linux/mm/memory_hotplug.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory_hotplug.c
   3 *
   4 *  Copyright (C)
   5 */
   6
   7#include <linux/stddef.h>
   8#include <linux/mm.h>
   9#include <linux/swap.h>
  10#include <linux/interrupt.h>
  11#include <linux/pagemap.h>
  12#include <linux/compiler.h>
  13#include <linux/export.h>
  14#include <linux/pagevec.h>
  15#include <linux/writeback.h>
  16#include <linux/slab.h>
  17#include <linux/sysctl.h>
  18#include <linux/cpu.h>
  19#include <linux/memory.h>
  20#include <linux/memremap.h>
  21#include <linux/memory_hotplug.h>
  22#include <linux/highmem.h>
  23#include <linux/vmalloc.h>
  24#include <linux/ioport.h>
  25#include <linux/delay.h>
  26#include <linux/migrate.h>
  27#include <linux/page-isolation.h>
  28#include <linux/pfn.h>
  29#include <linux/suspend.h>
  30#include <linux/mm_inline.h>
  31#include <linux/firmware-map.h>
  32#include <linux/stop_machine.h>
  33#include <linux/hugetlb.h>
  34#include <linux/memblock.h>
  35#include <linux/bootmem.h>
  36
  37#include <asm/tlbflush.h>
  38
  39#include "internal.h"
  40
  41/*
  42 * online_page_callback contains pointer to current page onlining function.
  43 * Initially it is generic_online_page(). If it is required it could be
  44 * changed by calling set_online_page_callback() for callback registration
  45 * and restore_online_page_callback() for generic callback restore.
  46 */
  47
  48static void generic_online_page(struct page *page);
  49
  50static online_page_callback_t online_page_callback = generic_online_page;
  51static DEFINE_MUTEX(online_page_callback_lock);
  52
  53/* The same as the cpu_hotplug lock, but for memory hotplug. */
  54static struct {
  55        struct task_struct *active_writer;
  56        struct mutex lock; /* Synchronizes accesses to refcount, */
  57        /*
  58         * Also blocks the new readers during
  59         * an ongoing mem hotplug operation.
  60         */
  61        int refcount;
  62
  63#ifdef CONFIG_DEBUG_LOCK_ALLOC
  64        struct lockdep_map dep_map;
  65#endif
  66} mem_hotplug = {
  67        .active_writer = NULL,
  68        .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
  69        .refcount = 0,
  70#ifdef CONFIG_DEBUG_LOCK_ALLOC
  71        .dep_map = {.name = "mem_hotplug.lock" },
  72#endif
  73};
  74
  75/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
  76#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
  77#define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
  78#define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
  79
  80void get_online_mems(void)
  81{
  82        might_sleep();
  83        if (mem_hotplug.active_writer == current)
  84                return;
  85        memhp_lock_acquire_read();
  86        mutex_lock(&mem_hotplug.lock);
  87        mem_hotplug.refcount++;
  88        mutex_unlock(&mem_hotplug.lock);
  89
  90}
  91
  92void put_online_mems(void)
  93{
  94        if (mem_hotplug.active_writer == current)
  95                return;
  96        mutex_lock(&mem_hotplug.lock);
  97
  98        if (WARN_ON(!mem_hotplug.refcount))
  99                mem_hotplug.refcount++; /* try to fix things up */
 100
 101        if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
 102                wake_up_process(mem_hotplug.active_writer);
 103        mutex_unlock(&mem_hotplug.lock);
 104        memhp_lock_release();
 105
 106}
 107
 108void mem_hotplug_begin(void)
 109{
 110        mem_hotplug.active_writer = current;
 111
 112        memhp_lock_acquire();
 113        for (;;) {
 114                mutex_lock(&mem_hotplug.lock);
 115                if (likely(!mem_hotplug.refcount))
 116                        break;
 117                __set_current_state(TASK_UNINTERRUPTIBLE);
 118                mutex_unlock(&mem_hotplug.lock);
 119                schedule();
 120        }
 121}
 122
 123void mem_hotplug_done(void)
 124{
 125        mem_hotplug.active_writer = NULL;
 126        mutex_unlock(&mem_hotplug.lock);
 127        memhp_lock_release();
 128}
 129
 130/* add this memory to iomem resource */
 131static struct resource *register_memory_resource(u64 start, u64 size)
 132{
 133        struct resource *res;
 134        res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 135        if (!res)
 136                return ERR_PTR(-ENOMEM);
 137
 138        res->name = "System RAM";
 139        res->start = start;
 140        res->end = start + size - 1;
 141        res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 142        if (request_resource(&iomem_resource, res) < 0) {
 143                pr_debug("System RAM resource %pR cannot be added\n", res);
 144                kfree(res);
 145                return ERR_PTR(-EEXIST);
 146        }
 147        return res;
 148}
 149
 150static void release_memory_resource(struct resource *res)
 151{
 152        if (!res)
 153                return;
 154        release_resource(res);
 155        kfree(res);
 156        return;
 157}
 158
 159#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 160void get_page_bootmem(unsigned long info,  struct page *page,
 161                      unsigned long type)
 162{
 163        page->lru.next = (struct list_head *) type;
 164        SetPagePrivate(page);
 165        set_page_private(page, info);
 166        atomic_inc(&page->_count);
 167}
 168
 169void put_page_bootmem(struct page *page)
 170{
 171        unsigned long type;
 172
 173        type = (unsigned long) page->lru.next;
 174        BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 175               type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 176
 177        if (atomic_dec_return(&page->_count) == 1) {
 178                ClearPagePrivate(page);
 179                set_page_private(page, 0);
 180                INIT_LIST_HEAD(&page->lru);
 181                free_reserved_page(page);
 182        }
 183}
 184
 185#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 186#ifndef CONFIG_SPARSEMEM_VMEMMAP
 187static void register_page_bootmem_info_section(unsigned long start_pfn)
 188{
 189        unsigned long *usemap, mapsize, section_nr, i;
 190        struct mem_section *ms;
 191        struct page *page, *memmap;
 192
 193        section_nr = pfn_to_section_nr(start_pfn);
 194        ms = __nr_to_section(section_nr);
 195
 196        /* Get section's memmap address */
 197        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 198
 199        /*
 200         * Get page for the memmap's phys address
 201         * XXX: need more consideration for sparse_vmemmap...
 202         */
 203        page = virt_to_page(memmap);
 204        mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 205        mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 206
 207        /* remember memmap's page */
 208        for (i = 0; i < mapsize; i++, page++)
 209                get_page_bootmem(section_nr, page, SECTION_INFO);
 210
 211        usemap = __nr_to_section(section_nr)->pageblock_flags;
 212        page = virt_to_page(usemap);
 213
 214        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 215
 216        for (i = 0; i < mapsize; i++, page++)
 217                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 218
 219}
 220#else /* CONFIG_SPARSEMEM_VMEMMAP */
 221static void register_page_bootmem_info_section(unsigned long start_pfn)
 222{
 223        unsigned long *usemap, mapsize, section_nr, i;
 224        struct mem_section *ms;
 225        struct page *page, *memmap;
 226
 227        if (!pfn_valid(start_pfn))
 228                return;
 229
 230        section_nr = pfn_to_section_nr(start_pfn);
 231        ms = __nr_to_section(section_nr);
 232
 233        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 234
 235        register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 236
 237        usemap = __nr_to_section(section_nr)->pageblock_flags;
 238        page = virt_to_page(usemap);
 239
 240        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 241
 242        for (i = 0; i < mapsize; i++, page++)
 243                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 244}
 245#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 246
 247void register_page_bootmem_info_node(struct pglist_data *pgdat)
 248{
 249        unsigned long i, pfn, end_pfn, nr_pages;
 250        int node = pgdat->node_id;
 251        struct page *page;
 252        struct zone *zone;
 253
 254        nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 255        page = virt_to_page(pgdat);
 256
 257        for (i = 0; i < nr_pages; i++, page++)
 258                get_page_bootmem(node, page, NODE_INFO);
 259
 260        zone = &pgdat->node_zones[0];
 261        for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
 262                if (zone_is_initialized(zone)) {
 263                        nr_pages = zone->wait_table_hash_nr_entries
 264                                * sizeof(wait_queue_head_t);
 265                        nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
 266                        page = virt_to_page(zone->wait_table);
 267
 268                        for (i = 0; i < nr_pages; i++, page++)
 269                                get_page_bootmem(node, page, NODE_INFO);
 270                }
 271        }
 272
 273        pfn = pgdat->node_start_pfn;
 274        end_pfn = pgdat_end_pfn(pgdat);
 275
 276        /* register section info */
 277        for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 278                /*
 279                 * Some platforms can assign the same pfn to multiple nodes - on
 280                 * node0 as well as nodeN.  To avoid registering a pfn against
 281                 * multiple nodes we check that this pfn does not already
 282                 * reside in some other nodes.
