linux/mm/page-writeback.c
<<
>>
Prefs
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002    Andrew Morton
  11 *              Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE               max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT    10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125struct wb_domain global_wb_domain;
 126
 127/* consolidated parameters for balance_dirty_pages() and its subroutines */
 128struct dirty_throttle_control {
 129#ifdef CONFIG_CGROUP_WRITEBACK
 130        struct wb_domain        *dom;
 131        struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
 132#endif
 133        struct bdi_writeback    *wb;
 134        struct fprop_local_percpu *wb_completions;
 135
 136        unsigned long           avail;          /* dirtyable */
 137        unsigned long           dirty;          /* file_dirty + write + nfs */
 138        unsigned long           thresh;         /* dirty threshold */
 139        unsigned long           bg_thresh;      /* dirty background threshold */
 140
 141        unsigned long           wb_dirty;       /* per-wb counterparts */
 142        unsigned long           wb_thresh;
 143        unsigned long           wb_bg_thresh;
 144
 145        unsigned long           pos_ratio;
 146};
 147
 148/*
 149 * Length of period for aging writeout fractions of bdis. This is an
 150 * arbitrarily chosen number. The longer the period, the slower fractions will
 151 * reflect changes in current writeout rate.
 152 */
 153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 154
 155#ifdef CONFIG_CGROUP_WRITEBACK
 156
 157#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 158                                .dom = &global_wb_domain,               \
 159                                .wb_completions = &(__wb)->completions
 160
 161#define GDTC_INIT_NO_WB         .dom = &global_wb_domain
 162
 163#define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
 164                                .dom = mem_cgroup_wb_domain(__wb),      \
 165                                .wb_completions = &(__wb)->memcg_completions, \
 166                                .gdtc = __gdtc
 167
 168static bool mdtc_valid(struct dirty_throttle_control *dtc)
 169{
 170        return dtc->dom;
 171}
 172
 173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 174{
 175        return dtc->dom;
 176}
 177
 178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 179{
 180        return mdtc->gdtc;
 181}
 182
 183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 184{
 185        return &wb->memcg_completions;
 186}
 187
 188static void wb_min_max_ratio(struct bdi_writeback *wb,
 189                             unsigned long *minp, unsigned long *maxp)
 190{
 191        unsigned long this_bw = wb->avg_write_bandwidth;
 192        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 193        unsigned long long min = wb->bdi->min_ratio;
 194        unsigned long long max = wb->bdi->max_ratio;
 195
 196        /*
 197         * @wb may already be clean by the time control reaches here and
 198         * the total may not include its bw.
 199         */
 200        if (this_bw < tot_bw) {
 201                if (min) {
 202                        min *= this_bw;
 203                        do_div(min, tot_bw);
 204                }
 205                if (max < 100) {
 206                        max *= this_bw;
 207                        do_div(max, tot_bw);
 208                }
 209        }
 210
 211        *minp = min;
 212        *maxp = max;
 213}
 214
 215#else   /* CONFIG_CGROUP_WRITEBACK */
 216
 217#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 218                                .wb_completions = &(__wb)->completions
 219#define GDTC_INIT_NO_WB
 220#define MDTC_INIT(__wb, __gdtc)
 221
 222static bool mdtc_valid(struct dirty_throttle_control *dtc)
 223{
 224        return false;
 225}
 226
 227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 228{
 229        return &global_wb_domain;
 230}
 231
 232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 233{
 234        return NULL;
 235}
 236
 237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 238{
 239        return NULL;
 240}
 241
 242static void wb_min_max_ratio(struct bdi_writeback *wb,
 243                             unsigned long *minp, unsigned long *maxp)
 244{
 245        *minp = wb->bdi->min_ratio;
 246        *maxp = wb->bdi->max_ratio;
 247}
 248
 249#endif  /* CONFIG_CGROUP_WRITEBACK */
 250
 251/*
 252 * In a memory zone, there is a certain amount of pages we consider
 253 * available for the page cache, which is essentially the number of
 254 * free and reclaimable pages, minus some zone reserves to protect
 255 * lowmem and the ability to uphold the zone's watermarks without
 256 * requiring writeback.
 257 *
 258 * This number of dirtyable pages is the base value of which the
 259 * user-configurable dirty ratio is the effictive number of pages that
 260 * are allowed to be actually dirtied.  Per individual zone, or
 261 * globally by using the sum of dirtyable pages over all zones.
 262 *
 263 * Because the user is allowed to specify the dirty limit globally as
 264 * absolute number of bytes, calculating the per-zone dirty limit can
 265 * require translating the configured limit into a percentage of
 266 * global dirtyable memory first.
 267 */
 268
 269/**
 270 * zone_dirtyable_memory - number of dirtyable pages in a zone
 271 * @zone: the zone
 272 *
 273 * Returns the zone's number of pages potentially available for dirty
 274 * page cache.  This is the base value for the per-zone dirty limits.
 275 */
 276static unsigned long zone_dirtyable_memory(struct zone *zone)
 277{
 278        unsigned long nr_pages;
 279
 280        nr_pages = zone_page_state(zone, NR_FREE_PAGES);
 281        /*
 282         * Pages reserved for the kernel should not be considered
 283         * dirtyable, to prevent a situation where reclaim has to
 284         * clean pages in order to balance the zones.
 285         */
 286        nr_pages -= min(nr_pages, zone->totalreserve_pages);
 287
 288        nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
 289        nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
 290
 291        return nr_pages;
 292}
 293
 294static unsigned long highmem_dirtyable_memory(unsigned long total)
 295{
 296#ifdef CONFIG_HIGHMEM
 297        int node;
 298        unsigned long x = 0;
 299
 300        for_each_node_state(node, N_HIGH_MEMORY) {
 301                struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 302
 303                x += zone_dirtyable_memory(z);
 304        }
 305        /*
 306         * Unreclaimable memory (kernel memory or anonymous memory
 307         * without swap) can bring down the dirtyable pages below
 308         * the zone's dirty balance reserve and the above calculation
 309         * will underflow.  However we still want to add in nodes
 310         * which are below threshold (negative values) to get a more
 311         * accurate calculation but make sure that the total never
 312         * underflows.
 313         */
 314        if ((long)x < 0)
 315                x = 0;
 316
 317        /*
 318         * Make sure that the number of highmem pages is never larger
 319         * than the number of the total dirtyable memory. This can only
 320         * occur in very strange VM situations but we want to make sure
 321         * that this does not occur.
 322         */
 323        return min(x, total);
 324#else
 325        return 0;
 326#endif
 327}
 328
 329/**
 330 * global_dirtyable_memory - number of globally dirtyable pages
 331 *
 332 * Returns the global number of pages potentially available for dirty
 333 * page cache.  This is the base value for the global dirty limits.
 334 */
 335static unsigned long global_dirtyable_memory(void)
 336{
 337        unsigned long x;
 338
 339        x = global_page_state(NR_FREE_PAGES);
 340        /*
 341         * Pages reserved for the kernel should not be considered
 342         * dirtyable, to prevent a situation where reclaim has to
 343         * clean pages in order to balance the zones.
 344         */
 345        x -= min(x, totalreserve_pages);
 346
 347        x += global_page_state(NR_INACTIVE_FILE);
 348        x += global_page_state(NR_ACTIVE_FILE);
 349
 350        if (!vm_highmem_is_dirtyable)
 351                x -= highmem_dirtyable_memory(x);
 352
 353        return x + 1;   /* Ensure that we never return 0 */
 354}
 355
 356/**
 357 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 358 * @dtc: dirty_throttle_control of interest
 359 *
 360 * Calculate @dtc->thresh and ->bg_thresh considering
 361 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 362 * must ensure that @dtc->avail is set before calling this function.  The
 363 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 364 * real-time tasks.
 365 */
 366static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 367{
 368        const unsigned long available_memory = dtc->avail;
 369        struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 370        unsigned long bytes = vm_dirty_bytes;
 371        unsigned long bg_bytes = dirty_background_bytes;
 372        unsigned long ratio = vm_dirty_ratio;
 373        unsigned long bg_ratio = dirty_background_ratio;
 374        unsigned long thresh;
 375        unsigned long bg_thresh;
 376        struct task_struct *tsk;
 377
 378        /* gdtc is !NULL iff @dtc is for memcg domain */
 379        if (gdtc) {
 380                unsigned long global_avail = gdtc->avail;
 381
 382                /*
 383                 * The byte settings can't be applied directly to memcg
 384                 * domains.  Convert them to ratios by scaling against
 385                 * globally available memory.
 386                 */
 387                if (bytes)
 388                        ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
 389                                    global_avail, 100UL);
 390                if (bg_bytes)
 391                        bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
 392                                       global_avail, 100UL);
 393                bytes = bg_bytes = 0;
 394        }
 395
 396        if (bytes)
 397                thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 398        else
 399                thresh = (ratio * available_memory) / 100;
 400
 401        if (bg_bytes)
 402                bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 403        else
 404                bg_thresh = (bg_ratio * available_memory) / 100;
 405
 406        if (bg_thresh >= thresh)
 407                bg_thresh = thresh / 2;
 408        tsk = current;
 409        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 410                bg_thresh += bg_thresh / 4;
 411                thresh += thresh / 4;
 412        }
 413        dtc->thresh = thresh;
 414        dtc->bg_thresh = bg_thresh;
 415
 416        /* we should eventually report the domain in the TP */
 417        if (!gdtc)
 418                trace_global_dirty_state(bg_thresh, thresh);
 419}
 420
 421/**
 422 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 423 * @pbackground: out parameter for bg_thresh
 424 * @pdirty: out parameter for thresh
 425 *
 426 * Calculate bg_thresh and thresh for global_wb_domain.  See
 427 * domain_dirty_limits() for details.
 428 */
 429void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 430{
 431        struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 432
 433        gdtc.avail = global_dirtyable_memory();
 434        domain_dirty_limits(&gdtc);
 435
 436        *pbackground = gdtc.bg_thresh;
 437        *pdirty = gdtc.thresh;
 438}
 439
 440/**
 441 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 442 * @zone: the zone
 443 *
 444 * Returns the maximum number of dirty pages allowed in a zone, based
 445 * on the zone's dirtyable memory.
 446 */
 447static unsigned long zone_dirty_limit(struct zone *zone)
 448{
 449        unsigned long zone_memory = zone_dirtyable_memory(zone);
 450        struct task_struct *tsk = current;
 451        unsigned long dirty;
 452
 453        if (vm_dirty_bytes)
 454                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 455                        zone_memory / global_dirtyable_memory();
 456        else
 457                dirty = vm_dirty_ratio * zone_memory / 100;
 458
 459        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 460                dirty += dirty / 4;
 461
 462        return dirty;
 463}
 464
 465/**
 466 * zone_dirty_ok - tells whether a zone is within its dirty limits
 467 * @zone: the zone to check
 468 *
 469 * Returns %true when the dirty pages in @zone are within the zone's
 470 * dirty limit, %false if the limit is exceeded.
