer() evaluates each of its arguments only 664 * once, appearances notwithstanding. One of the "extra" evaluations 665 * is in typeof() and the other visible only to sparse (__CHECKER__), 666 * neither of which actually execute the argument. As with most cpp 667 * macros, this execute-arguments-only-once property is important, so 668 * please be careful when making changes to rcu_assign_pointer() and the 669 * other macros that it invokes. 670 */ 671#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v)) 672 673/** 674 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 675 * @p: The pointer to read 676 * 677 * Return the value of the specified RCU-protected pointer, but omit the 678 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful 679 * when the value of this pointer is accessed, but the pointer is not 680 * dereferenced, for example, when testing an RCU-protected pointer against 681 * NULL. Although rcu_access_pointer() may also be used in cases where 682 * update-side locks prevent the value of the pointer from changing, you 683 * should instead use rcu_dereference_protected() for this use case. 684 * 685 * It is also permissible to use rcu_access_pointer() when read-side 686 * access to the pointer was removed at least one grace period ago, as 687 * is the case in the context of the RCU callback that is freeing up 688 * the data, or after a synchronize_rcu() returns. This can be useful 689 * when tearing down multi-linked structures after a grace period 690 * has elapsed. 691 */ 692#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 693 694/** 695 * rcu_dereference_check() - rcu_dereference with debug checking 696 * @p: The pointer to read, prior to dereferencing 697 * @c: The conditions under which the dereference will take place 698 * 699 * Do an rcu_dereference(), but check that the conditions under which the 700 * dereference will take place are correct. Typically the conditions 701 * indicate the various locking conditions that should be held at that 702 * point. The check should return true if the conditions are satisfied. 703 * An implicit check for being in an RCU read-side critical section 704 * (rcu_read_lock()) is included. 705 * 706 * For example: 707 * 708 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 709 * 710 * could be used to indicate to lockdep that foo->bar may only be dereferenced 711 * if either rcu_read_lock() is held, or that the lock required to replace 712 * the bar struct at foo->bar is held. 713 * 714 * Note that the list of conditions may also include indications of when a lock 715 * need not be held, for example during initialisation or destruction of the 716 * target struct: 717 * 718 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 719 * atomic_read(&foo->usage) == 0); 720 * 721 * Inserts memory barriers on architectures that require them 722 * (currently only the Alpha), prevents the compiler from refetching 723 * (and from merging fetches), and, more importantly, documents exactly 724 * which pointers are protected by RCU and checks that the pointer is 725 * annotated as __rcu. 726 */ 727#define rcu_dereference_check(p, c) \ 728 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 729 730/** 731 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 732 * @p: The pointer to read, prior to dereferencing 733 * @c: The conditions under which the dereference will take place 734 * 735 * This is the RCU-bh counterpart to rcu_dereference_check(). 736 */ 737#define rcu_dereference_bh_check(p, c) \ 738 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 739 740/** 741 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 742 * @p: The pointer to read, prior to dereferencing 743 * @c: The conditions under which the dereference will take place 744 * 745 * This is the RCU-sched counterpart to rcu_dereference_check(). 746 */ 747#define rcu_dereference_sched_check(p, c) \ 748 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 749 __rcu) 750 751#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 752 753/* 754 * The tracing infrastructure traces RCU (we want that), but unfortunately 755 * some of the RCU checks causes tracing to lock up the system. 756 * 757 * The no-tracing version of rcu_dereference_raw() must not call 758 * rcu_read_lock_held(). 759 */ 760#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 761 762/** 763 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 764 * @p: The pointer to read, prior to dereferencing 765 * @c: The conditions under which the dereference will take place 766 * 767 * Return the value of the specified RCU-protected pointer, but omit 768 * both the smp_read_barrier_depends() and the READ_ONCE(). This 769 * is useful in cases where update-side locks prevent the value of the 770 * pointer from changing. Please note that this primitive does -not- 771 * prevent the compiler from repeating this reference or combining it 772 * with other references, so it should not be used without protection 773 * of appropriate locks. 