 283                 */
 284                if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
 285                        register_page_bootmem_info_section(pfn);
 286        }
 287}
 288#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 289
 290static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
 291                                     unsigned long end_pfn)
 292{
 293        unsigned long old_zone_end_pfn;
 294
 295        zone_span_writelock(zone);
 296
 297        old_zone_end_pfn = zone_end_pfn(zone);
 298        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 299                zone->zone_start_pfn = start_pfn;
 300
 301        zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
 302                                zone->zone_start_pfn;
 303
 304        zone_span_writeunlock(zone);
 305}
 306
 307static void resize_zone(struct zone *zone, unsigned long start_pfn,
 308                unsigned long end_pfn)
 309{
 310        zone_span_writelock(zone);
 311
 312        if (end_pfn - start_pfn) {
 313                zone->zone_start_pfn = start_pfn;
 314                zone->spanned_pages = end_pfn - start_pfn;
 315        } else {
 316                /*
 317                 * make it consist as free_area_init_core(),
 318                 * if spanned_pages = 0, then keep start_pfn = 0
 319                 */
 320                zone->zone_start_pfn = 0;
 321                zone->spanned_pages = 0;
 322        }
 323
 324        zone_span_writeunlock(zone);
 325}
 326
 327static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
 328                unsigned long end_pfn)
 329{
 330        enum zone_type zid = zone_idx(zone);
 331        int nid = zone->zone_pgdat->node_id;
 332        unsigned long pfn;
 333
 334        for (pfn = start_pfn; pfn < end_pfn; pfn++)
 335                set_page_links(pfn_to_page(pfn), zid, nid, pfn);
 336}
 337
 338/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
 339 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
 340static int __ref ensure_zone_is_initialized(struct zone *zone,
 341                        unsigned long start_pfn, unsigned long num_pages)
 342{
 343        if (!zone_is_initialized(zone))
 344                return init_currently_empty_zone(zone, start_pfn, num_pages);
 345
 346        return 0;
 347}
 348
 349static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
 350                unsigned long start_pfn, unsigned long end_pfn)
 351{
 352        int ret;
 353        unsigned long flags;
 354        unsigned long z1_start_pfn;
 355
 356        ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
 357        if (ret)
 358                return ret;
 359
 360        pgdat_resize_lock(z1->zone_pgdat, &flags);
 361
 362        /* can't move pfns which are higher than @z2 */
 363        if (end_pfn > zone_end_pfn(z2))
 364                goto out_fail;
 365        /* the move out part must be at the left most of @z2 */
 366        if (start_pfn > z2->zone_start_pfn)
 367                goto out_fail;
 368        /* must included/overlap */
 369        if (end_pfn <= z2->zone_start_pfn)
 370                goto out_fail;
 371
 372        /* use start_pfn for z1's start_pfn if z1 is empty */
 373        if (!zone_is_empty(z1))
 374                z1_start_pfn = z1->zone_start_pfn;
 375        else
 376                z1_start_pfn = start_pfn;
 377
 378        resize_zone(z1, z1_start_pfn, end_pfn);
 379        resize_zone(z2, end_pfn, zone_end_pfn(z2));
 380
 381        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 382
 383        fix_zone_id(z1, start_pfn, end_pfn);
 384
 385        return 0;
 386out_fail:
 387        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 388        return -1;
 389}
 390
 391static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
 392                unsigned long start_pfn, unsigned long end_pfn)
 393{
 394        int ret;
 395        unsigned long flags;
 396        unsigned long z2_end_pfn;
 397
 398        ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
 399        if (ret)
 400                return ret;
 401
 402        pgdat_resize_lock(z1->zone_pgdat, &flags);
 403
 404        /* can't move pfns which are lower than @z1 */
 405        if (z1->zone_start_pfn > start_pfn)
 406                goto out_fail;
 407        /* the move out part mast at the right most of @z1 */
 408        if (zone_end_pfn(z1) >  end_pfn)
 409                goto out_fail;
 410        /* must included/overlap */
 411        if (start_pfn >= zone_end_pfn(z1))
 412                goto out_fail;
 413
 414        /* use end_pfn for z2's end_pfn if z2 is empty */
 415        if (!zone_is_empty(z2))
 416                z2_end_pfn = zone_end_pfn(z2);
 417        else
 418                z2_end_pfn = end_pfn;
 419
 420        resize_zone(z1, z1->zone_start_pfn, start_pfn);
 421        resize_zone(z2, start_pfn, z2_end_pfn);
 422
 423        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 424
 425        fix_zone_id(z2, start_pfn, end_pfn);
 426
 427        return 0;
 428out_fail:
 429        pgdat_resize_unlock(z1->zone_pgdat, &flags);
 430        return -1;
 431}
 432
 433static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
 434                                      unsigned long end_pfn)
 435{
 436        unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
 437
 438        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 439                pgdat->node_start_pfn = start_pfn;
 440
 441        pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
 442                                        pgdat->node_start_pfn;
 443}
 444
 445static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
 446{
 447        struct pglist_data *pgdat = zone->zone_pgdat;
 448        int nr_pages = PAGES_PER_SECTION;
 449        int nid = pgdat->node_id;
 450        int zone_type;
 451        unsigned long flags, pfn;
 452        int ret;
 453
 454        zone_type = zone - pgdat->node_zones;
 455        ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
 456        if (ret)
 457                return ret;
 458
 459        pgdat_resize_lock(zone->zone_pgdat, &flags);
 460        grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
 461        grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
 462                        phys_start_pfn + nr_pages);
 463        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 464        memmap_init_zone(nr_pages, nid, zone_type,
 465                         phys_start_pfn, MEMMAP_HOTPLUG);
 466
 467        /* online_page_range is called later and expects pages reserved */
 468        for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
 469                if (!pfn_valid(pfn))
 470                        continue;
 471
 472                SetPageReserved(pfn_to_page(pfn));
 473        }
 474        return 0;
 475}
 476
 477static int __meminit __add_section(int nid, struct zone *zone,
 478                                        unsigned long phys_start_pfn)
 479{
 480        int ret;
 481
 482        if (pfn_valid(phys_start_pfn))
 483                return -EEXIST;
 484
 485        ret = sparse_add_one_section(zone, phys_start_pfn);
 486
 487        if (ret < 0)
 488                return ret;
 489
 490        ret = __add_zone(zone, phys_start_pfn);
 491
 492        if (ret < 0)
 493                return ret;
 494
 495        return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
 496}
 497
 498/*
 499 * Reasonably generic function for adding memory.  It is
 500 * expected that archs that support memory hotplug will
 501 * call this function after deciding the zone to which to
 502 * add the new pages.
 503 */
 504int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
 505                        unsigned long nr_pages)
 506{
 507        unsigned long i;
 508        int err = 0;
 509        int start_sec, end_sec;
 510        struct vmem_altmap *altmap;
 511
 512        /* during initialize mem_map, align hot-added range to section */
 513        start_sec = pfn_to_section_nr(phys_start_pfn);
 514        end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
 515
 516        altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
 517        if (altmap) {
 518                /*
 519                 * Validate altmap is within bounds of the total request
 520                 */
 521                if (altmap->base_pfn != phys_start_pfn
 522                                || vmem_altmap_offset(altmap) > nr_pages) {
 523                        pr_warn_once("memory add fail, invalid altmap\n");
 524                        return -EINVAL;
 525                }
 526                altmap->alloc = 0;
 527        }
 528
 529        for (i = start_sec; i <= end_sec; i++) {
 530                err = __add_section(nid, zone, section_nr_to_pfn(i));
 531
 532                /*
 533                 * EEXIST is finally dealt with by ioresource collision
 534                 * check. see add_memory() => register_memory_resource()
 535                 * Warning will be printed if there is collision.
