linux/mm/oom_kill.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/oom_kill.c
   3 * 
   4 *  Copyright (C)  1998,2000  Rik van Riel
   5 *      Thanks go out to Claus Fischer for some serious inspiration and
   6 *      for goading me into coding this file...
   7 *  Copyright (C)  2010  Google, Inc.
   8 *      Rewritten by David Rientjes
   9 *
  10 *  The routines in this file are used to kill a process when
  11 *  we're seriously out of memory. This gets called from __alloc_pages()
  12 *  in mm/page_alloc.c when we really run out of memory.
  13 *
  14 *  Since we won't call these routines often (on a well-configured
  15 *  machine) this file will double as a 'coding guide' and a signpost
  16 *  for newbie kernel hackers. It features several pointers to major
  17 *  kernel subsystems and hints as to where to find out what things do.
  18 */
  19
  20#include <linux/oom.h>
  21#include <linux/mm.h>
  22#include <linux/err.h>
  23#include <linux/gfp.h>
  24#include <linux/sched.h>
  25#include <linux/swap.h>
  26#include <linux/timex.h>
  27#include <linux/jiffies.h>
  28#include <linux/cpuset.h>
  29#include <linux/export.h>
  30#include <linux/notifier.h>
  31#include <linux/memcontrol.h>
  32#include <linux/mempolicy.h>
  33#include <linux/security.h>
  34#include <linux/ptrace.h>
  35#include <linux/freezer.h>
  36#include <linux/ftrace.h>
  37#include <linux/ratelimit.h>
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/oom.h>
  41
  42int sysctl_panic_on_oom;
  43int sysctl_oom_kill_allocating_task;
  44int sysctl_oom_dump_tasks = 1;
  45
  46DEFINE_MUTEX(oom_lock);
  47
  48#ifdef CONFIG_NUMA
  49/**
  50 * has_intersects_mems_allowed() - check task eligiblity for kill
  51 * @start: task struct of which task to consider
  52 * @mask: nodemask passed to page allocator for mempolicy ooms
  53 *
  54 * Task eligibility is determined by whether or not a candidate task, @tsk,
  55 * shares the same mempolicy nodes as current if it is bound by such a policy
  56 * and whether or not it has the same set of allowed cpuset nodes.
  57 */
  58static bool has_intersects_mems_allowed(struct task_struct *start,
  59                                        const nodemask_t *mask)
  60{
  61        struct task_struct *tsk;
  62        bool ret = false;
  63
  64        rcu_read_lock();
  65        for_each_thread(start, tsk) {
  66                if (mask) {
  67                        /*
  68                         * If this is a mempolicy constrained oom, tsk's
  69                         * cpuset is irrelevant.  Only return true if its
  70                         * mempolicy intersects current, otherwise it may be
  71                         * needlessly killed.
  72                         */
  73                        ret = mempolicy_nodemask_intersects(tsk, mask);
  74                } else {
  75                        /*
  76                         * This is not a mempolicy constrained oom, so only
  77                         * check the mems of tsk's cpuset.
  78                         */
  79                        ret = cpuset_mems_allowed_intersects(current, tsk);
  80                }
  81                if (ret)
  82                        break;
  83        }
  84        rcu_read_unlock();
  85
  86        return ret;
  87}
  88#else
  89static bool has_intersects_mems_allowed(struct task_struct *tsk,
  90                                        const nodemask_t *mask)
  91{
  92        return true;
  93}
  94#endif /* CONFIG_NUMA */
  95
  96/*
  97 * The process p may have detached its own ->mm while exiting or through
  98 * use_mm(), but one or more of its subthreads may still have a valid
  99 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 100 * task_lock() held.
 101 */
 102struct task_struct *find_lock_task_mm(struct task_struct *p)
 103{
 104        struct task_struct *t;
 105
 106        rcu_read_lock();
 107
 108        for_each_thread(p, t) {
 109                task_lock(t);
 110                if (likely(t->mm))
 111                        goto found;
 112                task_unlock(t);
 113        }
 114        t = NULL;
 115found:
 116        rcu_read_unlock();
 117
 118        return t;
 119}
 120
 121/*
 122 * order == -1 means the oom kill is required by sysrq, otherwise only
 123 * for display purposes.
