linux/kernel/kexec_file.c
<<
>>
Prefs
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <crypto/hash.h>
  22#include <crypto/sha.h>
  23#include <linux/syscalls.h>
  24#include <linux/vmalloc.h>
  25#include "kexec_internal.h"
  26
  27/*
  28 * Declare these symbols weak so that if architecture provides a purgatory,
  29 * these will be overridden.
  30 */
  31char __weak kexec_purgatory[0];
  32size_t __weak kexec_purgatory_size = 0;
  33
  34static int kexec_calculate_store_digests(struct kimage *image);
  35
  36static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
  37{
  38        struct fd f = fdget(fd);
  39        int ret;
  40        struct kstat stat;
  41        loff_t pos;
  42        ssize_t bytes = 0;
  43
  44        if (!f.file)
  45                return -EBADF;
  46
  47        ret = vfs_getattr(&f.file->f_path, &stat);
  48        if (ret)
  49                goto out;
  50
  51        if (stat.size > INT_MAX) {
  52                ret = -EFBIG;
  53                goto out;
  54        }
  55
  56        /* Don't hand 0 to vmalloc, it whines. */
  57        if (stat.size == 0) {
  58                ret = -EINVAL;
  59                goto out;
  60        }
  61
  62        *buf = vmalloc(stat.size);
  63        if (!*buf) {
  64                ret = -ENOMEM;
  65                goto out;
  66        }
  67
  68        pos = 0;
  69        while (pos < stat.size) {
  70                bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
  71                                    stat.size - pos);
  72                if (bytes < 0) {
  73                        vfree(*buf);
  74                        ret = bytes;
  75                        goto out;
  76                }
  77
  78                if (bytes == 0)
  79                        break;
  80                pos += bytes;
  81        }
  82
  83        if (pos != stat.size) {
  84                ret = -EBADF;
  85                vfree(*buf);
  86                goto out;
  87        }
  88
  89        *buf_len = pos;
  90out:
  91        fdput(f);
  92        return ret;
  93}
  94
  95/* Architectures can provide this probe function */
  96int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  97                                         unsigned long buf_len)
  98{
  99        return -ENOEXEC;
 100}
 101
 102void * __weak arch_kexec_kernel_image_load(struct kimage *image)
 103{
 104        return ERR_PTR(-ENOEXEC);
 105}
 106
 107int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
 108{
 109        return -EINVAL;
 110}
 111
 112#ifdef CONFIG_KEXEC_VERIFY_SIG
 113int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 114                                        unsigned long buf_len)
 115{
 116        return -EKEYREJECTED;
 117}
 118#endif
 119
 120/* Apply relocations of type RELA */
 121int __weak
 122arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 123                                 unsigned int relsec)
 124{
 125        pr_err("RELA relocation unsupported.\n");
 126        return -ENOEXEC;
 127}
 128
 129/* Apply relocations of type REL */
 130int __weak
 131arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 132                             unsigned int relsec)
 133{
 134        pr_err("REL relocation unsupported.\n");
 135        return -ENOEXEC;
 136}
 137
 138/*
 139 * Free up memory used by kernel, initrd, and command line. This is temporary
 140 * memory allocation which is not needed any more after these buffers have
 141 * been loaded into separate segments and have been copied elsewhere.
 142 */
 143void kimage_file_post_load_cleanup(struct kimage *image)
 144{
 145        struct purgatory_info *pi = &image->purgatory_info;
 146
 147        vfree(image->kernel_buf);
 148        image->kernel_buf = NULL;
 149
 150        vfree(image->initrd_buf);
 151        image->initrd_buf = NULL;
 152
 153        kfree(image->cmdline_buf);
 154        image->cmdline_buf = NULL;
 155
 156        vfree(pi->purgatory_buf);
 157        pi->purgatory_buf = NULL;
 158
 159        vfree(pi->sechdrs);
 160        pi->sechdrs = NULL;
 161
 162        /* See if architecture has anything to cleanup post load */
 163        arch_kimage_file_post_load_cleanup(image);
 164
 165        /*
 166         * Above call should have called into bootloader to free up
 167         * any data stored in kimage->image_loader_data. It should
 168         * be ok now to free it up.