 536                 */
 537                if (err && (err != -EEXIST))
 538                        break;
 539                err = 0;
 540        }
 541        vmemmap_populate_print_last();
 542
 543        return err;
 544}
 545EXPORT_SYMBOL_GPL(__add_pages);
 546
 547#ifdef CONFIG_MEMORY_HOTREMOVE
 548/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 549static int find_smallest_section_pfn(int nid, struct zone *zone,
 550                                     unsigned long start_pfn,
 551                                     unsigned long end_pfn)
 552{
 553        struct mem_section *ms;
 554
 555        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
 556                ms = __pfn_to_section(start_pfn);
 557
 558                if (unlikely(!valid_section(ms)))
 559                        continue;
 560
 561                if (unlikely(pfn_to_nid(start_pfn) != nid))
 562                        continue;
 563
 564                if (zone && zone != page_zone(pfn_to_page(start_pfn)))
 565                        continue;
 566
 567                return start_pfn;
 568        }
 569
 570        return 0;
 571}
 572
 573/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 574static int find_biggest_section_pfn(int nid, struct zone *zone,
 575                                    unsigned long start_pfn,
 576                                    unsigned long end_pfn)
 577{
 578        struct mem_section *ms;
 579        unsigned long pfn;
 580
 581        /* pfn is the end pfn of a memory section. */
 582        pfn = end_pfn - 1;
 583        for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
 584                ms = __pfn_to_section(pfn);
 585
 586                if (unlikely(!valid_section(ms)))
 587                        continue;
 588
 589                if (unlikely(pfn_to_nid(pfn) != nid))
 590                        continue;
 591
 592                if (zone && zone != page_zone(pfn_to_page(pfn)))
 593                        continue;
 594
 595                return pfn;
 596        }
 597
 598        return 0;
 599}
 600
 601static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 602                             unsigned long end_pfn)
 603{
 604        unsigned long zone_start_pfn = zone->zone_start_pfn;
 605        unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
 606        unsigned long zone_end_pfn = z;
 607        unsigned long pfn;
 608        struct mem_section *ms;
 609        int nid = zone_to_nid(zone);
 610
 611        zone_span_writelock(zone);
 612        if (zone_start_pfn == start_pfn) {
 613                /*
 614                 * If the section is smallest section in the zone, it need
 615                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 616                 * In this case, we find second smallest valid mem_section
 617                 * for shrinking zone.
 618                 */
 619                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 620                                                zone_end_pfn);
 621                if (pfn) {
 622                        zone->zone_start_pfn = pfn;
 623                        zone->spanned_pages = zone_end_pfn - pfn;
 624                }
 625        } else if (zone_end_pfn == end_pfn) {
 626                /*
 627                 * If the section is biggest section in the zone, it need
 628                 * shrink zone->spanned_pages.
 629                 * In this case, we find second biggest valid mem_section for
 630                 * shrinking zone.
 631                 */
 632                pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
 633                                               start_pfn);
 634                if (pfn)
 635                        zone->spanned_pages = pfn - zone_start_pfn + 1;
 636        }
 637
 638        /*
 639         * The section is not biggest or smallest mem_section in the zone, it
 640         * only creates a hole in the zone. So in this case, we need not
 641         * change the zone. But perhaps, the zone has only hole data. Thus
 642         * it check the zone has only hole or not.
 643         */
 644        pfn = zone_start_pfn;
 645        for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
 646                ms = __pfn_to_section(pfn);
 647
 648                if (unlikely(!valid_section(ms)))
 649                        continue;
 650
 651                if (page_zone(pfn_to_page(pfn)) != zone)
 652                        continue;
 653
 654                 /* If the section is current section, it continues the loop */
 655                if (start_pfn == pfn)
 656                        continue;
 657
 658                /* If we find valid section, we have nothing to do */
 659                zone_span_writeunlock(zone);
 660                return;
 661        }
 662
 663        /* The zone has no valid section */
 664        zone->zone_start_pfn = 0;
 665        zone->spanned_pages = 0;
 666        zone_span_writeunlock(zone);
 667}
 668
 669static void shrink_pgdat_span(struct pglist_data *pgdat,
 670                              unsigned long start_pfn, unsigned long end_pfn)
 671{
 672        unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
 673        unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
 674        unsigned long pgdat_end_pfn = p;
 675        unsigned long pfn;
 676        struct mem_section *ms;
 677        int nid = pgdat->node_id;
 678
 679        if (pgdat_start_pfn == start_pfn) {
 680                /*
 681                 * If the section is smallest section in the pgdat, it need
 682                 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
 683                 * In this case, we find second smallest valid mem_section
 684                 * for shrinking zone.
 685                 */
 686                pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
 687                                                pgdat_end_pfn);
 688                if (pfn) {
 689                        pgdat->node_start_pfn = pfn;
 690                        pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
 691                }
 692        } else if (pgdat_end_pfn == end_pfn) {
 693                /*
 694                 * If the section is biggest section in the pgdat, it need
 695                 * shrink pgdat->node_spanned_pages.
 696                 * In this case, we find second biggest valid mem_section for
 697                 * shrinking zone.
 698                 */
 699                pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
 700                                               start_pfn);
 701                if (pfn)
 702                        pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
 703        }
 704
 705        /*
 706         * If the section is not biggest or smallest mem_section in the pgdat,
 707         * it only creates a hole in the pgdat. So in this case, we need not
 708         * change the pgdat.
 709         * But perhaps, the pgdat has only hole data. Thus it check the pgdat
 710         * has only hole or not.
 711         */
 712        pfn = pgdat_start_pfn;
 713        for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
 714                ms = __pfn_to_section(pfn);
 715
 716                if (unlikely(!valid_section(ms)))
 717                        continue;
 718
 719                if (pfn_to_nid(pfn) != nid)
 720                        continue;
 721
 722                 /* If the section is current section, it continues the loop */
 723                if (start_pfn == pfn)
 724                        continue;
 725
 726                /* If we find valid section, we have nothing to do */
 727                return;
 728        }
 729
 730        /* The pgdat has no valid section */
 731        pgdat->node_start_pfn = 0;
 732        pgdat->node_spanned_pages = 0;
 733}
 734
 735static void __remove_zone(struct zone *zone, unsigned long start_pfn)
 736{
 737        struct pglist_data *pgdat = zone->zone_pgdat;
 738        int nr_pages = PAGES_PER_SECTION;
 739        int zone_type;
 740        unsigned long flags;
 741
 742        zone_type = zone - pgdat->node_zones;
 743
 744        pgdat_resize_lock(zone->zone_pgdat, &flags);
 745        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 746        shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
 747        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 748}
 749
 750static int __remove_section(struct zone *zone, struct mem_section *ms,
 751                unsigned long map_offset)
 752{
 753        unsigned long start_pfn;
 754        int scn_nr;
 755        int ret = -EINVAL;
 756
 757        if (!valid_section(ms))
 758                return ret;
 759
 760        ret = unregister_memory_section(ms);
 761        if (ret)
 762                return ret;
 763
 764        scn_nr = __section_nr(ms);
 765        start_pfn = section_nr_to_pfn(scn_nr);
 766        __remove_zone(zone, start_pfn);
 767
 768        sparse_remove_one_section(zone, ms, map_offset);
 769        return 0;
 770}
 771
 772/**
 773 * __remove_pages() - remove sections of pages from a zone
 774 * @zone: zone from which pages need to be removed
 775 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
 776 * @nr_pages: number of pages to remove (must be multiple of section size)
 777 *
 778 * Generic helper function to remove section mappings and sysfs entries
 779 * for the section of the memory we are removing. Caller needs to make
 780 * sure that pages are marked reserved and zones are adjust properly by
 781 * calling offline_pages().