 471 */
 472bool zone_dirty_ok(struct zone *zone)
 473{
 474        unsigned long limit = zone_dirty_limit(zone);
 475
 476        return zone_page_state(zone, NR_FILE_DIRTY) +
 477               zone_page_state(zone, NR_UNSTABLE_NFS) +
 478               zone_page_state(zone, NR_WRITEBACK) <= limit;
 479}
 480
 481int dirty_background_ratio_handler(struct ctl_table *table, int write,
 482                void __user *buffer, size_t *lenp,
 483                loff_t *ppos)
 484{
 485        int ret;
 486
 487        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 488        if (ret == 0 && write)
 489                dirty_background_bytes = 0;
 490        return ret;
 491}
 492
 493int dirty_background_bytes_handler(struct ctl_table *table, int write,
 494                void __user *buffer, size_t *lenp,
 495                loff_t *ppos)
 496{
 497        int ret;
 498
 499        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 500        if (ret == 0 && write)
 501                dirty_background_ratio = 0;
 502        return ret;
 503}
 504
 505int dirty_ratio_handler(struct ctl_table *table, int write,
 506                void __user *buffer, size_t *lenp,
 507                loff_t *ppos)
 508{
 509        int old_ratio = vm_dirty_ratio;
 510        int ret;
 511
 512        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 513        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 514                writeback_set_ratelimit();
 515                vm_dirty_bytes = 0;
 516        }
 517        return ret;
 518}
 519
 520int dirty_bytes_handler(struct ctl_table *table, int write,
 521                void __user *buffer, size_t *lenp,
 522                loff_t *ppos)
 523{
 524        unsigned long old_bytes = vm_dirty_bytes;
 525        int ret;
 526
 527        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 528        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 529                writeback_set_ratelimit();
 530                vm_dirty_ratio = 0;
 531        }
 532        return ret;
 533}
 534
 535static unsigned long wp_next_time(unsigned long cur_time)
 536{
 537        cur_time += VM_COMPLETIONS_PERIOD_LEN;
 538        /* 0 has a special meaning... */
 539        if (!cur_time)
 540                return 1;
 541        return cur_time;
 542}
 543
 544static void wb_domain_writeout_inc(struct wb_domain *dom,
 545                                   struct fprop_local_percpu *completions,
 546                                   unsigned int max_prop_frac)
 547{
 548        __fprop_inc_percpu_max(&dom->completions, completions,
 549                               max_prop_frac);
 550        /* First event after period switching was turned off? */
 551        if (!unlikely(dom->period_time)) {
 552                /*
 553                 * We can race with other __bdi_writeout_inc calls here but
 554                 * it does not cause any harm since the resulting time when
 555                 * timer will fire and what is in writeout_period_time will be
 556                 * roughly the same.
 557                 */
 558                dom->period_time = wp_next_time(jiffies);
 559                mod_timer(&dom->period_timer, dom->period_time);
 560        }
 561}
 562
 563/*
 564 * Increment @wb's writeout completion count and the global writeout
 565 * completion count. Called from test_clear_page_writeback().
 566 */
 567static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 568{
 569        struct wb_domain *cgdom;
 570
 571        __inc_wb_stat(wb, WB_WRITTEN);
 572        wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 573                               wb->bdi->max_prop_frac);
 574
 575        cgdom = mem_cgroup_wb_domain(wb);
 576        if (cgdom)
 577                wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 578                                       wb->bdi->max_prop_frac);
 579}
 580
 581void wb_writeout_inc(struct bdi_writeback *wb)
 582{
 583        unsigned long flags;
 584
 585        local_irq_save(flags);
 586        __wb_writeout_inc(wb);
 587        local_irq_restore(flags);
 588}
 589EXPORT_SYMBOL_GPL(wb_writeout_inc);
 590
 591/*
 592 * On idle system, we can be called long after we scheduled because we use
 593 * deferred timers so count with missed periods.
 594 */
 595static void writeout_period(unsigned long t)
 596{
 597        struct wb_domain *dom = (void *)t;
 598        int miss_periods = (jiffies - dom->period_time) /
 599                                                 VM_COMPLETIONS_PERIOD_LEN;
 600
 601        if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 602                dom->period_time = wp_next_time(dom->period_time +
 603                                miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 604                mod_timer(&dom->period_timer, dom->period_time);
 605        } else {
 606                /*
 607                 * Aging has zeroed all fractions. Stop wasting CPU on period
 608                 * updates.
 609                 */
 610                dom->period_time = 0;
 611        }
 612}
 613
 614int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 615{
 616        memset(dom, 0, sizeof(*dom));
 617
 618        spin_lock_init(&dom->lock);
 619
 620        init_timer_deferrable(&dom->period_timer);
 621        dom->period_timer.function = writeout_period;
 622        dom->period_timer.data = (unsigned long)dom;
 623
 624        dom->dirty_limit_tstamp = jiffies;
 625
 626        return fprop_global_init(&dom->completions, gfp);
 627}
 628
 629#ifdef CONFIG_CGROUP_WRITEBACK
 630void wb_domain_exit(struct wb_domain *dom)
 631{
 632        del_timer_sync(&dom->period_timer);
 633        fprop_global_destroy(&dom->completions);
 634}
 635#endif
 636
 637/*
 638 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 639 * registered backing devices, which, for obvious reasons, can not
 640 * exceed 100%.
 641 */
 642static unsigned int bdi_min_ratio;
 643
 644int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 645{
 646        int ret = 0;
 647
 648        spin_lock_bh(&bdi_lock);
 649        if (min_ratio > bdi->max_ratio) {
 650                ret = -EINVAL;
 651        } else {
 652                min_ratio -= bdi->min_ratio;
 653                if (bdi_min_ratio + min_ratio < 100) {
 654                        bdi_min_ratio += min_ratio;
 655                        bdi->min_ratio += min_ratio;
 656                } else {
 657                        ret = -EINVAL;
 658                }
 659        }
 660        spin_unlock_bh(&bdi_lock);
 661
 662        return ret;
 663}
 664
 665int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 666{
 667        int ret = 0;
 668
 669        if (max_ratio > 100)
 670                return -EINVAL;
 671
 672        spin_lock_bh(&bdi_lock);
 673        if (bdi->min_ratio > max_ratio) {
 674                ret = -EINVAL;
 675        } else {
 676                bdi->max_ratio = max_ratio;
 677                bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 678        }
 679        spin_unlock_bh(&bdi_lock);
 680
 681        return ret;
 682}
 683EXPORT_SYMBOL(bdi_set_max_ratio);
 684
 685static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 686                                           unsigned long bg_thresh)
 687{
 688        return (thresh + bg_thresh) / 2;
 689}
 690
 691static unsigned long hard_dirty_limit(struct wb_domain *dom,
 692                                      unsigned long thresh)
 693{
 694        return max(thresh, dom->dirty_limit);
 695}
 696
 697/*
 698 * Memory which can be further allocated to a memcg domain is capped by
 699 * system-wide clean memory excluding the amount being used in the domain.
 700 */
 701static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 702                            unsigned long filepages, unsigned long headroom)
 703{
 704        struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 705        unsigned long clean = filepages - min(filepages, mdtc->dirty);
 706        unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 707        unsigned long other_clean = global_clean - min(global_clean, clean);
 708
 709        mdtc->avail = filepages + min(headroom, other_clean);
 710}
 711
 712/**
 713 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 714 * @dtc: dirty_throttle_context of interest
 715 *
 716 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
 717 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 718 *
 719 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 720 * when sleeping max_pause per page is not enough to keep the dirty pages under
 721 * control. For example, when the device is completely stalled due to some error
 722 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 723 * In the other normal situations, it acts more gently by throttling the tasks
 724 * more (rather than completely block them) when the wb dirty pages go high.
 725 *
 726 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 727 * - starving fast devices
 728 * - piling up dirty pages (that will take long time to sync) on slow devices
 729 *
 730 * The wb's share of dirty limit will be adapting to its throughput and
 731 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 732 */
 733static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 734{
 735        struct wb_domain *dom = dtc_dom(dtc);
 736        unsigned long thresh = dtc->thresh;
 737        u64 wb_thresh;
 738        long numerator, denominator;
 739        unsigned long wb_min_ratio, wb_max_ratio;
 740
 741        /*
 742         * Calculate this BDI's share of the thresh ratio.
 743         */
 744        fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 745                              &numerator, &denominator);
 746
 747        wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 748        wb_thresh *= numerator;
 749        do_div(wb_thresh, denominator);
 750
 751        wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 752
 753        wb_thresh += (thresh * wb_min_ratio) / 100;
 754        if (wb_thresh > (thresh * wb_max_ratio) / 100)
 755                wb_thresh = thresh * wb_max_ratio / 100;
 756
 757        return wb_thresh;
 758}
 759
 760unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 761{
 762        struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 763                                               .thresh = thresh };
 764        return __wb_calc_thresh(&gdtc);
 765}
 766
 767/*
 768 *                           setpoint - dirty 3
 769 *        f(dirty) := 1.0 + (----------------)
 770 *                           limit - setpoint
 771 *
 772 * it's a 3rd order polynomial that subjects to
 773 *
 774 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 775 * (2) f(setpoint) = 1.0 => the balance point
 776 * (3) f(limit)    = 0   => the hard limit
 777 * (4) df/dx      <= 0   => negative feedback control
 778 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 779 *     => fast response on large errors; small oscillation near setpoint
 780 */
 781static long long pos_ratio_polynom(unsigned long setpoint,
 782                                          unsigned long dirty,
 783                                          unsigned long limit)
 784{
 785        long long pos_ratio;
 786        long x;
 787
 788        x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 789                      (limit - setpoint) | 1);
 790        pos_ratio = x;
 791        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 792        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 793        pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 794
 795        return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 796}
 797
 798/*
 799 * Dirty position control.
 800 *
 801 * (o) global/bdi setpoints
 802 *
 803 * We want the dirty pages be balanced around the global/wb setpoints.
 804 * When the number of dirty pages is higher/lower than the setpoint, the
 805 * dirty position control ratio (and hence task dirty ratelimit) will be
 806 * decreased/increased to bring the dirty pages back to the setpoint.
 807 *
 808 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 809 *
 810 *     if (dirty < setpoint) scale up   pos_ratio
 811 *     if (dirty > setpoint) scale down pos_ratio
 812 *
 813 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 814 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 815 *
 816 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 817 *
 818 * (o) global control line
 819 *
 820 *     ^ pos_ratio
 821 *     |
 822 *     |            |<===== global dirty control scope ======>|
 823 * 2.0 .............*
 824 *     |            .*
 825 *     |            . *
 826 *     |            .   *
 827 *     |            .     *
 828 *     |            .        *
 829 *     |            .            *
 830 * 1.0 ................................*
 831 *     |            .                  .     *
 832 *     |            .                  .          *
 833 *     |            .                  .              *
 834 *     |            .                  .                 *
 835 *     |            .                  .                    *
 836 *   0 +------------.------------------.----------------------*------------->
 837 *           freerun^          setpoint^                 limit^   dirty pages
 838 *
 839 * (o) wb control line
 840 *
 841 *     ^ pos_ratio
 842 *     |
 843 *     |            *
 844 *     |              *
 845 *     |                *
 846 *     |                  *
 847 *     |                    * |<=========== span ============>|
 848 * 1.0 .......................*
 849 *     |                      . *
 850 *     |                      .   *
 851 *     |                      .     *
 852 *     |                      .       *
 853 *     |                      .         *
 854 *     |                      .           *
 855 *     |                      .             *
 856 *     |                      .               *
 857 *     |                      .                 *
 858 *     |                      .                   *
 859 *     |                      .                     *
 860 * 1/4 ...............................................* * * * * * * * * * * *
 861 *     |                      .                         .