 169         */
 170        kfree(image->image_loader_data);
 171        image->image_loader_data = NULL;
 172}
 173
 174/*
 175 * In file mode list of segments is prepared by kernel. Copy relevant
 176 * data from user space, do error checking, prepare segment list
 177 */
 178static int
 179kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 180                             const char __user *cmdline_ptr,
 181                             unsigned long cmdline_len, unsigned flags)
 182{
 183        int ret = 0;
 184        void *ldata;
 185
 186        ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
 187                                &image->kernel_buf_len);
 188        if (ret)
 189                return ret;
 190
 191        /* Call arch image probe handlers */
 192        ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 193                                            image->kernel_buf_len);
 194
 195        if (ret)
 196                goto out;
 197
 198#ifdef CONFIG_KEXEC_VERIFY_SIG
 199        ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 200                                           image->kernel_buf_len);
 201        if (ret) {
 202                pr_debug("kernel signature verification failed.\n");
 203                goto out;
 204        }
 205        pr_debug("kernel signature verification successful.\n");
 206#endif
 207        /* It is possible that there no initramfs is being loaded */
 208        if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 209                ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
 210                                        &image->initrd_buf_len);
 211                if (ret)
 212                        goto out;
 213        }
 214
 215        if (cmdline_len) {
 216                image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
 217                if (!image->cmdline_buf) {
 218                        ret = -ENOMEM;
 219                        goto out;
 220                }
 221
 222                ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
 223                                     cmdline_len);
 224                if (ret) {
 225                        ret = -EFAULT;
 226                        goto out;
 227                }
 228
 229                image->cmdline_buf_len = cmdline_len;
 230
 231                /* command line should be a string with last byte null */
 232                if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 233                        ret = -EINVAL;
 234                        goto out;
 235                }
 236        }
 237
 238        /* Call arch image load handlers */
 239        ldata = arch_kexec_kernel_image_load(image);
 240
 241        if (IS_ERR(ldata)) {
 242                ret = PTR_ERR(ldata);
 243                goto out;
 244        }
 245
 246        image->image_loader_data = ldata;
 247out:
 248        /* In case of error, free up all allocated memory in this function */
 249        if (ret)
 250                kimage_file_post_load_cleanup(image);
 251        return ret;
 252}
 253
 254static int
 255kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 256                       int initrd_fd, const char __user *cmdline_ptr,
 257                       unsigned long cmdline_len, unsigned long flags)
 258{
 259        int ret;
 260        struct kimage *image;
 261        bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 262
 263        image = do_kimage_alloc_init();
 264        if (!image)
 265                return -ENOMEM;
 266
 267        image->file_mode = 1;
 268
 269        if (kexec_on_panic) {
 270                /* Enable special crash kernel control page alloc policy. */
 271                image->control_page = crashk_res.start;
 272                image->type = KEXEC_TYPE_CRASH;
 273        }
 274
 275        ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 276                                           cmdline_ptr, cmdline_len, flags);
 277        if (ret)
 278                goto out_free_image;
 279
 280        ret = sanity_check_segment_list(image);
 281        if (ret)
 282                goto out_free_post_load_bufs;
 283
 284        ret = -ENOMEM;
 285        image->control_code_page = kimage_alloc_control_pages(image,
 286                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
 287        if (!image->control_code_page) {
 288                pr_err("Could not allocate control_code_buffer\n");
 289                goto out_free_post_load_bufs;
 290        }
 291
 292        if (!kexec_on_panic) {
 293                image->swap_page = kimage_alloc_control_pages(image, 0);
 294                if (!image->swap_page) {
 295                        pr_err("Could not allocate swap buffer\n");
 296                        goto out_free_control_pages;
 297                }
 298        }
 299
 300        *rimage = image;
 301        return 0;
 302out_free_control_pages:
 303        kimage_free_page_list(&image->control_pages);
 304out_free_post_load_bufs:
 305        kimage_file_post_load_cleanup(image);
 306out_free_image:
 307        kfree(image);
 308        return ret;
 309}
 310
 311SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 312                unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 313                unsigned long, flags)
 314{
 315        int ret = 0, i;
 316        struct kimage **dest_image, *image;
 317
 318        /* We only trust the superuser with rebooting the system. */