 782 */
 783int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
 784                 unsigned long nr_pages)
 785{
 786        unsigned long i;
 787        unsigned long map_offset = 0;
 788        int sections_to_remove, ret = 0;
 789
 790        /* In the ZONE_DEVICE case device driver owns the memory region */
 791        if (is_dev_zone(zone)) {
 792                struct page *page = pfn_to_page(phys_start_pfn);
 793                struct vmem_altmap *altmap;
 794
 795                altmap = to_vmem_altmap((unsigned long) page);
 796                if (altmap)
 797                        map_offset = vmem_altmap_offset(altmap);
 798        } else {
 799                resource_size_t start, size;
 800
 801                start = phys_start_pfn << PAGE_SHIFT;
 802                size = nr_pages * PAGE_SIZE;
 803
 804                ret = release_mem_region_adjustable(&iomem_resource, start,
 805                                        size);
 806                if (ret) {
 807                        resource_size_t endres = start + size - 1;
 808
 809                        pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
 810                                        &start, &endres, ret);
 811                }
 812        }
 813
 814        /*
 815         * We can only remove entire sections
 816         */
 817        BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
 818        BUG_ON(nr_pages % PAGES_PER_SECTION);
 819
 820        sections_to_remove = nr_pages / PAGES_PER_SECTION;
 821        for (i = 0; i < sections_to_remove; i++) {
 822                unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
 823
 824                ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
 825                map_offset = 0;
 826                if (ret)
 827                        break;
 828        }
 829        return ret;
 830}
 831EXPORT_SYMBOL_GPL(__remove_pages);
 832#endif /* CONFIG_MEMORY_HOTREMOVE */
 833
 834int set_online_page_callback(online_page_callback_t callback)
 835{
 836        int rc = -EINVAL;
 837
 838        get_online_mems();
 839        mutex_lock(&online_page_callback_lock);
 840
 841        if (online_page_callback == generic_online_page) {
 842                online_page_callback = callback;
 843                rc = 0;
 844        }
 845
 846        mutex_unlock(&online_page_callback_lock);
 847        put_online_mems();
 848
 849        return rc;
 850}
 851EXPORT_SYMBOL_GPL(set_online_page_callback);
 852
 853int restore_online_page_callback(online_page_callback_t callback)
 854{
 855        int rc = -EINVAL;
 856
 857        get_online_mems();
 858        mutex_lock(&online_page_callback_lock);
 859
 860        if (online_page_callback == callback) {
 861                online_page_callback = generic_online_page;
 862                rc = 0;
 863        }
 864
 865        mutex_unlock(&online_page_callback_lock);
 866        put_online_mems();
 867
 868        return rc;
 869}
 870EXPORT_SYMBOL_GPL(restore_online_page_callback);
 871
 872void __online_page_set_limits(struct page *page)
 873{
 874}
 875EXPORT_SYMBOL_GPL(__online_page_set_limits);
 876
 877void __online_page_increment_counters(struct page *page)
 878{
 879        adjust_managed_page_count(page, 1);
 880}
 881EXPORT_SYMBOL_GPL(__online_page_increment_counters);
 882
 883void __online_page_free(struct page *page)
 884{
 885        __free_reserved_page(page);
 886}
 887EXPORT_SYMBOL_GPL(__online_page_free);
 888
 889static void generic_online_page(struct page *page)
 890{
 891        __online_page_set_limits(page);
 892        __online_page_increment_counters(page);
 893        __online_page_free(page);
 894}
 895
 896static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
 897                        void *arg)
 898{
 899        unsigned long i;
 900        unsigned long onlined_pages = *(unsigned long *)arg;
 901        struct page *page;
 902        if (PageReserved(pfn_to_page(start_pfn)))
 903                for (i = 0; i < nr_pages; i++) {
 904                        page = pfn_to_page(start_pfn + i);
 905                        (*online_page_callback)(page);
 906                        onlined_pages++;
 907                }
 908        *(unsigned long *)arg = onlined_pages;
 909        return 0;
 910}
 911
 912#ifdef CONFIG_MOVABLE_NODE
 913/*
 914 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
 915 * normal memory.
 916 */
 917static bool can_online_high_movable(struct zone *zone)
 918{
 919        return true;
 920}
 921#else /* CONFIG_MOVABLE_NODE */
 922/* ensure every online node has NORMAL memory */
 923static bool can_online_high_movable(struct zone *zone)
 924{
 925        return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
 926}
 927#endif /* CONFIG_MOVABLE_NODE */
 928
 929/* check which state of node_states will be changed when online memory */
 930static void node_states_check_changes_online(unsigned long nr_pages,
 931        struct zone *zone, struct memory_notify *arg)
 932{
 933        int nid = zone_to_nid(zone);
 934        enum zone_type zone_last = ZONE_NORMAL;
 935
 936        /*
 937         * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
 938         * contains nodes which have zones of 0...ZONE_NORMAL,
 939         * set zone_last to ZONE_NORMAL.
 940         *
 941         * If we don't have HIGHMEM nor movable node,
 942         * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
 943         * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
 944         */
 945        if (N_MEMORY == N_NORMAL_MEMORY)
 946                zone_last = ZONE_MOVABLE;
 947
 948        /*
 949         * if the memory to be online is in a zone of 0...zone_last, and
 950         * the zones of 0...zone_last don't have memory before online, we will
 951         * need to set the node to node_states[N_NORMAL_MEMORY] after
 952         * the memory is online.
 953         */
 954        if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
 955                arg->status_change_nid_normal = nid;
 956        else
 957                arg->status_change_nid_normal = -1;
 958
 959#ifdef CONFIG_HIGHMEM
 960        /*
 961         * If we have movable node, node_states[N_HIGH_MEMORY]
 962         * contains nodes which have zones of 0...ZONE_HIGHMEM,
 963         * set zone_last to ZONE_HIGHMEM.
 964         *
 965         * If we don't have movable node, node_states[N_NORMAL_MEMORY]
 966         * contains nodes which have zones of 0...ZONE_MOVABLE,
 967         * set zone_last to ZONE_MOVABLE.
 968         */
 969        zone_last = ZONE_HIGHMEM;
 970        if (N_MEMORY == N_HIGH_MEMORY)
 971                zone_last = ZONE_MOVABLE;
 972
 973        if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
 974                arg->status_change_nid_high = nid;
 975        else
 976                arg->status_change_nid_high = -1;
 977#else
 978        arg->status_change_nid_high = arg->status_change_nid_normal;
 979#endif
 980
 981        /*
 982         * if the node don't have memory befor online, we will need to
 983         * set the node to node_states[N_MEMORY] after the memory
 984         * is online.
 985         */
 986        if (!node_state(nid, N_MEMORY))
 987                arg->status_change_nid = nid;
 988        else
 989                arg->status_change_nid = -1;
 990}
 991
 992static void node_states_set_node(int node, struct memory_notify *arg)
 993{
 994        if (arg->status_change_nid_normal >= 0)
 995                node_set_state(node, N_NORMAL_MEMORY);
 996
 997        if (arg->status_change_nid_high >= 0)
 998                node_set_state(node, N_HIGH_MEMORY);
 999
1000        node_set_state(node, N_MEMORY);
1001}
1002
1003
1004/* Must be protected by mem_hotplug_begin() */
1005int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1006{
1007        unsigned long flags;
1008        unsigned long onlined_pages = 0;
1009        struct zone *zone;
1010        int need_zonelists_rebuild = 0;
1011        int nid;
1012        int ret;
1013        struct memory_notify arg;
1014
1015        /*
1016         * This doesn't need a lock to do pfn_to_page().
1017         * The section can't be removed here because of the
1018         * memory_block->state_mutex.
1019         */
1020        zone = page_zone(pfn_to_page(pfn));
1021
1022        if ((zone_idx(zone) > ZONE_NORMAL ||
1023            online_type == MMOP_ONLINE_MOVABLE) &&
1024            !can_online_high_movable(zone))
1025                return -EINVAL;
1026
1027        if (online_type == MMOP_ONLINE_KERNEL &&
1028            zone_idx(zone) == ZONE_MOVABLE) {
1029                if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
1030                        return -EINVAL;
1031        }
1032        if (online_type == MMOP_ONLINE_MOVABLE &&
1033            zone_idx(zone) == ZONE_MOVABLE - 1) {
1034                if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1035                        return -EINVAL;
1036        }
1037
1038        /* Previous code may changed the zone of the pfn range */
1039        zone = page_zone(pfn_to_page(pfn));
1040
1041        arg.start_pfn = pfn;
1042        arg.nr_pages = nr_pages;
1043        node_states_check_changes_online(nr_pages, zone, &arg);
1044
1045        nid = pfn_to_nid(pfn);
1046
1047        ret = memory_notify(MEM_GOING_ONLINE, &arg);
1048        ret = notifier_to_errno(ret);
1049        if (ret) {
1050                memory_notify(MEM_CANCEL_ONLINE, &arg);
1051                return ret;
1052        }
1053        /*
1054         * If this zone is not populated, then it is not in zonelist.
