linux/mm/internal.h
<<
>>
Prefs
   1/* internal.h: mm/ internal definitions
   2 *
   3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#ifndef __MM_INTERNAL_H
  12#define __MM_INTERNAL_H
  13
  14#include <linux/fs.h>
  15#include <linux/mm.h>
  16#include <linux/pagemap.h>
  17
  18/*
  19 * The set of flags that only affect watermark checking and reclaim
  20 * behaviour. This is used by the MM to obey the caller constraints
  21 * about IO, FS and watermark checking while ignoring placement
  22 * hints such as HIGHMEM usage.
  23 */
  24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
  25                        __GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\
  26                        __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC)
  27
  28/* The GFP flags allowed during early boot */
  29#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
  30
  31/* Control allocation cpuset and node placement constraints */
  32#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
  33
  34/* Do not use these with a slab allocator */
  35#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
  36
  37void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  38                unsigned long floor, unsigned long ceiling);
  39
  40static inline void set_page_count(struct page *page, int v)
  41{
  42        atomic_set(&page->_count, v);
  43}
  44
  45extern int __do_page_cache_readahead(struct address_space *mapping,
  46                struct file *filp, pgoff_t offset, unsigned long nr_to_read,
  47                unsigned long lookahead_size);
  48
  49/*
  50 * Submit IO for the read-ahead request in file_ra_state.
  51 */
  52static inline unsigned long ra_submit(struct file_ra_state *ra,
  53                struct address_space *mapping, struct file *filp)
  54{
  55        return __do_page_cache_readahead(mapping, filp,
  56                                        ra->start, ra->size, ra->async_size);
  57}
  58
  59/*
  60 * Turn a non-refcounted page (->_count == 0) into refcounted with
  61 * a count of one.
  62 */
  63static inline void set_page_refcounted(struct page *page)
  64{
  65        VM_BUG_ON_PAGE(PageTail(page), page);
  66        VM_BUG_ON_PAGE(atomic_read(&page->_count), page);
  67        set_page_count(page, 1);
  68}
  69
  70extern unsigned long highest_memmap_pfn;
  71
  72/*
  73 * in mm/vmscan.c:
  74 */
  75extern int isolate_lru_page(struct page *page);
  76extern void putback_lru_page(struct page *page);
  77extern bool zone_reclaimable(struct zone *zone);
  78
  79/*
  80 * in mm/rmap.c:
  81 */
  82extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
  83
  84/*
  85 * in mm/page_alloc.c
  86 */
  87
  88/*
  89 * Structure for holding the mostly immutable allocation parameters passed
  90 * between functions involved in allocations, including the alloc_pages*
  91 * family of functions.
  92 *
  93 * nodemask, migratetype and high_zoneidx are initialized only once in
  94 * __alloc_pages_nodemask() and then never change.
  95 *
  96 * zonelist, preferred_zone and classzone_idx are set first in
  97 * __alloc_pages_nodemask() for the fast path, and might be later changed
  98 * in __alloc_pages_slowpath(). All other functions pass the whole strucure
  99 * by a const pointer.
 100 */
 101struct alloc_context {
 102        struct zonelist *zonelist;
 103        nodemask_t *nodemask;
 104        struct zone *preferred_zone;
 105        int classzone_idx;
 106        int migratetype;
 107        enum zone_type high_zoneidx;
 108        bool spread_dirty_pages;
 109};
 110
 111/*
 112 * Locate the struct page for both the matching buddy in our
 113 * pair (buddy1) and the combined O(n+1) page they form (page).