 319        if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 320                return -EPERM;
 321
 322        /* Make sure we have a legal set of flags */
 323        if (flags != (flags & KEXEC_FILE_FLAGS))
 324                return -EINVAL;
 325
 326        image = NULL;
 327
 328        if (!mutex_trylock(&kexec_mutex))
 329                return -EBUSY;
 330
 331        dest_image = &kexec_image;
 332        if (flags & KEXEC_FILE_ON_CRASH)
 333                dest_image = &kexec_crash_image;
 334
 335        if (flags & KEXEC_FILE_UNLOAD)
 336                goto exchange;
 337
 338        /*
 339         * In case of crash, new kernel gets loaded in reserved region. It is
 340         * same memory where old crash kernel might be loaded. Free any
 341         * current crash dump kernel before we corrupt it.
 342         */
 343        if (flags & KEXEC_FILE_ON_CRASH)
 344                kimage_free(xchg(&kexec_crash_image, NULL));
 345
 346        ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 347                                     cmdline_len, flags);
 348        if (ret)
 349                goto out;
 350
 351        ret = machine_kexec_prepare(image);
 352        if (ret)
 353                goto out;
 354
 355        ret = kexec_calculate_store_digests(image);
 356        if (ret)
 357                goto out;
 358
 359        for (i = 0; i < image->nr_segments; i++) {
 360                struct kexec_segment *ksegment;
 361
 362                ksegment = &image->segment[i];
 363                pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 364                         i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 365                         ksegment->memsz);
 366
 367                ret = kimage_load_segment(image, &image->segment[i]);
 368                if (ret)
 369                        goto out;
 370        }
 371
 372        kimage_terminate(image);
 373
 374        /*
 375         * Free up any temporary buffers allocated which are not needed
 376         * after image has been loaded
 377         */
 378        kimage_file_post_load_cleanup(image);
 379exchange:
 380        image = xchg(dest_image, image);
 381out:
 382        mutex_unlock(&kexec_mutex);
 383        kimage_free(image);
 384        return ret;
 385}
 386
 387static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 388                                    struct kexec_buf *kbuf)
 389{
 390        struct kimage *image = kbuf->image;
 391        unsigned long temp_start, temp_end;
 392
 393        temp_end = min(end, kbuf->buf_max);
 394        temp_start = temp_end - kbuf->memsz;
 395
 396        do {
 397                /* align down start */
 398                temp_start = temp_start & (~(kbuf->buf_align - 1));
 399
 400                if (temp_start < start || temp_start < kbuf->buf_min)
 401                        return 0;
 402
 403                temp_end = temp_start + kbuf->memsz - 1;
 404
 405                /*
 406                 * Make sure this does not conflict with any of existing
 407                 * segments
 408                 */
 409                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 410                        temp_start = temp_start - PAGE_SIZE;
 411                        continue;
 412                }
 413
 414                /* We found a suitable memory range */
 415                break;
 416        } while (1);
 417
 418        /* If we are here, we found a suitable memory range */
 419        kbuf->mem = temp_start;
 420
 421        /* Success, stop navigating through remaining System RAM ranges */
 422        return 1;
 423}
 424
 425static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 426                                     struct kexec_buf *kbuf)
 427{
 428        struct kimage *image = kbuf->image;
 429        unsigned long temp_start, temp_end;
 430
 431        temp_start = max(start, kbuf->buf_min);
 432
 433        do {
 434                temp_start = ALIGN(temp_start, kbuf->buf_align);
 435                temp_end = temp_start + kbuf->memsz - 1;
 436
 437                if (temp_end > end || temp_end > kbuf->buf_max)
 438                        return 0;
 439                /*
 440                 * Make sure this does not conflict with any of existing
 441                 * segments
 442                 */
 443                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 444                        temp_start = temp_start + PAGE_SIZE;
 445                        continue;
 446                }
 447
 448                /* We found a suitable memory range */
 449                break;
 450        } while (1);
 451
 452        /* If we are here, we found a suitable memory range */
 453        kbuf->mem = temp_start;
 454
 455        /* Success, stop navigating through remaining System RAM ranges */
 456        return 1;
 457}
 458
 459static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
 460{
 461        struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 462        unsigned long sz = end - start + 1;
 463
 464        /* Returning 0 will take to next memory range */
 465        if (sz < kbuf->memsz)
 466                return 0;
 467
 468        if (end < kbuf->buf_min || start > kbuf->buf_max)
 469                return 0;
 470
 471        /*
 472         * Allocate memory top down with-in ram range. Otherwise bottom up
 473         * allocation.
