1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89#include <linux/slab.h>
90#include <linux/mm.h>
91#include <linux/poison.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/cpuset.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
106#include <linux/string.h>
107#include <linux/uaccess.h>
108#include <linux/nodemask.h>
109#include <linux/kmemleak.h>
110#include <linux/mempolicy.h>
111#include <linux/mutex.h>
112#include <linux/fault-inject.h>
113#include <linux/rtmutex.h>
114#include <linux/reciprocal_div.h>
115#include <linux/debugobjects.h>
116#include <linux/kmemcheck.h>
117#include <linux/memory.h>
118#include <linux/prefetch.h>
119
120#include <net/sock.h>
121
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
126#include <trace/events/kmem.h>
127
128#include "internal.h"
129
130#include "slab.h"
131
132
133
134
135
136
137
138
139
140
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
152
153#define BYTES_PER_WORD sizeof(void *)
154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171
172
173
174
175static bool pfmemalloc_active __read_mostly;
176
177
178
179
180
181
182
183
184
185
186
187
188
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[];
195
196
197
198
199
200
201
202
203};
204
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
227
228
229
230
231#define BOOT_CPUCACHE_ENTRIES 1
232struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235};
236
237
238
239
240#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242#define CACHE_CACHE 0
243#define SIZE_NODE (MAX_NUMNODES)
244
245static int drain_freelist(struct kmem_cache *cache,
246 struct kmem_cache_node *n, int tofree);
247static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 int node, struct list_head *list);
249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251static void cache_reap(struct work_struct *unused);
252
253static int slab_early_init = 1;
254
255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256
257static void kmem_cache_node_init(struct kmem_cache_node *parent)
258{
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
264 parent->colour_next = 0;
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
268}
269
270#define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
274 } while (0)
275
276#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
282
283#define CFLGS_OFF_SLAB (0x80000000UL)
284#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
285#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
286
287#define BATCHREFILL_LIMIT 16
288
289
290
291
292
293
294
295#define REAPTIMEOUT_AC (2*HZ)
296#define REAPTIMEOUT_NODE (4*HZ)
297
298#if STATS
299#define STATS_INC_ACTIVE(x) ((x)->num_active++)
300#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
301#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
302#define STATS_INC_GROWN(x) ((x)->grown++)
303#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
304#define STATS_SET_HIGH(x) \
305 do { \
306 if ((x)->num_active > (x)->high_mark) \
307 (x)->high_mark = (x)->num_active; \
308 } while (0)
309#define STATS_INC_ERR(x) ((x)->errors++)
310#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
311#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
312#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
313#define STATS_SET_FREEABLE(x, i) \
314 do { \
315 if ((x)->max_freeable < i) \
316 (x)->max_freeable = i; \
317 } while (0)
318#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
319#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
320#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
321#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
322#else
323#define STATS_INC_ACTIVE(x) do { } while (0)
324#define STATS_DEC_ACTIVE(x) do { } while (0)
325#define STATS_INC_ALLOCED(x) do { } while (0)
326#define STATS_INC_GROWN(x) do { } while (0)
327#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
328#define STATS_SET_HIGH(x) do { } while (0)
329#define STATS_INC_ERR(x) do { } while (0)
330#define STATS_INC_NODEALLOCS(x) do { } while (0)
331#define STATS_INC_NODEFREES(x) do { } while (0)
332#define STATS_INC_ACOVERFLOW(x) do { } while (0)
333#define STATS_SET_FREEABLE(x, i) do { } while (0)
334#define STATS_INC_ALLOCHIT(x) do { } while (0)
335#define STATS_INC_ALLOCMISS(x) do { } while (0)
336#define STATS_INC_FREEHIT(x) do { } while (0)
337#define STATS_INC_FREEMISS(x) do { } while (0)
338#endif
339
340#if DEBUG
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355static int obj_offset(struct kmem_cache *cachep)
356{
357 return cachep->obj_offset;
358}
359
360static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
361{
362 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
363 return (unsigned long long*) (objp + obj_offset(cachep) -
364 sizeof(unsigned long long));
365}
366
367static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
368{
369 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
370 if (cachep->flags & SLAB_STORE_USER)
371 return (unsigned long long *)(objp + cachep->size -
372 sizeof(unsigned long long) -
373 REDZONE_ALIGN);
374 return (unsigned long long *) (objp + cachep->size -
375 sizeof(unsigned long long));
376}
377
378static void **dbg_userword(struct kmem_cache *cachep, void *objp)
379{
380 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
381 return (void **)(objp + cachep->size - BYTES_PER_WORD);
382}
383
384#else
385
386#define obj_offset(x) 0
387#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
389#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
390
391#endif
392
393#define OBJECT_FREE (0)
394#define OBJECT_ACTIVE (1)
395
396#ifdef CONFIG_DEBUG_SLAB_LEAK
397
398static void set_obj_status(struct page *page, int idx, int val)
399{
400 int freelist_size;
401 char *status;
402 struct kmem_cache *cachep = page->slab_cache;
403
404 freelist_size = cachep->num * sizeof(freelist_idx_t);
405 status = (char *)page->freelist + freelist_size;
406 status[idx] = val;
407}
408
409static inline unsigned int get_obj_status(struct page *page, int idx)
410{
411 int freelist_size;
412 char *status;
413 struct kmem_cache *cachep = page->slab_cache;
414
415 freelist_size = cachep->num * sizeof(freelist_idx_t);
416 status = (char *)page->freelist + freelist_size;
417
418 return status[idx];
419}
420
421#else
422static inline void set_obj_status(struct page *page, int idx, int val) {}
423
424#endif
425
426
427
428
429
430#define SLAB_MAX_ORDER_HI 1
431#define SLAB_MAX_ORDER_LO 0
432static int slab_max_order = SLAB_MAX_ORDER_LO;
433static bool slab_max_order_set __initdata;
434
435static inline struct kmem_cache *virt_to_cache(const void *obj)
436{
437 struct page *page = virt_to_head_page(obj);
438 return page->slab_cache;
439}
440
441static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
442 unsigned int idx)
443{
444 return page->s_mem + cache->size * idx;
445}
446
447
448
449
450
451
452
453static inline unsigned int obj_to_index(const struct kmem_cache *cache,
454 const struct page *page, void *obj)
455{
456 u32 offset = (obj - page->s_mem);
457 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
458}
459
460
461static struct kmem_cache kmem_cache_boot = {
462 .batchcount = 1,
463 .limit = BOOT_CPUCACHE_ENTRIES,