 114 *
 115 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 116 * the following equation:
 117 *     B2 = B1 ^ (1 << O)
 118 * For example, if the starting buddy (buddy2) is #8 its order
 119 * 1 buddy is #10:
 120 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 121 *
 122 * 2) Any buddy B will have an order O+1 parent P which
 123 * satisfies the following equation:
 124 *     P = B & ~(1 << O)
 125 *
 126 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 127 */
 128static inline unsigned long
 129__find_buddy_index(unsigned long page_idx, unsigned int order)
 130{
 131        return page_idx ^ (1 << order);
 132}
 133
 134extern int __isolate_free_page(struct page *page, unsigned int order);
 135extern void __free_pages_bootmem(struct page *page, unsigned long pfn,
 136                                        unsigned int order);
 137extern void prep_compound_page(struct page *page, unsigned int order);
 138#ifdef CONFIG_MEMORY_FAILURE
 139extern bool is_free_buddy_page(struct page *page);
 140#endif
 141extern int user_min_free_kbytes;
 142
 143#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 144
 145/*
 146 * in mm/compaction.c
 147 */
 148/*
 149 * compact_control is used to track pages being migrated and the free pages
 150 * they are being migrated to during memory compaction. The free_pfn starts
 151 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 152 * are moved to the end of a zone during a compaction run and the run
 153 * completes when free_pfn <= migrate_pfn
 154 */
 155struct compact_control {
 156        struct list_head freepages;     /* List of free pages to migrate to */
 157        struct list_head migratepages;  /* List of pages being migrated */
 158        unsigned long nr_freepages;     /* Number of isolated free pages */
 159        unsigned long nr_migratepages;  /* Number of pages to migrate */
 160        unsigned long free_pfn;         /* isolate_freepages search base */
 161        unsigned long migrate_pfn;      /* isolate_migratepages search base */
 162        unsigned long last_migrated_pfn;/* Not yet flushed page being freed */
 163        enum migrate_mode mode;         /* Async or sync migration mode */
 164        bool ignore_skip_hint;          /* Scan blocks even if marked skip */
 165        int order;                      /* order a direct compactor needs */
 166        const gfp_t gfp_mask;           /* gfp mask of a direct compactor */
 167        const int alloc_flags;          /* alloc flags of a direct compactor */
 168        const int classzone_idx;        /* zone index of a direct compactor */
 169        struct zone *zone;
 170        int contended;                  /* Signal need_sched() or lock
 171                                         * contention detected during
 172                                         * compaction
 173                                         */
 174};
 175
 176unsigned long
 177isolate_freepages_range(struct compact_control *cc,
 178                        unsigned long start_pfn, unsigned long end_pfn);
 179unsigned long
 180isolate_migratepages_range(struct compact_control *cc,
 181                           unsigned long low_pfn, unsigned long end_pfn);
 182int find_suitable_fallback(struct free_area *area, unsigned int order,
 183                        int migratetype, bool only_stealable, bool *can_steal);
 184
 185#endif
 186
 187/*
 188 * This function returns the order of a free page in the buddy system. In
 189 * general, page_zone(page)->lock must be held by the caller to prevent the
 190 * page from being allocated in parallel and returning garbage as the order.
 191 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
 192 * page cannot be allocated or merged in parallel. Alternatively, it must
 193 * handle invalid values gracefully, and use page_order_unsafe() below.
 194 */
 195static inline unsigned int page_order(struct page *page)
 196{
 197        /* PageBuddy() must be checked by the caller */
 198        return page_private(page);
 199}
 200
 201/*
 202 * Like page_order(), but for callers who cannot afford to hold the zone lock.
 203 * PageBuddy() should be checked first by the caller to minimize race window,
 204 * and invalid values must be handled gracefully.
 205 *
 206 * READ_ONCE is used so that if the caller assigns the result into a local
 207 * variable and e.g. tests it for valid range before using, the compiler cannot
 208 * decide to remove the variable and inline the page_private(page) multiple
 209 * times, potentially observing different values in the tests and the actual
 210 * use of the result.
 211 */
 212#define page_order_unsafe(page)         READ_ONCE(page_private(page))
 213
 214static inline bool is_cow_mapping(vm_flags_t flags)
 215{
 216        return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 217}
 218
 219/*
 220 * These three helpers classifies VMAs for virtual memory accounting.
 221 */
 222
 223/*
 224 * Executable code area - executable, not writable, not stack
 225 */
 226static inline bool is_exec_mapping(vm_flags_t flags)
 227{
 228        return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
 229}
 230
 231/*
 232 * Stack area - atomatically grows in one direction
 233 *
 234 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
 235 * do_mmap() forbids all other combinations.