1055         * This means the page allocator ignores this zone.
1056         * So, zonelist must be updated after online.
1057         */
1058        mutex_lock(&zonelists_mutex);
1059        if (!populated_zone(zone)) {
1060                need_zonelists_rebuild = 1;
1061                build_all_zonelists(NULL, zone);
1062        }
1063
1064        ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1065                online_pages_range);
1066        if (ret) {
1067                if (need_zonelists_rebuild)
1068                        zone_pcp_reset(zone);
1069                mutex_unlock(&zonelists_mutex);
1070                printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
1071                       (unsigned long long) pfn << PAGE_SHIFT,
1072                       (((unsigned long long) pfn + nr_pages)
1073                            << PAGE_SHIFT) - 1);
1074                memory_notify(MEM_CANCEL_ONLINE, &arg);
1075                return ret;
1076        }
1077
1078        zone->present_pages += onlined_pages;
1079
1080        pgdat_resize_lock(zone->zone_pgdat, &flags);
1081        zone->zone_pgdat->node_present_pages += onlined_pages;
1082        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1083
1084        if (onlined_pages) {
1085                node_states_set_node(zone_to_nid(zone), &arg);
1086                if (need_zonelists_rebuild)
1087                        build_all_zonelists(NULL, NULL);
1088                else
1089                        zone_pcp_update(zone);
1090        }
1091
1092        mutex_unlock(&zonelists_mutex);
1093
1094        init_per_zone_wmark_min();
1095
1096        if (onlined_pages)
1097                kswapd_run(zone_to_nid(zone));
1098
1099        vm_total_pages = nr_free_pagecache_pages();
1100
1101        writeback_set_ratelimit();
1102
1103        if (onlined_pages)
1104                memory_notify(MEM_ONLINE, &arg);
1105        return 0;
1106}
1107#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1108
1109static void reset_node_present_pages(pg_data_t *pgdat)
1110{
1111        struct zone *z;
1112
1113        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1114                z->present_pages = 0;
1115
1116        pgdat->node_present_pages = 0;
1117}
1118
1119/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1120static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1121{
1122        struct pglist_data *pgdat;
1123        unsigned long zones_size[MAX_NR_ZONES] = {0};
1124        unsigned long zholes_size[MAX_NR_ZONES] = {0};
1125        unsigned long start_pfn = PFN_DOWN(start);
1126
1127        pgdat = NODE_DATA(nid);
1128        if (!pgdat) {
1129                pgdat = arch_alloc_nodedata(nid);
1130                if (!pgdat)
1131                        return NULL;
1132
1133                arch_refresh_nodedata(nid, pgdat);
1134        } else {
1135                /* Reset the nr_zones and classzone_idx to 0 before reuse */
1136                pgdat->nr_zones = 0;
1137                pgdat->classzone_idx = 0;
1138        }
1139
1140        /* we can use NODE_DATA(nid) from here */
1141
1142        /* init node's zones as empty zones, we don't have any present pages.*/
1143        free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1144
1145        /*
1146         * The node we allocated has no zone fallback lists. For avoiding
1147         * to access not-initialized zonelist, build here.
1148         */
1149        mutex_lock(&zonelists_mutex);
1150        build_all_zonelists(pgdat, NULL);
1151        mutex_unlock(&zonelists_mutex);
1152
1153        /*
1154         * zone->managed_pages is set to an approximate value in
1155         * free_area_init_core(), which will cause
1156         * /sys/device/system/node/nodeX/meminfo has wrong data.
1157         * So reset it to 0 before any memory is onlined.
1158         */
1159        reset_node_managed_pages(pgdat);
1160
1161        /*
1162         * When memory is hot-added, all the memory is in offline state. So
1163         * clear all zones' present_pages because they will be updated in
1164         * online_pages() and offline_pages().
1165         */
1166        reset_node_present_pages(pgdat);
1167
1168        return pgdat;
1169}
1170
1171static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1172{
1173        arch_refresh_nodedata(nid, NULL);
1174        arch_free_nodedata(pgdat);
1175        return;
1176}
1177
1178
1179/**
1180 * try_online_node - online a node if offlined
1181 *
1182 * called by cpu_up() to online a node without onlined memory.
1183 */
1184int try_online_node(int nid)
1185{
1186        pg_data_t       *pgdat;
1187        int     ret;
1188
1189        if (node_online(nid))
1190                return 0;
1191
1192        mem_hotplug_begin();
1193        pgdat = hotadd_new_pgdat(nid, 0);
1194        if (!pgdat) {
1195                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1196                ret = -ENOMEM;
1197                goto out;
1198        }
1199        node_set_online(nid);
1200        ret = register_one_node(nid);
1201        BUG_ON(ret);
1202
1203        if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1204                mutex_lock(&zonelists_mutex);
1205                build_all_zonelists(NULL, NULL);
1206                mutex_unlock(&zonelists_mutex);
1207        }
1208
1209out:
1210        mem_hotplug_done();
1211        return ret;
1212}
1213
1214static int check_hotplug_memory_range(u64 start, u64 size)
1215{
1216        u64 start_pfn = PFN_DOWN(start);
1217        u64 nr_pages = size >> PAGE_SHIFT;
1218
1219        /* Memory range must be aligned with section */
1220        if ((start_pfn & ~PAGE_SECTION_MASK) ||
1221            (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1222                pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1223                                (unsigned long long)start,
1224                                (unsigned long long)size);
1225                return -EINVAL;
1226        }
1227
1228        return 0;
1229}
1230
1231/*
1232 * If movable zone has already been setup, newly added memory should be check.
1233 * If its address is higher than movable zone, it should be added as movable.
1234 * Without this check, movable zone may overlap with other zone.
1235 */
1236static int should_add_memory_movable(int nid, u64 start, u64 size)
1237{
1238        unsigned long start_pfn = start >> PAGE_SHIFT;
1239        pg_data_t *pgdat = NODE_DATA(nid);
1240        struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1241
1242        if (zone_is_empty(movable_zone))
1243                return 0;
1244
1245        if (movable_zone->zone_start_pfn <= start_pfn)
1246                return 1;
1247
1248        return 0;
1249}
1250
1251int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1252                bool for_device)
1253{
1254#ifdef CONFIG_ZONE_DEVICE
1255        if (for_device)
1256                return ZONE_DEVICE;
1257#endif
1258        if (should_add_memory_movable(nid, start, size))
1259                return ZONE_MOVABLE;
1260
1261        return zone_default;
1262}
1263
1264/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1265int __ref add_memory_resource(int nid, struct resource *res)
1266{
1267        u64 start, size;
1268        pg_data_t *pgdat = NULL;
1269        bool new_pgdat;
1270        bool new_node;
1271        int ret;
1272
1273        start = res->start;
1274        size = resource_size(res);
1275
1276        ret = check_hotplug_memory_range(start, size);
1277        if (ret)
1278                return ret;
1279
1280        {       /* Stupid hack to suppress address-never-null warning */
1281                void *p = NODE_DATA(nid);
1282                new_pgdat = !p;
1283        }
1284
1285        mem_hotplug_begin();
1286
1287        /*
1288         * Add new range to memblock so that when hotadd_new_pgdat() is called
1289         * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1290         * this new range and calculate total pages correctly.  The range will
1291         * be removed at hot-remove time.
1292         */
1293        memblock_add_node(start, size, nid);
1294
1295        new_node = !node_online(nid);
1296        if (new_node) {
1297                pgdat = hotadd_new_pgdat(nid, start);
1298                ret = -ENOMEM;
1299                if (!pgdat)
1300                        goto error;
1301        }
1302
1303        /* call arch's memory hotadd */
1304        ret = arch_add_memory(nid, start, size, false);
1305
1306        if (ret < 0)
1307                goto error;
1308
1309        /* we online node here. we can't roll back from here. */
1310        node_set_online(nid);
1311
1312        if (new_node) {
1313                ret = register_one_node(nid);
1314                /*
1315                 * If sysfs file of new node can't create, cpu on the node
1316                 * can't be hot-added. There is no rollback way now.