464 .shared = 1,
465 .size = sizeof(struct kmem_cache),
466 .name = "kmem_cache",
467};
468
469#define BAD_ALIEN_MAGIC 0x01020304ul
470
471static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
472
473static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
474{
475 return this_cpu_ptr(cachep->cpu_cache);
476}
477
478static size_t calculate_freelist_size(int nr_objs, size_t align)
479{
480 size_t freelist_size;
481
482 freelist_size = nr_objs * sizeof(freelist_idx_t);
483 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
484 freelist_size += nr_objs * sizeof(char);
485
486 if (align)
487 freelist_size = ALIGN(freelist_size, align);
488
489 return freelist_size;
490}
491
492static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
493 size_t idx_size, size_t align)
494{
495 int nr_objs;
496 size_t remained_size;
497 size_t freelist_size;
498 int extra_space = 0;
499
500 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
501 extra_space = sizeof(char);
502
503
504
505
506
507
508
509
510 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
511
512
513
514
515
516 remained_size = slab_size - nr_objs * buffer_size;
517 freelist_size = calculate_freelist_size(nr_objs, align);
518 if (remained_size < freelist_size)
519 nr_objs--;
520
521 return nr_objs;
522}
523
524
525
526
527static void cache_estimate(unsigned long gfporder, size_t buffer_size,
528 size_t align, int flags, size_t *left_over,
529 unsigned int *num)
530{
531 int nr_objs;
532 size_t mgmt_size;
533 size_t slab_size = PAGE_SIZE << gfporder;
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549 if (flags & CFLGS_OFF_SLAB) {
550 mgmt_size = 0;
551 nr_objs = slab_size / buffer_size;
552
553 } else {
554 nr_objs = calculate_nr_objs(slab_size, buffer_size,
555 sizeof(freelist_idx_t), align);
556 mgmt_size = calculate_freelist_size(nr_objs, align);
557 }
558 *num = nr_objs;
559 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
560}
561
562#if DEBUG
563#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
564
565static void __slab_error(const char *function, struct kmem_cache *cachep,
566 char *msg)
567{
568 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
569 function, cachep->name, msg);
570 dump_stack();
571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
572}
573#endif
574
575
576
577
578
579
580
581
582
583static int use_alien_caches __read_mostly = 1;
584static int __init noaliencache_setup(char *s)
585{
586 use_alien_caches = 0;
587 return 1;
588}
589__setup("noaliencache", noaliencache_setup);
590
591static int __init slab_max_order_setup(char *str)
592{
593 get_option(&str, &slab_max_order);
594 slab_max_order = slab_max_order < 0 ? 0 :
595 min(slab_max_order, MAX_ORDER - 1);
596 slab_max_order_set = true;
597
598 return 1;
599}
600__setup("slab_max_order=", slab_max_order_setup);
601
602#ifdef CONFIG_NUMA
603
604
605
606
607
608
609static DEFINE_PER_CPU(unsigned long, slab_reap_node);
610
611static void init_reap_node(int cpu)
612{
613 int node;
614
615 node = next_node(cpu_to_mem(cpu), node_online_map);
616 if (node == MAX_NUMNODES)
617 node = first_node(node_online_map);
618
619 per_cpu(slab_reap_node, cpu) = node;
620}
621
622static void next_reap_node(void)
623{
624 int node = __this_cpu_read(slab_reap_node);
625
626 node = next_node(node, node_online_map);
627 if (unlikely(node >= MAX_NUMNODES))
628 node = first_node(node_online_map);
629 __this_cpu_write(slab_reap_node, node);
630}
631
632#else
633#define init_reap_node(cpu) do { } while (0)
634#define next_reap_node(void) do { } while (0)
635#endif
636
637
638
639
640
641
642
643
644static void start_cpu_timer(int cpu)
645{
646 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
647
648
649
650
651
652
653 if (keventd_up() && reap_work->work.func == NULL) {
654 init_reap_node(cpu);
655 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
656 schedule_delayed_work_on(cpu, reap_work,
657 __round_jiffies_relative(HZ, cpu));
658 }
659}
660
661static void init_arraycache(struct array_cache *ac, int limit, int batch)
662{
663
664
665
666
667
668
669
670 kmemleak_no_scan(ac);
671 if (ac) {
672 ac->avail = 0;
673 ac->limit = limit;
674 ac->batchcount = batch;
675 ac->touched = 0;
676 }
677}
678
679static struct array_cache *alloc_arraycache(int node, int entries,
680 int batchcount, gfp_t gfp)
681{
682 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
683 struct array_cache *ac = NULL;
684
685 ac = kmalloc_node(memsize, gfp, node);
686 init_arraycache(ac, entries, batchcount);
687 return ac;
688}
689
690static inline bool is_slab_pfmemalloc(struct page *page)
691{
692 return PageSlabPfmemalloc(page);
693}
694
695
696static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
697 struct array_cache *ac)
698{
699 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
700 struct page *page;
701 unsigned long flags;
702
703 if (!pfmemalloc_active)
704 return;
705
706 spin_lock_irqsave(&n->list_lock, flags);
707 list_for_each_entry(page, &n->slabs_full, lru)
708 if (is_slab_pfmemalloc(page))
709 goto out;
710
711 list_for_each_entry(page, &n->slabs_partial, lru)
712 if (is_slab_pfmemalloc(page))
713 goto out;
714
715 list_for_each_entry(page, &n->slabs_free, lru)
716 if (is_slab_pfmemalloc(page))
717 goto out;
718
719 pfmemalloc_active = false;
720out:
721 spin_unlock_irqrestore(&n->list_lock, flags);
722}
723
724static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
725 gfp_t flags, bool force_refill)
726{
727 int i;
728 void *objp = ac->entry[--ac->avail];
729
730
731 if (unlikely(is_obj_pfmemalloc(objp))) {
732 struct kmem_cache_node *n;
733
734 if (gfp_pfmemalloc_allowed(flags)) {
735 clear_obj_pfmemalloc(&objp);
736 return objp;
737 }
738
739
740 for (i = 0; i < ac->avail; i++) {
741
742 if (!is_obj_pfmemalloc(ac->entry[i])) {
743 objp = ac->entry[i];
744 ac->entry[i] = ac->entry[ac->avail];
745 ac->entry[ac->avail] = objp;
746 return objp;
747 }
748 }
749
750
751
752
753
754 n = get_node(cachep, numa_mem_id());
755 if (!list_empty(&n->slabs_free) && force_refill) {
756 struct page *page = virt_to_head_page(objp);
757 ClearPageSlabPfmemalloc(page);
758 clear_obj_pfmemalloc(&objp);
759 recheck_pfmemalloc_active(cachep, ac);
760 return objp;
761 }
762
763
764 ac->avail++;
765 objp = NULL;
766 }
767
768 return objp;
769}
770
771static inline void *ac_get_obj(struct kmem_cache *cachep,
772 struct array_cache *ac, gfp_t flags, bool force_refill)
773{
774 void *objp;
775
776 if (unlikely(sk_memalloc_socks()))
777 objp = __ac_get_obj(cachep, ac, flags, force_refill);
778 else
779 objp = ac->entry[--ac->avail];
780
781 return objp;
782}
783
784static noinline void *__ac_put_obj(struct kmem_cache *cachep,
785 struct array_cache *ac, void *objp)
786{
787 if (unlikely(pfmemalloc_active)) {
788
789 struct page *page = virt_to_head_page(objp);
790 if (PageSlabPfmemalloc(page))
791 set_obj_pfmemalloc(&objp);
792 }
793
794 return objp;
795}
796
797static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
798 void *objp)
799{
800 if (unlikely(sk_memalloc_socks()))
801 objp = __ac_put_obj(cachep, ac, objp);
802
803 ac->entry[ac->avail++] = objp;
804}
805
806
807
808
809
810
811
812static int transfer_objects(struct array_cache *to,