 862 *     |                      .                           .
 863 *     |                      .                             .
 864 *   0 +----------------------.-------------------------------.------------->
 865 *                wb_setpoint^                    x_intercept^
 866 *
 867 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 868 * be smoothly throttled down to normal if it starts high in situations like
 869 * - start writing to a slow SD card and a fast disk at the same time. The SD
 870 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 871 * - the wb dirty thresh drops quickly due to change of JBOD workload
 872 */
 873static void wb_position_ratio(struct dirty_throttle_control *dtc)
 874{
 875        struct bdi_writeback *wb = dtc->wb;
 876        unsigned long write_bw = wb->avg_write_bandwidth;
 877        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 878        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 879        unsigned long wb_thresh = dtc->wb_thresh;
 880        unsigned long x_intercept;
 881        unsigned long setpoint;         /* dirty pages' target balance point */
 882        unsigned long wb_setpoint;
 883        unsigned long span;
 884        long long pos_ratio;            /* for scaling up/down the rate limit */
 885        long x;
 886
 887        dtc->pos_ratio = 0;
 888
 889        if (unlikely(dtc->dirty >= limit))
 890                return;
 891
 892        /*
 893         * global setpoint
 894         *
 895         * See comment for pos_ratio_polynom().
 896         */
 897        setpoint = (freerun + limit) / 2;
 898        pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 899
 900        /*
 901         * The strictlimit feature is a tool preventing mistrusted filesystems
 902         * from growing a large number of dirty pages before throttling. For
 903         * such filesystems balance_dirty_pages always checks wb counters
 904         * against wb limits. Even if global "nr_dirty" is under "freerun".
 905         * This is especially important for fuse which sets bdi->max_ratio to
 906         * 1% by default. Without strictlimit feature, fuse writeback may
 907         * consume arbitrary amount of RAM because it is accounted in
 908         * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 909         *
 910         * Here, in wb_position_ratio(), we calculate pos_ratio based on
 911         * two values: wb_dirty and wb_thresh. Let's consider an example:
 912         * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 913         * limits are set by default to 10% and 20% (background and throttle).
 914         * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 915         * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 916         * about ~6K pages (as the average of background and throttle wb
 917         * limits). The 3rd order polynomial will provide positive feedback if
 918         * wb_dirty is under wb_setpoint and vice versa.
 919         *
 920         * Note, that we cannot use global counters in these calculations
 921         * because we want to throttle process writing to a strictlimit wb
 922         * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 923         * in the example above).
 924         */
 925        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 926                long long wb_pos_ratio;
 927
 928                if (dtc->wb_dirty < 8) {
 929                        dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 930                                           2 << RATELIMIT_CALC_SHIFT);
 931                        return;
 932                }
 933
 934                if (dtc->wb_dirty >= wb_thresh)
 935                        return;
 936
 937                wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 938                                                    dtc->wb_bg_thresh);
 939
 940                if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 941                        return;
 942
 943                wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 944                                                 wb_thresh);
 945
 946                /*
 947                 * Typically, for strictlimit case, wb_setpoint << setpoint
 948                 * and pos_ratio >> wb_pos_ratio. In the other words global
 949                 * state ("dirty") is not limiting factor and we have to
 950                 * make decision based on wb counters. But there is an
 951                 * important case when global pos_ratio should get precedence:
 952                 * global limits are exceeded (e.g. due to activities on other
 953                 * wb's) while given strictlimit wb is below limit.
 954                 *
 955                 * "pos_ratio * wb_pos_ratio" would work for the case above,
 956                 * but it would look too non-natural for the case of all
 957                 * activity in the system coming from a single strictlimit wb
 958                 * with bdi->max_ratio == 100%.
 959                 *
 960                 * Note that min() below somewhat changes the dynamics of the
 961                 * control system. Normally, pos_ratio value can be well over 3
 962                 * (when globally we are at freerun and wb is well below wb
 963                 * setpoint). Now the maximum pos_ratio in the same situation
 964                 * is 2. We might want to tweak this if we observe the control
 965                 * system is too slow to adapt.
 966                 */
 967                dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 968                return;
 969        }
 970
 971        /*
 972         * We have computed basic pos_ratio above based on global situation. If
 973         * the wb is over/under its share of dirty pages, we want to scale
 974         * pos_ratio further down/up. That is done by the following mechanism.
 975         */
 976
 977        /*
 978         * wb setpoint
 979         *
 980         *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
 981         *
 982         *                        x_intercept - wb_dirty
 983         *                     := --------------------------
 984         *                        x_intercept - wb_setpoint
 985         *
 986         * The main wb control line is a linear function that subjects to
 987         *
 988         * (1) f(wb_setpoint) = 1.0
 989         * (2) k = - 1 / (8 * write_bw)  (in single wb case)
 990         *     or equally: x_intercept = wb_setpoint + 8 * write_bw
 991         *
 992         * For single wb case, the dirty pages are observed to fluctuate
 993         * regularly within range
 994         *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
 995         * for various filesystems, where (2) can yield in a reasonable 12.5%
 996         * fluctuation range for pos_ratio.
 997         *
 998         * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
 999         * own size, so move the slope over accordingly and choose a slope that
1000         * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1001         */
1002        if (unlikely(wb_thresh > dtc->thresh))
1003                wb_thresh = dtc->thresh;
1004        /*
1005         * It's very possible that wb_thresh is close to 0 not because the
1006         * device is slow, but that it has remained inactive for long time.
1007         * Honour such devices a reasonable good (hopefully IO efficient)
1008         * threshold, so that the occasional writes won't be blocked and active
1009         * writes can rampup the threshold quickly.
1010         */
1011        wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1012        /*
1013         * scale global setpoint to wb's:
1014         *      wb_setpoint = setpoint * wb_thresh / thresh
1015         */
1016        x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1017        wb_setpoint = setpoint * (u64)x >> 16;
1018        /*
1019         * Use span=(8*write_bw) in single wb case as indicated by
1020         * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1021         *
1022         *        wb_thresh                    thresh - wb_thresh
1023         * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1024         *         thresh                           thresh
1025         */
1026        span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1027        x_intercept = wb_setpoint + span;
1028
1029        if (dtc->wb_dirty < x_intercept - span / 4) {
1030                pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1031                                      (x_intercept - wb_setpoint) | 1);
1032        } else
1033                pos_ratio /= 4;
1034
1035        /*
1036         * wb reserve area, safeguard against dirty pool underrun and disk idle
1037         * It may push the desired control point of global dirty pages higher
1038         * than setpoint.
1039         */
1040        x_intercept = wb_thresh / 2;
1041        if (dtc->wb_dirty < x_intercept) {
1042                if (dtc->wb_dirty > x_intercept / 8)
1043                        pos_ratio = div_u64(pos_ratio * x_intercept,
1044                                            dtc->wb_dirty);
1045                else
1046                        pos_ratio *= 8;
1047        }
1048
1049        dtc->pos_ratio = pos_ratio;
1050}
1051
1052static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1053                                      unsigned long elapsed,
1054                                      unsigned long written)
1055{
1056        const unsigned long period = roundup_pow_of_two(3 * HZ);
1057        unsigned long avg = wb->avg_write_bandwidth;
1058        unsigned long old = wb->write_bandwidth;
1059        u64 bw;
1060
1061        /*
1062         * bw = written * HZ / elapsed
1063         *
1064         *                   bw * elapsed + write_bandwidth * (period - elapsed)
1065         * write_bandwidth = ---------------------------------------------------
1066         *                                          period
1067         *
1068         * @written may have decreased due to account_page_redirty().
1069         * Avoid underflowing @bw calculation.
1070         */
1071        bw = written - min(written, wb->written_stamp);
1072        bw *= HZ;
1073        if (unlikely(elapsed > period)) {
1074                do_div(bw, elapsed);
1075                avg = bw;
1076                goto out;
1077        }
1078        bw += (u64)wb->write_bandwidth * (period - elapsed);
1079        bw >>= ilog2(period);
1080
1081        /*
1082         * one more level of smoothing, for filtering out sudden spikes
1083         */
1084        if (avg > old && old >= (unsigned long)bw)
1085                avg -= (avg - old) >> 3;
1086
1087        if (avg < old && old <= (unsigned long)bw)
1088                avg += (old - avg) >> 3;
1089
1090out:
1091        /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1092        avg = max(avg, 1LU);
1093        if (wb_has_dirty_io(wb)) {
1094                long delta = avg - wb->avg_write_bandwidth;
1095                WARN_ON_ONCE(atomic_long_add_return(delta,
1096                                        &wb->bdi->tot_write_bandwidth) <= 0);
1097        }
1098        wb->write_bandwidth = bw;
1099        wb->avg_write_bandwidth = avg;
1100}
1101
1102static void update_dirty_limit(struct dirty_throttle_control *dtc)
1103{
1104        struct wb_domain *dom = dtc_dom(dtc);
1105        unsigned long thresh = dtc->thresh;
1106        unsigned long limit = dom->dirty_limit;
1107
1108        /*
1109         * Follow up in one step.
1110         */
1111        if (limit < thresh) {
1112                limit = thresh;
1113                goto update;
1114        }
1115
1116        /*
1117         * Follow down slowly. Use the higher one as the target, because thresh
1118         * may drop below dirty. This is exactly the reason to introduce
1119         * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1120         */
1121        thresh = max(thresh, dtc->dirty);
1122        if (limit > thresh) {
1123                limit -= (limit - thresh) >> 5;
1124                goto update;
1125        }
1126        return;
1127update:
1128        dom->dirty_limit = limit;
1129}
1130
1131static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1132                                    unsigned long now)
1133{
1134        struct wb_domain *dom = dtc_dom(dtc);
1135
1136        /*
1137         * check locklessly first to optimize away locking for the most time
1138         */
1139        if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1140                return;
1141
1142        spin_lock(&dom->lock);
1143        if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1144                update_dirty_limit(dtc);
1145                dom->dirty_limit_tstamp = now;
1146        }
1147        spin_unlock(&dom->lock);
1148}
1149
1150/*
1151 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1152 *
1153 * Normal wb tasks will be curbed at or below it in long term.
1154 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1155 */
1156static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1157                                      unsigned long dirtied,
1158                                      unsigned long elapsed)
1159{
1160        struct bdi_writeback *wb = dtc->wb;
1161        unsigned long dirty = dtc->dirty;
1162        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1163        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1164        unsigned long setpoint = (freerun + limit) / 2;
1165        unsigned long write_bw = wb->avg_write_bandwidth;
1166        unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1167        unsigned long dirty_rate;
1168        unsigned long task_ratelimit;
1169        unsigned long balanced_dirty_ratelimit;
1170        unsigned long step;
1171        unsigned long x;
1172
1173        /*
1174         * The dirty rate will match the writeout rate in long term, except
1175         * when dirty pages are truncated by userspace or re-dirtied by FS.