1317                 * So, check by BUG_ON() to catch it reluctantly..
1318                 */
1319                BUG_ON(ret);
1320        }
1321
1322        /* create new memmap entry */
1323        firmware_map_add_hotplug(start, start + size, "System RAM");
1324
1325        goto out;
1326
1327error:
1328        /* rollback pgdat allocation and others */
1329        if (new_pgdat)
1330                rollback_node_hotadd(nid, pgdat);
1331        memblock_remove(start, size);
1332
1333out:
1334        mem_hotplug_done();
1335        return ret;
1336}
1337EXPORT_SYMBOL_GPL(add_memory_resource);
1338
1339int __ref add_memory(int nid, u64 start, u64 size)
1340{
1341        struct resource *res;
1342        int ret;
1343
1344        res = register_memory_resource(start, size);
1345        if (IS_ERR(res))
1346                return PTR_ERR(res);
1347
1348        ret = add_memory_resource(nid, res);
1349        if (ret < 0)
1350                release_memory_resource(res);
1351        return ret;
1352}
1353EXPORT_SYMBOL_GPL(add_memory);
1354
1355#ifdef CONFIG_MEMORY_HOTREMOVE
1356/*
1357 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1358 * set and the size of the free page is given by page_order(). Using this,
1359 * the function determines if the pageblock contains only free pages.
1360 * Due to buddy contraints, a free page at least the size of a pageblock will
1361 * be located at the start of the pageblock
1362 */
1363static inline int pageblock_free(struct page *page)
1364{
1365        return PageBuddy(page) && page_order(page) >= pageblock_order;
1366}
1367
1368/* Return the start of the next active pageblock after a given page */
1369static struct page *next_active_pageblock(struct page *page)
1370{
1371        /* Ensure the starting page is pageblock-aligned */
1372        BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1373
1374        /* If the entire pageblock is free, move to the end of free page */
1375        if (pageblock_free(page)) {
1376                int order;
1377                /* be careful. we don't have locks, page_order can be changed.*/
1378                order = page_order(page);
1379                if ((order < MAX_ORDER) && (order >= pageblock_order))
1380                        return page + (1 << order);
1381        }
1382
1383        return page + pageblock_nr_pages;
1384}
1385
1386/* Checks if this range of memory is likely to be hot-removable. */
1387int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1388{
1389        struct page *page = pfn_to_page(start_pfn);
1390        struct page *end_page = page + nr_pages;
1391
1392        /* Check the starting page of each pageblock within the range */
1393        for (; page < end_page; page = next_active_pageblock(page)) {
1394                if (!is_pageblock_removable_nolock(page))
1395                        return 0;
1396                cond_resched();
1397        }
1398
1399        /* All pageblocks in the memory block are likely to be hot-removable */
1400        return 1;
1401}
1402
1403/*
1404 * Confirm all pages in a range [start, end) is belongs to the same zone.
1405 */
1406int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1407{
1408        unsigned long pfn, sec_end_pfn;
1409        struct zone *zone = NULL;
1410        struct page *page;
1411        int i;
1412        for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1413             pfn < end_pfn;
1414             pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1415                /* Make sure the memory section is present first */
1416                if (!present_section_nr(pfn_to_section_nr(pfn)))
1417                        continue;
1418                for (; pfn < sec_end_pfn && pfn < end_pfn;
1419                     pfn += MAX_ORDER_NR_PAGES) {
1420                        i = 0;
1421                        /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1422                        while ((i < MAX_ORDER_NR_PAGES) &&
1423                                !pfn_valid_within(pfn + i))
1424                                i++;
1425                        if (i == MAX_ORDER_NR_PAGES)
1426                                continue;
1427                        page = pfn_to_page(pfn + i);
1428                        if (zone && page_zone(page) != zone)
1429                                return 0;
1430                        zone = page_zone(page);
1431                }
1432        }
1433        return 1;
1434}
1435
1436/*
1437 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1438 * and hugepages). We scan pfn because it's much easier than scanning over
1439 * linked list. This function returns the pfn of the first found movable
1440 * page if it's found, otherwise 0.
1441 */
1442static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1443{
1444        unsigned long pfn;
1445        struct page *page;
1446        for (pfn = start; pfn < end; pfn++) {
1447                if (pfn_valid(pfn)) {
1448                        page = pfn_to_page(pfn);
1449                        if (PageLRU(page))
1450                                return pfn;
1451                        if (PageHuge(page)) {
1452                                if (page_huge_active(page))
1453                                        return pfn;
1454                                else
1455                                        pfn = round_up(pfn + 1,
1456                                                1 << compound_order(page)) - 1;
1457                        }
1458                }
1459        }
1460        return 0;
1461}
1462
1463#define NR_OFFLINE_AT_ONCE_PAGES        (256)
1464static int
1465do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1466{
1467        unsigned long pfn;
1468        struct page *page;
1469        int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1470        int not_managed = 0;
1471        int ret = 0;
1472        LIST_HEAD(source);
1473
1474        for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1475                if (!pfn_valid(pfn))
1476                        continue;
1477                page = pfn_to_page(pfn);
1478
1479                if (PageHuge(page)) {
1480                        struct page *head = compound_head(page);
1481                        pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1482                        if (compound_order(head) > PFN_SECTION_SHIFT) {
1483                                ret = -EBUSY;
1484                                break;
1485                        }
1486                        if (isolate_huge_page(page, &source))
1487                                move_pages -= 1 << compound_order(head);
1488                        continue;
1489                }
1490
1491                if (!get_page_unless_zero(page))
1492                        continue;
1493                /*
1494                 * We can skip free pages. And we can only deal with pages on
1495                 * LRU.
1496                 */
1497                ret = isolate_lru_page(page);
1498                if (!ret) { /* Success */
1499                        put_page(page);
1500                        list_add_tail(&page->lru, &source);
1501                        move_pages--;
1502                        inc_zone_page_state(page, NR_ISOLATED_ANON +
1503                                            page_is_file_cache(page));
1504
1505                } else {
1506#ifdef CONFIG_DEBUG_VM
1507                        printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1508                               pfn);
1509                        dump_page(page, "failed to remove from LRU");
1510#endif
1511                        put_page(page);
1512                        /* Because we don't have big zone->lock. we should
1513                           check this again here. */
1514                        if (page_count(page)) {
1515                                not_managed++;
1516                                ret = -EBUSY;
1517                                break;
1518                        }
1519                }
1520        }
1521        if (!list_empty(&source)) {
1522                if (not_managed) {
1523                        putback_movable_pages(&source);
1524                        goto out;
1525                }
1526
1527                /*
1528                 * alloc_migrate_target should be improooooved!!
1529                 * migrate_pages returns # of failed pages.
1530                 */
1531                ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1532                                        MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1533                if (ret)
1534                        putback_movable_pages(&source);
1535        }
1536out:
1537        return ret;
1538}
1539
1540/*
1541 * remove from free_area[] and mark all as Reserved.
1542 */
1543static int
1544offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1545                        void *data)
1546{
1547        __offline_isolated_pages(start, start + nr_pages);
1548        return 0;
1549}
1550
1551static void
1552offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1553{
1554        walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1555                                offline_isolated_pages_cb);
1556}
1557
1558/*
1559 * Check all pages in range, recoreded as memory resource, are isolated.
1560 */
1561static int
1562check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1563                        void *data)
1564{
1565        int ret;
1566        long offlined = *(long *)data;
1567        ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1568        offlined = nr_pages;
1569        if (!ret)
1570                *(long *)data += offlined;
1571        return ret;
1572}
1573
1574static long
1575check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1576{
1577        long offlined = 0;
1578        int ret;
1579
1580        ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1581                        check_pages_isolated_cb);
1582        if (ret < 0)
1583                offlined = (long)ret;
1584        return offlined;
1585}
1586
1587#ifdef CONFIG_MOVABLE_NODE
1588/*
1589 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1590 * normal memory.