774 * 775 * This function is only for update-side use. Using this function 776 * when protected only by rcu_read_lock() will result in infrequent 777 * but very ugly failures. 778 */ 779#define rcu_dereference_protected(p, c) \ 780 __rcu_dereference_protected((p), (c), __rcu) 781 782 783/** 784 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 785 * @p: The pointer to read, prior to dereferencing 786 * 787 * This is a simple wrapper around rcu_dereference_check(). 788 */ 789#define rcu_dereference(p) rcu_dereference_check(p, 0) 790 791/** 792 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 793 * @p: The pointer to read, prior to dereferencing 794 * 795 * Makes rcu_dereference_check() do the dirty work. 796 */ 797#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 798 799/** 800 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 801 * @p: The pointer to read, prior to dereferencing 802 * 803 * Makes rcu_dereference_check() do the dirty work. 804 */ 805#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 806 807/** 808 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 809 * @p: The pointer to hand off 810 * 811 * This is simply an identity function, but it documents where a pointer 812 * is handed off from RCU to some other synchronization mechanism, for 813 * example, reference counting or locking. In C11, it would map to 814 * kill_dependency(). It could be used as follows: 815 * 816 * rcu_read_lock(); 817 * p = rcu_dereference(gp); 818 * long_lived = is_long_lived(p); 819 * if (long_lived) { 820 * if (!atomic_inc_not_zero(p->refcnt)) 821 * long_lived = false; 822 * else 823 * p = rcu_pointer_handoff(p); 824 * } 825 * rcu_read_unlock(); 826 */ 827#define rcu_pointer_handoff(p) (p) 828 829/** 830 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 831 * 832 * When synchronize_rcu() is invoked on one CPU while other CPUs 833 * are within RCU read-side critical sections, then the 834 * synchronize_rcu() is guaranteed to block until after all the other 835 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 836 * on one CPU while other CPUs are within RCU read-side critical 837 * sections, invocation of the corresponding RCU callback is deferred 838 * until after the all the other CPUs exit their critical sections. 839 * 840 * Note, however, that RCU callbacks are permitted to run concurrently 841 * with new RCU read-side critical sections. One way that this can happen 842 * is via the following sequence of events: (1) CPU 0 enters an RCU 843 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 844 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 845 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 846 * callback is invoked. This is legal, because the RCU read-side critical 847 * section that was running concurrently with the call_rcu() (and which 848 * therefore might be referencing something that the corresponding RCU 849 * callback would free up) has completed before the corresponding 850 * RCU callback is invoked. 851 * 852 * RCU read-side critical sections may be nested. Any deferred actions 853 * will be deferred until the outermost RCU read-side critical section 854 * completes. 855 * 856 * You can avoid reading and understanding the next paragraph by 857 * following this rule: don't put anything in an rcu_read_lock() RCU 858 * read-side critical section that would block in a !PREEMPT kernel. 859 * But if you want the full story, read on! 860 * 861 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), 862 * it is illegal to block while in an RCU read-side critical section. 863 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT 864 * kernel builds, RCU read-side critical sections may be preempted, 865 * but explicit blocking is illegal. Finally, in preemptible RCU 866 * implementations in real-time (with -rt patchset) kernel builds, RCU 867 * read-side critical sections may be preempted and they may also block, but 868 * only when acquiring spinlocks that are subject to priority inheritance. 869 */ 870static inline void rcu_read_lock(void) 871{ 872 __rcu_read_lock(); 873 __acquire(RCU); 874 rcu_lock_acquire(&rcu_lock_map); 875 RCU_LOCKDEP_WARN(!rcu_is_watching(), 876 "rcu_read_lock() used illegally while idle"); 877} 878 879/* 880 * So where is rcu_write_lock()? It does not exist, as there is no 881 * way for writers to lock out RCU readers. This is a feature, not 882 * a bug -- this property is what provides RCU's performance benefits. 883 * Of course, writers must coordinate with each other. The normal 884 * spinlock primitives work well for this, but any other technique may be 885 * used as well. RCU does not care how the writers keep out of each 886 * others' way, as long as they do so. 887 */ 888 889/** 890 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 891 * 892 * In most situations, rcu_read_unlock() is immune from deadlock. 893 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 894 * is responsible for deboosting, which it does via rt_mutex_unlock(). 