linux/include/linux/usb/gadget.h
<<
>>
Prefs
   1/*
   2 * <linux/usb/gadget.h>
   3 *
   4 * We call the USB code inside a Linux-based peripheral device a "gadget"
   5 * driver, except for the hardware-specific bus glue.  One USB host can
   6 * master many USB gadgets, but the gadgets are only slaved to one host.
   7 *
   8 *
   9 * (C) Copyright 2002-2004 by David Brownell
  10 * All Rights Reserved.
  11 *
  12 * This software is licensed under the GNU GPL version 2.
  13 */
  14
  15#ifndef __LINUX_USB_GADGET_H
  16#define __LINUX_USB_GADGET_H
  17
  18#include <linux/device.h>
  19#include <linux/errno.h>
  20#include <linux/init.h>
  21#include <linux/list.h>
  22#include <linux/slab.h>
  23#include <linux/scatterlist.h>
  24#include <linux/types.h>
  25#include <linux/workqueue.h>
  26#include <linux/usb/ch9.h>
  27
  28struct usb_ep;
  29
  30/**
  31 * struct usb_request - describes one i/o request
  32 * @buf: Buffer used for data.  Always provide this; some controllers
  33 *      only use PIO, or don't use DMA for some endpoints.
  34 * @dma: DMA address corresponding to 'buf'.  If you don't set this
  35 *      field, and the usb controller needs one, it is responsible
  36 *      for mapping and unmapping the buffer.
  37 * @sg: a scatterlist for SG-capable controllers.
  38 * @num_sgs: number of SG entries
  39 * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
  40 * @length: Length of that data
  41 * @stream_id: The stream id, when USB3.0 bulk streams are being used
  42 * @no_interrupt: If true, hints that no completion irq is needed.
  43 *      Helpful sometimes with deep request queues that are handled
  44 *      directly by DMA controllers.
  45 * @zero: If true, when writing data, makes the last packet be "short"
  46 *     by adding a zero length packet as needed;
  47 * @short_not_ok: When reading data, makes short packets be
  48 *     treated as errors (queue stops advancing till cleanup).
  49 * @complete: Function called when request completes, so this request and
  50 *      its buffer may be re-used.  The function will always be called with
  51 *      interrupts disabled, and it must not sleep.
  52 *      Reads terminate with a short packet, or when the buffer fills,
  53 *      whichever comes first.  When writes terminate, some data bytes
  54 *      will usually still be in flight (often in a hardware fifo).
  55 *      Errors (for reads or writes) stop the queue from advancing
  56 *      until the completion function returns, so that any transfers
  57 *      invalidated by the error may first be dequeued.
  58 * @context: For use by the completion callback
  59 * @list: For use by the gadget driver.
  60 * @status: Reports completion code, zero or a negative errno.
  61 *      Normally, faults block the transfer queue from advancing until
  62 *      the completion callback returns.
  63 *      Code "-ESHUTDOWN" indicates completion caused by device disconnect,
  64 *      or when the driver disabled the endpoint.
  65 * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
  66 *      transfers) this may be less than the requested length.  If the
  67 *      short_not_ok flag is set, short reads are treated as errors
  68 *      even when status otherwise indicates successful completion.
  69 *      Note that for writes (IN transfers) some data bytes may still
  70 *      reside in a device-side FIFO when the request is reported as
  71 *      complete.
  72 *
  73 * These are allocated/freed through the endpoint they're used with.  The
  74 * hardware's driver can add extra per-request data to the memory it returns,
  75 * which often avoids separate memory allocations (potential failures),
  76 * later when the request is queued.
  77 *
  78 * Request flags affect request handling, such as whether a zero length
  79 * packet is written (the "zero" flag), whether a short read should be
  80 * treated as an error (blocking request queue advance, the "short_not_ok"
  81 * flag), or hinting that an interrupt is not required (the "no_interrupt"
  82 * flag, for use with deep request queues).
  83 *
  84 * Bulk endpoints can use any size buffers, and can also be used for interrupt
  85 * transfers. interrupt-only endpoints can be much less functional.
  86 *
  87 * NOTE:  this is analogous to 'struct urb' on the host side, except that
  88 * it's thinner and promotes more pre-allocation.
  89 */
  90
  91struct usb_request {
  92        void                    *buf;
  93        unsigned                length;
  94        dma_addr_t              dma;
  95
  96        struct scatterlist      *sg;
  97        unsigned                num_sgs;
  98        unsigned                num_mapped_sgs;
  99
 100        unsigned                stream_id:16;
 101        unsigned                no_interrupt:1;
 102        unsigned                zero:1;
 103        unsigned                short_not_ok:1;
 104
 105        void                    (*complete)(struct usb_ep *ep,
 106                                        struct usb_request *req);
 107        void                    *context;
 108        struct list_head        list;
 109
 110        int                     status;
 111        unsigned                actual;
 112};
 113
 114/*-------------------------------------------------------------------------*/
 115
 116/* endpoint-specific parts of the api to the usb controller hardware.
 117 * unlike the urb model, (de)multiplexing layers are not required.
 118 * (so this api could slash overhead if used on the host side...)
 119 *
 120 * note that device side usb controllers commonly differ in how many
 121 * endpoints they support, as well as their capabilities.
 122 */
 123struct usb_ep_ops {
 124        int (*enable) (struct usb_ep *ep,
 125                const struct usb_endpoint_descriptor *desc);
 126        int (*disable) (struct usb_ep *ep);
 127
 128        struct usb_request *(*alloc_request) (struct usb_ep *ep,
 129                gfp_t gfp_flags);
 130        void (*free_request) (struct usb_ep *ep, struct usb_request *req);
 131
 132        int (*queue) (struct usb_ep *ep, struct usb_request *req,
 133                gfp_t gfp_flags);
 134        int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
 135
 136        int (*set_halt) (struct usb_ep *ep, int value);
 137        int (*set_wedge) (struct usb_ep *ep);
 138
 139        int (*fifo_status) (struct usb_ep *ep);
 140        void (*fifo_flush) (struct usb_ep *ep);
 141};
 142
 143/**
 144 * struct usb_ep_caps - endpoint capabilities description
 145 * @type_control:Endpoint supports control type (reserved for ep0).