1176         */
1177        dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1178
1179        /*
1180         * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1181         */
1182        task_ratelimit = (u64)dirty_ratelimit *
1183                                        dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1184        task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1185
1186        /*
1187         * A linear estimation of the "balanced" throttle rate. The theory is,
1188         * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1189         * dirty_rate will be measured to be (N * task_ratelimit). So the below
1190         * formula will yield the balanced rate limit (write_bw / N).
1191         *
1192         * Note that the expanded form is not a pure rate feedback:
1193         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1194         * but also takes pos_ratio into account:
1195         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1196         *
1197         * (1) is not realistic because pos_ratio also takes part in balancing
1198         * the dirty rate.  Consider the state
1199         *      pos_ratio = 0.5                                              (3)
1200         *      rate = 2 * (write_bw / N)                                    (4)
1201         * If (1) is used, it will stuck in that state! Because each dd will
1202         * be throttled at
1203         *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1204         * yielding
1205         *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1206         * put (6) into (1) we get
1207         *      rate_(i+1) = rate_(i)                                        (7)
1208         *
1209         * So we end up using (2) to always keep
1210         *      rate_(i+1) ~= (write_bw / N)                                 (8)
1211         * regardless of the value of pos_ratio. As long as (8) is satisfied,
1212         * pos_ratio is able to drive itself to 1.0, which is not only where
1213         * the dirty count meet the setpoint, but also where the slope of
1214         * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1215         */
1216        balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1217                                           dirty_rate | 1);
1218        /*
1219         * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1220         */
1221        if (unlikely(balanced_dirty_ratelimit > write_bw))
1222                balanced_dirty_ratelimit = write_bw;
1223
1224        /*
1225         * We could safely do this and return immediately:
1226         *
1227         *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1228         *
1229         * However to get a more stable dirty_ratelimit, the below elaborated
1230         * code makes use of task_ratelimit to filter out singular points and
1231         * limit the step size.
1232         *
1233         * The below code essentially only uses the relative value of
1234         *
1235         *      task_ratelimit - dirty_ratelimit
1236         *      = (pos_ratio - 1) * dirty_ratelimit
1237         *
1238         * which reflects the direction and size of dirty position error.
1239         */
1240
1241        /*
1242         * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1243         * task_ratelimit is on the same side of dirty_ratelimit, too.
1244         * For example, when
1245         * - dirty_ratelimit > balanced_dirty_ratelimit
1246         * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1247         * lowering dirty_ratelimit will help meet both the position and rate
1248         * control targets. Otherwise, don't update dirty_ratelimit if it will
1249         * only help meet the rate target. After all, what the users ultimately
1250         * feel and care are stable dirty rate and small position error.
1251         *
1252         * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1253         * and filter out the singular points of balanced_dirty_ratelimit. Which
1254         * keeps jumping around randomly and can even leap far away at times
1255         * due to the small 200ms estimation period of dirty_rate (we want to
1256         * keep that period small to reduce time lags).
1257         */
1258        step = 0;
1259
1260        /*
1261         * For strictlimit case, calculations above were based on wb counters
1262         * and limits (starting from pos_ratio = wb_position_ratio() and up to
1263         * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1264         * Hence, to calculate "step" properly, we have to use wb_dirty as
1265         * "dirty" and wb_setpoint as "setpoint".
1266         *
1267         * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1268         * it's possible that wb_thresh is close to zero due to inactivity
1269         * of backing device.
1270         */
1271        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1272                dirty = dtc->wb_dirty;
1273                if (dtc->wb_dirty < 8)
1274                        setpoint = dtc->wb_dirty + 1;
1275                else
1276                        setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1277        }
1278
1279        if (dirty < setpoint) {
1280                x = min3(wb->balanced_dirty_ratelimit,
1281                         balanced_dirty_ratelimit, task_ratelimit);
1282                if (dirty_ratelimit < x)
1283                        step = x - dirty_ratelimit;
1284        } else {
1285                x = max3(wb->balanced_dirty_ratelimit,
1286                         balanced_dirty_ratelimit, task_ratelimit);
1287                if (dirty_ratelimit > x)
1288                        step = dirty_ratelimit - x;
1289        }
1290
1291        /*
1292         * Don't pursue 100% rate matching. It's impossible since the balanced
1293         * rate itself is constantly fluctuating. So decrease the track speed
1294         * when it gets close to the target. Helps eliminate pointless tremors.
1295         */
1296        step >>= dirty_ratelimit / (2 * step + 1);
1297        /*
1298         * Limit the tracking speed to avoid overshooting.
1299         */
1300        step = (step + 7) / 8;
1301
1302        if (dirty_ratelimit < balanced_dirty_ratelimit)
1303                dirty_ratelimit += step;
1304        else
1305                dirty_ratelimit -= step;
1306
1307        wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1308        wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1309
1310        trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1311}
1312
1313static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1314                                  struct dirty_throttle_control *mdtc,
1315                                  unsigned long start_time,
1316                                  bool update_ratelimit)
1317{
1318        struct bdi_writeback *wb = gdtc->wb;
1319        unsigned long now = jiffies;
1320        unsigned long elapsed = now - wb->bw_time_stamp;
1321        unsigned long dirtied;
1322        unsigned long written;
1323
1324        lockdep_assert_held(&wb->list_lock);
1325
1326        /*
1327         * rate-limit, only update once every 200ms.
1328         */
1329        if (elapsed < BANDWIDTH_INTERVAL)
1330                return;
1331
1332        dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1333        written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1334
1335        /*
1336         * Skip quiet periods when disk bandwidth is under-utilized.
1337         * (at least 1s idle time between two flusher runs)
1338         */
1339        if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1340                goto snapshot;
1341
1342        if (update_ratelimit) {
1343                domain_update_bandwidth(gdtc, now);
1344                wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1345
1346                /*
1347                 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1348                 * compiler has no way to figure that out.  Help it.
1349                 */
1350                if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1351                        domain_update_bandwidth(mdtc, now);
1352                        wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1353                }
1354        }
1355        wb_update_write_bandwidth(wb, elapsed, written);
1356
1357snapshot:
1358        wb->dirtied_stamp = dirtied;
1359        wb->written_stamp = written;
1360        wb->bw_time_stamp = now;
1361}
1362
1363void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1364{
1365        struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1366
1367        __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1368}
1369
1370/*
1371 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1372 * will look to see if it needs to start dirty throttling.
1373 *
1374 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1375 * global_page_state() too often. So scale it near-sqrt to the safety margin
1376 * (the number of pages we may dirty without exceeding the dirty limits).
1377 */
1378static unsigned long dirty_poll_interval(unsigned long dirty,
1379                                         unsigned long thresh)
1380{
1381        if (thresh > dirty)
1382                return 1UL << (ilog2(thresh - dirty) >> 1);
1383
1384        return 1;
1385}
1386
1387static unsigned long wb_max_pause(struct bdi_writeback *wb,
1388                                  unsigned long wb_dirty)
1389{
1390        unsigned long bw = wb->avg_write_bandwidth;
1391        unsigned long t;
1392
1393        /*
1394         * Limit pause time for small memory systems. If sleeping for too long
1395         * time, a small pool of dirty/writeback pages may go empty and disk go
1396         * idle.
1397         *
1398         * 8 serves as the safety ratio.
1399         */
1400        t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1401        t++;
1402
1403        return min_t(unsigned long, t, MAX_PAUSE);
1404}
1405
1406static long wb_min_pause(struct bdi_writeback *wb,
1407                         long max_pause,
1408                         unsigned long task_ratelimit,
1409                         unsigned long dirty_ratelimit,
1410                         int *nr_dirtied_pause)
1411{
1412        long hi = ilog2(wb->avg_write_bandwidth);
1413        long lo = ilog2(wb->dirty_ratelimit);
1414        long t;         /* target pause */
1415        long pause;     /* estimated next pause */
1416        int pages;      /* target nr_dirtied_pause */
1417
1418        /* target for 10ms pause on 1-dd case */
1419        t = max(1, HZ / 100);
1420
1421        /*
1422         * Scale up pause time for concurrent dirtiers in order to reduce CPU
1423         * overheads.
1424         *
1425         * (N * 10ms) on 2^N concurrent tasks.
1426         */
1427        if (hi > lo)
1428                t += (hi - lo) * (10 * HZ) / 1024;
1429
1430        /*
1431         * This is a bit convoluted. We try to base the next nr_dirtied_pause
1432         * on the much more stable dirty_ratelimit. However the next pause time
1433         * will be computed based on task_ratelimit and the two rate limits may
1434         * depart considerably at some time. Especially if task_ratelimit goes
1435         * below dirty_ratelimit/2 and the target pause is max_pause, the next
1436         * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1437         * result task_ratelimit won't be executed faithfully, which could
1438         * eventually bring down dirty_ratelimit.
1439         *
1440         * We apply two rules to fix it up:
1441         * 1) try to estimate the next pause time and if necessary, use a lower
1442         *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1443         *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1444         * 2) limit the target pause time to max_pause/2, so that the normal
1445         *    small fluctuations of task_ratelimit won't trigger rule (1) and
1446         *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1447         */
1448        t = min(t, 1 + max_pause / 2);
1449        pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1450
1451        /*
1452         * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1453         * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1454         * When the 16 consecutive reads are often interrupted by some dirty
1455         * throttling pause during the async writes, cfq will go into idles
1456         * (deadline is fine). So push nr_dirtied_pause as high as possible
1457         * until reaches DIRTY_POLL_THRESH=32 pages.
1458         */
1459        if (pages < DIRTY_POLL_THRESH) {
1460                t = max_pause;
1461                pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1462                if (pages > DIRTY_POLL_THRESH) {
1463                        pages = DIRTY_POLL_THRESH;
1464                        t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1465                }
1466        }
1467
1468        pause = HZ * pages / (task_ratelimit + 1);
1469        if (pause > max_pause) {
1470                t = max_pause;
1471                pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1472        }
1473
1474        *nr_dirtied_pause = pages;
1475        /*
1476         * The minimal pause time will normally be half the target pause time.
1477         */
1478        return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1479}
1480
1481static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1482{
1483        struct bdi_writeback *wb = dtc->wb;
1484        unsigned long wb_reclaimable;
1485
1486        /*
1487         * wb_thresh is not treated as some limiting factor as
1488         * dirty_thresh, due to reasons
1489         * - in JBOD setup, wb_thresh can fluctuate a lot
1490         * - in a system with HDD and USB key, the USB key may somehow
1491         *   go into state (wb_dirty >> wb_thresh) either because
1492         *   wb_dirty starts high, or because wb_thresh drops low.
1493         *   In this case we don't want to hard throttle the USB key
1494         *   dirtiers for 100 seconds until wb_dirty drops under
1495         *   wb_thresh. Instead the auxiliary wb control line in
1496         *   wb_position_ratio() will let the dirtier task progress
1497         *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1498         */
1499        dtc->wb_thresh = __wb_calc_thresh(dtc);
1500        dtc->wb_bg_thresh = dtc->thresh ?
1501                div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1502
1503        /*
1504         * In order to avoid the stacked BDI deadlock we need
1505         * to ensure we accurately count the 'dirty' pages when
1506         * the threshold is low.
1507         *
1508         * Otherwise it would be possible to get thresh+n pages
1509         * reported dirty, even though there are thresh-m pages
1510         * actually dirty; with m+n sitting in the percpu
1511         * deltas.