 124 */
 125static inline bool is_sysrq_oom(struct oom_control *oc)
 126{
 127        return oc->order == -1;
 128}
 129
 130/* return true if the task is not adequate as candidate victim task. */
 131static bool oom_unkillable_task(struct task_struct *p,
 132                struct mem_cgroup *memcg, const nodemask_t *nodemask)
 133{
 134        if (is_global_init(p))
 135                return true;
 136        if (p->flags & PF_KTHREAD)
 137                return true;
 138
 139        /* When mem_cgroup_out_of_memory() and p is not member of the group */
 140        if (memcg && !task_in_mem_cgroup(p, memcg))
 141                return true;
 142
 143        /* p may not have freeable memory in nodemask */
 144        if (!has_intersects_mems_allowed(p, nodemask))
 145                return true;
 146
 147        return false;
 148}
 149
 150/**
 151 * oom_badness - heuristic function to determine which candidate task to kill
 152 * @p: task struct of which task we should calculate
 153 * @totalpages: total present RAM allowed for page allocation
 154 *
 155 * The heuristic for determining which task to kill is made to be as simple and
 156 * predictable as possible.  The goal is to return the highest value for the
 157 * task consuming the most memory to avoid subsequent oom failures.
 158 */
 159unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
 160                          const nodemask_t *nodemask, unsigned long totalpages)
 161{
 162        long points;
 163        long adj;
 164
 165        if (oom_unkillable_task(p, memcg, nodemask))
 166                return 0;
 167
 168        p = find_lock_task_mm(p);
 169        if (!p)
 170                return 0;
 171
 172        adj = (long)p->signal->oom_score_adj;
 173        if (adj == OOM_SCORE_ADJ_MIN) {
 174                task_unlock(p);
 175                return 0;
 176        }
 177
 178        /*
 179         * The baseline for the badness score is the proportion of RAM that each
 180         * task's rss, pagetable and swap space use.
 181         */
 182        points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 183                atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
 184        task_unlock(p);
 185
 186        /*
 187         * Root processes get 3% bonus, just like the __vm_enough_memory()
 188         * implementation used by LSMs.
 189         */
 190        if (has_capability_noaudit(p, CAP_SYS_ADMIN))
 191                points -= (points * 3) / 100;
 192
 193        /* Normalize to oom_score_adj units */
 194        adj *= totalpages / 1000;
 195        points += adj;
 196
 197        /*
 198         * Never return 0 for an eligible task regardless of the root bonus and
 199         * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
 200         */
 201        return points > 0 ? points : 1;
 202}
 203
 204/*
 205 * Determine the type of allocation constraint.
 206 */
 207#ifdef CONFIG_NUMA
 208static enum oom_constraint constrained_alloc(struct oom_control *oc,
 209                                             unsigned long *totalpages)
 210{
 211        struct zone *zone;
 212        struct zoneref *z;
 213        enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
 214        bool cpuset_limited = false;
 215        int nid;
 216
 217        /* Default to all available memory */
 218        *totalpages = totalram_pages + total_swap_pages;
 219
 220        if (!oc->zonelist)
 221                return CONSTRAINT_NONE;
 222        /*
 223         * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 224         * to kill current.We have to random task kill in this case.
 225         * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 226         */
 227        if (oc->gfp_mask & __GFP_THISNODE)
 228                return CONSTRAINT_NONE;
 229
 230        /*
 231         * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 232         * the page allocator means a mempolicy is in effect.  Cpuset policy
 233         * is enforced in get_page_from_freelist().
 234         */
 235        if (oc->nodemask &&
 236            !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 237                *totalpages = total_swap_pages;
 238                for_each_node_mask(nid, *oc->nodemask)
 239                        *totalpages += node_spanned_pages(nid);
 240                return CONSTRAINT_MEMORY_POLICY;
 241        }
 242
 243        /* Check this allocation failure is caused by cpuset's wall function */
 244        for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 245                        high_zoneidx, oc->nodemask)
 246                if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 247                        cpuset_limited = true;
 248
 249        if (cpuset_limited) {
 250                *totalpages = total_swap_pages;
 251                for_each_node_mask(nid, cpuset_current_mems_allowed)
 252                        *totalpages += node_spanned_pages(nid);
 253                return CONSTRAINT_CPUSET;
 254        }
 255        return CONSTRAINT_NONE;
 256}
 257#else
 258static enum oom_constraint constrained_alloc(struct oom_control *oc,
 259                                             unsigned long *totalpages)
 260{
 261        *totalpages = totalram_pages + total_swap_pages;
 262        return CONSTRAINT_NONE;
 263}
 264#endif
 265
 266enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
 267                        struct task_struct *task, unsigned long totalpages)
 268{
 269        if (oom_unkillable_task(task, NULL, oc->nodemask))
 270                return OOM_SCAN_CONTINUE;
 271
 272        /*
 273         * This task already has access to memory reserves and is being killed.