 474         */
 475        if (kbuf->top_down)
 476                return locate_mem_hole_top_down(start, end, kbuf);
 477        return locate_mem_hole_bottom_up(start, end, kbuf);
 478}
 479
 480/*
 481 * Helper function for placing a buffer in a kexec segment. This assumes
 482 * that kexec_mutex is held.
 483 */
 484int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
 485                     unsigned long memsz, unsigned long buf_align,
 486                     unsigned long buf_min, unsigned long buf_max,
 487                     bool top_down, unsigned long *load_addr)
 488{
 489
 490        struct kexec_segment *ksegment;
 491        struct kexec_buf buf, *kbuf;
 492        int ret;
 493
 494        /* Currently adding segment this way is allowed only in file mode */
 495        if (!image->file_mode)
 496                return -EINVAL;
 497
 498        if (image->nr_segments >= KEXEC_SEGMENT_MAX)
 499                return -EINVAL;
 500
 501        /*
 502         * Make sure we are not trying to add buffer after allocating
 503         * control pages. All segments need to be placed first before
 504         * any control pages are allocated. As control page allocation
 505         * logic goes through list of segments to make sure there are
 506         * no destination overlaps.
 507         */
 508        if (!list_empty(&image->control_pages)) {
 509                WARN_ON(1);
 510                return -EINVAL;
 511        }
 512
 513        memset(&buf, 0, sizeof(struct kexec_buf));
 514        kbuf = &buf;
 515        kbuf->image = image;
 516        kbuf->buffer = buffer;
 517        kbuf->bufsz = bufsz;
 518
 519        kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
 520        kbuf->buf_align = max(buf_align, PAGE_SIZE);
 521        kbuf->buf_min = buf_min;
 522        kbuf->buf_max = buf_max;
 523        kbuf->top_down = top_down;
 524
 525        /* Walk the RAM ranges and allocate a suitable range for the buffer */
 526        if (image->type == KEXEC_TYPE_CRASH)
 527                ret = walk_iomem_res("Crash kernel",
 528                                     IORESOURCE_MEM | IORESOURCE_BUSY,
 529                                     crashk_res.start, crashk_res.end, kbuf,
 530                                     locate_mem_hole_callback);
 531        else
 532                ret = walk_system_ram_res(0, -1, kbuf,
 533                                          locate_mem_hole_callback);
 534        if (ret != 1) {
 535                /* A suitable memory range could not be found for buffer */
 536                return -EADDRNOTAVAIL;
 537        }
 538
 539        /* Found a suitable memory range */
 540        ksegment = &image->segment[image->nr_segments];
 541        ksegment->kbuf = kbuf->buffer;
 542        ksegment->bufsz = kbuf->bufsz;
 543        ksegment->mem = kbuf->mem;
 544        ksegment->memsz = kbuf->memsz;
 545        image->nr_segments++;
 546        *load_addr = ksegment->mem;
 547        return 0;
 548}
 549
 550/* Calculate and store the digest of segments */
 551static int kexec_calculate_store_digests(struct kimage *image)
 552{
 553        struct crypto_shash *tfm;
 554        struct shash_desc *desc;
 555        int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 556        size_t desc_size, nullsz;
 557        char *digest;
 558        void *zero_buf;
 559        struct kexec_sha_region *sha_regions;
 560        struct purgatory_info *pi = &image->purgatory_info;
 561
 562        zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 563        zero_buf_sz = PAGE_SIZE;
 564
 565        tfm = crypto_alloc_shash("sha256", 0, 0);
 566        if (IS_ERR(tfm)) {
 567                ret = PTR_ERR(tfm);
 568                goto out;
 569        }
 570
 571        desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 572        desc = kzalloc(desc_size, GFP_KERNEL);