1512         */
1513        if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1514                wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1515                dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1516        } else {
1517                wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1518                dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1519        }
1520}
1521
1522/*
1523 * balance_dirty_pages() must be called by processes which are generating dirty
1524 * data.  It looks at the number of dirty pages in the machine and will force
1525 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1526 * If we're over `background_thresh' then the writeback threads are woken to
1527 * perform some writeout.
1528 */
1529static void balance_dirty_pages(struct address_space *mapping,
1530                                struct bdi_writeback *wb,
1531                                unsigned long pages_dirtied)
1532{
1533        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1534        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1535        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1536        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1537                                                     &mdtc_stor : NULL;
1538        struct dirty_throttle_control *sdtc;
1539        unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1540        long period;
1541        long pause;
1542        long max_pause;
1543        long min_pause;
1544        int nr_dirtied_pause;
1545        bool dirty_exceeded = false;
1546        unsigned long task_ratelimit;
1547        unsigned long dirty_ratelimit;
1548        struct backing_dev_info *bdi = wb->bdi;
1549        bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1550        unsigned long start_time = jiffies;
1551
1552        for (;;) {
1553                unsigned long now = jiffies;
1554                unsigned long dirty, thresh, bg_thresh;
1555                unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1556                unsigned long m_thresh = 0;
1557                unsigned long m_bg_thresh = 0;
1558
1559                /*
1560                 * Unstable writes are a feature of certain networked
1561                 * filesystems (i.e. NFS) in which data may have been
1562                 * written to the server's write cache, but has not yet
1563                 * been flushed to permanent storage.
1564                 */
1565                nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1566                                        global_page_state(NR_UNSTABLE_NFS);
1567                gdtc->avail = global_dirtyable_memory();
1568                gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1569
1570                domain_dirty_limits(gdtc);
1571
1572                if (unlikely(strictlimit)) {
1573                        wb_dirty_limits(gdtc);
1574
1575                        dirty = gdtc->wb_dirty;
1576                        thresh = gdtc->wb_thresh;
1577                        bg_thresh = gdtc->wb_bg_thresh;
1578                } else {
1579                        dirty = gdtc->dirty;
1580                        thresh = gdtc->thresh;
1581                        bg_thresh = gdtc->bg_thresh;
1582                }
1583
1584                if (mdtc) {
1585                        unsigned long filepages, headroom, writeback;
1586
1587                        /*
1588                         * If @wb belongs to !root memcg, repeat the same
1589                         * basic calculations for the memcg domain.
1590                         */
1591                        mem_cgroup_wb_stats(wb, &filepages, &headroom,
1592                                            &mdtc->dirty, &writeback);
1593                        mdtc->dirty += writeback;
1594                        mdtc_calc_avail(mdtc, filepages, headroom);
1595
1596                        domain_dirty_limits(mdtc);
1597
1598                        if (unlikely(strictlimit)) {
1599                                wb_dirty_limits(mdtc);
1600                                m_dirty = mdtc->wb_dirty;
1601                                m_thresh = mdtc->wb_thresh;
1602                                m_bg_thresh = mdtc->wb_bg_thresh;
1603                        } else {
1604                                m_dirty = mdtc->dirty;
1605                                m_thresh = mdtc->thresh;
1606                                m_bg_thresh = mdtc->bg_thresh;
1607                        }
1608                }
1609
1610                /*
1611                 * Throttle it only when the background writeback cannot
1612                 * catch-up. This avoids (excessively) small writeouts
1613                 * when the wb limits are ramping up in case of !strictlimit.
1614                 *
1615                 * In strictlimit case make decision based on the wb counters
1616                 * and limits. Small writeouts when the wb limits are ramping
1617                 * up are the price we consciously pay for strictlimit-ing.
1618                 *
1619                 * If memcg domain is in effect, @dirty should be under
1620                 * both global and memcg freerun ceilings.
1621                 */
1622                if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1623                    (!mdtc ||
1624                     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1625                        unsigned long intv = dirty_poll_interval(dirty, thresh);
1626                        unsigned long m_intv = ULONG_MAX;
1627
1628                        current->dirty_paused_when = now;
1629                        current->nr_dirtied = 0;
1630                        if (mdtc)
1631                                m_intv = dirty_poll_interval(m_dirty, m_thresh);
1632                        current->nr_dirtied_pause = min(intv, m_intv);
1633                        break;
1634                }
1635
1636                if (unlikely(!writeback_in_progress(wb)))
1637                        wb_start_background_writeback(wb);
1638
1639                /*
1640                 * Calculate global domain's pos_ratio and select the
1641                 * global dtc by default.
1642                 */
1643                if (!strictlimit)
1644                        wb_dirty_limits(gdtc);
1645
1646                dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1647                        ((gdtc->dirty > gdtc->thresh) || strictlimit);
1648
1649                wb_position_ratio(gdtc);
1650                sdtc = gdtc;
1651
1652                if (mdtc) {
1653                        /*
1654                         * If memcg domain is in effect, calculate its
1655                         * pos_ratio.  @wb should satisfy constraints from
1656                         * both global and memcg domains.  Choose the one
1657                         * w/ lower pos_ratio.
1658                         */
1659                        if (!strictlimit)
1660                                wb_dirty_limits(mdtc);
1661
1662                        dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1663                                ((mdtc->dirty > mdtc->thresh) || strictlimit);
1664
1665                        wb_position_ratio(mdtc);
1666                        if (mdtc->pos_ratio < gdtc->pos_ratio)
1667                                sdtc = mdtc;
1668                }
1669
1670                if (dirty_exceeded && !wb->dirty_exceeded)
1671                        wb->dirty_exceeded = 1;
1672
1673                if (time_is_before_jiffies(wb->bw_time_stamp +
1674                                           BANDWIDTH_INTERVAL)) {
1675                        spin_lock(&wb->list_lock);
1676                        __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1677                        spin_unlock(&wb->list_lock);
1678                }
1679
1680                /* throttle according to the chosen dtc */
1681                dirty_ratelimit = wb->dirty_ratelimit;
1682                task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1683                                                        RATELIMIT_CALC_SHIFT;
1684                max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1685                min_pause = wb_min_pause(wb, max_pause,
1686                                         task_ratelimit, dirty_ratelimit,
1687                                         &nr_dirtied_pause);
1688
1689                if (unlikely(task_ratelimit == 0)) {
1690                        period = max_pause;
1691                        pause = max_pause;
1692                        goto pause;
1693                }
1694                period = HZ * pages_dirtied / task_ratelimit;
1695                pause = period;
1696                if (current->dirty_paused_when)
1697                        pause -= now - current->dirty_paused_when;
1698                /*
1699                 * For less than 1s think time (ext3/4 may block the dirtier
1700                 * for up to 800ms from time to time on 1-HDD; so does xfs,
1701                 * however at much less frequency), try to compensate it in
1702                 * future periods by updating the virtual time; otherwise just
1703                 * do a reset, as it may be a light dirtier.
1704                 */
1705                if (pause < min_pause) {
1706                        trace_balance_dirty_pages(wb,
1707                                                  sdtc->thresh,
1708                                                  sdtc->bg_thresh,
1709                                                  sdtc->dirty,
1710                                                  sdtc->wb_thresh,
1711                                                  sdtc->wb_dirty,
1712                                                  dirty_ratelimit,
1713                                                  task_ratelimit,
1714                                                  pages_dirtied,
1715                                                  period,
1716                                                  min(pause, 0L),
1717                                                  start_time);
1718                        if (pause < -HZ) {
1719                                current->dirty_paused_when = now;
1720                                current->nr_dirtied = 0;
1721                        } else if (period) {
1722                                current->dirty_paused_when += period;
1723                                current->nr_dirtied = 0;
1724                        } else if (current->nr_dirtied_pause <= pages_dirtied)
1725                                current->nr_dirtied_pause += pages_dirtied;
1726                        break;
1727                }
1728                if (unlikely(pause > max_pause)) {
1729                        /* for occasional dropped task_ratelimit */
1730                        now += min(pause - max_pause, max_pause);
1731                        pause = max_pause;
1732                }
1733
1734pause:
1735                trace_balance_dirty_pages(wb,
1736                                          sdtc->thresh,
1737                                          sdtc->bg_thresh,
1738                                          sdtc->dirty,
1739                                          sdtc->wb_thresh,
1740                                          sdtc->wb_dirty,
1741                                          dirty_ratelimit,
1742                                          task_ratelimit,
1743                                          pages_dirtied,
1744                                          period,
1745                                          pause,
1746                                          start_time);
1747                __set_current_state(TASK_KILLABLE);
1748                io_schedule_timeout(pause);
1749
1750                current->dirty_paused_when = now + pause;
1751                current->nr_dirtied = 0;
1752                current->nr_dirtied_pause = nr_dirtied_pause;
1753
1754                /*
1755                 * This is typically equal to (dirty < thresh) and can also
1756                 * keep "1000+ dd on a slow USB stick" under control.
1757                 */
1758                if (task_ratelimit)
1759                        break;
1760
1761                /*
1762                 * In the case of an unresponding NFS server and the NFS dirty
1763                 * pages exceeds dirty_thresh, give the other good wb's a pipe
1764                 * to go through, so that tasks on them still remain responsive.
1765                 *
1766                 * In theory 1 page is enough to keep the comsumer-producer
1767                 * pipe going: the flusher cleans 1 page => the task dirties 1
1768                 * more page. However wb_dirty has accounting errors.  So use
1769                 * the larger and more IO friendly wb_stat_error.
1770                 */
1771                if (sdtc->wb_dirty <= wb_stat_error(wb))
1772                        break;
1773
1774                if (fatal_signal_pending(current))
1775                        break;
1776        }
1777
1778        if (!dirty_exceeded && wb->dirty_exceeded)
1779                wb->dirty_exceeded = 0;
1780
1781        if (writeback_in_progress(wb))
1782                return;
1783
1784        /*
1785         * In laptop mode, we wait until hitting the higher threshold before
1786         * starting background writeout, and then write out all the way down
1787         * to the lower threshold.  So slow writers cause minimal disk activity.
1788         *
1789         * In normal mode, we start background writeout at the lower
1790         * background_thresh, to keep the amount of dirty memory low.
1791         */
1792        if (laptop_mode)
1793                return;
1794
1795        if (nr_reclaimable > gdtc->bg_thresh)
1796                wb_start_background_writeback(wb);
1797}
1798
1799static DEFINE_PER_CPU(int, bdp_ratelimits);
1800
1801/*
1802 * Normal tasks are throttled by
1803 *      loop {
1804 *              dirty tsk->nr_dirtied_pause pages;
1805 *              take a snap in balance_dirty_pages();
1806 *      }
1807 * However there is a worst case. If every task exit immediately when dirtied
1808 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1809 * called to throttle the page dirties. The solution is to save the not yet
1810 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1811 * randomly into the running tasks. This works well for the above worst case,
1812 * as the new task will pick up and accumulate the old task's leaked dirty
1813 * count and eventually get throttled.
1814 */
1815DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1816
1817/**
1818 * balance_dirty_pages_ratelimited - balance dirty memory state
1819 * @mapping: address_space which was dirtied
1820 *
1821 * Processes which are dirtying memory should call in here once for each page
1822 * which was newly dirtied.  The function will periodically check the system's
1823 * dirty state and will initiate writeback if needed.