 236 */
 237static inline bool is_stack_mapping(vm_flags_t flags)
 238{
 239        return (flags & VM_STACK) == VM_STACK;
 240}
 241
 242/*
 243 * Data area - private, writable, not stack
 244 */
 245static inline bool is_data_mapping(vm_flags_t flags)
 246{
 247        return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
 248}
 249
 250/* mm/util.c */
 251void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 252                struct vm_area_struct *prev, struct rb_node *rb_parent);
 253
 254#ifdef CONFIG_MMU
 255extern long populate_vma_page_range(struct vm_area_struct *vma,
 256                unsigned long start, unsigned long end, int *nonblocking);
 257extern void munlock_vma_pages_range(struct vm_area_struct *vma,
 258                        unsigned long start, unsigned long end);
 259static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
 260{
 261        munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
 262}
 263
 264/*
 265 * must be called with vma's mmap_sem held for read or write, and page locked.
 266 */
 267extern void mlock_vma_page(struct page *page);
 268extern unsigned int munlock_vma_page(struct page *page);
 269
 270/*
 271 * Clear the page's PageMlocked().  This can be useful in a situation where
 272 * we want to unconditionally remove a page from the pagecache -- e.g.,
 273 * on truncation or freeing.
 274 *
 275 * It is legal to call this function for any page, mlocked or not.
 276 * If called for a page that is still mapped by mlocked vmas, all we do
 277 * is revert to lazy LRU behaviour -- semantics are not broken.
 278 */
 279extern void clear_page_mlock(struct page *page);
 280
 281/*
 282 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
 283 * (because that does not go through the full procedure of migration ptes):
 284 * to migrate the Mlocked page flag; update statistics.
 285 */
 286static inline void mlock_migrate_page(struct page *newpage, struct page *page)
 287{
 288        if (TestClearPageMlocked(page)) {
 289                int nr_pages = hpage_nr_pages(page);
 290
 291                /* Holding pmd lock, no change in irq context: __mod is safe */
 292                __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
 293                SetPageMlocked(newpage);
 294                __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
 295        }
 296}
 297
 298extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
 299
 300/*
 301 * At what user virtual address is page expected in @vma?
 302 */
 303static inline unsigned long
 304__vma_address(struct page *page, struct vm_area_struct *vma)
 305{
 306        pgoff_t pgoff = page_to_pgoff(page);
 307        return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 308}
 309
 310static inline unsigned long
 311vma_address(struct page *page, struct vm_area_struct *vma)
 312{
 313        unsigned long address = __vma_address(page, vma);
 314
 315        /* page should be within @vma mapping range */
 316        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 317
 318        return address;
 319}
 320
 321#else /* !CONFIG_MMU */
 322static inline void clear_page_mlock(struct page *page) { }
 323static inline void mlock_vma_page(struct page *page) { }
 324static inline void mlock_migrate_page(struct page *new, struct page *old) { }
 325
 326#endif /* !CONFIG_MMU */
 327
 328/*
 329 * Return the mem_map entry representing the 'offset' subpage within
 330 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
 331 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
 332 */
 333static inline struct page *mem_map_offset(struct page *base, int offset)
 334{
 335        if (unlikely(offset >= MAX_ORDER_NR_PAGES))
 336                return nth_page(base, offset);
 337        return base + offset;
 338}
 339
 340/*
 341 * Iterator over all subpages within the maximally aligned gigantic
 342 * page 'base'.  Handle any discontiguity in the mem_map.
 343 */
 344static inline struct page *mem_map_next(struct page *iter,
 345                                                struct page *base, int offset)
 346{
 347        if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
 348                unsigned long pfn = page_to_pfn(base) + offset;
 349                if (!pfn_valid(pfn))
 350                        return NULL;
 351                return pfn_to_page(pfn);
 352        }
 353        return iter + 1;
 354}
 355
 356/*
 357 * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
 358 * so all functions starting at paging_init should be marked __init
 359 * in those cases. SPARSEMEM, however, allows for memory hotplug,
 360 * and alloc_bootmem_node is not used.