813 struct array_cache *from, unsigned int max)
814{
815
816 int nr = min3(from->avail, max, to->limit - to->avail);
817
818 if (!nr)
819 return 0;
820
821 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
822 sizeof(void *) *nr);
823
824 from->avail -= nr;
825 to->avail += nr;
826 return nr;
827}
828
829#ifndef CONFIG_NUMA
830
831#define drain_alien_cache(cachep, alien) do { } while (0)
832#define reap_alien(cachep, n) do { } while (0)
833
834static inline struct alien_cache **alloc_alien_cache(int node,
835 int limit, gfp_t gfp)
836{
837 return (struct alien_cache **)BAD_ALIEN_MAGIC;
838}
839
840static inline void free_alien_cache(struct alien_cache **ac_ptr)
841{
842}
843
844static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
845{
846 return 0;
847}
848
849static inline void *alternate_node_alloc(struct kmem_cache *cachep,
850 gfp_t flags)
851{
852 return NULL;
853}
854
855static inline void *____cache_alloc_node(struct kmem_cache *cachep,
856 gfp_t flags, int nodeid)
857{
858 return NULL;
859}
860
861static inline gfp_t gfp_exact_node(gfp_t flags)
862{
863 return flags;
864}
865
866#else
867
868static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
869static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
870
871static struct alien_cache *__alloc_alien_cache(int node, int entries,
872 int batch, gfp_t gfp)
873{
874 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
875 struct alien_cache *alc = NULL;
876
877 alc = kmalloc_node(memsize, gfp, node);
878 init_arraycache(&alc->ac, entries, batch);
879 spin_lock_init(&alc->lock);
880 return alc;
881}
882
883static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
884{
885 struct alien_cache **alc_ptr;
886 size_t memsize = sizeof(void *) * nr_node_ids;
887 int i;
888
889 if (limit > 1)
890 limit = 12;
891 alc_ptr = kzalloc_node(memsize, gfp, node);
892 if (!alc_ptr)
893 return NULL;
894
895 for_each_node(i) {
896 if (i == node || !node_online(i))
897 continue;
898 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
899 if (!alc_ptr[i]) {
900 for (i--; i >= 0; i--)
901 kfree(alc_ptr[i]);
902 kfree(alc_ptr);
903 return NULL;
904 }
905 }
906 return alc_ptr;
907}
908
909static void free_alien_cache(struct alien_cache **alc_ptr)
910{
911 int i;
912
913 if (!alc_ptr)
914 return;
915 for_each_node(i)
916 kfree(alc_ptr[i]);
917 kfree(alc_ptr);
918}
919
920static void __drain_alien_cache(struct kmem_cache *cachep,
921 struct array_cache *ac, int node,
922 struct list_head *list)
923{
924 struct kmem_cache_node *n = get_node(cachep, node);
925
926 if (ac->avail) {
927 spin_lock(&n->list_lock);
928
929
930
931
932
933 if (n->shared)
934 transfer_objects(n->shared, ac, ac->limit);
935
936 free_block(cachep, ac->entry, ac->avail, node, list);
937 ac->avail = 0;
938 spin_unlock(&n->list_lock);
939 }
940}
941
942
943
944
945static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
946{
947 int node = __this_cpu_read(slab_reap_node);
948
949 if (n->alien) {
950 struct alien_cache *alc = n->alien[node];
951 struct array_cache *ac;
952
953 if (alc) {
954 ac = &alc->ac;
955 if (ac->avail && spin_trylock_irq(&alc->lock)) {
956 LIST_HEAD(list);
957
958 __drain_alien_cache(cachep, ac, node, &list);
959 spin_unlock_irq(&alc->lock);
960 slabs_destroy(cachep, &list);
961 }
962 }
963 }
964}
965
966static void drain_alien_cache(struct kmem_cache *cachep,
967 struct alien_cache **alien)
968{
969 int i = 0;
970 struct alien_cache *alc;
971 struct array_cache *ac;
972 unsigned long flags;
973
974 for_each_online_node(i) {
975 alc = alien[i];
976 if (alc) {
977 LIST_HEAD(list);
978
979 ac = &alc->ac;
980 spin_lock_irqsave(&alc->lock, flags);
981 __drain_alien_cache(cachep, ac, i, &list);
982 spin_unlock_irqrestore(&alc->lock, flags);
983 slabs_destroy(cachep, &list);
984 }
985 }
986}
987
988static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
989 int node, int page_node)
990{
991 struct kmem_cache_node *n;
992 struct alien_cache *alien = NULL;
993 struct array_cache *ac;
994 LIST_HEAD(list);
995
996 n = get_node(cachep, node);
997 STATS_INC_NODEFREES(cachep);
998 if (n->alien && n->alien[page_node]) {
999 alien = n->alien[page_node];
1000 ac = &alien->ac;
1001 spin_lock(&alien->lock);
1002 if (unlikely(ac->avail == ac->limit)) {
1003 STATS_INC_ACOVERFLOW(cachep);
1004 __drain_alien_cache(cachep, ac, page_node, &list);
1005 }
1006 ac_put_obj(cachep, ac, objp);
1007 spin_unlock(&alien->lock);
1008 slabs_destroy(cachep, &list);
1009 } else {
1010 n = get_node(cachep, page_node);
1011 spin_lock(&n->list_lock);
1012 free_block(cachep, &objp, 1, page_node, &list);
1013 spin_unlock(&n->list_lock);
1014 slabs_destroy(cachep, &list);
1015 }
1016 return 1;
1017}
1018
1019static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1020{
1021 int page_node = page_to_nid(virt_to_page(objp));
1022 int node = numa_mem_id();
1023
1024
1025
1026
1027 if (likely(node == page_node))
1028 return 0;
1029
1030 return __cache_free_alien(cachep, objp, node, page_node);
1031}
1032
1033
1034
1035
1036
1037static inline gfp_t gfp_exact_node(gfp_t flags)
1038{
1039 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
1040}
1041#endif
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052static int init_cache_node_node(int node)
1053{
1054 struct kmem_cache *cachep;
1055 struct kmem_cache_node *n;
1056 const size_t memsize = sizeof(struct kmem_cache_node);
1057
1058 list_for_each_entry(cachep, &slab_caches, list) {
1059
1060
1061
1062
1063
1064 n = get_node(cachep, node);
1065 if (!n) {
1066 n = kmalloc_node(memsize, GFP_KERNEL, node);
1067 if (!n)
1068 return -ENOMEM;
1069 kmem_cache_node_init(n);
1070 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1071 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1072
1073
1074
1075
1076
1077
1078 cachep->node[node] = n;
1079 }
1080
1081 spin_lock_irq(&n->list_lock);
1082 n->free_limit =
1083 (1 + nr_cpus_node(node)) *
1084 cachep->batchcount + cachep->num;
1085 spin_unlock_irq(&n->list_lock);
1086 }
1087 return 0;
1088}
1089
1090static inline int slabs_tofree(struct kmem_cache *cachep,
1091 struct kmem_cache_node *n)
1092{
1093 return (n->free_objects + cachep->num - 1) / cachep->num;
1094}
1095
1096static void cpuup_canceled(long cpu)
1097{
1098 struct kmem_cache *cachep;
1099 struct kmem_cache_node *n = NULL;
1100 int node = cpu_to_mem(cpu);
1101 const struct cpumask *mask = cpumask_of_node(node);
1102
1103 list_for_each_entry(cachep, &slab_caches, list) {
1104 struct array_cache *nc;
1105 struct array_cache *shared;
1106 struct alien_cache **alien;
1107 LIST_HEAD(list);
1108
1109 n = get_node(cachep, node);
1110 if (!n)
1111 continue;
1112
1113 spin_lock_irq(&n->list_lock);
1114
1115
1116 n->free_limit -= cachep->batchcount;
1117
1118
1119 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1120 if (nc) {
1121 free_block(cachep, nc->entry, nc->avail, node, &list);
1122 nc->avail = 0;
1123 }
1124
1125 if (!cpumask_empty(mask)) {
1126 spin_unlock_irq(&n->list_lock);
1127 goto free_slab;
1128 }
1129
1130 shared = n->shared;
1131 if (shared) {
1132 free_block(cachep, shared->entry,
1133 shared->avail, node, &list);
1134 n->shared = NULL;
1135 }
1136
1137 alien = n->alien;
1138 n->alien = NULL;