 274         * Don't allow any other task to have access to the reserves.
 275         */
 276        if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
 277                if (!is_sysrq_oom(oc))
 278                        return OOM_SCAN_ABORT;
 279        }
 280        if (!task->mm)
 281                return OOM_SCAN_CONTINUE;
 282
 283        /*
 284         * If task is allocating a lot of memory and has been marked to be
 285         * killed first if it triggers an oom, then select it.
 286         */
 287        if (oom_task_origin(task))
 288                return OOM_SCAN_SELECT;
 289
 290        if (task_will_free_mem(task) && !is_sysrq_oom(oc))
 291                return OOM_SCAN_ABORT;
 292
 293        return OOM_SCAN_OK;
 294}
 295
 296/*
 297 * Simple selection loop. We chose the process with the highest
 298 * number of 'points'.  Returns -1 on scan abort.
 299 */
 300static struct task_struct *select_bad_process(struct oom_control *oc,
 301                unsigned int *ppoints, unsigned long totalpages)
 302{
 303        struct task_struct *g, *p;
 304        struct task_struct *chosen = NULL;
 305        unsigned long chosen_points = 0;
 306
 307        rcu_read_lock();
 308        for_each_process_thread(g, p) {
 309                unsigned int points;
 310
 311                switch (oom_scan_process_thread(oc, p, totalpages)) {
 312                case OOM_SCAN_SELECT:
 313                        chosen = p;
 314                        chosen_points = ULONG_MAX;
 315                        /* fall through */
 316                case OOM_SCAN_CONTINUE:
 317                        continue;
 318                case OOM_SCAN_ABORT:
 319                        rcu_read_unlock();
 320                        return (struct task_struct *)(-1UL);
 321                case OOM_SCAN_OK:
 322                        break;
 323                };
 324                points = oom_badness(p, NULL, oc->nodemask, totalpages);
 325                if (!points || points < chosen_points)
 326                        continue;
 327                /* Prefer thread group leaders for display purposes */
 328                if (points == chosen_points && thread_group_leader(chosen))
 329                        continue;
 330
 331                chosen = p;
 332                chosen_points = points;
 333        }
 334        if (chosen)
 335                get_task_struct(chosen);
 336        rcu_read_unlock();
 337
 338        *ppoints = chosen_points * 1000 / totalpages;
 339        return chosen;
 340}
 341
 342/**
 343 * dump_tasks - dump current memory state of all system tasks
 344 * @memcg: current's memory controller, if constrained
 345 * @nodemask: nodemask passed to page allocator for mempolicy ooms
 346 *
 347 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 348 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 349 * are not shown.
 350 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
 351 * swapents, oom_score_adj value, and name.
 352 */
 353static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
 354{
 355        struct task_struct *p;
 356        struct task_struct *task;
 357
 358        pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
 359        rcu_read_lock();
 360        for_each_process(p) {
 361                if (oom_unkillable_task(p, memcg, nodemask))
 362                        continue;
 363
 364                task = find_lock_task_mm(p);
 365                if (!task) {
 366                        /*
 367                         * This is a kthread or all of p's threads have already
 368                         * detached their mm's.  There's no need to report
 369                         * them; they can't be oom killed anyway.