895 * Unfortunately, this function acquires the scheduler's runqueue and 896 * priority-inheritance spinlocks. This means that deadlock could result 897 * if the caller of rcu_read_unlock() already holds one of these locks or 898 * any lock that is ever acquired while holding them; or any lock which 899 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock() 900 * does not disable irqs while taking ->wait_lock. 901 * 902 * That said, RCU readers are never priority boosted unless they were 903 * preempted. Therefore, one way to avoid deadlock is to make sure 904 * that preemption never happens within any RCU read-side critical 905 * section whose outermost rcu_read_unlock() is called with one of 906 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 907 * a number of ways, for example, by invoking preempt_disable() before 908 * critical section's outermost rcu_read_lock(). 909 * 910 * Given that the set of locks acquired by rt_mutex_unlock() might change 911 * at any time, a somewhat more future-proofed approach is to make sure 912 * that that preemption never happens within any RCU read-side critical 913 * section whose outermost rcu_read_unlock() is called with irqs disabled. 914 * This approach relies on the fact that rt_mutex_unlock() currently only 915 * acquires irq-disabled locks. 916 * 917 * The second of these two approaches is best in most situations, 918 * however, the first approach can also be useful, at least to those 919 * developers willing to keep abreast of the set of locks acquired by 920 * rt_mutex_unlock(). 921 * 922 * See rcu_read_lock() for more information. 923 */ 924static inline void rcu_read_unlock(void) 925{ 926 RCU_LOCKDEP_WARN(!rcu_is_watching(), 927 "rcu_read_unlock() used illegally while idle"); 928 __release(RCU); 929 __rcu_read_unlock(); 930 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 931} 932 933/** 934 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 935 * 936 * This is equivalent of rcu_read_lock(), but to be used when updates 937 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 938 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 939 * softirq handler to be a quiescent state, a process in RCU read-side 940 * critical section must be protected by disabling softirqs. Read-side 941 * critical sections in interrupt context can use just rcu_read_lock(), 942 * though this should at least be commented to avoid confusing people 943 * reading the code. 944 * 945 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 946 * must occur in the same context, for example, it is illegal to invoke 947 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 948 * was invoked from some other task. 949 */ 950static inline void rcu_read_lock_bh(void) 951{ 952 local_bh_disable(); 953 __acquire(RCU_BH); 954 rcu_lock_acquire(&rcu_bh_lock_map); 955 RCU_LOCKDEP_WARN(!rcu_is_watching(), 956 "rcu_read_lock_bh() used illegally while idle"); 957} 958 959/* 960 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 961 * 962 * See rcu_read_lock_bh() for more information. 963 */ 964static inline void rcu_read_unlock_bh(void) 965{ 966 RCU_LOCKDEP_WARN(!rcu_is_watching(), 967 "rcu_read_unlock_bh() used illegally while idle"); 968 rcu_lock_release(&rcu_bh_lock_map); 969 __release(RCU_BH); 970 local_bh_enable(); 971} 972 973/** 974 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 975 * 976 * This is equivalent of rcu_read_lock(), but to be used when updates 977 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 978 * Read-side critical sections can also be introduced by anything that 979 * disables preemption, including local_irq_disable() and friends. 980 * 981 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 982 * must occur in the same context, for example, it is illegal to invoke 983 * rcu_read_unlock_sched() from process context if the matching 984 * rcu_read_lock_sched() was invoked from an NMI handler. 985 */ 986static inline void rcu_read_lock_sched(void) 987{ 988 preempt_disable(); 989 __acquire(RCU_SCHED); 990 rcu_lock_acquire(&rcu_sched_lock_map); 991 RCU_LOCKDEP_WARN(!rcu_is_watching(), 992 "rcu_read_lock_sched() used illegally while idle"); 993} 994 995/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 996static inline notrace void rcu_read_lock_sched_notrace(void) 997{ 998 preempt_disable_notrace(); 999 __acquire(RCU_SCHED); 1000}