1139
1140 spin_unlock_irq(&n->list_lock);
1141
1142 kfree(shared);
1143 if (alien) {
1144 drain_alien_cache(cachep, alien);
1145 free_alien_cache(alien);
1146 }
1147
1148free_slab:
1149 slabs_destroy(cachep, &list);
1150 }
1151
1152
1153
1154
1155
1156 list_for_each_entry(cachep, &slab_caches, list) {
1157 n = get_node(cachep, node);
1158 if (!n)
1159 continue;
1160 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1161 }
1162}
1163
1164static int cpuup_prepare(long cpu)
1165{
1166 struct kmem_cache *cachep;
1167 struct kmem_cache_node *n = NULL;
1168 int node = cpu_to_mem(cpu);
1169 int err;
1170
1171
1172
1173
1174
1175
1176
1177 err = init_cache_node_node(node);
1178 if (err < 0)
1179 goto bad;
1180
1181
1182
1183
1184
1185 list_for_each_entry(cachep, &slab_caches, list) {
1186 struct array_cache *shared = NULL;
1187 struct alien_cache **alien = NULL;
1188
1189 if (cachep->shared) {
1190 shared = alloc_arraycache(node,
1191 cachep->shared * cachep->batchcount,
1192 0xbaadf00d, GFP_KERNEL);
1193 if (!shared)
1194 goto bad;
1195 }
1196 if (use_alien_caches) {
1197 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1198 if (!alien) {
1199 kfree(shared);
1200 goto bad;
1201 }
1202 }
1203 n = get_node(cachep, node);
1204 BUG_ON(!n);
1205
1206 spin_lock_irq(&n->list_lock);
1207 if (!n->shared) {
1208
1209
1210
1211
1212 n->shared = shared;
1213 shared = NULL;
1214 }
1215#ifdef CONFIG_NUMA
1216 if (!n->alien) {
1217 n->alien = alien;
1218 alien = NULL;
1219 }
1220#endif
1221 spin_unlock_irq(&n->list_lock);
1222 kfree(shared);
1223 free_alien_cache(alien);
1224 }
1225
1226 return 0;
1227bad:
1228 cpuup_canceled(cpu);
1229 return -ENOMEM;
1230}
1231
1232static int cpuup_callback(struct notifier_block *nfb,
1233 unsigned long action, void *hcpu)
1234{
1235 long cpu = (long)hcpu;
1236 int err = 0;
1237
1238 switch (action) {
1239 case CPU_UP_PREPARE:
1240 case CPU_UP_PREPARE_FROZEN:
1241 mutex_lock(&slab_mutex);
1242 err = cpuup_prepare(cpu);
1243 mutex_unlock(&slab_mutex);
1244 break;
1245 case CPU_ONLINE:
1246 case CPU_ONLINE_FROZEN:
1247 start_cpu_timer(cpu);
1248 break;
1249#ifdef CONFIG_HOTPLUG_CPU
1250 case CPU_DOWN_PREPARE:
1251 case CPU_DOWN_PREPARE_FROZEN:
1252
1253
1254
1255
1256
1257
1258 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1259
1260 per_cpu(slab_reap_work, cpu).work.func = NULL;
1261 break;
1262 case CPU_DOWN_FAILED:
1263 case CPU_DOWN_FAILED_FROZEN:
1264 start_cpu_timer(cpu);
1265 break;
1266 case CPU_DEAD:
1267 case CPU_DEAD_FROZEN:
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277#endif
1278 case CPU_UP_CANCELED:
1279 case CPU_UP_CANCELED_FROZEN:
1280 mutex_lock(&slab_mutex);
1281 cpuup_canceled(cpu);
1282 mutex_unlock(&slab_mutex);
1283 break;
1284 }
1285 return notifier_from_errno(err);
1286}
1287
1288static struct notifier_block cpucache_notifier = {
1289 &cpuup_callback, NULL, 0
1290};
1291
1292#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1293
1294
1295
1296
1297
1298
1299
1300static int __meminit drain_cache_node_node(int node)
1301{
1302 struct kmem_cache *cachep;
1303 int ret = 0;
1304
1305 list_for_each_entry(cachep, &slab_caches, list) {
1306 struct kmem_cache_node *n;
1307
1308 n = get_node(cachep, node);
1309 if (!n)
1310 continue;
1311
1312 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1313
1314 if (!list_empty(&n->slabs_full) ||
1315 !list_empty(&n->slabs_partial)) {
1316 ret = -EBUSY;
1317 break;
1318 }
1319 }
1320 return ret;
1321}
1322
1323static int __meminit slab_memory_callback(struct notifier_block *self,
1324 unsigned long action, void *arg)
1325{
1326 struct memory_notify *mnb = arg;
1327 int ret = 0;
1328 int nid;
1329
1330 nid = mnb->status_change_nid;
1331 if (nid < 0)
1332 goto out;
1333
1334 switch (action) {
1335 case MEM_GOING_ONLINE:
1336 mutex_lock(&slab_mutex);
1337 ret = init_cache_node_node(nid);
1338 mutex_unlock(&slab_mutex);
1339 break;
1340 case MEM_GOING_OFFLINE:
1341 mutex_lock(&slab_mutex);
1342 ret = drain_cache_node_node(nid);
1343 mutex_unlock(&slab_mutex);
1344 break;
1345 case MEM_ONLINE:
1346 case MEM_OFFLINE:
1347 case MEM_CANCEL_ONLINE:
1348 case MEM_CANCEL_OFFLINE:
1349 break;
1350 }
1351out:
1352 return notifier_from_errno(ret);
1353}
1354#endif
1355
1356
1357
1358
1359static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1360 int nodeid)
1361{
1362 struct kmem_cache_node *ptr;
1363
1364 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1365 BUG_ON(!ptr);
1366
1367 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1368
1369
1370
1371 spin_lock_init(&ptr->list_lock);
1372
1373 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1374 cachep->node[nodeid] = ptr;
1375}
1376
1377
1378
1379
1380
1381static void __init set_up_node(struct kmem_cache *cachep, int index)
1382{
1383 int node;
1384
1385 for_each_online_node(node) {
1386 cachep->node[node] = &init_kmem_cache_node[index + node];
1387 cachep->node[node]->next_reap = jiffies +
1388 REAPTIMEOUT_NODE +
1389 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1390 }
1391}
1392
1393
1394
1395
1396
1397void __init kmem_cache_init(void)
1398{
1399 int i;
1400
1401 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1402 sizeof(struct rcu_head));
1403 kmem_cache = &kmem_cache_boot;
1404
1405 if (num_possible_nodes() == 1)
1406 use_alien_caches = 0;
1407
1408 for (i = 0; i < NUM_INIT_LISTS; i++)
1409 kmem_cache_node_init(&init_kmem_cache_node[i]);
1410
1411
1412
1413
1414
1415
1416 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1417 slab_max_order = SLAB_MAX_ORDER_HI;
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444 create_boot_cache(kmem_cache, "kmem_cache",
1445 offsetof(struct kmem_cache, node) +
1446 nr_node_ids * sizeof(struct kmem_cache_node *),
1447 SLAB_HWCACHE_ALIGN);
1448 list_add(&kmem_cache->list, &slab_caches);
1449 slab_state = PARTIAL;
1450
1451
1452
1453
1454
1455 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1456 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1457 slab_state = PARTIAL_NODE;
1458 setup_kmalloc_cache_index_table();
1459
1460 slab_early_init = 0;
1461
1462
1463 {
1464 int nid;
1465
1466 for_each_online_node(nid) {
1467 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1468
1469 init_list(kmalloc_caches[INDEX_NODE],
1470 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1471 }
1472 }
1473
1474 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1475}
1476
1477void __init kmem_cache_init_late(void)
1478{
1479 struct kmem_cache *cachep;
1480
1481 slab_state = UP;
1482
1483
1484 mutex_lock(&slab_mutex);
1485 list_for_each_entry(cachep, &slab_caches, list)
1486 if (enable_cpucache(cachep, GFP_NOWAIT))
1487 BUG();
1488 mutex_unlock(&slab_mutex);
1489
1490
1491 slab_state = FULL;
1492
1493
1494
1495
1496
1497 register_cpu_notifier(&cpucache_notifier);
1498
1499#ifdef CONFIG_NUMA
1500
1501
1502
1503
1504 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1505#endif
1506
1507
1508
1509
1510
1511}
1512
1513static int __init cpucache_init(void)
1514{
1515 int cpu;
1516
1517
1518
1519
1520 for_each_online_cpu(cpu)
1521 start_cpu_timer(cpu);
1522
1523
1524 slab_state = FULL;
1525 return 0;
1526}
1527__initcall(cpucache_init);
1528
1529static noinline void