 370                         */
 371                        continue;
 372                }
 373
 374                pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
 375                        task->pid, from_kuid(&init_user_ns, task_uid(task)),
 376                        task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 377                        atomic_long_read(&task->mm->nr_ptes),
 378                        mm_nr_pmds(task->mm),
 379                        get_mm_counter(task->mm, MM_SWAPENTS),
 380                        task->signal->oom_score_adj, task->comm);
 381                task_unlock(task);
 382        }
 383        rcu_read_unlock();
 384}
 385
 386static void dump_header(struct oom_control *oc, struct task_struct *p,
 387                        struct mem_cgroup *memcg)
 388{
 389        pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
 390                "oom_score_adj=%hd\n",
 391                current->comm, oc->gfp_mask, oc->order,
 392                current->signal->oom_score_adj);
 393        cpuset_print_current_mems_allowed();
 394        dump_stack();
 395        if (memcg)
 396                mem_cgroup_print_oom_info(memcg, p);
 397        else
 398                show_mem(SHOW_MEM_FILTER_NODES);
 399        if (sysctl_oom_dump_tasks)
 400                dump_tasks(memcg, oc->nodemask);
 401}
 402
 403/*
 404 * Number of OOM victims in flight
 405 */
 406static atomic_t oom_victims = ATOMIC_INIT(0);
 407static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 408
 409bool oom_killer_disabled __read_mostly;
 410
 411/**
 412 * mark_oom_victim - mark the given task as OOM victim
 413 * @tsk: task to mark
 414 *
 415 * Has to be called with oom_lock held and never after
 416 * oom has been disabled already.
 417 */
 418void mark_oom_victim(struct task_struct *tsk)
 419{
 420        WARN_ON(oom_killer_disabled);
 421        /* OOM killer might race with memcg OOM */
 422        if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 423                return;
 424        /*
 425         * Make sure that the task is woken up from uninterruptible sleep
 426         * if it is frozen because OOM killer wouldn't be able to free
 427         * any memory and livelock. freezing_slow_path will tell the freezer
 428         * that TIF_MEMDIE tasks should be ignored.
 429         */
 430        __thaw_task(tsk);
 431        atomic_inc(&oom_victims);
 432}
 433
 434/**
 435 * exit_oom_victim - note the exit of an OOM victim
 436 */
 437void exit_oom_victim(void)
 438{
 439        clear_thread_flag(TIF_MEMDIE);
 440
 441        if (!atomic_dec_return(&oom_victims))
 442                wake_up_all(&oom_victims_wait);
 443}
 444
 445/**
 446 * oom_killer_disable - disable OOM killer
 447 *
 448 * Forces all page allocations to fail rather than trigger OOM killer.
 449 * Will block and wait until all OOM victims are killed.
 450 *
 451 * The function cannot be called when there are runnable user tasks because
 452 * the userspace would see unexpected allocation failures as a result. Any
 453 * new usage of this function should be consulted with MM people.
 454 *
 455 * Returns true if successful and false if the OOM killer cannot be
 456 * disabled.
 457 */
 458bool oom_killer_disable(void)
 459{
 460        /*
 461         * Make sure to not race with an ongoing OOM killer
 462         * and that the current is not the victim.
 463         */
 464        mutex_lock(&oom_lock);
 465        if (test_thread_flag(TIF_MEMDIE)) {
 466                mutex_unlock(&oom_lock);
 467                return false;
 468        }
 469
 470        oom_killer_disabled = true;
 471        mutex_unlock(&oom_lock);
 472
 473        wait_event(oom_victims_wait, !atomic_read(&oom_victims));
 474
 475        return true;
 476}
 477
 478/**
 479 * oom_killer_enable - enable OOM killer
 480 */
 481void oom_killer_enable(void)
 482{
 483        oom_killer_disabled = false;
 484}
 485
 486/*
 487 * task->mm can be NULL if the task is the exited group leader.  So to
 488 * determine whether the task is using a particular mm, we examine all the
 489 * task's threads: if one of those is using this mm then this task was also
 490 * using it.
 491 */
 492static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 493{
 494        struct task_struct *t;
 495
 496        for_each_thread(p, t) {
 497                struct mm_struct *t_mm = READ_ONCE(t->mm);
 498                if (t_mm)
 499                        return t_mm == mm;
 500        }
 501        return false;
 502}
 503
 504#define K(x) ((x) << (PAGE_SHIFT-10))
 505/*
 506 * Must be called while holding a reference to p, which will be released upon
 507 * returning.