 573        if (!desc) {
 574                ret = -ENOMEM;
 575                goto out_free_tfm;
 576        }
 577
 578        sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 579        sha_regions = vzalloc(sha_region_sz);
 580        if (!sha_regions)
 581                goto out_free_desc;
 582
 583        desc->tfm   = tfm;
 584        desc->flags = 0;
 585
 586        ret = crypto_shash_init(desc);
 587        if (ret < 0)
 588                goto out_free_sha_regions;
 589
 590        digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 591        if (!digest) {
 592                ret = -ENOMEM;
 593                goto out_free_sha_regions;
 594        }
 595
 596        for (j = i = 0; i < image->nr_segments; i++) {
 597                struct kexec_segment *ksegment;
 598
 599                ksegment = &image->segment[i];
 600                /*
 601                 * Skip purgatory as it will be modified once we put digest
 602                 * info in purgatory.
 603                 */
 604                if (ksegment->kbuf == pi->purgatory_buf)
 605                        continue;
 606
 607                ret = crypto_shash_update(desc, ksegment->kbuf,
 608                                          ksegment->bufsz);
 609                if (ret)
 610                        break;
 611
 612                /*
 613                 * Assume rest of the buffer is filled with zero and
 614                 * update digest accordingly.
 615                 */
 616                nullsz = ksegment->memsz - ksegment->bufsz;
 617                while (nullsz) {
 618                        unsigned long bytes = nullsz;
 619
 620                        if (bytes > zero_buf_sz)
 621                                bytes = zero_buf_sz;
 622                        ret = crypto_shash_update(desc, zero_buf, bytes);
 623                        if (ret)
 624                                break;
 625                        nullsz -= bytes;
 626                }
 627
 628                if (ret)
 629                        break;
 630
 631                sha_regions[j].start = ksegment->mem;
 632                sha_regions[j].len = ksegment->memsz;
 633                j++;
 634        }
 635
 636        if (!ret) {
 637                ret = crypto_shash_final(desc, digest);
 638                if (ret)
 639                        goto out_free_digest;
 640                ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
 641                                                sha_regions, sha_region_sz, 0);
 642                if (ret)
 643                        goto out_free_digest;
 644
 645                ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
 646                                                digest, SHA256_DIGEST_SIZE, 0);
 647                if (ret)
 648                        goto out_free_digest;
 649        }
 650
 651out_free_digest:
 652        kfree(digest);
 653out_free_sha_regions:
 654        vfree(sha_regions);
 655out_free_desc:
 656        kfree(desc);
 657out_free_tfm:
 658        kfree(tfm);
 659out:
 660        return ret;
 661}
 662
 663/* Actually load purgatory. Lot of code taken from kexec-tools */
 664static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
 665                                  unsigned long max, int top_down)
 666{
 667        struct purgatory_info *pi = &image->purgatory_info;
 668        unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
 669        unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
 670        unsigned char *buf_addr, *src;
 671        int i, ret = 0, entry_sidx = -1;
 672        const Elf_Shdr *sechdrs_c;
 673        Elf_Shdr *sechdrs = NULL;
 674        void *purgatory_buf = NULL;
 675
 676        /*
 677         * sechdrs_c points to section headers in purgatory and are read
 678         * only. No modifications allowed.