1530slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1531{
1532#if DEBUG
1533 struct kmem_cache_node *n;
1534 struct page *page;
1535 unsigned long flags;
1536 int node;
1537 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1538 DEFAULT_RATELIMIT_BURST);
1539
1540 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1541 return;
1542
1543 printk(KERN_WARNING
1544 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1545 nodeid, gfpflags);
1546 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1547 cachep->name, cachep->size, cachep->gfporder);
1548
1549 for_each_kmem_cache_node(cachep, node, n) {
1550 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1551 unsigned long active_slabs = 0, num_slabs = 0;
1552
1553 spin_lock_irqsave(&n->list_lock, flags);
1554 list_for_each_entry(page, &n->slabs_full, lru) {
1555 active_objs += cachep->num;
1556 active_slabs++;
1557 }
1558 list_for_each_entry(page, &n->slabs_partial, lru) {
1559 active_objs += page->active;
1560 active_slabs++;
1561 }
1562 list_for_each_entry(page, &n->slabs_free, lru)
1563 num_slabs++;
1564
1565 free_objects += n->free_objects;
1566 spin_unlock_irqrestore(&n->list_lock, flags);
1567
1568 num_slabs += active_slabs;
1569 num_objs = num_slabs * cachep->num;
1570 printk(KERN_WARNING
1571 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1572 node, active_slabs, num_slabs, active_objs, num_objs,
1573 free_objects);
1574 }
1575#endif
1576}
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1587 int nodeid)
1588{
1589 struct page *page;
1590 int nr_pages;
1591
1592 flags |= cachep->allocflags;
1593 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1594 flags |= __GFP_RECLAIMABLE;
1595
1596 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1597 if (!page) {
1598 slab_out_of_memory(cachep, flags, nodeid);
1599 return NULL;
1600 }
1601
1602 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1603 __free_pages(page, cachep->gfporder);
1604 return NULL;
1605 }
1606
1607
1608 if (page_is_pfmemalloc(page))
1609 pfmemalloc_active = true;
1610
1611 nr_pages = (1 << cachep->gfporder);
1612 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1613 add_zone_page_state(page_zone(page),
1614 NR_SLAB_RECLAIMABLE, nr_pages);
1615 else
1616 add_zone_page_state(page_zone(page),
1617 NR_SLAB_UNRECLAIMABLE, nr_pages);
1618 __SetPageSlab(page);
1619 if (page_is_pfmemalloc(page))
1620 SetPageSlabPfmemalloc(page);
1621
1622 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1623 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1624
1625 if (cachep->ctor)
1626 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1627 else
1628 kmemcheck_mark_unallocated_pages(page, nr_pages);
1629 }
1630
1631 return page;
1632}
1633
1634
1635
1636
1637static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1638{
1639 const unsigned long nr_freed = (1 << cachep->gfporder);
1640
1641 kmemcheck_free_shadow(page, cachep->gfporder);
1642
1643 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1644 sub_zone_page_state(page_zone(page),
1645 NR_SLAB_RECLAIMABLE, nr_freed);
1646 else
1647 sub_zone_page_state(page_zone(page),
1648 NR_SLAB_UNRECLAIMABLE, nr_freed);
1649
1650 BUG_ON(!PageSlab(page));
1651 __ClearPageSlabPfmemalloc(page);
1652 __ClearPageSlab(page);
1653 page_mapcount_reset(page);
1654 page->mapping = NULL;
1655
1656 if (current->reclaim_state)
1657 current->reclaim_state->reclaimed_slab += nr_freed;
1658 __free_kmem_pages(page, cachep->gfporder);
1659}
1660
1661static void kmem_rcu_free(struct rcu_head *head)
1662{
1663 struct kmem_cache *cachep;
1664 struct page *page;
1665
1666 page = container_of(head, struct page, rcu_head);
1667 cachep = page->slab_cache;
1668
1669 kmem_freepages(cachep, page);
1670}
1671
1672#if DEBUG
1673
1674#ifdef CONFIG_DEBUG_PAGEALLOC
1675static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1676 unsigned long caller)
1677{
1678 int size = cachep->object_size;
1679
1680 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1681
1682 if (size < 5 * sizeof(unsigned long))
1683 return;
1684
1685 *addr++ = 0x12345678;
1686 *addr++ = caller;
1687 *addr++ = smp_processor_id();
1688 size -= 3 * sizeof(unsigned long);
1689 {
1690 unsigned long *sptr = &caller;
1691 unsigned long svalue;
1692
1693 while (!kstack_end(sptr)) {
1694 svalue = *sptr++;
1695 if (kernel_text_address(svalue)) {
1696 *addr++ = svalue;
1697 size -= sizeof(unsigned long);
1698 if (size <= sizeof(unsigned long))
1699 break;
1700 }
1701 }
1702
1703 }
1704 *addr++ = 0x87654321;
1705}
1706#endif
1707
1708static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1709{
1710 int size = cachep->object_size;
1711 addr = &((char *)addr)[obj_offset(cachep)];
1712
1713 memset(addr, val, size);
1714 *(unsigned char *)(addr + size - 1) = POISON_END;
1715}
1716
1717static void dump_line(char *data, int offset, int limit)
1718{
1719 int i;
1720 unsigned char error = 0;
1721 int bad_count = 0;
1722
1723 printk(KERN_ERR "%03x: ", offset);
1724 for (i = 0; i < limit; i++) {
1725 if (data[offset + i] != POISON_FREE) {
1726 error = data[offset + i];
1727 bad_count++;
1728 }
1729 }
1730 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1731 &data[offset], limit, 1);
1732
1733 if (bad_count == 1) {
1734 error ^= POISON_FREE;
1735 if (!(error & (error - 1))) {
1736 printk(KERN_ERR "Single bit error detected. Probably "
1737 "bad RAM.\n");
1738#ifdef CONFIG_X86
1739 printk(KERN_ERR "Run memtest86+ or a similar memory "
1740 "test tool.\n");
1741#else
1742 printk(KERN_ERR "Run a memory test tool.\n");
1743#endif
1744 }
1745 }
1746}
1747#endif
1748
1749#if DEBUG
1750
1751static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1752{
1753 int i, size;
1754 char *realobj;
1755
1756 if (cachep->flags & SLAB_RED_ZONE) {
1757 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1758 *dbg_redzone1(cachep, objp),
1759 *dbg_redzone2(cachep, objp));
1760 }
1761
1762 if (cachep->flags & SLAB_STORE_USER) {
1763 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1764 *dbg_userword(cachep, objp),
1765 *dbg_userword(cachep, objp));
1766 }
1767 realobj = (char *)objp + obj_offset(cachep);
1768 size = cachep->object_size;
1769 for (i = 0; i < size && lines; i += 16, lines--) {
1770 int limit;
1771 limit = 16;
1772 if (i + limit > size)
1773 limit = size - i;
1774 dump_line(realobj, i, limit);
1775 }
1776}
1777
1778static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1779{
1780 char *realobj;
1781 int size, i;
1782 int lines = 0;
1783
1784 realobj = (char *)objp + obj_offset(cachep);
1785 size = cachep->object_size;
1786
1787 for (i = 0; i < size; i++) {
1788 char exp = POISON_FREE;
1789 if (i == size - 1)
1790 exp = POISON_END;
1791 if (realobj[i] != exp) {
1792 int limit;
1793
1794
1795 if (lines == 0) {
1796 printk(KERN_ERR
1797 "Slab corruption (%s): %s start=%p, len=%d\n",
1798 print_tainted(), cachep->name, realobj, size);
1799 print_objinfo(cachep, objp, 0);
1800 }
1801
1802 i = (i / 16) * 16;
1803 limit = 16;
1804 if (i + limit > size)
1805 limit = size - i;
1806 dump_line(realobj, i, limit);
1807 i += 16;
1808 lines++;
1809
1810 if (lines > 5)
1811 break;
1812 }
1813 }
1814 if (lines != 0) {
1815
1816
1817
1818 struct page *page = virt_to_head_page(objp);