 146 * @type_iso:Endpoint supports isochronous transfers.
 147 * @type_bulk:Endpoint supports bulk transfers.
 148 * @type_int:Endpoint supports interrupt transfers.
 149 * @dir_in:Endpoint supports IN direction.
 150 * @dir_out:Endpoint supports OUT direction.
 151 */
 152struct usb_ep_caps {
 153        unsigned type_control:1;
 154        unsigned type_iso:1;
 155        unsigned type_bulk:1;
 156        unsigned type_int:1;
 157        unsigned dir_in:1;
 158        unsigned dir_out:1;
 159};
 160
 161#define USB_EP_CAPS_TYPE_CONTROL     0x01
 162#define USB_EP_CAPS_TYPE_ISO         0x02
 163#define USB_EP_CAPS_TYPE_BULK        0x04
 164#define USB_EP_CAPS_TYPE_INT         0x08
 165#define USB_EP_CAPS_TYPE_ALL \
 166        (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
 167#define USB_EP_CAPS_DIR_IN           0x01
 168#define USB_EP_CAPS_DIR_OUT          0x02
 169#define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
 170
 171#define USB_EP_CAPS(_type, _dir) \
 172        { \
 173                .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
 174                .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
 175                .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
 176                .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
 177                .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
 178                .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
 179        }
 180
 181/**
 182 * struct usb_ep - device side representation of USB endpoint
 183 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
 184 * @ops: Function pointers used to access hardware-specific operations.
 185 * @ep_list:the gadget's ep_list holds all of its endpoints
 186 * @caps:The structure describing types and directions supported by endoint.
 187 * @maxpacket:The maximum packet size used on this endpoint.  The initial
 188 *      value can sometimes be reduced (hardware allowing), according to
 189 *      the endpoint descriptor used to configure the endpoint.
 190 * @maxpacket_limit:The maximum packet size value which can be handled by this
 191 *      endpoint. It's set once by UDC driver when endpoint is initialized, and
 192 *      should not be changed. Should not be confused with maxpacket.
 193 * @max_streams: The maximum number of streams supported
 194 *      by this EP (0 - 16, actual number is 2^n)
 195 * @mult: multiplier, 'mult' value for SS Isoc EPs
 196 * @maxburst: the maximum number of bursts supported by this EP (for usb3)
 197 * @driver_data:for use by the gadget driver.
 198 * @address: used to identify the endpoint when finding descriptor that
 199 *      matches connection speed
 200 * @desc: endpoint descriptor.  This pointer is set before the endpoint is
 201 *      enabled and remains valid until the endpoint is disabled.
 202 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
 203 *      descriptor that is used to configure the endpoint
 204 *
 205 * the bus controller driver lists all the general purpose endpoints in
 206 * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
 207 * and is accessed only in response to a driver setup() callback.
 208 */
 209
 210struct usb_ep {
 211        void                    *driver_data;
 212
 213        const char              *name;
 214        const struct usb_ep_ops *ops;
 215        struct list_head        ep_list;
 216        struct usb_ep_caps      caps;
 217        bool                    claimed;
 218        bool                    enabled;
 219        unsigned                maxpacket:16;
 220        unsigned                maxpacket_limit:16;
 221        unsigned                max_streams:16;
 222        unsigned                mult:2;
 223        unsigned                maxburst:5;
 224        u8                      address;
 225        const struct usb_endpoint_descriptor    *desc;
 226        const struct usb_ss_ep_comp_descriptor  *comp_desc;
 227};
 228
 229/*-------------------------------------------------------------------------*/
 230
 231/**
 232 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
 233 * @ep:the endpoint being configured
 234 * @maxpacket_limit:value of maximum packet size limit
 235 *
 236 * This function should be used only in UDC drivers to initialize endpoint
 237 * (usually in probe function).
 238 */
 239static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
 240                                              unsigned maxpacket_limit)
 241{
 242        ep->maxpacket_limit = maxpacket_limit;
 243        ep->maxpacket = maxpacket_limit;
 244}
 245
 246/**
 247 * usb_ep_enable - configure endpoint, making it usable
 248 * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
 249 *      drivers discover endpoints through the ep_list of a usb_gadget.
 250 *
 251 * When configurations are set, or when interface settings change, the driver
 252 * will enable or disable the relevant endpoints.  while it is enabled, an
 253 * endpoint may be used for i/o until the driver receives a disconnect() from
 254 * the host or until the endpoint is disabled.
 255 *
 256 * the ep0 implementation (which calls this routine) must ensure that the
 257 * hardware capabilities of each endpoint match the descriptor provided
 258 * for it.  for example, an endpoint named "ep2in-bulk" would be usable
 259 * for interrupt transfers as well as bulk, but it likely couldn't be used
 260 * for iso transfers or for endpoint 14.  some endpoints are fully
 261 * configurable, with more generic names like "ep-a".  (remember that for
 262 * USB, "in" means "towards the USB master".)
 263 *
 264 * returns zero, or a negative error code.
 265 */
 266static inline int usb_ep_enable(struct usb_ep *ep)
 267{
 268        int ret;
 269
 270        if (ep->enabled)
 271                return 0;
 272
 273        ret = ep->ops->enable(ep, ep->desc);
 274        if (ret)
 275                return ret;
 276
 277        ep->enabled = true;
 278
 279        return 0;
 280}
 281
 282/**
 283 * usb_ep_disable - endpoint is no longer usable
 284 * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
 285 *
 286 * no other task may be using this endpoint when this is called.
 287 * any pending and uncompleted requests will complete with status
 288 * indicating disconnect (-ESHUTDOWN) before this call returns.
 289 * gadget drivers must call usb_ep_enable() again before queueing
 290 * requests to the endpoint.
 291 *
 292 * returns zero, or a negative error code.