 508 */
 509void oom_kill_process(struct oom_control *oc, struct task_struct *p,
 510                      unsigned int points, unsigned long totalpages,
 511                      struct mem_cgroup *memcg, const char *message)
 512{
 513        struct task_struct *victim = p;
 514        struct task_struct *child;
 515        struct task_struct *t;
 516        struct mm_struct *mm;
 517        unsigned int victim_points = 0;
 518        static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 519                                              DEFAULT_RATELIMIT_BURST);
 520
 521        /*
 522         * If the task is already exiting, don't alarm the sysadmin or kill
 523         * its children or threads, just set TIF_MEMDIE so it can die quickly
 524         */
 525        task_lock(p);
 526        if (p->mm && task_will_free_mem(p)) {
 527                mark_oom_victim(p);
 528                task_unlock(p);
 529                put_task_struct(p);
 530                return;
 531        }
 532        task_unlock(p);
 533
 534        if (__ratelimit(&oom_rs))
 535                dump_header(oc, p, memcg);
 536
 537        pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
 538                message, task_pid_nr(p), p->comm, points);
 539
 540        /*
 541         * If any of p's children has a different mm and is eligible for kill,
 542         * the one with the highest oom_badness() score is sacrificed for its
 543         * parent.  This attempts to lose the minimal amount of work done while
 544         * still freeing memory.
 545         */
 546        read_lock(&tasklist_lock);
 547        for_each_thread(p, t) {
 548                list_for_each_entry(child, &t->children, sibling) {
 549                        unsigned int child_points;
 550
 551                        if (process_shares_mm(child, p->mm))
 552                                continue;
 553                        /*
 554                         * oom_badness() returns 0 if the thread is unkillable
 555                         */
 556                        child_points = oom_badness(child, memcg, oc->nodemask,
 557                                                                totalpages);
 558                        if (child_points > victim_points) {
 559                                put_task_struct(victim);
 560                                victim = child;
 561                                victim_points = child_points;
 562                                get_task_struct(victim);
 563                        }
 564                }
 565        }
 566        read_unlock(&tasklist_lock);
 567
 568        p = find_lock_task_mm(victim);
 569        if (!p) {
 570                put_task_struct(victim);
 571                return;
 572        } else if (victim != p) {
 573                get_task_struct(p);
 574                put_task_struct(victim);
 575                victim = p;
 576        }
 577
 578        /* Get a reference to safely compare mm after task_unlock(victim) */
 579        mm = victim->mm;
 580        atomic_inc(&mm->mm_count);
 581        /*
 582         * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
 583         * the OOM victim from depleting the memory reserves from the user
 584         * space under its control.
 585         */
 586        do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
 587        mark_oom_victim(victim);
 588        pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 589                task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
 590                K(get_mm_counter(victim->mm, MM_ANONPAGES)),
 591                K(get_mm_counter(victim->mm, MM_FILEPAGES)),
 592                K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
 593        task_unlock(victim);
 594
 595        /*
 596         * Kill all user processes sharing victim->mm in other thread groups, if
 597         * any.  They don't get access to memory reserves, though, to avoid
 598         * depletion of all memory.  This prevents mm->mmap_sem livelock when an
 599         * oom killed thread cannot exit because it requires the semaphore and
 600         * its contended by another thread trying to allocate memory itself.
 601         * That thread will now get access to memory reserves since it has a
 602         * pending fatal signal.
 603         */
 604        rcu_read_lock();
 605        for_each_process(p) {
 606                if (!process_shares_mm(p, mm))
 607                        continue;
 608                if (same_thread_group(p, victim))
 609                        continue;
 610                if (unlikely(p->flags & PF_KTHREAD))
 611                        continue;
 612                if (is_global_init(p))
 613                        continue;
 614                if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
 615                        continue;
 616
 617                do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
 618        }
 619        rcu_read_unlock();
 620
 621        mmdrop(mm);
 622        put_task_struct(victim);
 623}
 624#undef K
 625
 626/*
 627 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 628 */
 629void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
 630                        struct mem_cgroup *memcg)
 631{
 632        if (likely(!sysctl_panic_on_oom))
 633                return;
 634        if (sysctl_panic_on_oom != 2) {
 635                /*
 636                 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
 637                 * does not panic for cpuset, mempolicy, or memcg allocation
 638                 * failures.