1819 unsigned int objnr;
1820
1821 objnr = obj_to_index(cachep, page, objp);
1822 if (objnr) {
1823 objp = index_to_obj(cachep, page, objnr - 1);
1824 realobj = (char *)objp + obj_offset(cachep);
1825 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1826 realobj, size);
1827 print_objinfo(cachep, objp, 2);
1828 }
1829 if (objnr + 1 < cachep->num) {
1830 objp = index_to_obj(cachep, page, objnr + 1);
1831 realobj = (char *)objp + obj_offset(cachep);
1832 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1833 realobj, size);
1834 print_objinfo(cachep, objp, 2);
1835 }
1836 }
1837}
1838#endif
1839
1840#if DEBUG
1841static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1842 struct page *page)
1843{
1844 int i;
1845 for (i = 0; i < cachep->num; i++) {
1846 void *objp = index_to_obj(cachep, page, i);
1847
1848 if (cachep->flags & SLAB_POISON) {
1849#ifdef CONFIG_DEBUG_PAGEALLOC
1850 if (cachep->size % PAGE_SIZE == 0 &&
1851 OFF_SLAB(cachep))
1852 kernel_map_pages(virt_to_page(objp),
1853 cachep->size / PAGE_SIZE, 1);
1854 else
1855 check_poison_obj(cachep, objp);
1856#else
1857 check_poison_obj(cachep, objp);
1858#endif
1859 }
1860 if (cachep->flags & SLAB_RED_ZONE) {
1861 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1862 slab_error(cachep, "start of a freed object "
1863 "was overwritten");
1864 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1865 slab_error(cachep, "end of a freed object "
1866 "was overwritten");
1867 }
1868 }
1869}
1870#else
1871static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1872 struct page *page)
1873{
1874}
1875#endif
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1887{
1888 void *freelist;
1889
1890 freelist = page->freelist;
1891 slab_destroy_debugcheck(cachep, page);
1892 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1893 call_rcu(&page->rcu_head, kmem_rcu_free);
1894 else
1895 kmem_freepages(cachep, page);
1896
1897
1898
1899
1900
1901 if (OFF_SLAB(cachep))
1902 kmem_cache_free(cachep->freelist_cache, freelist);
1903}
1904
1905static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1906{
1907 struct page *page, *n;
1908
1909 list_for_each_entry_safe(page, n, list, lru) {
1910 list_del(&page->lru);
1911 slab_destroy(cachep, page);
1912 }
1913}
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928static size_t calculate_slab_order(struct kmem_cache *cachep,
1929 size_t size, size_t align, unsigned long flags)
1930{
1931 unsigned long offslab_limit;
1932 size_t left_over = 0;
1933 int gfporder;
1934
1935 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1936 unsigned int num;
1937 size_t remainder;
1938
1939 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1940 if (!num)
1941 continue;
1942
1943
1944 if (num > SLAB_OBJ_MAX_NUM)
1945 break;
1946
1947 if (flags & CFLGS_OFF_SLAB) {
1948 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1949
1950
1951
1952
1953
1954 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1955 freelist_size_per_obj += sizeof(char);
1956 offslab_limit = size;
1957 offslab_limit /= freelist_size_per_obj;
1958
1959 if (num > offslab_limit)
1960 break;
1961 }
1962
1963
1964 cachep->num = num;
1965 cachep->gfporder = gfporder;
1966 left_over = remainder;
1967
1968
1969
1970
1971
1972
1973 if (flags & SLAB_RECLAIM_ACCOUNT)
1974 break;
1975
1976
1977
1978
1979
1980 if (gfporder >= slab_max_order)
1981 break;
1982
1983
1984
1985
1986 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1987 break;
1988 }
1989 return left_over;
1990}
1991
1992static struct array_cache __percpu *alloc_kmem_cache_cpus(
1993 struct kmem_cache *cachep, int entries, int batchcount)
1994{
1995 int cpu;
1996 size_t size;
1997 struct array_cache __percpu *cpu_cache;
1998
1999 size = sizeof(void *) * entries + sizeof(struct array_cache);
2000 cpu_cache = __alloc_percpu(size, sizeof(void *));
2001
2002 if (!cpu_cache)
2003 return NULL;
2004
2005 for_each_possible_cpu(cpu) {
2006 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2007 entries, batchcount);
2008 }
2009
2010 return cpu_cache;
2011}
2012
2013static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2014{
2015 if (slab_state >= FULL)
2016 return enable_cpucache(cachep, gfp);
2017
2018 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2019 if (!cachep->cpu_cache)
2020 return 1;
2021
2022 if (slab_state == DOWN) {
2023
2024 set_up_node(kmem_cache, CACHE_CACHE);
2025 } else if (slab_state == PARTIAL) {
2026
2027 set_up_node(cachep, SIZE_NODE);
2028 } else {
2029 int node;
2030
2031 for_each_online_node(node) {
2032 cachep->node[node] = kmalloc_node(
2033 sizeof(struct kmem_cache_node), gfp, node);
2034 BUG_ON(!cachep->node[node]);
2035 kmem_cache_node_init(cachep->node[node]);
2036 }
2037 }
2038
2039 cachep->node[numa_mem_id()]->next_reap =
2040 jiffies + REAPTIMEOUT_NODE +
2041 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2042
2043 cpu_cache_get(cachep)->avail = 0;
2044 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2045 cpu_cache_get(cachep)->batchcount = 1;
2046 cpu_cache_get(cachep)->touched = 0;
2047 cachep->batchcount = 1;
2048 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2049 return 0;
2050}
2051
2052unsigned long kmem_cache_flags(unsigned long object_size,
2053 unsigned long flags, const char *name,
2054 void (*ctor)(void *))
2055{
2056 return flags;
2057}
2058
2059struct kmem_cache *
2060__kmem_cache_alias(const char *name, size_t size, size_t align,
2061 unsigned long flags, void (*ctor)(void *))
2062{
2063 struct kmem_cache *cachep;
2064
2065 cachep = find_mergeable(size, align, flags, name, ctor);
2066 if (cachep) {
2067 cachep->refcount++;
2068
2069
2070
2071
2072
2073 cachep->object_size = max_t(int, cachep->object_size, size);
2074 }
2075 return cachep;
2076}
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099int
2100__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2101{
2102 size_t left_over, freelist_size;
2103 size_t ralign = BYTES_PER_WORD;
2104 gfp_t gfp;
2105 int err;
2106 size_t size = cachep->size;
2107
2108#if DEBUG
2109#if FORCED_DEBUG
2110
2111
2112
2113
2114
2115
2116 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2117 2 * sizeof(unsigned long long)))
2118 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2119 if (!(flags & SLAB_DESTROY_BY_RCU))
2120 flags |= SLAB_POISON;
2121#endif
2122 if (flags & SLAB_DESTROY_BY_RCU)
2123 BUG_ON(flags & SLAB_POISON);
2124#endif
2125
2126
2127
2128
2129
2130
2131 if (size & (BYTES_PER_WORD - 1)) {
2132 size += (BYTES_PER_WORD - 1);
2133 size &= ~(BYTES_PER_WORD - 1);
2134 }
2135
2136 if (flags & SLAB_RED_ZONE) {
2137 ralign = REDZONE_ALIGN;
2138
2139
2140 size += REDZONE_ALIGN - 1;
2141 size &= ~(REDZONE_ALIGN - 1);
2142 }
2143
2144
2145 if (ralign < cachep->align) {
2146 ralign = cachep->align;
2147 }
2148
2149 if (ralign > __alignof__(unsigned long long))
2150 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2151
2152
2153
2154 cachep->align = ralign;
2155
2156 if (slab_is_available())
2157 gfp = GFP_KERNEL;
2158 else
2159 gfp = GFP_NOWAIT;
2160
2161#if DEBUG
2162
2163
2164
2165
2166
2167 if (flags & SLAB_RED_ZONE) {
2168
2169 cachep->obj_offset += sizeof(unsigned long long);
2170 size += 2 * sizeof(unsigned long long);