 293 */
 294static inline int usb_ep_disable(struct usb_ep *ep)
 295{
 296        int ret;
 297
 298        if (!ep->enabled)
 299                return 0;
 300
 301        ret = ep->ops->disable(ep);
 302        if (ret)
 303                return ret;
 304
 305        ep->enabled = false;
 306
 307        return 0;
 308}
 309
 310/**
 311 * usb_ep_alloc_request - allocate a request object to use with this endpoint
 312 * @ep:the endpoint to be used with with the request
 313 * @gfp_flags:GFP_* flags to use
 314 *
 315 * Request objects must be allocated with this call, since they normally
 316 * need controller-specific setup and may even need endpoint-specific
 317 * resources such as allocation of DMA descriptors.
 318 * Requests may be submitted with usb_ep_queue(), and receive a single
 319 * completion callback.  Free requests with usb_ep_free_request(), when
 320 * they are no longer needed.
 321 *
 322 * Returns the request, or null if one could not be allocated.
 323 */
 324static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
 325                                                       gfp_t gfp_flags)
 326{
 327        return ep->ops->alloc_request(ep, gfp_flags);
 328}
 329
 330/**
 331 * usb_ep_free_request - frees a request object
 332 * @ep:the endpoint associated with the request
 333 * @req:the request being freed
 334 *
 335 * Reverses the effect of usb_ep_alloc_request().
 336 * Caller guarantees the request is not queued, and that it will
 337 * no longer be requeued (or otherwise used).
 338 */
 339static inline void usb_ep_free_request(struct usb_ep *ep,
 340                                       struct usb_request *req)
 341{
 342        ep->ops->free_request(ep, req);
 343}
 344
 345/**
 346 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
 347 * @ep:the endpoint associated with the request
 348 * @req:the request being submitted
 349 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
 350 *      pre-allocate all necessary memory with the request.
 351 *
 352 * This tells the device controller to perform the specified request through
 353 * that endpoint (reading or writing a buffer).  When the request completes,
 354 * including being canceled by usb_ep_dequeue(), the request's completion
 355 * routine is called to return the request to the driver.  Any endpoint
 356 * (except control endpoints like ep0) may have more than one transfer
 357 * request queued; they complete in FIFO order.  Once a gadget driver
 358 * submits a request, that request may not be examined or modified until it
 359 * is given back to that driver through the completion callback.
 360 *
 361 * Each request is turned into one or more packets.  The controller driver
 362 * never merges adjacent requests into the same packet.  OUT transfers
 363 * will sometimes use data that's already buffered in the hardware.
 364 * Drivers can rely on the fact that the first byte of the request's buffer
 365 * always corresponds to the first byte of some USB packet, for both
 366 * IN and OUT transfers.
 367 *
 368 * Bulk endpoints can queue any amount of data; the transfer is packetized
 369 * automatically.  The last packet will be short if the request doesn't fill it
 370 * out completely.  Zero length packets (ZLPs) should be avoided in portable
 371 * protocols since not all usb hardware can successfully handle zero length
 372 * packets.  (ZLPs may be explicitly written, and may be implicitly written if
 373 * the request 'zero' flag is set.)  Bulk endpoints may also be used
 374 * for interrupt transfers; but the reverse is not true, and some endpoints
 375 * won't support every interrupt transfer.  (Such as 768 byte packets.)
 376 *
 377 * Interrupt-only endpoints are less functional than bulk endpoints, for
 378 * example by not supporting queueing or not handling buffers that are
 379 * larger than the endpoint's maxpacket size.  They may also treat data
 380 * toggle differently.
 381 *
 382 * Control endpoints ... after getting a setup() callback, the driver queues
 383 * one response (even if it would be zero length).  That enables the
 384 * status ack, after transferring data as specified in the response.  Setup
 385 * functions may return negative error codes to generate protocol stalls.
 386 * (Note that some USB device controllers disallow protocol stall responses
 387 * in some cases.)  When control responses are deferred (the response is
 388 * written after the setup callback returns), then usb_ep_set_halt() may be
 389 * used on ep0 to trigger protocol stalls.  Depending on the controller,
 390 * it may not be possible to trigger a status-stage protocol stall when the
 391 * data stage is over, that is, from within the response's completion
 392 * routine.
 393 *
 394 * For periodic endpoints, like interrupt or isochronous ones, the usb host
 395 * arranges to poll once per interval, and the gadget driver usually will
 396 * have queued some data to transfer at that time.
 397 *
 398 * Returns zero, or a negative error code.  Endpoints that are not enabled
 399 * report errors; errors will also be
 400 * reported when the usb peripheral is disconnected.
 401 */
 402static inline int usb_ep_queue(struct usb_ep *ep,
 403                               struct usb_request *req, gfp_t gfp_flags)
 404{
 405        if (WARN_ON_ONCE(!ep->enabled && ep->address))
 406                return -ESHUTDOWN;
 407
 408        return ep->ops->queue(ep, req, gfp_flags);
 409}
 410
 411/**
 412 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
 413 * @ep:the endpoint associated with the request
 414 * @req:the request being canceled
 415 *
 416 * If the request is still active on the endpoint, it is dequeued and its
 417 * completion routine is called (with status -ECONNRESET); else a negative
 418 * error code is returned. This is guaranteed to happen before the call to
 419 * usb_ep_dequeue() returns.
 420 *
 421 * Note that some hardware can't clear out write fifos (to unlink the request
 422 * at the head of the queue) except as part of disconnecting from usb. Such
 423 * restrictions prevent drivers from supporting configuration changes,
 424 * even to configuration zero (a "chapter 9" requirement).
 425 */
 426static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
 427{
 428        return ep->ops->dequeue(ep, req);
 429}
 430
 431/**
 432 * usb_ep_set_halt - sets the endpoint halt feature.
 433 * @ep: the non-isochronous endpoint being stalled
 434 *
 435 * Use this to stall an endpoint, perhaps as an error report.
 436 * Except for control endpoints,
 437 * the endpoint stays halted (will not stream any data) until the host
 438 * clears this feature; drivers may need to empty the endpoint's request
 439 * queue first, to make sure no inappropriate transfers happen.
 440 *
 441 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
 442 * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
 443 * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
 444 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
 445 *
 446 * Returns zero, or a negative error code.  On success, this call sets
 447 * underlying hardware state that blocks data transfers.
 448 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
 449 * transfer requests are still queued, or if the controller hardware
 450 * (usually a FIFO) still holds bytes that the host hasn't collected.