 639                 */
 640                if (constraint != CONSTRAINT_NONE)
 641                        return;
 642        }
 643        /* Do not panic for oom kills triggered by sysrq */
 644        if (is_sysrq_oom(oc))
 645                return;
 646        dump_header(oc, NULL, memcg);
 647        panic("Out of memory: %s panic_on_oom is enabled\n",
 648                sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
 649}
 650
 651static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
 652
 653int register_oom_notifier(struct notifier_block *nb)
 654{
 655        return blocking_notifier_chain_register(&oom_notify_list, nb);
 656}
 657EXPORT_SYMBOL_GPL(register_oom_notifier);
 658
 659int unregister_oom_notifier(struct notifier_block *nb)
 660{
 661        return blocking_notifier_chain_unregister(&oom_notify_list, nb);
 662}
 663EXPORT_SYMBOL_GPL(unregister_oom_notifier);
 664
 665/**
 666 * out_of_memory - kill the "best" process when we run out of memory
 667 * @oc: pointer to struct oom_control
 668 *
 669 * If we run out of memory, we have the choice between either
 670 * killing a random task (bad), letting the system crash (worse)
 671 * OR try to be smart about which process to kill. Note that we
 672 * don't have to be perfect here, we just have to be good.
 673 */
 674bool out_of_memory(struct oom_control *oc)
 675{
 676        struct task_struct *p;
 677        unsigned long totalpages;
 678        unsigned long freed = 0;
 679        unsigned int uninitialized_var(points);
 680        enum oom_constraint constraint = CONSTRAINT_NONE;
 681
 682        if (oom_killer_disabled)
 683                return false;
 684
 685        blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
 686        if (freed > 0)
 687                /* Got some memory back in the last second. */
 688                return true;
 689
 690        /*
 691         * If current has a pending SIGKILL or is exiting, then automatically
 692         * select it.  The goal is to allow it to allocate so that it may
 693         * quickly exit and free its memory.
 694         *
 695         * But don't select if current has already released its mm and cleared
 696         * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
 697         */
 698        if (current->mm &&
 699            (fatal_signal_pending(current) || task_will_free_mem(current))) {
 700                mark_oom_victim(current);
 701                return true;
 702        }
 703
 704        /*
 705         * Check if there were limitations on the allocation (only relevant for
 706         * NUMA) that may require different handling.
 707         */
 708        constraint = constrained_alloc(oc, &totalpages);
 709        if (constraint != CONSTRAINT_MEMORY_POLICY)
 710                oc->nodemask = NULL;
 711        check_panic_on_oom(oc, constraint, NULL);
 712
 713        if (sysctl_oom_kill_allocating_task && current->mm &&
 714            !oom_unkillable_task(current, NULL, oc->nodemask) &&
 715            current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
 716                get_task_struct(current);
 717                oom_kill_process(oc, current, 0, totalpages, NULL,
 718                                 "Out of memory (oom_kill_allocating_task)");
 719                return true;
 720        }
 721
 722        p = select_bad_process(oc, &points, totalpages);
 723        /* Found nothing?!?! Either we hang forever, or we panic. */
 724        if (!p && !is_sysrq_oom(oc)) {
 725                dump_header(oc, NULL, NULL);
 726                panic("Out of memory and no killable processes...\n");
 727        }
 728        if (p && p != (void *)-1UL) {
 729                oom_kill_process(oc, p, points, totalpages, NULL,
 730                                 "Out of memory");
 731                /*
 732                 * Give the killed process a good chance to exit before trying
 733                 * to allocate memory again.
 734                 */
 735                schedule_timeout_killable(1);
 736        }
 737        return true;
 738}
 739
 740/*
 741 * The pagefault handler calls here because it is out of memory, so kill a
 742 * memory-hogging task.  If any populated zone has ZONE_OOM_LOCKED set, a
 743 * parallel oom killing is already in progress so do nothing.
 744 */
 745void pagefault_out_of_memory(void)
 746{
 747        struct oom_control oc = {
 748                .zonelist = NULL,
 749                .nodemask = NULL,
 750                .gfp_mask = 0,
 751                .order = 0,
 752        };
 753
 754        if (mem_cgroup_oom_synchronize(true))
 755                return;
 756
 757        if (!mutex_trylock(&oom_lock))
 758                return;
 759
 760        if (!out_of_memory(&oc)) {
 761                /*
 762                 * There shouldn't be any user tasks runnable while the
 763                 * OOM killer is disabled, so the current task has to
 764                 * be a racing OOM victim for which oom_killer_disable()
 765                 * is waiting for.
 766                 */
 767                WARN_ON(test_thread_flag(TIF_MEMDIE));
 768        }
 769
 770        mutex_unlock(&oom_lock);
 771}
 772