 361 */
 362#ifdef CONFIG_SPARSEMEM
 363#define __paginginit __meminit
 364#else
 365#define __paginginit __init
 366#endif
 367
 368/* Memory initialisation debug and verification */
 369enum mminit_level {
 370        MMINIT_WARNING,
 371        MMINIT_VERIFY,
 372        MMINIT_TRACE
 373};
 374
 375#ifdef CONFIG_DEBUG_MEMORY_INIT
 376
 377extern int mminit_loglevel;
 378
 379#define mminit_dprintk(level, prefix, fmt, arg...) \
 380do { \
 381        if (level < mminit_loglevel) { \
 382                if (level <= MMINIT_WARNING) \
 383                        printk(KERN_WARNING "mminit::" prefix " " fmt, ##arg); \
 384                else \
 385                        printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
 386        } \
 387} while (0)
 388
 389extern void mminit_verify_pageflags_layout(void);
 390extern void mminit_verify_zonelist(void);
 391#else
 392
 393static inline void mminit_dprintk(enum mminit_level level,
 394                                const char *prefix, const char *fmt, ...)
 395{
 396}
 397
 398static inline void mminit_verify_pageflags_layout(void)
 399{
 400}
 401
 402static inline void mminit_verify_zonelist(void)
 403{
 404}
 405#endif /* CONFIG_DEBUG_MEMORY_INIT */
 406
 407/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
 408#if defined(CONFIG_SPARSEMEM)
 409extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
 410                                unsigned long *end_pfn);
 411#else
 412static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
 413                                unsigned long *end_pfn)
 414{
 415}
 416#endif /* CONFIG_SPARSEMEM */
 417
 418#define ZONE_RECLAIM_NOSCAN     -2
 419#define ZONE_RECLAIM_FULL       -1
 420#define ZONE_RECLAIM_SOME       0
 421#define ZONE_RECLAIM_SUCCESS    1
 422
 423extern int hwpoison_filter(struct page *p);
 424
 425extern u32 hwpoison_filter_dev_major;
 426extern u32 hwpoison_filter_dev_minor;
 427extern u64 hwpoison_filter_flags_mask;
 428extern u64 hwpoison_filter_flags_value;
 429extern u64 hwpoison_filter_memcg;
 430extern u32 hwpoison_filter_enable;
 431
 432extern unsigned long vm_mmap_pgoff(struct file *, unsigned long,
 433        unsigned long, unsigned long,
 434        unsigned long, unsigned long);
 435
 436extern void set_pageblock_order(void);
 437unsigned long reclaim_clean_pages_from_list(struct zone *zone,
 438                                            struct list_head *page_list);
 439/* The ALLOC_WMARK bits are used as an index to zone->watermark */
 440#define ALLOC_WMARK_MIN         WMARK_MIN
 441#define ALLOC_WMARK_LOW         WMARK_LOW
 442#define ALLOC_WMARK_HIGH        WMARK_HIGH
 443#define ALLOC_NO_WATERMARKS     0x04 /* don't check watermarks at all */
 444
 445/* Mask to get the watermark bits */
 446#define ALLOC_WMARK_MASK        (ALLOC_NO_WATERMARKS-1)
 447
 448#define ALLOC_HARDER            0x10 /* try to alloc harder */
 449#define ALLOC_HIGH              0x20 /* __GFP_HIGH set */
 450#define ALLOC_CPUSET            0x40 /* check for correct cpuset */
 451#define ALLOC_CMA               0x80 /* allow allocations from CMA areas */
 452#define ALLOC_FAIR              0x100 /* fair zone allocation */
 453
 454enum ttu_flags;
 455struct tlbflush_unmap_batch;
 456
 457#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 458void try_to_unmap_flush(void);
 459void try_to_unmap_flush_dirty(void);
 460#else
 461static inline void try_to_unmap_flush(void)
 462{
 463}
 464static inline void try_to_unmap_flush_dirty(void)
 465{
 466}
 467
 468#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 469#endif  /* __MM_INTERNAL_H */
 470