 451 */
 452static inline int usb_ep_set_halt(struct usb_ep *ep)
 453{
 454        return ep->ops->set_halt(ep, 1);
 455}
 456
 457/**
 458 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
 459 * @ep:the bulk or interrupt endpoint being reset
 460 *
 461 * Use this when responding to the standard usb "set interface" request,
 462 * for endpoints that aren't reconfigured, after clearing any other state
 463 * in the endpoint's i/o queue.
 464 *
 465 * Returns zero, or a negative error code.  On success, this call clears
 466 * the underlying hardware state reflecting endpoint halt and data toggle.
 467 * Note that some hardware can't support this request (like pxa2xx_udc),
 468 * and accordingly can't correctly implement interface altsettings.
 469 */
 470static inline int usb_ep_clear_halt(struct usb_ep *ep)
 471{
 472        return ep->ops->set_halt(ep, 0);
 473}
 474
 475/**
 476 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
 477 * @ep: the endpoint being wedged
 478 *
 479 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
 480 * requests. If the gadget driver clears the halt status, it will
 481 * automatically unwedge the endpoint.
 482 *
 483 * Returns zero on success, else negative errno.
 484 */
 485static inline int
 486usb_ep_set_wedge(struct usb_ep *ep)
 487{
 488        if (ep->ops->set_wedge)
 489                return ep->ops->set_wedge(ep);
 490        else
 491                return ep->ops->set_halt(ep, 1);
 492}
 493
 494/**
 495 * usb_ep_fifo_status - returns number of bytes in fifo, or error
 496 * @ep: the endpoint whose fifo status is being checked.
 497 *
 498 * FIFO endpoints may have "unclaimed data" in them in certain cases,
 499 * such as after aborted transfers.  Hosts may not have collected all
 500 * the IN data written by the gadget driver (and reported by a request
 501 * completion).  The gadget driver may not have collected all the data
 502 * written OUT to it by the host.  Drivers that need precise handling for
 503 * fault reporting or recovery may need to use this call.
 504 *
 505 * This returns the number of such bytes in the fifo, or a negative
 506 * errno if the endpoint doesn't use a FIFO or doesn't support such
 507 * precise handling.
 508 */
 509static inline int usb_ep_fifo_status(struct usb_ep *ep)
 510{
 511        if (ep->ops->fifo_status)
 512                return ep->ops->fifo_status(ep);
 513        else
 514                return -EOPNOTSUPP;
 515}
 516
 517/**
 518 * usb_ep_fifo_flush - flushes contents of a fifo
 519 * @ep: the endpoint whose fifo is being flushed.
 520 *
 521 * This call may be used to flush the "unclaimed data" that may exist in
 522 * an endpoint fifo after abnormal transaction terminations.  The call
 523 * must never be used except when endpoint is not being used for any
 524 * protocol translation.
 525 */
 526static inline void usb_ep_fifo_flush(struct usb_ep *ep)
 527{
 528        if (ep->ops->fifo_flush)
 529                ep->ops->fifo_flush(ep);
 530}
 531
 532
 533/*-------------------------------------------------------------------------*/
 534
 535struct usb_dcd_config_params {
 536        __u8  bU1devExitLat;    /* U1 Device exit Latency */
 537#define USB_DEFAULT_U1_DEV_EXIT_LAT     0x01    /* Less then 1 microsec */
 538        __le16 bU2DevExitLat;   /* U2 Device exit Latency */
 539#define USB_DEFAULT_U2_DEV_EXIT_LAT     0x1F4   /* Less then 500 microsec */
 540};
 541
 542
 543struct usb_gadget;
 544struct usb_gadget_driver;
 545struct usb_udc;
 546
 547/* the rest of the api to the controller hardware: device operations,
 548 * which don't involve endpoints (or i/o).
 549 */
 550struct usb_gadget_ops {
 551        int     (*get_frame)(struct usb_gadget *);
 552        int     (*wakeup)(struct usb_gadget *);
 553        int     (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
 554        int     (*vbus_session) (struct usb_gadget *, int is_active);
 555        int     (*vbus_draw) (struct usb_gadget *, unsigned mA);
 556        int     (*pullup) (struct usb_gadget *, int is_on);
 557        int     (*ioctl)(struct usb_gadget *,
 558                                unsigned code, unsigned long param);
 559        void    (*get_config_params)(struct usb_dcd_config_params *);
 560        int     (*udc_start)(struct usb_gadget *,
 561                        struct usb_gadget_driver *);
 562        int     (*udc_stop)(struct usb_gadget *);
 563        struct usb_ep *(*match_ep)(struct usb_gadget *,
 564                        struct usb_endpoint_descriptor *,
 565                        struct usb_ss_ep_comp_descriptor *);
 566};
 567
 568/**
 569 * struct usb_gadget - represents a usb slave device
 570 * @work: (internal use) Workqueue to be used for sysfs_notify()
 571 * @udc: struct usb_udc pointer for this gadget
 572 * @ops: Function pointers used to access hardware-specific operations.
 573 * @ep0: Endpoint zero, used when reading or writing responses to
 574 *      driver setup() requests
 575 * @ep_list: List of other endpoints supported by the device.
 576 * @speed: Speed of current connection to USB host.
 577 * @max_speed: Maximal speed the UDC can handle.  UDC must support this
 578 *      and all slower speeds.
 579 * @state: the state we are now (attached, suspended, configured, etc)
 580 * @name: Identifies the controller hardware type.  Used in diagnostics
 581 *      and sometimes configuration.
 582 * @dev: Driver model state for this abstract device.
 583 * @out_epnum: last used out ep number
 584 * @in_epnum: last used in ep number
 585 * @otg_caps: OTG capabilities of this gadget.
 586 * @sg_supported: true if we can handle scatter-gather
 587 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
 588 *      gadget driver must provide a USB OTG descriptor.
 589 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
 590 *      is in the Mini-AB jack, and HNP has been used to switch roles
 591 *      so that the "A" device currently acts as A-Peripheral, not A-Host.
 592 * @a_hnp_support: OTG device feature flag, indicating that the A-Host
 593 *      supports HNP at this port.