 679         */
 680        sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
 681
 682        /*
 683         * We can not modify sechdrs_c[] and its fields. It is read only.
 684         * Copy it over to a local copy where one can store some temporary
 685         * data and free it at the end. We need to modify ->sh_addr and
 686         * ->sh_offset fields to keep track of permanent and temporary
 687         * locations of sections.
 688         */
 689        sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 690        if (!sechdrs)
 691                return -ENOMEM;
 692
 693        memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 694
 695        /*
 696         * We seem to have multiple copies of sections. First copy is which
 697         * is embedded in kernel in read only section. Some of these sections
 698         * will be copied to a temporary buffer and relocated. And these
 699         * sections will finally be copied to their final destination at
 700         * segment load time.
 701         *
 702         * Use ->sh_offset to reflect section address in memory. It will
 703         * point to original read only copy if section is not allocatable.
 704         * Otherwise it will point to temporary copy which will be relocated.
 705         *
 706         * Use ->sh_addr to contain final address of the section where it
 707         * will go during execution time.
 708         */
 709        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 710                if (sechdrs[i].sh_type == SHT_NOBITS)
 711                        continue;
 712
 713                sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
 714                                                sechdrs[i].sh_offset;
 715        }
 716
 717        /*
 718         * Identify entry point section and make entry relative to section
 719         * start.
 720         */
 721        entry = pi->ehdr->e_entry;
 722        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 723                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 724                        continue;
 725
 726                if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
 727                        continue;
 728
 729                /* Make entry section relative */
 730                if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
 731                    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
 732                     pi->ehdr->e_entry)) {
 733                        entry_sidx = i;
 734                        entry -= sechdrs[i].sh_addr;
 735                        break;
 736                }
 737        }
 738
 739        /* Determine how much memory is needed to load relocatable object. */
 740        buf_align = 1;
 741        bss_align = 1;
 742        buf_sz = 0;
 743        bss_sz = 0;
 744
 745        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 746                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 747                        continue;
 748
 749                align = sechdrs[i].sh_addralign;
 750                if (sechdrs[i].sh_type != SHT_NOBITS) {
 751                        if (buf_align < align)
 752                                buf_align = align;
 753                        buf_sz = ALIGN(buf_sz, align);
 754                        buf_sz += sechdrs[i].sh_size;
 755                } else {
 756                        /* bss section */
 757                        if (bss_align < align)
 758                                bss_align = align;
 759                        bss_sz = ALIGN(bss_sz, align);
 760                        bss_sz += sechdrs[i].sh_size;
 761                }
 762        }
 763
 764        /* Determine the bss padding required to align bss properly */
 765        bss_pad = 0;
 766        if (buf_sz & (bss_align - 1))
 767                bss_pad = bss_align - (buf_sz & (bss_align - 1));
 768
 769        memsz = buf_sz + bss_pad + bss_sz;
 770
 771        /* Allocate buffer for purgatory */
 772        purgatory_buf = vzalloc(buf_sz);
 773        if (!purgatory_buf) {
 774                ret = -ENOMEM;
 775                goto out;
 776        }
 777
 778        if (buf_align < bss_align)
 779                buf_align = bss_align;
 780
 781        /* Add buffer to segment list */
 782        ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
 783                                buf_align, min, max, top_down,
 784                                &pi->purgatory_load_addr);
 785        if (ret)
 786                goto out;
 787
 788        /* Load SHF_ALLOC sections */
 789        buf_addr = purgatory_buf;
 790        load_addr = curr_load_addr = pi->purgatory_load_addr;
 791        bss_addr = load_addr + buf_sz + bss_pad;
 792
 793        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 794                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 795                        continue;
 796
 797                align = sechdrs[i].sh_addralign;
 798                if (sechdrs[i].sh_type != SHT_NOBITS) {
 799                        curr_load_addr = ALIGN(curr_load_addr, align);
 800                        offset = curr_load_addr - load_addr;
 801                        /* We already modifed ->sh_offset to keep src addr */
 802                        src = (char *) sechdrs[i].sh_offset;
 803                        memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
 804
 805                        /* Store load address and source address of section */
 806                        sechdrs[i].sh_addr = curr_load_addr;
 807
 808                        /*
 809                         * This section got copied to temporary buffer. Update
 810                         * ->sh_offset accordingly.