2171 }
2172 if (flags & SLAB_STORE_USER) {
2173
2174
2175
2176
2177 if (flags & SLAB_RED_ZONE)
2178 size += REDZONE_ALIGN;
2179 else
2180 size += BYTES_PER_WORD;
2181 }
2182#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2183
2184
2185
2186
2187
2188
2189
2190 if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2191 size >= 256 && cachep->object_size > cache_line_size() &&
2192 ALIGN(size, cachep->align) < PAGE_SIZE) {
2193 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2194 size = PAGE_SIZE;
2195 }
2196#endif
2197#endif
2198
2199
2200
2201
2202
2203
2204
2205 if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
2206 !(flags & SLAB_NOLEAKTRACE))
2207
2208
2209
2210
2211 flags |= CFLGS_OFF_SLAB;
2212
2213 size = ALIGN(size, cachep->align);
2214
2215
2216
2217
2218 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2219 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2220
2221 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2222
2223 if (!cachep->num)
2224 return -E2BIG;
2225
2226 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2227
2228
2229
2230
2231
2232 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2233 flags &= ~CFLGS_OFF_SLAB;
2234 left_over -= freelist_size;
2235 }
2236
2237 if (flags & CFLGS_OFF_SLAB) {
2238
2239 freelist_size = calculate_freelist_size(cachep->num, 0);
2240
2241#ifdef CONFIG_PAGE_POISONING
2242
2243
2244
2245
2246 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2247 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2248#endif
2249 }
2250
2251 cachep->colour_off = cache_line_size();
2252
2253 if (cachep->colour_off < cachep->align)
2254 cachep->colour_off = cachep->align;
2255 cachep->colour = left_over / cachep->colour_off;
2256 cachep->freelist_size = freelist_size;
2257 cachep->flags = flags;
2258 cachep->allocflags = __GFP_COMP;
2259 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2260 cachep->allocflags |= GFP_DMA;
2261 cachep->size = size;
2262 cachep->reciprocal_buffer_size = reciprocal_value(size);
2263
2264 if (flags & CFLGS_OFF_SLAB) {
2265 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2266
2267
2268
2269
2270
2271
2272
2273 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2274 }
2275
2276 err = setup_cpu_cache(cachep, gfp);
2277 if (err) {
2278 __kmem_cache_release(cachep);
2279 return err;
2280 }
2281
2282 return 0;
2283}
2284
2285#if DEBUG
2286static void check_irq_off(void)
2287{
2288 BUG_ON(!irqs_disabled());
2289}
2290
2291static void check_irq_on(void)
2292{
2293 BUG_ON(irqs_disabled());
2294}
2295
2296static void check_spinlock_acquired(struct kmem_cache *cachep)
2297{
2298#ifdef CONFIG_SMP
2299 check_irq_off();
2300 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2301#endif
2302}
2303
2304static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2305{
2306#ifdef CONFIG_SMP
2307 check_irq_off();
2308 assert_spin_locked(&get_node(cachep, node)->list_lock);
2309#endif
2310}
2311
2312#else
2313#define check_irq_off() do { } while(0)
2314#define check_irq_on() do { } while(0)
2315#define check_spinlock_acquired(x) do { } while(0)
2316#define check_spinlock_acquired_node(x, y) do { } while(0)
2317#endif
2318
2319static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2320 struct array_cache *ac,
2321 int force, int node);
2322
2323static void do_drain(void *arg)
2324{
2325 struct kmem_cache *cachep = arg;
2326 struct array_cache *ac;
2327 int node = numa_mem_id();
2328 struct kmem_cache_node *n;
2329 LIST_HEAD(list);
2330
2331 check_irq_off();
2332 ac = cpu_cache_get(cachep);
2333 n = get_node(cachep, node);
2334 spin_lock(&n->list_lock);
2335 free_block(cachep, ac->entry, ac->avail, node, &list);
2336 spin_unlock(&n->list_lock);
2337 slabs_destroy(cachep, &list);
2338 ac->avail = 0;
2339}
2340
2341static void drain_cpu_caches(struct kmem_cache *cachep)
2342{
2343 struct kmem_cache_node *n;
2344 int node;
2345
2346 on_each_cpu(do_drain, cachep, 1);
2347 check_irq_on();
2348 for_each_kmem_cache_node(cachep, node, n)
2349 if (n->alien)
2350 drain_alien_cache(cachep, n->alien);
2351
2352 for_each_kmem_cache_node(cachep, node, n)
2353 drain_array(cachep, n, n->shared, 1, node);
2354}
2355
2356
2357
2358
2359
2360
2361
2362static int drain_freelist(struct kmem_cache *cache,
2363 struct kmem_cache_node *n, int tofree)
2364{
2365 struct list_head *p;
2366 int nr_freed;
2367 struct page *page;
2368
2369 nr_freed = 0;
2370 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2371
2372 spin_lock_irq(&n->list_lock);
2373 p = n->slabs_free.prev;
2374 if (p == &n->slabs_free) {
2375 spin_unlock_irq(&n->list_lock);
2376 goto out;
2377 }
2378
2379 page = list_entry(p, struct page, lru);
2380#if DEBUG
2381 BUG_ON(page->active);
2382#endif
2383 list_del(&page->lru);
2384
2385
2386
2387
2388 n->free_objects -= cache->num;
2389 spin_unlock_irq(&n->list_lock);
2390 slab_destroy(cache, page);
2391 nr_freed++;
2392 }
2393out:
2394 return nr_freed;
2395}
2396
2397int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2398{
2399 int ret = 0;
2400 int node;
2401 struct kmem_cache_node *n;
2402
2403 drain_cpu_caches(cachep);
2404
2405 check_irq_on();
2406 for_each_kmem_cache_node(cachep, node, n) {
2407 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2408
2409 ret += !list_empty(&n->slabs_full) ||
2410 !list_empty(&n->slabs_partial);
2411 }
2412 return (ret ? 1 : 0);
2413}
2414
2415int __kmem_cache_shutdown(struct kmem_cache *cachep)
2416{
2417 return __kmem_cache_shrink(cachep, false);
2418}
2419
2420void __kmem_cache_release(struct kmem_cache *cachep)
2421{
2422 int i;
2423 struct kmem_cache_node *n;
2424
2425 free_percpu(cachep->cpu_cache);
2426
2427
2428 for_each_kmem_cache_node(cachep, i, n) {
2429 kfree(n->shared);
2430 free_alien_cache(n->alien);
2431 kfree(n);
2432 cachep->node[i] = NULL;
2433 }
2434}
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450static void *alloc_slabmgmt(struct kmem_cache *cachep,
2451 struct page *page, int colour_off,
2452 gfp_t local_flags, int nodeid)
2453{
2454 void *freelist;
2455 void *addr = page_address(page);
2456
2457 if (OFF_SLAB(cachep)) {
2458
2459 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2460 local_flags, nodeid);
2461 if (!freelist)
2462 return NULL;
2463 } else {
2464 freelist = addr + colour_off;
2465 colour_off += cachep->freelist_size;
2466 }
2467 page->active = 0;
2468 page->s_mem = addr + colour_off;
2469 return freelist;
2470}
2471
2472static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2473{
2474 return ((freelist_idx_t *)page->freelist)[idx];
2475}
2476
2477static inline void set_free_obj(struct page *page,
2478 unsigned int idx, freelist_idx_t val)
2479{
2480 ((freelist_idx_t *)(page->freelist))[idx] = val;
2481}
2482
2483static void cache_init_objs(struct kmem_cache *cachep,
2484 struct page *page)
2485{
2486 int i;
2487
2488 for (i = 0; i < cachep->num; i++) {
2489 void *objp = index_to_obj(cachep, page, i);
2490#if DEBUG
2491
2492 if (cachep->flags & SLAB_POISON)
2493 poison_obj(cachep, objp, POISON_FREE);
2494 if (cachep->flags & SLAB_STORE_USER)
2495 *dbg_userword(cachep, objp) = NULL;
2496
2497 if (cachep->flags & SLAB_RED_ZONE) {