 594 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
 595 *      only supports HNP on a different root port.
 596 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
 597 *      enabled HNP support.
 598 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
 599 *      MaxPacketSize.
 600 * @is_selfpowered: if the gadget is self-powered.
 601 * @deactivated: True if gadget is deactivated - in deactivated state it cannot
 602 *      be connected.
 603 * @connected: True if gadget is connected.
 604 *
 605 * Gadgets have a mostly-portable "gadget driver" implementing device
 606 * functions, handling all usb configurations and interfaces.  Gadget
 607 * drivers talk to hardware-specific code indirectly, through ops vectors.
 608 * That insulates the gadget driver from hardware details, and packages
 609 * the hardware endpoints through generic i/o queues.  The "usb_gadget"
 610 * and "usb_ep" interfaces provide that insulation from the hardware.
 611 *
 612 * Except for the driver data, all fields in this structure are
 613 * read-only to the gadget driver.  That driver data is part of the
 614 * "driver model" infrastructure in 2.6 (and later) kernels, and for
 615 * earlier systems is grouped in a similar structure that's not known
 616 * to the rest of the kernel.
 617 *
 618 * Values of the three OTG device feature flags are updated before the
 619 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
 620 * driver suspend() calls.  They are valid only when is_otg, and when the
 621 * device is acting as a B-Peripheral (so is_a_peripheral is false).
 622 */
 623struct usb_gadget {
 624        struct work_struct              work;
 625        struct usb_udc                  *udc;
 626        /* readonly to gadget driver */
 627        const struct usb_gadget_ops     *ops;
 628        struct usb_ep                   *ep0;
 629        struct list_head                ep_list;        /* of usb_ep */
 630        enum usb_device_speed           speed;
 631        enum usb_device_speed           max_speed;
 632        enum usb_device_state           state;
 633        const char                      *name;
 634        struct device                   dev;
 635        unsigned                        out_epnum;
 636        unsigned                        in_epnum;
 637        struct usb_otg_caps             *otg_caps;
 638
 639        unsigned                        sg_supported:1;
 640        unsigned                        is_otg:1;
 641        unsigned                        is_a_peripheral:1;
 642        unsigned                        b_hnp_enable:1;
 643        unsigned                        a_hnp_support:1;
 644        unsigned                        a_alt_hnp_support:1;
 645        unsigned                        quirk_ep_out_aligned_size:1;
 646        unsigned                        quirk_altset_not_supp:1;
 647        unsigned                        quirk_stall_not_supp:1;
 648        unsigned                        quirk_zlp_not_supp:1;
 649        unsigned                        is_selfpowered:1;
 650        unsigned                        deactivated:1;
 651        unsigned                        connected:1;
 652};
 653#define work_to_gadget(w)       (container_of((w), struct usb_gadget, work))
 654
 655static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
 656        { dev_set_drvdata(&gadget->dev, data); }
 657static inline void *get_gadget_data(struct usb_gadget *gadget)
 658        { return dev_get_drvdata(&gadget->dev); }
 659static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
 660{
 661        return container_of(dev, struct usb_gadget, dev);
 662}
 663
 664/* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
 665#define gadget_for_each_ep(tmp, gadget) \
 666        list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
 667
 668/**
 669 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
 670 *      requires quirk_ep_out_aligned_size, otherwise reguens len.
 671 * @g: controller to check for quirk
 672 * @ep: the endpoint whose maxpacketsize is used to align @len
 673 * @len: buffer size's length to align to @ep's maxpacketsize
 674 *
 675 * This helper is used in case it's required for any reason to check and maybe
 676 * align buffer's size to an ep's maxpacketsize.
 677 */
 678static inline size_t
 679usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
 680{
 681        return !g->quirk_ep_out_aligned_size ? len :
 682                        round_up(len, (size_t)ep->desc->wMaxPacketSize);
 683}
 684
 685/**
 686 * gadget_is_altset_supported - return true iff the hardware supports
 687 *      altsettings
 688 * @g: controller to check for quirk
 689 */
 690static inline int gadget_is_altset_supported(struct usb_gadget *g)
 691{
 692        return !g->quirk_altset_not_supp;
 693}
 694
 695/**
 696 * gadget_is_stall_supported - return true iff the hardware supports stalling
 697 * @g: controller to check for quirk
 698 */
 699static inline int gadget_is_stall_supported(struct usb_gadget *g)
 700{
 701        return !g->quirk_stall_not_supp;
 702}
 703
 704/**
 705 * gadget_is_zlp_supported - return true iff the hardware supports zlp
 706 * @g: controller to check for quirk
 707 */
 708static inline int gadget_is_zlp_supported(struct usb_gadget *g)
 709{
 710        return !g->quirk_zlp_not_supp;
 711}
 712
 713/**
 714 * gadget_is_dualspeed - return true iff the hardware handles high speed
 715 * @g: controller that might support both high and full speeds
 716 */
 717static inline int gadget_is_dualspeed(struct usb_gadget *g)
 718{
 719        return g->max_speed >= USB_SPEED_HIGH;
 720}
 721
 722/**
 723 * gadget_is_superspeed() - return true if the hardware handles superspeed
 724 * @g: controller that might support superspeed
 725 */
 726static inline int gadget_is_superspeed(struct usb_gadget *g)
 727{
 728        return g->max_speed >= USB_SPEED_SUPER;
 729}
 730
 731/**
 732 * gadget_is_otg - return true iff the hardware is OTG-ready
 733 * @g: controller that might have a Mini-AB connector
 734 *
 735 * This is a runtime test, since kernels with a USB-OTG stack sometimes
 736 * run on boards which only have a Mini-B (or Mini-A) connector.
 737 */
 738static inline int gadget_is_otg(struct usb_gadget *g)
 739{
 740#ifdef CONFIG_USB_OTG
 741        return g->is_otg;
 742#else
 743        return 0;
 744#endif
 745}
 746
 747/**
 748 * usb_gadget_frame_number - returns the current frame number
 749 * @gadget: controller that reports the frame number
 750 *
 751 * Returns the usb frame number, normally eleven bits from a SOF packet,
 752 * or negative errno if this device doesn't support this capability.