 811                         */
 812                        sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
 813
 814                        /* Advance to the next address */
 815                        curr_load_addr += sechdrs[i].sh_size;
 816                } else {
 817                        bss_addr = ALIGN(bss_addr, align);
 818                        sechdrs[i].sh_addr = bss_addr;
 819                        bss_addr += sechdrs[i].sh_size;
 820                }
 821        }
 822
 823        /* Update entry point based on load address of text section */
 824        if (entry_sidx >= 0)
 825                entry += sechdrs[entry_sidx].sh_addr;
 826
 827        /* Make kernel jump to purgatory after shutdown */
 828        image->start = entry;
 829
 830        /* Used later to get/set symbol values */
 831        pi->sechdrs = sechdrs;
 832
 833        /*
 834         * Used later to identify which section is purgatory and skip it
 835         * from checksumming.
 836         */
 837        pi->purgatory_buf = purgatory_buf;
 838        return ret;
 839out:
 840        vfree(sechdrs);
 841        vfree(purgatory_buf);
 842        return ret;
 843}
 844
 845static int kexec_apply_relocations(struct kimage *image)
 846{
 847        int i, ret;
 848        struct purgatory_info *pi = &image->purgatory_info;
 849        Elf_Shdr *sechdrs = pi->sechdrs;
 850
 851        /* Apply relocations */
 852        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 853                Elf_Shdr *section, *symtab;
 854
 855                if (sechdrs[i].sh_type != SHT_RELA &&
 856                    sechdrs[i].sh_type != SHT_REL)
 857                        continue;
 858
 859                /*
 860                 * For section of type SHT_RELA/SHT_REL,
 861                 * ->sh_link contains section header index of associated
 862                 * symbol table. And ->sh_info contains section header
 863                 * index of section to which relocations apply.
 864                 */
 865                if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
 866                    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
 867                        return -ENOEXEC;
 868
 869                section = &sechdrs[sechdrs[i].sh_info];
 870                symtab = &sechdrs[sechdrs[i].sh_link];
 871
 872                if (!(section->sh_flags & SHF_ALLOC))
 873                        continue;
 874
 875                /*
 876                 * symtab->sh_link contain section header index of associated
 877                 * string table.
 878                 */
 879                if (symtab->sh_link >= pi->ehdr->e_shnum)
 880                        /* Invalid section number? */
 881                        continue;
 882
 883                /*
 884                 * Respective architecture needs to provide support for applying
 885                 * relocations of type SHT_RELA/SHT_REL.