1591 */
1592static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1593{
1594        return true;
1595}
1596#else /* CONFIG_MOVABLE_NODE */
1597/* ensure the node has NORMAL memory if it is still online */
1598static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1599{
1600        struct pglist_data *pgdat = zone->zone_pgdat;
1601        unsigned long present_pages = 0;
1602        enum zone_type zt;
1603
1604        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1605                present_pages += pgdat->node_zones[zt].present_pages;
1606
1607        if (present_pages > nr_pages)
1608                return true;
1609
1610        present_pages = 0;
1611        for (; zt <= ZONE_MOVABLE; zt++)
1612                present_pages += pgdat->node_zones[zt].present_pages;
1613
1614        /*
1615         * we can't offline the last normal memory until all
1616         * higher memory is offlined.
1617         */
1618        return present_pages == 0;
1619}
1620#endif /* CONFIG_MOVABLE_NODE */
1621
1622static int __init cmdline_parse_movable_node(char *p)
1623{
1624#ifdef CONFIG_MOVABLE_NODE
1625        /*
1626         * Memory used by the kernel cannot be hot-removed because Linux
1627         * cannot migrate the kernel pages. When memory hotplug is
1628         * enabled, we should prevent memblock from allocating memory
1629         * for the kernel.
1630         *
1631         * ACPI SRAT records all hotpluggable memory ranges. But before
1632         * SRAT is parsed, we don't know about it.
1633         *
1634         * The kernel image is loaded into memory at very early time. We
1635         * cannot prevent this anyway. So on NUMA system, we set any
1636         * node the kernel resides in as un-hotpluggable.
1637         *
1638         * Since on modern servers, one node could have double-digit
1639         * gigabytes memory, we can assume the memory around the kernel
1640         * image is also un-hotpluggable. So before SRAT is parsed, just
1641         * allocate memory near the kernel image to try the best to keep
1642         * the kernel away from hotpluggable memory.
1643         */
1644        memblock_set_bottom_up(true);
1645        movable_node_enabled = true;
1646#else
1647        pr_warn("movable_node option not supported\n");
1648#endif
1649        return 0;
1650}
1651early_param("movable_node", cmdline_parse_movable_node);
1652
1653/* check which state of node_states will be changed when offline memory */
1654static void node_states_check_changes_offline(unsigned long nr_pages,
1655                struct zone *zone, struct memory_notify *arg)
1656{
1657        struct pglist_data *pgdat = zone->zone_pgdat;
1658        unsigned long present_pages = 0;
1659        enum zone_type zt, zone_last = ZONE_NORMAL;
1660
1661        /*
1662         * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1663         * contains nodes which have zones of 0...ZONE_NORMAL,
1664         * set zone_last to ZONE_NORMAL.
1665         *
1666         * If we don't have HIGHMEM nor movable node,
1667         * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1668         * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1669         */
1670        if (N_MEMORY == N_NORMAL_MEMORY)
1671                zone_last = ZONE_MOVABLE;
1672
1673        /*
1674         * check whether node_states[N_NORMAL_MEMORY] will be changed.
1675         * If the memory to be offline is in a zone of 0...zone_last,
1676         * and it is the last present memory, 0...zone_last will
1677         * become empty after offline , thus we can determind we will
1678         * need to clear the node from node_states[N_NORMAL_MEMORY].
1679         */
1680        for (zt = 0; zt <= zone_last; zt++)
1681                present_pages += pgdat->node_zones[zt].present_pages;
1682        if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1683                arg->status_change_nid_normal = zone_to_nid(zone);
1684        else
1685                arg->status_change_nid_normal = -1;
1686
1687#ifdef CONFIG_HIGHMEM
1688        /*
1689         * If we have movable node, node_states[N_HIGH_MEMORY]
1690         * contains nodes which have zones of 0...ZONE_HIGHMEM,
1691         * set zone_last to ZONE_HIGHMEM.
1692         *
1693         * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1694         * contains nodes which have zones of 0...ZONE_MOVABLE,
1695         * set zone_last to ZONE_MOVABLE.
1696         */
1697        zone_last = ZONE_HIGHMEM;
1698        if (N_MEMORY == N_HIGH_MEMORY)
1699                zone_last = ZONE_MOVABLE;
1700
1701        for (; zt <= zone_last; zt++)
1702                present_pages += pgdat->node_zones[zt].present_pages;
1703        if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1704                arg->status_change_nid_high = zone_to_nid(zone);
1705        else
1706                arg->status_change_nid_high = -1;
1707#else
1708        arg->status_change_nid_high = arg->status_change_nid_normal;
1709#endif
1710
1711        /*
1712         * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1713         */
1714        zone_last = ZONE_MOVABLE;
1715
1716        /*
1717         * check whether node_states[N_HIGH_MEMORY] will be changed
1718         * If we try to offline the last present @nr_pages from the node,
1719         * we can determind we will need to clear the node from
1720         * node_states[N_HIGH_MEMORY].
1721         */
1722        for (; zt <= zone_last; zt++)
1723                present_pages += pgdat->node_zones[zt].present_pages;
1724        if (nr_pages >= present_pages)
1725                arg->status_change_nid = zone_to_nid(zone);
1726        else
1727                arg->status_change_nid = -1;
1728}
1729
1730static void node_states_clear_node(int node, struct memory_notify *arg)
1731{
1732        if (arg->status_change_nid_normal >= 0)
1733                node_clear_state(node, N_NORMAL_MEMORY);
1734
1735        if ((N_MEMORY != N_NORMAL_MEMORY) &&
1736            (arg->status_change_nid_high >= 0))
1737                node_clear_state(node, N_HIGH_MEMORY);
1738
1739        if ((N_MEMORY != N_HIGH_MEMORY) &&
1740            (arg->status_change_nid >= 0))
1741                node_clear_state(node, N_MEMORY);
1742}
1743
1744static int __ref __offline_pages(unsigned long start_pfn,
1745                  unsigned long end_pfn, unsigned long timeout)
1746{
1747        unsigned long pfn, nr_pages, expire;
1748        long offlined_pages;
1749        int ret, drain, retry_max, node;
1750        unsigned long flags;
1751        struct zone *zone;
1752        struct memory_notify arg;
1753
1754        /* at least, alignment against pageblock is necessary */
1755        if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1756                return -EINVAL;
1757        if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1758                return -EINVAL;
1759        /* This makes hotplug much easier...and readable.
1760           we assume this for now. .*/
1761        if (!test_pages_in_a_zone(start_pfn, end_pfn))
1762                return -EINVAL;
1763
1764        zone = page_zone(pfn_to_page(start_pfn));
1765        node = zone_to_nid(zone);
1766        nr_pages = end_pfn - start_pfn;
1767
1768        if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1769                return -EINVAL;
1770
1771        /* set above range as isolated */
1772        ret = start_isolate_page_range(start_pfn, end_pfn,
1773                                       MIGRATE_MOVABLE, true);
1774        if (ret)
1775                return ret;
1776
1777        arg.start_pfn = start_pfn;
1778        arg.nr_pages = nr_pages;
1779        node_states_check_changes_offline(nr_pages, zone, &arg);
1780
1781        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1782        ret = notifier_to_errno(ret);
1783        if (ret)
1784                goto failed_removal;
1785
1786        pfn = start_pfn;
1787        expire = jiffies + timeout;
1788        drain = 0;
1789        retry_max = 5;
1790repeat:
1791        /* start memory hot removal */
1792        ret = -EAGAIN;
1793        if (time_after(jiffies, expire))
1794                goto failed_removal;
1795        ret = -EINTR;
1796        if (signal_pending(current))
1797                goto failed_removal;
1798        ret = 0;
1799        if (drain) {
1800                lru_add_drain_all();
1801                cond_resched();
1802                drain_all_pages(zone);
1803        }
1804
1805        pfn = scan_movable_pages(start_pfn, end_pfn);
1806        if (pfn) { /* We have movable pages */
1807                ret = do_migrate_range(pfn, end_pfn);
1808                if (!ret) {
1809                        drain = 1;
1810                        goto repeat;
1811                } else {
1812                        if (ret < 0)
1813                                if (--retry_max == 0)
1814                                        goto failed_removal;
1815                        yield();
1816                        drain = 1;
1817                        goto repeat;
1818                }
1819        }
1820        /* drain all zone's lru pagevec, this is asynchronous... */
1821        lru_add_drain_all();
1822        yield();
1823        /* drain pcp pages, this is synchronous. */
1824        drain_all_pages(zone);
1825        /*
1826         * dissolve free hugepages in the memory block before doing offlining
1827         * actually in order to make hugetlbfs's object counting consistent.