 753 */
 754static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
 755{
 756        return gadget->ops->get_frame(gadget);
 757}
 758
 759/**
 760 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
 761 * @gadget: controller used to wake up the host
 762 *
 763 * Returns zero on success, else negative error code if the hardware
 764 * doesn't support such attempts, or its support has not been enabled
 765 * by the usb host.  Drivers must return device descriptors that report
 766 * their ability to support this, or hosts won't enable it.
 767 *
 768 * This may also try to use SRP to wake the host and start enumeration,
 769 * even if OTG isn't otherwise in use.  OTG devices may also start
 770 * remote wakeup even when hosts don't explicitly enable it.
 771 */
 772static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
 773{
 774        if (!gadget->ops->wakeup)
 775                return -EOPNOTSUPP;
 776        return gadget->ops->wakeup(gadget);
 777}
 778
 779/**
 780 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
 781 * @gadget:the device being declared as self-powered
 782 *
 783 * this affects the device status reported by the hardware driver
 784 * to reflect that it now has a local power supply.
 785 *
 786 * returns zero on success, else negative errno.
 787 */
 788static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
 789{
 790        if (!gadget->ops->set_selfpowered)
 791                return -EOPNOTSUPP;
 792        return gadget->ops->set_selfpowered(gadget, 1);
 793}
 794
 795/**
 796 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
 797 * @gadget:the device being declared as bus-powered
 798 *
 799 * this affects the device status reported by the hardware driver.
 800 * some hardware may not support bus-powered operation, in which
 801 * case this feature's value can never change.
 802 *
 803 * returns zero on success, else negative errno.
 804 */
 805static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
 806{
 807        if (!gadget->ops->set_selfpowered)
 808                return -EOPNOTSUPP;
 809        return gadget->ops->set_selfpowered(gadget, 0);
 810}
 811
 812/**
 813 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
 814 * @gadget:The device which now has VBUS power.
 815 * Context: can sleep
 816 *
 817 * This call is used by a driver for an external transceiver (or GPIO)
 818 * that detects a VBUS power session starting.  Common responses include
 819 * resuming the controller, activating the D+ (or D-) pullup to let the
 820 * host detect that a USB device is attached, and starting to draw power
 821 * (8mA or possibly more, especially after SET_CONFIGURATION).
 822 *
 823 * Returns zero on success, else negative errno.
 824 */
 825static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
 826{
 827        if (!gadget->ops->vbus_session)
 828                return -EOPNOTSUPP;
 829        return gadget->ops->vbus_session(gadget, 1);
 830}
 831
 832/**
 833 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
 834 * @gadget:The device whose VBUS usage is being described
 835 * @mA:How much current to draw, in milliAmperes.  This should be twice
 836 *      the value listed in the configuration descriptor bMaxPower field.
 837 *
 838 * This call is used by gadget drivers during SET_CONFIGURATION calls,
 839 * reporting how much power the device may consume.  For example, this
 840 * could affect how quickly batteries are recharged.
 841 *
 842 * Returns zero on success, else negative errno.
 843 */
 844static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
 845{
 846        if (!gadget->ops->vbus_draw)
 847                return -EOPNOTSUPP;
 848        return gadget->ops->vbus_draw(gadget, mA);
 849}
 850
 851/**
 852 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
 853 * @gadget:the device whose VBUS supply is being described
 854 * Context: can sleep
 855 *
 856 * This call is used by a driver for an external transceiver (or GPIO)
 857 * that detects a VBUS power session ending.  Common responses include
 858 * reversing everything done in usb_gadget_vbus_connect().
 859 *
 860 * Returns zero on success, else negative errno.
 861 */
 862static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
 863{
 864        if (!gadget->ops->vbus_session)
 865                return -EOPNOTSUPP;
 866        return gadget->ops->vbus_session(gadget, 0);
 867}
 868
 869/**
 870 * usb_gadget_connect - software-controlled connect to USB host
 871 * @gadget:the peripheral being connected
 872 *
 873 * Enables the D+ (or potentially D-) pullup.  The host will start
 874 * enumerating this gadget when the pullup is active and a VBUS session
 875 * is active (the link is powered).  This pullup is always enabled unless
 876 * usb_gadget_disconnect() has been used to disable it.
 877 *
 878 * Returns zero on success, else negative errno.
 879 */
 880static inline int usb_gadget_connect(struct usb_gadget *gadget)
 881{
 882        int ret;
 883
 884        if (!gadget->ops->pullup)
 885                return -EOPNOTSUPP;
 886
 887        if (gadget->deactivated) {
 888                /*
 889                 * If gadget is deactivated we only save new state.
 890                 * Gadget will be connected automatically after activation.
 891                 */
 892                gadget->connected = true;
 893                return 0;
 894        }
 895
 896        ret = gadget->ops->pullup(gadget, 1);
 897        if (!ret)
 898                gadget->connected = 1;
 899        return ret;
 900}
 901
 902/**
 903 * usb_gadget_disconnect - software-controlled disconnect from USB host
 904 * @gadget:the peripheral being disconnected
 905 *
 906 * Disables the D+ (or potentially D-) pullup, which the host may see
 907 * as a disconnect (when a VBUS session is active).  Not all systems
 908 * support software pullup controls.
 909 *
 910 * Returns zero on success, else negative errno.
 911 */
 912static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
 913{
 914        int ret;
 915
 916        if (!gadget->ops->pullup)
 917                return -EOPNOTSUPP;
 918
 919        if (gadget->deactivated) {
 920                /*
 921                 * If gadget is deactivated we only save new state.
 922                 * Gadget will stay disconnected after activation.
 923                 */
 924                gadget->connected = false;
 925                return 0;
 926        }
 927
 928        ret = gadget->ops->pullup(gadget, 0);
 929        if (!ret)
 930                gadget->connected = 0;
 931        return ret;
 932}
 933
 934/**
 935 * usb_gadget_deactivate - deactivate function which is not ready to work
 936 * @gadget: the peripheral being deactivated
 937 *
 938 * This routine may be used during the gadget driver bind() call to prevent
 939 * the peripheral from ever being visible to the USB host, unless later
 940 * usb_gadget_activate() is called.  For example, user mode components may
 941 * need to be activated before the system can talk to hosts.