1824 *
1825 * On really big machines, get_writeback_state is expensive, so try to avoid
1826 * calling it too often (ratelimiting).  But once we're over the dirty memory
1827 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1828 * from overshooting the limit by (ratelimit_pages) each.
1829 */
1830void balance_dirty_pages_ratelimited(struct address_space *mapping)
1831{
1832        struct inode *inode = mapping->host;
1833        struct backing_dev_info *bdi = inode_to_bdi(inode);
1834        struct bdi_writeback *wb = NULL;
1835        int ratelimit;
1836        int *p;
1837
1838        if (!bdi_cap_account_dirty(bdi))
1839                return;
1840
1841        if (inode_cgwb_enabled(inode))
1842                wb = wb_get_create_current(bdi, GFP_KERNEL);
1843        if (!wb)
1844                wb = &bdi->wb;
1845
1846        ratelimit = current->nr_dirtied_pause;
1847        if (wb->dirty_exceeded)
1848                ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1849
1850        preempt_disable();
1851        /*
1852         * This prevents one CPU to accumulate too many dirtied pages without
1853         * calling into balance_dirty_pages(), which can happen when there are
1854         * 1000+ tasks, all of them start dirtying pages at exactly the same
1855         * time, hence all honoured too large initial task->nr_dirtied_pause.
1856         */
1857        p =  this_cpu_ptr(&bdp_ratelimits);
1858        if (unlikely(current->nr_dirtied >= ratelimit))
1859                *p = 0;
1860        else if (unlikely(*p >= ratelimit_pages)) {
1861                *p = 0;
1862                ratelimit = 0;
1863        }
1864        /*
1865         * Pick up the dirtied pages by the exited tasks. This avoids lots of
1866         * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1867         * the dirty throttling and livelock other long-run dirtiers.
1868         */
1869        p = this_cpu_ptr(&dirty_throttle_leaks);
1870        if (*p > 0 && current->nr_dirtied < ratelimit) {
1871                unsigned long nr_pages_dirtied;
1872                nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1873                *p -= nr_pages_dirtied;
1874                current->nr_dirtied += nr_pages_dirtied;
1875        }
1876        preempt_enable();
1877
1878        if (unlikely(current->nr_dirtied >= ratelimit))
1879                balance_dirty_pages(mapping, wb, current->nr_dirtied);
1880
1881        wb_put(wb);
1882}
1883EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1884
1885/**
1886 * wb_over_bg_thresh - does @wb need to be written back?
1887 * @wb: bdi_writeback of interest
1888 *
1889 * Determines whether background writeback should keep writing @wb or it's
1890 * clean enough.  Returns %true if writeback should continue.
1891 */
1892bool wb_over_bg_thresh(struct bdi_writeback *wb)
1893{
1894        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1895        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1896        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1897        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1898                                                     &mdtc_stor : NULL;
1899
1900        /*
1901         * Similar to balance_dirty_pages() but ignores pages being written
1902         * as we're trying to decide whether to put more under writeback.
1903         */
1904        gdtc->avail = global_dirtyable_memory();
1905        gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1906                      global_page_state(NR_UNSTABLE_NFS);
1907        domain_dirty_limits(gdtc);
1908
1909        if (gdtc->dirty > gdtc->bg_thresh)
1910                return true;
1911
1912        if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1913                return true;
1914
1915        if (mdtc) {
1916                unsigned long filepages, headroom, writeback;
1917
1918                mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1919                                    &writeback);
1920                mdtc_calc_avail(mdtc, filepages, headroom);
1921                domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1922
1923                if (mdtc->dirty > mdtc->bg_thresh)
1924                        return true;
1925
1926                if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
1927                        return true;
1928        }
1929
1930        return false;
1931}
1932
1933void throttle_vm_writeout(gfp_t gfp_mask)
1934{
1935        unsigned long background_thresh;
1936        unsigned long dirty_thresh;
1937
1938        for ( ; ; ) {
1939                global_dirty_limits(&background_thresh, &dirty_thresh);
1940                dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1941
1942                /*
1943                 * Boost the allowable dirty threshold a bit for page
1944                 * allocators so they don't get DoS'ed by heavy writers
1945                 */
1946                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1947
1948                if (global_page_state(NR_UNSTABLE_NFS) +
1949                        global_page_state(NR_WRITEBACK) <= dirty_thresh)
1950                                break;
1951                congestion_wait(BLK_RW_ASYNC, HZ/10);
1952
1953                /*
1954                 * The caller might hold locks which can prevent IO completion
1955                 * or progress in the filesystem.  So we cannot just sit here
1956                 * waiting for IO to complete.
1957                 */
1958                if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1959                        break;
1960        }
1961}
1962
1963/*
1964 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1965 */
1966int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1967        void __user *buffer, size_t *length, loff_t *ppos)
1968{
1969        proc_dointvec(table, write, buffer, length, ppos);
1970        return 0;
1971}
1972
1973#ifdef CONFIG_BLOCK
1974void laptop_mode_timer_fn(unsigned long data)
1975{
1976        struct request_queue *q = (struct request_queue *)data;
1977        int nr_pages = global_page_state(NR_FILE_DIRTY) +
1978                global_page_state(NR_UNSTABLE_NFS);
1979        struct bdi_writeback *wb;
1980
1981        /*
1982         * We want to write everything out, not just down to the dirty
1983         * threshold
1984         */
1985        if (!bdi_has_dirty_io(&q->backing_dev_info))
1986                return;
1987
1988        rcu_read_lock();
1989        list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1990                if (wb_has_dirty_io(wb))
1991                        wb_start_writeback(wb, nr_pages, true,
1992                                           WB_REASON_LAPTOP_TIMER);
1993        rcu_read_unlock();
1994}
1995
1996/*
1997 * We've spun up the disk and we're in laptop mode: schedule writeback
1998 * of all dirty data a few seconds from now.  If the flush is already scheduled
1999 * then push it back - the user is still using the disk.
2000 */
2001void laptop_io_completion(struct backing_dev_info *info)
2002{
2003        mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2004}
2005
2006/*
2007 * We're in laptop mode and we've just synced. The sync's writes will have
2008 * caused another writeback to be scheduled by laptop_io_completion.
2009 * Nothing needs to be written back anymore, so we unschedule the writeback.
2010 */
2011void laptop_sync_completion(void)
2012{
2013        struct backing_dev_info *bdi;
2014
2015        rcu_read_lock();
2016
2017        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2018                del_timer(&bdi->laptop_mode_wb_timer);
2019
2020        rcu_read_unlock();
2021}
2022#endif
2023
2024/*
2025 * If ratelimit_pages is too high then we can get into dirty-data overload
2026 * if a large number of processes all perform writes at the same time.
2027 * If it is too low then SMP machines will call the (expensive)
2028 * get_writeback_state too often.
2029 *
2030 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2031 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2032 * thresholds.
2033 */
2034
2035void writeback_set_ratelimit(void)
2036{
2037        struct wb_domain *dom = &global_wb_domain;
2038        unsigned long background_thresh;
2039        unsigned long dirty_thresh;
2040
2041        global_dirty_limits(&background_thresh, &dirty_thresh);
2042        dom->dirty_limit = dirty_thresh;
2043        ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2044        if (ratelimit_pages < 16)
2045                ratelimit_pages = 16;
2046}
2047
2048static int
2049ratelimit_handler(struct notifier_block *self, unsigned long action,
2050                  void *hcpu)
2051{
2052
2053        switch (action & ~CPU_TASKS_FROZEN) {
2054        case CPU_ONLINE:
2055        case CPU_DEAD:
2056                writeback_set_ratelimit();
2057                return NOTIFY_OK;
2058        default:
2059                return NOTIFY_DONE;
2060        }
2061}
2062
2063static struct notifier_block ratelimit_nb = {
2064        .notifier_call  = ratelimit_handler,
2065        .next           = NULL,
2066};
2067
2068/*
2069 * Called early on to tune the page writeback dirty limits.
2070 *
2071 * We used to scale dirty pages according to how total memory
2072 * related to pages that could be allocated for buffers (by
2073 * comparing nr_free_buffer_pages() to vm_total_pages.
2074 *
2075 * However, that was when we used "dirty_ratio" to scale with
2076 * all memory, and we don't do that any more. "dirty_ratio"
2077 * is now applied to total non-HIGHPAGE memory (by subtracting
2078 * totalhigh_pages from vm_total_pages), and as such we can't
2079 * get into the old insane situation any more where we had
2080 * large amounts of dirty pages compared to a small amount of
2081 * non-HIGHMEM memory.
2082 *
2083 * But we might still want to scale the dirty_ratio by how
2084 * much memory the box has..
2085 */
2086void __init page_writeback_init(void)
2087{
2088        BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2089
2090        writeback_set_ratelimit();
2091        register_cpu_notifier(&ratelimit_nb);
2092}
2093
2094/**
2095 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2096 * @mapping: address space structure to write
2097 * @start: starting page index
2098 * @end: ending page index (inclusive)
2099 *
2100 * This function scans the page range from @start to @end (inclusive) and tags
2101 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2102 * that write_cache_pages (or whoever calls this function) will then use
2103 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2104 * used to avoid livelocking of writeback by a process steadily creating new
2105 * dirty pages in the file (thus it is important for this function to be quick
2106 * so that it can tag pages faster than a dirtying process can create them).
2107 */
2108/*
2109 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2110 */
2111void tag_pages_for_writeback(struct address_space *mapping,
2112                             pgoff_t start, pgoff_t end)
2113{
2114#define WRITEBACK_TAG_BATCH 4096
2115        unsigned long tagged;
2116
2117        do {
2118                spin_lock_irq(&mapping->tree_lock);
2119                tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2120                                &start, end, WRITEBACK_TAG_BATCH,
2121                                PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2122                spin_unlock_irq(&mapping->tree_lock);
2123                WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2124                cond_resched();
2125                /* We check 'start' to handle wrapping when end == ~0UL */
2126        } while (tagged >= WRITEBACK_TAG_BATCH && start);
2127}
2128EXPORT_SYMBOL(tag_pages_for_writeback);
2129
2130/**
2131 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2132 * @mapping: address space structure to write
2133 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2134 * @writepage: function called for each page
2135 * @data: data passed to writepage function
2136 *
2137 * If a page is already under I/O, write_cache_pages() skips it, even
2138 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2139 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2140 * and msync() need to guarantee that all the data which was dirty at the time
2141 * the call was made get new I/O started against them.  If wbc->sync_mode is
2142 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2143 * existing IO to complete.
2144 *
2145 * To avoid livelocks (when other process dirties new pages), we first tag
2146 * pages which should be written back with TOWRITE tag and only then start
2147 * writing them. For data-integrity sync we have to be careful so that we do
2148 * not miss some pages (e.g., because some other process has cleared TOWRITE
2149 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2150 * by the process clearing the DIRTY tag (and submitting the page for IO).