 886                 */
 887                if (sechdrs[i].sh_type == SHT_RELA)
 888                        ret = arch_kexec_apply_relocations_add(pi->ehdr,
 889                                                               sechdrs, i);
 890                else if (sechdrs[i].sh_type == SHT_REL)
 891                        ret = arch_kexec_apply_relocations(pi->ehdr,
 892                                                           sechdrs, i);
 893                if (ret)
 894                        return ret;
 895        }
 896
 897        return 0;
 898}
 899
 900/* Load relocatable purgatory object and relocate it appropriately */
 901int kexec_load_purgatory(struct kimage *image, unsigned long min,
 902                         unsigned long max, int top_down,
 903                         unsigned long *load_addr)
 904{
 905        struct purgatory_info *pi = &image->purgatory_info;
 906        int ret;
 907
 908        if (kexec_purgatory_size <= 0)
 909                return -EINVAL;
 910
 911        if (kexec_purgatory_size < sizeof(Elf_Ehdr))
 912                return -ENOEXEC;
 913
 914        pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
 915
 916        if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
 917            || pi->ehdr->e_type != ET_REL
 918            || !elf_check_arch(pi->ehdr)
 919            || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
 920                return -ENOEXEC;
 921
 922        if (pi->ehdr->e_shoff >= kexec_purgatory_size
 923            || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
 924            kexec_purgatory_size - pi->ehdr->e_shoff))
 925                return -ENOEXEC;
 926
 927        ret = __kexec_load_purgatory(image, min, max, top_down);
 928        if (ret)
 929                return ret;
 930
 931        ret = kexec_apply_relocations(image);
 932        if (ret)
 933                goto out;
 934
 935        *load_addr = pi->purgatory_load_addr;
 936        return 0;
 937out:
 938        vfree(pi->sechdrs);
 939        vfree(pi->purgatory_buf);
 940        return ret;
 941}
 942
 943static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 944                                            const char *name)
 945{
 946        Elf_Sym *syms;
 947        Elf_Shdr *sechdrs;
 948        Elf_Ehdr *ehdr;
 949        int i, k;
 950        const char *strtab;
 951
 952        if (!pi->sechdrs || !pi->ehdr)
 953                return NULL;
 954
 955        sechdrs = pi->sechdrs;
 956        ehdr = pi->ehdr;
 957
 958        for (i = 0; i < ehdr->e_shnum; i++) {
 959                if (sechdrs[i].sh_type != SHT_SYMTAB)
 960                        continue;
 961
 962                if (sechdrs[i].sh_link >= ehdr->e_shnum)
 963                        /* Invalid strtab section number */
 964                        continue;
 965                strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
 966                syms = (Elf_Sym *)sechdrs[i].sh_offset;
 967
 968                /* Go through symbols for a match */
 969                for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 970                        if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 971                                continue;
 972
 973                        if (strcmp(strtab + syms[k].st_name, name) != 0)
 974                                continue;
 975
 976                        if (syms[k].st_shndx == SHN_UNDEF ||
 977                            syms[k].st_shndx >= ehdr->e_shnum) {
 978                                pr_debug("Symbol: %s has bad section index %d.\n",
 979                                                name, syms[k].st_shndx);
 980                                return NULL;
 981                        }
 982
 983                        /* Found the symbol we are looking for */
 984                        return &syms[k];
 985                }
 986        }
 987
 988        return NULL;
 989}
 990
 991void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
 992{
 993        struct purgatory_info *pi = &image->purgatory_info;
 994        Elf_Sym *sym;
 995        Elf_Shdr *sechdr;
 996
 997        sym = kexec_purgatory_find_symbol(pi, name);
 998        if (!sym)
 999                return ERR_PTR(-EINVAL);
1000
1001        sechdr = &pi->sechdrs[sym->st_shndx];
1002
1003        /*
1004         * Returns the address where symbol will finally be loaded after
1005         * kexec_load_segment()
1006         */
1007        return (void *)(sechdr->sh_addr + sym->st_value);
1008}
1009
1010/*
1011 * Get or set value of a symbol. If "get_value" is true, symbol value is
1012 * returned in buf otherwise symbol value is set based on value in buf.
1013 */
1014int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1015                                   void *buf, unsigned int size, bool get_value)
1016{
1017        Elf_Sym *sym;
1018        Elf_Shdr *sechdrs;
1019        struct purgatory_info *pi = &image->purgatory_info;
1020        char *sym_buf;
1021
1022        sym = kexec_purgatory_find_symbol(pi, name);
1023        if (!sym)
1024                return -EINVAL;
1025
1026        if (sym->st_size != size) {
1027                pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1028                       name, (unsigned long)sym->st_size, size);
1029                return -EINVAL;
1030        }
1031
1032        sechdrs = pi->sechdrs;
1033
1034        if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1035                pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1036                       get_value ? "get" : "set");
1037                return -EINVAL;
1038        }
1039
1040        sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1041                                        sym->st_value;
1042
1043        if (get_value)
1044                memcpy((void *)buf, sym_buf, size);
1045        else
1046                memcpy((void *)sym_buf, buf, size);
1047
1048        return 0;
1049}
1050