 942 *
 943 * Returns zero on success, else negative errno.
 944 */
 945static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
 946{
 947        int ret;
 948
 949        if (gadget->deactivated)
 950                return 0;
 951
 952        if (gadget->connected) {
 953                ret = usb_gadget_disconnect(gadget);
 954                if (ret)
 955                        return ret;
 956                /*
 957                 * If gadget was being connected before deactivation, we want
 958                 * to reconnect it in usb_gadget_activate().
 959                 */
 960                gadget->connected = true;
 961        }
 962        gadget->deactivated = true;
 963
 964        return 0;
 965}
 966
 967/**
 968 * usb_gadget_activate - activate function which is not ready to work
 969 * @gadget: the peripheral being activated
 970 *
 971 * This routine activates gadget which was previously deactivated with
 972 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
 973 *
 974 * Returns zero on success, else negative errno.
 975 */
 976static inline int usb_gadget_activate(struct usb_gadget *gadget)
 977{
 978        if (!gadget->deactivated)
 979                return 0;
 980
 981        gadget->deactivated = false;
 982
 983        /*
 984         * If gadget has been connected before deactivation, or became connected
 985         * while it was being deactivated, we call usb_gadget_connect().
 986         */
 987        if (gadget->connected)
 988                return usb_gadget_connect(gadget);
 989
 990        return 0;
 991}
 992
 993/*-------------------------------------------------------------------------*/
 994
 995/**
 996 * struct usb_gadget_driver - driver for usb 'slave' devices
 997 * @function: String describing the gadget's function
 998 * @max_speed: Highest speed the driver handles.
 999 * @setup: Invoked for ep0 control requests that aren't handled by
1000 *      the hardware level driver. Most calls must be handled by
1001 *      the gadget driver, including descriptor and configuration
1002 *      management.  The 16 bit members of the setup data are in
1003 *      USB byte order. Called in_interrupt; this may not sleep.  Driver
1004 *      queues a response to ep0, or returns negative to stall.
1005 * @disconnect: Invoked after all transfers have been stopped,
1006 *      when the host is disconnected.  May be called in_interrupt; this
1007 *      may not sleep.  Some devices can't detect disconnect, so this might
1008 *      not be called except as part of controller shutdown.
1009 * @bind: the driver's bind callback
1010 * @unbind: Invoked when the driver is unbound from a gadget,
1011 *      usually from rmmod (after a disconnect is reported).
1012 *      Called in a context that permits sleeping.
1013 * @suspend: Invoked on USB suspend.  May be called in_interrupt.
1014 * @resume: Invoked on USB resume.  May be called in_interrupt.
1015 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
1016 *      and should be called in_interrupt.
1017 * @driver: Driver model state for this driver.
1018 * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
1019 *      this driver will be bound to any available UDC.
1020 * @pending: UDC core private data used for deferred probe of this driver.
1021 *
1022 * Devices are disabled till a gadget driver successfully bind()s, which
1023 * means the driver will handle setup() requests needed to enumerate (and
1024 * meet "chapter 9" requirements) then do some useful work.
1025 *
1026 * If gadget->is_otg is true, the gadget driver must provide an OTG
1027 * descriptor during enumeration, or else fail the bind() call.  In such
1028 * cases, no USB traffic may flow until both bind() returns without
1029 * having called usb_gadget_disconnect(), and the USB host stack has
1030 * initialized.
1031 *
1032 * Drivers use hardware-specific knowledge to configure the usb hardware.
1033 * endpoint addressing is only one of several hardware characteristics that
1034 * are in descriptors the ep0 implementation returns from setup() calls.
1035 *
1036 * Except for ep0 implementation, most driver code shouldn't need change to
1037 * run on top of different usb controllers.  It'll use endpoints set up by
1038 * that ep0 implementation.
1039 *
1040 * The usb controller driver handles a few standard usb requests.  Those
1041 * include set_address, and feature flags for devices, interfaces, and
1042 * endpoints (the get_status, set_feature, and clear_feature requests).
1043 *
1044 * Accordingly, the driver's setup() callback must always implement all
1045 * get_descriptor requests, returning at least a device descriptor and
1046 * a configuration descriptor.  Drivers must make sure the endpoint
1047 * descriptors match any hardware constraints. Some hardware also constrains
1048 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
1049 *
1050 * The driver's setup() callback must also implement set_configuration,
1051 * and should also implement set_interface, get_configuration, and
1052 * get_interface.  Setting a configuration (or interface) is where
1053 * endpoints should be activated or (config 0) shut down.
1054 *
1055 * (Note that only the default control endpoint is supported.  Neither
1056 * hosts nor devices generally support control traffic except to ep0.)
1057 *
1058 * Most devices will ignore USB suspend/resume operations, and so will
1059 * not provide those callbacks.  However, some may need to change modes
1060 * when the host is not longer directing those activities.  For example,
1061 * local controls (buttons, dials, etc) may need to be re-enabled since
1062 * the (remote) host can't do that any longer; or an error state might
1063 * be cleared, to make the device behave identically whether or not
1064 * power is maintained.
1065 */
1066struct usb_gadget_driver {
1067        char                    *function;
1068        enum usb_device_speed   max_speed;
1069        int                     (*bind)(struct usb_gadget *gadget,
1070                                        struct usb_gadget_driver *driver);
1071        void                    (*unbind)(struct usb_gadget *);
1072        int                     (*setup)(struct usb_gadget *,
1073                                        const struct usb_ctrlrequest *);
1074        void                    (*disconnect)(struct usb_gadget *);
1075        void                    (*suspend)(struct usb_gadget *);
1076        void                    (*resume)(struct usb_gadget *);
1077        void                    (*reset)(struct usb_gadget *);
1078
1079        /* FIXME support safe rmmod */
1080        struct device_driver    driver;
1081
1082        char                    *udc_name;
1083        struct list_head        pending;
1084};
1085
1086
1087
1088/*-------------------------------------------------------------------------*/
1089
1090/* driver modules register and unregister, as usual.