2151 */
2152int write_cache_pages(struct address_space *mapping,
2153                      struct writeback_control *wbc, writepage_t writepage,
2154                      void *data)
2155{
2156        int ret = 0;
2157        int done = 0;
2158        struct pagevec pvec;
2159        int nr_pages;
2160        pgoff_t uninitialized_var(writeback_index);
2161        pgoff_t index;
2162        pgoff_t end;            /* Inclusive */
2163        pgoff_t done_index;
2164        int cycled;
2165        int range_whole = 0;
2166        int tag;
2167
2168        pagevec_init(&pvec, 0);
2169        if (wbc->range_cyclic) {
2170                writeback_index = mapping->writeback_index; /* prev offset */
2171                index = writeback_index;
2172                if (index == 0)
2173                        cycled = 1;
2174                else
2175                        cycled = 0;
2176                end = -1;
2177        } else {
2178                index = wbc->range_start >> PAGE_CACHE_SHIFT;
2179                end = wbc->range_end >> PAGE_CACHE_SHIFT;
2180                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2181                        range_whole = 1;
2182                cycled = 1; /* ignore range_cyclic tests */
2183        }
2184        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2185                tag = PAGECACHE_TAG_TOWRITE;
2186        else
2187                tag = PAGECACHE_TAG_DIRTY;
2188retry:
2189        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2190                tag_pages_for_writeback(mapping, index, end);
2191        done_index = index;
2192        while (!done && (index <= end)) {
2193                int i;
2194
2195                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2196                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2197                if (nr_pages == 0)
2198                        break;
2199
2200                for (i = 0; i < nr_pages; i++) {
2201                        struct page *page = pvec.pages[i];
2202
2203                        /*
2204                         * At this point, the page may be truncated or
2205                         * invalidated (changing page->mapping to NULL), or
2206                         * even swizzled back from swapper_space to tmpfs file
2207                         * mapping. However, page->index will not change
2208                         * because we have a reference on the page.
2209                         */
2210                        if (page->index > end) {
2211                                /*
2212                                 * can't be range_cyclic (1st pass) because
2213                                 * end == -1 in that case.
2214                                 */
2215                                done = 1;
2216                                break;
2217                        }
2218
2219                        done_index = page->index;
2220
2221                        lock_page(page);
2222
2223                        /*
2224                         * Page truncated or invalidated. We can freely skip it
2225                         * then, even for data integrity operations: the page
2226                         * has disappeared concurrently, so there could be no
2227                         * real expectation of this data interity operation
2228                         * even if there is now a new, dirty page at the same
2229                         * pagecache address.
2230                         */
2231                        if (unlikely(page->mapping != mapping)) {
2232continue_unlock:
2233                                unlock_page(page);
2234                                continue;
2235                        }
2236
2237                        if (!PageDirty(page)) {
2238                                /* someone wrote it for us */
2239                                goto continue_unlock;
2240                        }
2241
2242                        if (PageWriteback(page)) {
2243                                if (wbc->sync_mode != WB_SYNC_NONE)
2244                                        wait_on_page_writeback(page);
2245                                else
2246                                        goto continue_unlock;
2247                        }
2248
2249                        BUG_ON(PageWriteback(page));
2250                        if (!clear_page_dirty_for_io(page))
2251                                goto continue_unlock;
2252
2253                        trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2254                        ret = (*writepage)(page, wbc, data);
2255                        if (unlikely(ret)) {
2256                                if (ret == AOP_WRITEPAGE_ACTIVATE) {
2257                                        unlock_page(page);
2258                                        ret = 0;
2259                                } else {
2260                                        /*
2261                                         * done_index is set past this page,
2262                                         * so media errors will not choke
2263                                         * background writeout for the entire
2264                                         * file. This has consequences for
2265                                         * range_cyclic semantics (ie. it may
2266                                         * not be suitable for data integrity
2267                                         * writeout).
2268                                         */
2269                                        done_index = page->index + 1;
2270                                        done = 1;
2271                                        break;
2272                                }
2273                        }
2274
2275                        /*
2276                         * We stop writing back only if we are not doing
2277                         * integrity sync. In case of integrity sync we have to
2278                         * keep going until we have written all the pages
2279                         * we tagged for writeback prior to entering this loop.
2280                         */
2281                        if (--wbc->nr_to_write <= 0 &&
2282                            wbc->sync_mode == WB_SYNC_NONE) {
2283                                done = 1;
2284                                break;
2285                        }
2286                }
2287                pagevec_release(&pvec);
2288                cond_resched();
2289        }
2290        if (!cycled && !done) {
2291                /*
2292                 * range_cyclic:
2293                 * We hit the last page and there is more work to be done: wrap
2294                 * back to the start of the file
2295                 */
2296                cycled = 1;
2297                index = 0;
2298                end = writeback_index - 1;
2299                goto retry;
2300        }
2301        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2302                mapping->writeback_index = done_index;
2303
2304        return ret;
2305}
2306EXPORT_SYMBOL(write_cache_pages);
2307
2308/*
2309 * Function used by generic_writepages to call the real writepage
2310 * function and set the mapping flags on error
2311 */
2312static int __writepage(struct page *page, struct writeback_control *wbc,
2313                       void *data)
2314{
2315        struct address_space *mapping = data;
2316        int ret = mapping->a_ops->writepage(page, wbc);
2317        mapping_set_error(mapping, ret);
2318        return ret;
2319}
2320
2321/**
2322 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2323 * @mapping: address space structure to write
2324 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2325 *
2326 * This is a library function, which implements the writepages()
2327 * address_space_operation.
2328 */
2329int generic_writepages(struct address_space *mapping,
2330                       struct writeback_control *wbc)
2331{
2332        struct blk_plug plug;
2333        int ret;
2334
2335        /* deal with chardevs and other special file */
2336        if (!mapping->a_ops->writepage)
2337                return 0;
2338
2339        blk_start_plug(&plug);
2340        ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2341        blk_finish_plug(&plug);
2342        return ret;
2343}
2344
2345EXPORT_SYMBOL(generic_writepages);
2346
2347int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2348{
2349        int ret;
2350
2351        if (wbc->nr_to_write <= 0)
2352                return 0;
2353        if (mapping->a_ops->writepages)
2354                ret = mapping->a_ops->writepages(mapping, wbc);
2355        else
2356                ret = generic_writepages(mapping, wbc);
2357        return ret;
2358}
2359
2360/**
2361 * write_one_page - write out a single page and optionally wait on I/O
2362 * @page: the page to write
2363 * @wait: if true, wait on writeout
2364 *
2365 * The page must be locked by the caller and will be unlocked upon return.
2366 *
2367 * write_one_page() returns a negative error code if I/O failed.
2368 */
2369int write_one_page(struct page *page, int wait)
2370{
2371        struct address_space *mapping = page->mapping;
2372        int ret = 0;
2373        struct writeback_control wbc = {
2374                .sync_mode = WB_SYNC_ALL,
2375                .nr_to_write = 1,
2376        };
2377
2378        BUG_ON(!PageLocked(page));
2379
2380        if (wait)
2381                wait_on_page_writeback(page);
2382
2383        if (clear_page_dirty_for_io(page)) {
2384                page_cache_get(page);
2385                ret = mapping->a_ops->writepage(page, &wbc);
2386                if (ret == 0 && wait) {
2387                        wait_on_page_writeback(page);
2388                        if (PageError(page))
2389                                ret = -EIO;
2390                }
2391                page_cache_release(page);
2392        } else {
2393                unlock_page(page);
2394        }
2395        return ret;
2396}
2397EXPORT_SYMBOL(write_one_page);
2398
2399/*
2400 * For address_spaces which do not use buffers nor write back.
2401 */
2402int __set_page_dirty_no_writeback(struct page *page)
2403{
2404        if (!PageDirty(page))
2405                return !TestSetPageDirty(page);
2406        return 0;
2407}
2408
2409/*
2410 * Helper function for set_page_dirty family.
2411 *
2412 * Caller must hold mem_cgroup_begin_page_stat().
2413 *
2414 * NOTE: This relies on being atomic wrt interrupts.
2415 */
2416void account_page_dirtied(struct page *page, struct address_space *mapping,
2417                          struct mem_cgroup *memcg)
2418{
2419        struct inode *inode = mapping->host;
2420
2421        trace_writeback_dirty_page(page, mapping);
2422
2423        if (mapping_cap_account_dirty(mapping)) {
2424                struct bdi_writeback *wb;
2425
2426                inode_attach_wb(inode, page);
2427                wb = inode_to_wb(inode);
2428
2429                mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2430                __inc_zone_page_state(page, NR_FILE_DIRTY);
2431                __inc_zone_page_state(page, NR_DIRTIED);
2432                __inc_wb_stat(wb, WB_RECLAIMABLE);
2433                __inc_wb_stat(wb, WB_DIRTIED);
2434                task_io_account_write(PAGE_CACHE_SIZE);
2435                current->nr_dirtied++;
2436                this_cpu_inc(bdp_ratelimits);
2437        }
2438}
2439EXPORT_SYMBOL(account_page_dirtied);
2440
2441/*
2442 * Helper function for deaccounting dirty page without writeback.
2443 *
2444 * Caller must hold mem_cgroup_begin_page_stat().
2445 */
2446void account_page_cleaned(struct page *page, struct address_space *mapping,
2447                          struct mem_cgroup *memcg, struct bdi_writeback *wb)
2448{
2449        if (mapping_cap_account_dirty(mapping)) {
2450                mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2451                dec_zone_page_state(page, NR_FILE_DIRTY);
2452                dec_wb_stat(wb, WB_RECLAIMABLE);
2453                task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2454        }
2455}
2456
2457/*
2458 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2459 * its radix tree.
2460 *
2461 * This is also used when a single buffer is being dirtied: we want to set the
2462 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2463 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2464 *
2465 * The caller must ensure this doesn't race with truncation.  Most will simply
2466 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2467 * the pte lock held, which also locks out truncation.
2468 */
2469int __set_page_dirty_nobuffers(struct page *page)
2470{
2471        struct mem_cgroup *memcg;
2472
2473        memcg = mem_cgroup_begin_page_stat(page);
2474        if (!TestSetPageDirty(page)) {
2475                struct address_space *mapping = page_mapping(page);
2476                unsigned long flags;
2477
2478                if (!mapping) {
2479                        mem_cgroup_end_page_stat(memcg);
2480                        return 1;
2481                }
2482
2483                spin_lock_irqsave(&mapping->tree_lock, flags);
2484                BUG_ON(page_mapping(page) != mapping);
2485                WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2486                account_page_dirtied(page, mapping, memcg);
2487                radix_tree_tag_set(&mapping->page_tree, page_index(page),
2488                                   PAGECACHE_TAG_DIRTY);
2489                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2490                mem_cgroup_end_page_stat(memcg);
2491
2492                if (mapping->host) {
2493                        /* !PageAnon && !swapper_space */
2494                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2495                }
2496                return 1;
2497        }
2498        mem_cgroup_end_page_stat(memcg);
2499        return 0;
2500}
2501EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2502
2503/*
2504 * Call this whenever redirtying a page, to de-account the dirty counters
2505 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2506 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2507 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2508 * control.