1001 1002/* 1003 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 1004 * 1005 * See rcu_read_lock_sched for more information. 1006 */ 1007static inline void rcu_read_unlock_sched(void) 1008{ 1009 RCU_LOCKDEP_WARN(!rcu_is_watching(), 1010 "rcu_read_unlock_sched() used illegally while idle"); 1011 rcu_lock_release(&rcu_sched_lock_map); 1012 __release(RCU_SCHED); 1013 preempt_enable(); 1014} 1015 1016/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 1017static inline notrace void rcu_read_unlock_sched_notrace(void) 1018{ 1019 __release(RCU_SCHED); 1020 preempt_enable_notrace(); 1021} 1022 1023/** 1024 * RCU_INIT_POINTER() - initialize an RCU protected pointer 1025 * 1026 * Initialize an RCU-protected pointer in special cases where readers 1027 * do not need ordering constraints on the CPU or the compiler. These 1028 * special cases are: 1029 * 1030 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 1031 * 2. The caller has taken whatever steps are required to prevent 1032 * RCU readers from concurrently accessing this pointer -or- 1033 * 3. The referenced data structure has already been exposed to 1034 * readers either at compile time or via rcu_assign_pointer() -and- 1035 * a. You have not made -any- reader-visible changes to 1036 * this structure since then -or- 1037 * b. It is OK for readers accessing this structure from its 1038 * new location to see the old state of the structure. (For 1039 * example, the changes were to statistical counters or to 1040 * other state where exact synchronization is not required.) 1041 * 1042 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 1043 * result in impossible-to-diagnose memory corruption. As in the structures 1044 * will look OK in crash dumps, but any concurrent RCU readers might 1045 * see pre-initialized values of the referenced data structure. So 1046 * please be very careful how you use RCU_INIT_POINTER()!!! 1047 * 1048 * If you are creating an RCU-protected linked structure that is accessed 1049 * by a single external-to-structure RCU-protected pointer, then you may 1050 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 1051 * pointers, but you must use rcu_assign_pointer() to initialize the 1052 * external-to-structure pointer -after- you have completely initialized 1053 * the reader-accessible portions of the linked structure. 1054 * 1055 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 1056 * ordering guarantees for either the CPU or the compiler. 1057 */ 1058#define RCU_INIT_POINTER(p, v) \ 1059 do { \ 1060 rcu_dereference_sparse(p, __rcu); \ 1061 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 1062 } while (0) 1063 1064/** 1065 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 1066 * 1067 * GCC-style initialization for an RCU-protected pointer in a structure field. 1068 */ 1069#define RCU_POINTER_INITIALIZER(p, v) \ 1070 .p = RCU_INITIALIZER(v) 1071 1072/* 1073 * Does the specified offset indicate that the corresponding rcu_head 1074 * structure can be handled by kfree_rcu()? 1075 */ 1076#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 1077 1078/* 1079 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 1080 */ 1081#define __kfree_rcu(head, offset) \ 1082 do { \ 1083 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 1084 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 1085 } while (0) 1086 1087/** 1088 * kfree_rcu() - kfree an object after a grace period. 1089 * @ptr: pointer to kfree 1090 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 1091 * 1092 * Many rcu callbacks functions just call kfree() on the base structure. 1093 * These functions are trivial, but their size adds up, and furthermore 1094 * when they are used in a kernel module, that module must invoke the 1095 * high-latency rcu_barrier() function at module-unload time. 1096 * 1097 * The kfree_rcu() function handles this issue. Rather than encoding a 1098 * function address in the embedded rcu_head structure, kfree_rcu() instead 1099 * encodes the offset of the rcu_head structure within the base structure. 1100 * Because the functions are not allowed in the low-order 4096 bytes of 1101 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 1102 * If the offset is larger than 4095 bytes, a compile-time error will 1103 * be generated in __kfree_rcu(). If this error is triggered, you can 1104 * either fall back to use of call_rcu() or rearrange the structure to 1105 * position the rcu_head structure into the first 4096 bytes. 1106 * 1107 * Note that the allowable offset might decrease in the future, for example, 1108 * to allow something like kmem_cache_free_rcu(). 1109 * 1110 * The BUILD_BUG_ON check must not involve any function calls, hence the 1111 * checks are done in macros here. 1112 */ 1113#define kfree_rcu(ptr, rcu_head) \ 1114 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1115 1116#ifdef CONFIG_TINY_RCU 1117static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1118{ 1119 *nextevt = KTIME_MAX; 1120 return 0; 1121} 1122#endif /* #ifdef CONFIG_TINY_RCU */ 1123 1124#if defined(CONFIG_RCU_NOCB_CPU_ALL) 1125static inline bool rcu_is_nocb_cpu(int cpu) { return true; } 1126#elif defined(CONFIG_RCU_NOCB_CPU) 1127bool rcu_is_nocb_cpu(int cpu); 1128#else 1129static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1130#endif 1131 1132 1133/* Only for use by adaptive-ticks code. */ 1134#ifdef CONFIG_NO_HZ_FULL_SYSIDLE 1135bool rcu_sys_is_idle(void); 1136void rcu_sysidle_force_exit(void); 1137#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1138 1139static inline bool rcu_sys_is_idle(void) 1140{ 1141 return false; 1142} 1143 1144static inline void rcu_sysidle_force_exit(void) 1145{ 1146} 1147 1148#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1149 1150 1151#endif /* __LINUX_RCUPDATE_H */ 1152