1828         */
1829        dissolve_free_huge_pages(start_pfn, end_pfn);
1830        /* check again */
1831        offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1832        if (offlined_pages < 0) {
1833                ret = -EBUSY;
1834                goto failed_removal;
1835        }
1836        printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1837        /* Ok, all of our target is isolated.
1838           We cannot do rollback at this point. */
1839        offline_isolated_pages(start_pfn, end_pfn);
1840        /* reset pagetype flags and makes migrate type to be MOVABLE */
1841        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1842        /* removal success */
1843        adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1844        zone->present_pages -= offlined_pages;
1845
1846        pgdat_resize_lock(zone->zone_pgdat, &flags);
1847        zone->zone_pgdat->node_present_pages -= offlined_pages;
1848        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1849
1850        init_per_zone_wmark_min();
1851
1852        if (!populated_zone(zone)) {
1853                zone_pcp_reset(zone);
1854                mutex_lock(&zonelists_mutex);
1855                build_all_zonelists(NULL, NULL);
1856                mutex_unlock(&zonelists_mutex);
1857        } else
1858                zone_pcp_update(zone);
1859
1860        node_states_clear_node(node, &arg);
1861        if (arg.status_change_nid >= 0)
1862                kswapd_stop(node);
1863
1864        vm_total_pages = nr_free_pagecache_pages();
1865        writeback_set_ratelimit();
1866
1867        memory_notify(MEM_OFFLINE, &arg);
1868        return 0;
1869
1870failed_removal:
1871        printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1872               (unsigned long long) start_pfn << PAGE_SHIFT,
1873               ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1874        memory_notify(MEM_CANCEL_OFFLINE, &arg);
1875        /* pushback to free area */
1876        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1877        return ret;
1878}
1879
1880/* Must be protected by mem_hotplug_begin() */
1881int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1882{
1883        return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1884}
1885#endif /* CONFIG_MEMORY_HOTREMOVE */
1886
1887/**
1888 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1889 * @start_pfn: start pfn of the memory range
1890 * @end_pfn: end pfn of the memory range
1891 * @arg: argument passed to func
1892 * @func: callback for each memory section walked
1893 *
1894 * This function walks through all present mem sections in range
1895 * [start_pfn, end_pfn) and call func on each mem section.
1896 *
1897 * Returns the return value of func.
1898 */
1899int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1900                void *arg, int (*func)(struct memory_block *, void *))
1901{
1902        struct memory_block *mem = NULL;
1903        struct mem_section *section;
1904        unsigned long pfn, section_nr;
1905        int ret;
1906
1907        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1908                section_nr = pfn_to_section_nr(pfn);
1909                if (!present_section_nr(section_nr))
1910                        continue;
1911
1912                section = __nr_to_section(section_nr);
1913                /* same memblock? */
1914                if (mem)
1915                        if ((section_nr >= mem->start_section_nr) &&
1916                            (section_nr <= mem->end_section_nr))
1917                                continue;
1918
1919                mem = find_memory_block_hinted(section, mem);
1920                if (!mem)
1921                        continue;
1922
1923                ret = func(mem, arg);
1924                if (ret) {
1925                        kobject_put(&mem->dev.kobj);
1926                        return ret;
1927                }
1928        }
1929
1930        if (mem)
1931                kobject_put(&mem->dev.kobj);
1932
1933        return 0;
1934}
1935
1936#ifdef CONFIG_MEMORY_HOTREMOVE
1937static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1938{
1939        int ret = !is_memblock_offlined(mem);
1940
1941        if (unlikely(ret)) {
1942                phys_addr_t beginpa, endpa;
1943
1944                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1945                endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1946                pr_warn("removing memory fails, because memory "
1947                        "[%pa-%pa] is onlined\n",
1948                        &beginpa, &endpa);
1949        }
1950
1951        return ret;
1952}
1953
1954static int check_cpu_on_node(pg_data_t *pgdat)
1955{
1956        int cpu;
1957
1958        for_each_present_cpu(cpu) {
1959                if (cpu_to_node(cpu) == pgdat->node_id)
1960                        /*
1961                         * the cpu on this node isn't removed, and we can't
1962                         * offline this node.
1963                         */
1964                        return -EBUSY;
1965        }
1966
1967        return 0;
1968}
1969
1970static void unmap_cpu_on_node(pg_data_t *pgdat)
1971{
1972#ifdef CONFIG_ACPI_NUMA
1973        int cpu;
1974
1975        for_each_possible_cpu(cpu)
1976                if (cpu_to_node(cpu) == pgdat->node_id)
1977                        numa_clear_node(cpu);
1978#endif
1979}
1980
1981static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1982{
1983        int ret;
1984
1985        ret = check_cpu_on_node(pgdat);
1986        if (ret)
1987                return ret;
1988
1989        /*
1990         * the node will be offlined when we come here, so we can clear
1991         * the cpu_to_node() now.
1992         */
1993
1994        unmap_cpu_on_node(pgdat);
1995        return 0;
1996}
1997
1998/**
1999 * try_offline_node
2000 *
2001 * Offline a node if all memory sections and cpus of the node are removed.
2002 *
2003 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2004 * and online/offline operations before this call.
2005 */
2006void try_offline_node(int nid)
2007{
2008        pg_data_t *pgdat = NODE_DATA(nid);
2009        unsigned long start_pfn = pgdat->node_start_pfn;
2010        unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2011        unsigned long pfn;
2012        int i;
2013
2014        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2015                unsigned long section_nr = pfn_to_section_nr(pfn);
2016
2017                if (!present_section_nr(section_nr))
2018                        continue;
2019
2020                if (pfn_to_nid(pfn) != nid)
2021                        continue;
2022
2023                /*
2024                 * some memory sections of this node are not removed, and we
2025                 * can't offline node now.
2026                 */
2027                return;
2028        }
2029
2030        if (check_and_unmap_cpu_on_node(pgdat))
2031                return;
2032
2033        /*
2034         * all memory/cpu of this node are removed, we can offline this
2035         * node now.
2036         */
2037        node_set_offline(nid);
2038        unregister_one_node(nid);
2039
2040        /* free waittable in each zone */
2041        for (i = 0; i < MAX_NR_ZONES; i++) {
2042                struct zone *zone = pgdat->node_zones + i;
2043
2044                /*
2045                 * wait_table may be allocated from boot memory,
2046                 * here only free if it's allocated by vmalloc.
2047                 */
2048                if (is_vmalloc_addr(zone->wait_table)) {
2049                        vfree(zone->wait_table);
2050                        zone->wait_table = NULL;
2051                }
2052        }
2053}
2054EXPORT_SYMBOL(try_offline_node);
2055
2056/**
2057 * remove_memory
2058 *
2059 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2060 * and online/offline operations before this call, as required by
2061 * try_offline_node().
2062 */
2063void __ref remove_memory(int nid, u64 start, u64 size)
2064{
2065        int ret;
2066
2067        BUG_ON(check_hotplug_memory_range(start, size));
2068
2069        mem_hotplug_begin();
2070
2071        /*
2072         * All memory blocks must be offlined before removing memory.  Check
2073         * whether all memory blocks in question are offline and trigger a BUG()
2074         * if this is not the case.
2075         */
2076        ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2077                                check_memblock_offlined_cb);
2078        if (ret)
2079                BUG();
2080
2081        /* remove memmap entry */
2082        firmware_map_remove(start, start + size, "System RAM");
2083        memblock_free(start, size);
2084        memblock_remove(start, size);
2085
2086        arch_remove_memory(start, size);
2087
2088        try_offline_node(nid);
2089
2090        mem_hotplug_done();
2091}
2092EXPORT_SYMBOL_GPL(remove_memory);
2093#endif /* CONFIG_MEMORY_HOTREMOVE */
2094