2509 */
2510void account_page_redirty(struct page *page)
2511{
2512        struct address_space *mapping = page->mapping;
2513
2514        if (mapping && mapping_cap_account_dirty(mapping)) {
2515                struct inode *inode = mapping->host;
2516                struct bdi_writeback *wb;
2517                bool locked;
2518
2519                wb = unlocked_inode_to_wb_begin(inode, &locked);
2520                current->nr_dirtied--;
2521                dec_zone_page_state(page, NR_DIRTIED);
2522                dec_wb_stat(wb, WB_DIRTIED);
2523                unlocked_inode_to_wb_end(inode, locked);
2524        }
2525}
2526EXPORT_SYMBOL(account_page_redirty);
2527
2528/*
2529 * When a writepage implementation decides that it doesn't want to write this
2530 * page for some reason, it should redirty the locked page via
2531 * redirty_page_for_writepage() and it should then unlock the page and return 0
2532 */
2533int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2534{
2535        int ret;
2536
2537        wbc->pages_skipped++;
2538        ret = __set_page_dirty_nobuffers(page);
2539        account_page_redirty(page);
2540        return ret;
2541}
2542EXPORT_SYMBOL(redirty_page_for_writepage);
2543
2544/*
2545 * Dirty a page.
2546 *
2547 * For pages with a mapping this should be done under the page lock
2548 * for the benefit of asynchronous memory errors who prefer a consistent
2549 * dirty state. This rule can be broken in some special cases,
2550 * but should be better not to.
2551 *
2552 * If the mapping doesn't provide a set_page_dirty a_op, then
2553 * just fall through and assume that it wants buffer_heads.
2554 */
2555int set_page_dirty(struct page *page)
2556{
2557        struct address_space *mapping = page_mapping(page);
2558
2559        if (likely(mapping)) {
2560                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2561                /*
2562                 * readahead/lru_deactivate_page could remain
2563                 * PG_readahead/PG_reclaim due to race with end_page_writeback
2564                 * About readahead, if the page is written, the flags would be
2565                 * reset. So no problem.
2566                 * About lru_deactivate_page, if the page is redirty, the flag
2567                 * will be reset. So no problem. but if the page is used by readahead
2568                 * it will confuse readahead and make it restart the size rampup
2569                 * process. But it's a trivial problem.
2570                 */
2571                if (PageReclaim(page))
2572                        ClearPageReclaim(page);
2573#ifdef CONFIG_BLOCK
2574                if (!spd)
2575                        spd = __set_page_dirty_buffers;
2576#endif
2577                return (*spd)(page);
2578        }
2579        if (!PageDirty(page)) {
2580                if (!TestSetPageDirty(page))
2581                        return 1;
2582        }
2583        return 0;
2584}
2585EXPORT_SYMBOL(set_page_dirty);
2586
2587/*
2588 * set_page_dirty() is racy if the caller has no reference against
2589 * page->mapping->host, and if the page is unlocked.  This is because another
2590 * CPU could truncate the page off the mapping and then free the mapping.
2591 *
2592 * Usually, the page _is_ locked, or the caller is a user-space process which
2593 * holds a reference on the inode by having an open file.
2594 *
2595 * In other cases, the page should be locked before running set_page_dirty().
2596 */
2597int set_page_dirty_lock(struct page *page)
2598{
2599        int ret;
2600
2601        lock_page(page);
2602        ret = set_page_dirty(page);
2603        unlock_page(page);
2604        return ret;
2605}
2606EXPORT_SYMBOL(set_page_dirty_lock);
2607
2608/*
2609 * This cancels just the dirty bit on the kernel page itself, it does NOT
2610 * actually remove dirty bits on any mmap's that may be around. It also
2611 * leaves the page tagged dirty, so any sync activity will still find it on
2612 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2613 * look at the dirty bits in the VM.
2614 *
2615 * Doing this should *normally* only ever be done when a page is truncated,
2616 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2617 * this when it notices that somebody has cleaned out all the buffers on a
2618 * page without actually doing it through the VM. Can you say "ext3 is
2619 * horribly ugly"? Thought you could.
2620 */
2621void cancel_dirty_page(struct page *page)
2622{
2623        struct address_space *mapping = page_mapping(page);
2624
2625        if (mapping_cap_account_dirty(mapping)) {
2626                struct inode *inode = mapping->host;
2627                struct bdi_writeback *wb;
2628                struct mem_cgroup *memcg;
2629                bool locked;
2630
2631                memcg = mem_cgroup_begin_page_stat(page);
2632                wb = unlocked_inode_to_wb_begin(inode, &locked);
2633
2634                if (TestClearPageDirty(page))
2635                        account_page_cleaned(page, mapping, memcg, wb);
2636
2637                unlocked_inode_to_wb_end(inode, locked);
2638                mem_cgroup_end_page_stat(memcg);
2639        } else {
2640                ClearPageDirty(page);
2641        }
2642}
2643EXPORT_SYMBOL(cancel_dirty_page);
2644
2645/*
2646 * Clear a page's dirty flag, while caring for dirty memory accounting.
2647 * Returns true if the page was previously dirty.
2648 *
2649 * This is for preparing to put the page under writeout.  We leave the page
2650 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2651 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2652 * implementation will run either set_page_writeback() or set_page_dirty(),
2653 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2654 * back into sync.
2655 *
2656 * This incoherency between the page's dirty flag and radix-tree tag is
2657 * unfortunate, but it only exists while the page is locked.
2658 */
2659int clear_page_dirty_for_io(struct page *page)
2660{
2661        struct address_space *mapping = page_mapping(page);
2662        int ret = 0;
2663
2664        BUG_ON(!PageLocked(page));
2665
2666        if (mapping && mapping_cap_account_dirty(mapping)) {
2667                struct inode *inode = mapping->host;
2668                struct bdi_writeback *wb;
2669                struct mem_cgroup *memcg;
2670                bool locked;
2671
2672                /*
2673                 * Yes, Virginia, this is indeed insane.
2674                 *
2675                 * We use this sequence to make sure that
2676                 *  (a) we account for dirty stats properly
2677                 *  (b) we tell the low-level filesystem to
2678                 *      mark the whole page dirty if it was
2679                 *      dirty in a pagetable. Only to then
2680                 *  (c) clean the page again and return 1 to
2681                 *      cause the writeback.
2682                 *
2683                 * This way we avoid all nasty races with the
2684                 * dirty bit in multiple places and clearing
2685                 * them concurrently from different threads.
2686                 *
2687                 * Note! Normally the "set_page_dirty(page)"
2688                 * has no effect on the actual dirty bit - since
2689                 * that will already usually be set. But we
2690                 * need the side effects, and it can help us
2691                 * avoid races.
2692                 *
2693                 * We basically use the page "master dirty bit"
2694                 * as a serialization point for all the different
2695                 * threads doing their things.
2696                 */
2697                if (page_mkclean(page))
2698                        set_page_dirty(page);
2699                /*
2700                 * We carefully synchronise fault handlers against
2701                 * installing a dirty pte and marking the page dirty
2702                 * at this point.  We do this by having them hold the
2703                 * page lock while dirtying the page, and pages are
2704                 * always locked coming in here, so we get the desired
2705                 * exclusion.
2706                 */
2707                memcg = mem_cgroup_begin_page_stat(page);
2708                wb = unlocked_inode_to_wb_begin(inode, &locked);
2709                if (TestClearPageDirty(page)) {
2710                        mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2711                        dec_zone_page_state(page, NR_FILE_DIRTY);
2712                        dec_wb_stat(wb, WB_RECLAIMABLE);
2713                        ret = 1;
2714                }
2715                unlocked_inode_to_wb_end(inode, locked);
2716                mem_cgroup_end_page_stat(memcg);
2717                return ret;
2718        }
2719        return TestClearPageDirty(page);
2720}
2721EXPORT_SYMBOL(clear_page_dirty_for_io);
2722
2723int test_clear_page_writeback(struct page *page)
2724{
2725        struct address_space *mapping = page_mapping(page);
2726        struct mem_cgroup *memcg;
2727        int ret;
2728
2729        memcg = mem_cgroup_begin_page_stat(page);
2730        if (mapping) {
2731                struct inode *inode = mapping->host;
2732                struct backing_dev_info *bdi = inode_to_bdi(inode);
2733                unsigned long flags;
2734
2735                spin_lock_irqsave(&mapping->tree_lock, flags);
2736                ret = TestClearPageWriteback(page);
2737                if (ret) {
2738                        radix_tree_tag_clear(&mapping->page_tree,
2739                                                page_index(page),
2740                                                PAGECACHE_TAG_WRITEBACK);
2741                        if (bdi_cap_account_writeback(bdi)) {
2742                                struct bdi_writeback *wb = inode_to_wb(inode);
2743
2744                                __dec_wb_stat(wb, WB_WRITEBACK);
2745                                __wb_writeout_inc(wb);
2746                        }
2747                }
2748                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2749        } else {
2750                ret = TestClearPageWriteback(page);
2751        }
2752        if (ret) {
2753                mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2754                dec_zone_page_state(page, NR_WRITEBACK);
2755                inc_zone_page_state(page, NR_WRITTEN);
2756        }
2757        mem_cgroup_end_page_stat(memcg);
2758        return ret;
2759}
2760
2761int __test_set_page_writeback(struct page *page, bool keep_write)
2762{
2763        struct address_space *mapping = page_mapping(page);
2764        struct mem_cgroup *memcg;
2765        int ret;
2766
2767        memcg = mem_cgroup_begin_page_stat(page);
2768        if (mapping) {
2769                struct inode *inode = mapping->host;
2770                struct backing_dev_info *bdi = inode_to_bdi(inode);
2771                unsigned long flags;
2772
2773                spin_lock_irqsave(&mapping->tree_lock, flags);
2774                ret = TestSetPageWriteback(page);
2775                if (!ret) {
2776                        radix_tree_tag_set(&mapping->page_tree,
2777                                                page_index(page),
2778                                                PAGECACHE_TAG_WRITEBACK);
2779                        if (bdi_cap_account_writeback(bdi))
2780                                __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2781                }
2782                if (!PageDirty(page))
2783                        radix_tree_tag_clear(&mapping->page_tree,
2784                                                page_index(page),
2785                                                PAGECACHE_TAG_DIRTY);
2786                if (!keep_write)
2787                        radix_tree_tag_clear(&mapping->page_tree,
2788                                                page_index(page),
2789                                                PAGECACHE_TAG_TOWRITE);
2790                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2791        } else {
2792                ret = TestSetPageWriteback(page);
2793        }
2794        if (!ret) {
2795                mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2796                inc_zone_page_state(page, NR_WRITEBACK);
2797        }
2798        mem_cgroup_end_page_stat(memcg);
2799        return ret;
2800
2801}
2802EXPORT_SYMBOL(__test_set_page_writeback);
2803
2804/*
2805 * Return true if any of the pages in the mapping are marked with the
2806 * passed tag.
2807 */
2808int mapping_tagged(struct address_space *mapping, int tag)
2809{
2810        return radix_tree_tagged(&mapping->page_tree, tag);
2811}
2812EXPORT_SYMBOL(mapping_tagged);
2813
2814/**
2815 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2816 * @page:       The page to wait on.
2817 *
2818 * This function determines if the given page is related to a backing device
2819 * that requires page contents to be held stable during writeback.  If so, then
2820 * it will wait for any pending writeback to complete.
2821 */
2822void wait_for_stable_page(struct page *page)
2823{
2824        if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2825                wait_on_page_writeback(page);
2826}
2827EXPORT_SYMBOL_GPL(wait_for_stable_page);
2828