1091 * these calls must be made in a context that can sleep.
1092 *
1093 * these will usually be implemented directly by the hardware-dependent
1094 * usb bus interface driver, which will only support a single driver.
1095 */
1096
1097/**
1098 * usb_gadget_probe_driver - probe a gadget driver
1099 * @driver: the driver being registered
1100 * Context: can sleep
1101 *
1102 * Call this in your gadget driver's module initialization function,
1103 * to tell the underlying usb controller driver about your driver.
1104 * The @bind() function will be called to bind it to a gadget before this
1105 * registration call returns.  It's expected that the @bind() function will
1106 * be in init sections.
1107 */
1108int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
1109
1110/**
1111 * usb_gadget_unregister_driver - unregister a gadget driver
1112 * @driver:the driver being unregistered
1113 * Context: can sleep
1114 *
1115 * Call this in your gadget driver's module cleanup function,
1116 * to tell the underlying usb controller that your driver is
1117 * going away.  If the controller is connected to a USB host,
1118 * it will first disconnect().  The driver is also requested
1119 * to unbind() and clean up any device state, before this procedure
1120 * finally returns.  It's expected that the unbind() functions
1121 * will in in exit sections, so may not be linked in some kernels.
1122 */
1123int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
1124
1125extern int usb_add_gadget_udc_release(struct device *parent,
1126                struct usb_gadget *gadget, void (*release)(struct device *dev));
1127extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
1128extern void usb_del_gadget_udc(struct usb_gadget *gadget);
1129
1130/*-------------------------------------------------------------------------*/
1131
1132/* utility to simplify dealing with string descriptors */
1133
1134/**
1135 * struct usb_string - wraps a C string and its USB id
1136 * @id:the (nonzero) ID for this string
1137 * @s:the string, in UTF-8 encoding
1138 *
1139 * If you're using usb_gadget_get_string(), use this to wrap a string
1140 * together with its ID.
1141 */
1142struct usb_string {
1143        u8                      id;
1144        const char              *s;
1145};
1146
1147/**
1148 * struct usb_gadget_strings - a set of USB strings in a given language
1149 * @language:identifies the strings' language (0x0409 for en-us)
1150 * @strings:array of strings with their ids
1151 *
1152 * If you're using usb_gadget_get_string(), use this to wrap all the
1153 * strings for a given language.
1154 */
1155struct usb_gadget_strings {
1156        u16                     language;       /* 0x0409 for en-us */
1157        struct usb_string       *strings;
1158};
1159
1160struct usb_gadget_string_container {
1161        struct list_head        list;
1162        u8                      *stash[0];
1163};
1164
1165/* put descriptor for string with that id into buf (buflen >= 256) */
1166int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
1167
1168/*-------------------------------------------------------------------------*/
1169
1170/* utility to simplify managing config descriptors */
1171
1172/* write vector of descriptors into buffer */
1173int usb_descriptor_fillbuf(void *, unsigned,
1174                const struct usb_descriptor_header **);
1175
1176/* build config descriptor from single descriptor vector */
1177int usb_gadget_config_buf(const struct usb_config_descriptor *config,
1178        void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
1179
1180/* copy a NULL-terminated vector of descriptors */
1181struct usb_descriptor_header **usb_copy_descriptors(
1182                struct usb_descriptor_header **);
1183
1184/**
1185 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
1186 * @v: vector of descriptors
1187 */
1188static inline void usb_free_descriptors(struct usb_descriptor_header **v)
1189{
1190        kfree(v);
1191}
1192
1193struct usb_function;
1194int usb_assign_descriptors(struct usb_function *f,
1195                struct usb_descriptor_header **fs,
1196                struct usb_descriptor_header **hs,
1197                struct usb_descriptor_header **ss);
1198void usb_free_all_descriptors(struct usb_function *f);
1199
1200struct usb_descriptor_header *usb_otg_descriptor_alloc(
1201                                struct usb_gadget *gadget);
1202int usb_otg_descriptor_init(struct usb_gadget *gadget,
1203                struct usb_descriptor_header *otg_desc);
1204/*-------------------------------------------------------------------------*/
1205
1206/* utility to simplify map/unmap of usb_requests to/from DMA */
1207
1208extern int usb_gadget_map_request(struct usb_gadget *gadget,
1209                struct usb_request *req, int is_in);
1210
1211extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
1212                struct usb_request *req, int is_in);
1213
1214/*-------------------------------------------------------------------------*/
1215
1216/* utility to set gadget state properly */
1217
1218extern void usb_gadget_set_state(struct usb_gadget *gadget,
1219                enum usb_device_state state);
1220
1221/*-------------------------------------------------------------------------*/
1222
1223/* utility to tell udc core that the bus reset occurs */
1224extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
1225                struct usb_gadget_driver *driver);
1226
1227/*-------------------------------------------------------------------------*/
1228
1229/* utility to give requests back to the gadget layer */
1230
1231extern void usb_gadget_giveback_request(struct usb_ep *ep,
1232                struct usb_request *req);
1233
1234/*-------------------------------------------------------------------------*/
1235
1236/* utility to find endpoint by name */
1237
1238extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
1239                const char *name);
1240
1241/*-------------------------------------------------------------------------*/
1242
1243/* utility to check if endpoint caps match descriptor needs */
1244
1245extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1246                struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1247                struct usb_ss_ep_comp_descriptor *ep_comp);
1248
1249/*-------------------------------------------------------------------------*/
1250
1251/* utility to update vbus status for udc core, it may be scheduled */
1252extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
1253
1254/*-------------------------------------------------------------------------*/
1255
1256/* utility wrapping a simple endpoint selection policy */
1257
1258extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
1259                        struct usb_endpoint_descriptor *);
1260
1261
1262extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
1263                        struct usb_endpoint_descriptor *,
1264                        struct usb_ss_ep_comp_descriptor *);
1265
1266extern void usb_ep_autoconfig_release(struct usb_ep *);
1267
1268extern void usb_ep_autoconfig_reset(struct usb_gadget *);
1269
1270#endif /* __LINUX_USB_GADGET_H */
1271