2498 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2499 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2500 }
2501
2502
2503
2504
2505
2506 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2507 cachep->ctor(objp + obj_offset(cachep));
2508
2509 if (cachep->flags & SLAB_RED_ZONE) {
2510 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2511 slab_error(cachep, "constructor overwrote the"
2512 " end of an object");
2513 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2514 slab_error(cachep, "constructor overwrote the"
2515 " start of an object");
2516 }
2517 if ((cachep->size % PAGE_SIZE) == 0 &&
2518 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2519 kernel_map_pages(virt_to_page(objp),
2520 cachep->size / PAGE_SIZE, 0);
2521#else
2522 if (cachep->ctor)
2523 cachep->ctor(objp);
2524#endif
2525 set_obj_status(page, i, OBJECT_FREE);
2526 set_free_obj(page, i, i);
2527 }
2528}
2529
2530static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2531{
2532 if (CONFIG_ZONE_DMA_FLAG) {
2533 if (flags & GFP_DMA)
2534 BUG_ON(!(cachep->allocflags & GFP_DMA));
2535 else
2536 BUG_ON(cachep->allocflags & GFP_DMA);
2537 }
2538}
2539
2540static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2541 int nodeid)
2542{
2543 void *objp;
2544
2545 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2546 page->active++;
2547#if DEBUG
2548 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2549#endif
2550
2551 return objp;
2552}
2553
2554static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2555 void *objp, int nodeid)
2556{
2557 unsigned int objnr = obj_to_index(cachep, page, objp);
2558#if DEBUG
2559 unsigned int i;
2560
2561
2562 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2563
2564
2565 for (i = page->active; i < cachep->num; i++) {
2566 if (get_free_obj(page, i) == objnr) {
2567 printk(KERN_ERR "slab: double free detected in cache "
2568 "'%s', objp %p\n", cachep->name, objp);
2569 BUG();
2570 }
2571 }
2572#endif
2573 page->active--;
2574 set_free_obj(page, page->active, objnr);
2575}
2576
2577
2578
2579
2580
2581
2582static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2583 void *freelist)
2584{
2585 page->slab_cache = cache;
2586 page->freelist = freelist;
2587}
2588
2589
2590
2591
2592
2593static int cache_grow(struct kmem_cache *cachep,
2594 gfp_t flags, int nodeid, struct page *page)
2595{
2596 void *freelist;
2597 size_t offset;
2598 gfp_t local_flags;
2599 struct kmem_cache_node *n;
2600
2601
2602
2603
2604
2605 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2606 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2607 BUG();
2608 }
2609 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2610
2611
2612 check_irq_off();
2613 n = get_node(cachep, nodeid);
2614 spin_lock(&n->list_lock);
2615
2616
2617 offset = n->colour_next;
2618 n->colour_next++;
2619 if (n->colour_next >= cachep->colour)
2620 n->colour_next = 0;
2621 spin_unlock(&n->list_lock);
2622
2623 offset *= cachep->colour_off;
2624
2625 if (gfpflags_allow_blocking(local_flags))
2626 local_irq_enable();
2627
2628
2629
2630
2631
2632
2633
2634 kmem_flagcheck(cachep, flags);
2635
2636
2637
2638
2639
2640 if (!page)
2641 page = kmem_getpages(cachep, local_flags, nodeid);
2642 if (!page)
2643 goto failed;
2644
2645
2646 freelist = alloc_slabmgmt(cachep, page, offset,
2647 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2648 if (!freelist)
2649 goto opps1;
2650
2651 slab_map_pages(cachep, page, freelist);
2652
2653 cache_init_objs(cachep, page);
2654
2655 if (gfpflags_allow_blocking(local_flags))
2656 local_irq_disable();
2657 check_irq_off();
2658 spin_lock(&n->list_lock);
2659
2660
2661 list_add_tail(&page->lru, &(n->slabs_free));
2662 STATS_INC_GROWN(cachep);
2663 n->free_objects += cachep->num;
2664 spin_unlock(&n->list_lock);
2665 return 1;
2666opps1:
2667 kmem_freepages(cachep, page);
2668failed:
2669 if (gfpflags_allow_blocking(local_flags))
2670 local_irq_disable();
2671 return 0;
2672}
2673
2674#if DEBUG
2675
2676
2677
2678
2679
2680
2681static void kfree_debugcheck(const void *objp)
2682{
2683 if (!virt_addr_valid(objp)) {
2684 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2685 (unsigned long)objp);
2686 BUG();
2687 }
2688}
2689
2690static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2691{
2692 unsigned long long redzone1, redzone2;
2693
2694 redzone1 = *dbg_redzone1(cache, obj);
2695 redzone2 = *dbg_redzone2(cache, obj);
2696
2697
2698
2699
2700 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2701 return;
2702
2703 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2704 slab_error(cache, "double free detected");
2705 else
2706 slab_error(cache, "memory outside object was overwritten");
2707
2708 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2709 obj, redzone1, redzone2);
2710}
2711
2712static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2713 unsigned long caller)
2714{
2715 unsigned int objnr;
2716 struct page *page;
2717
2718 BUG_ON(virt_to_cache(objp) != cachep);
2719
2720 objp -= obj_offset(cachep);
2721 kfree_debugcheck(objp);
2722 page = virt_to_head_page(objp);
2723
2724 if (cachep->flags & SLAB_RED_ZONE) {
2725 verify_redzone_free(cachep, objp);
2726 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2727 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2728 }
2729 if (cachep->flags & SLAB_STORE_USER)
2730 *dbg_userword(cachep, objp) = (void *)caller;
2731
2732 objnr = obj_to_index(cachep, page, objp);
2733
2734 BUG_ON(objnr >= cachep->num);
2735 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2736
2737 set_obj_status(page, objnr, OBJECT_FREE);
2738 if (cachep->flags & SLAB_POISON) {
2739#ifdef CONFIG_DEBUG_PAGEALLOC
2740 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2741 store_stackinfo(cachep, objp, caller);
2742 kernel_map_pages(virt_to_page(objp),
2743 cachep->size / PAGE_SIZE, 0);
2744 } else {
2745 poison_obj(cachep, objp, POISON_FREE);
2746 }
2747#else
2748 poison_obj(cachep, objp, POISON_FREE);
2749#endif
2750 }
2751 return objp;
2752}
2753
2754#else
2755#define kfree_debugcheck(x) do { } while(0)
2756#define cache_free_debugcheck(x,objp,z) (objp)
2757#endif
2758
2759static struct page *get_first_slab(struct kmem_cache_node *n)
2760{
2761 struct page *page;
2762
2763 page = list_first_entry_or_null(&n->slabs_partial,
2764 struct page, lru);
2765 if (!page) {
2766 n->free_touched = 1;
2767 page = list_first_entry_or_null(&n->slabs_free,
2768 struct page, lru);
2769 }
2770
2771 return page;
2772}
2773
2774static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2775 bool force_refill)
2776{
2777 int batchcount;
2778 struct kmem_cache_node *n;
2779 struct array_cache *ac;
2780 int node;
2781
2782 check_irq_off();
2783 node = numa_mem_id();
2784 if (unlikely(force_refill))
2785 goto force_grow;
2786retry:
2787 ac = cpu_cache_get(cachep);
2788 batchcount = ac->batchcount;
2789 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2790
2791
2792
2793
2794
2795 batchcount = BATCHREFILL_LIMIT;
2796 }
2797 n = get_node(cachep, node);
2798
2799 BUG_ON(ac->avail > 0 || !n);
2800 spin_lock(&n->list_lock);
2801
2802
2803 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2804 n->shared->touched = 1;
2805 goto alloc_done;
2806 }
2807
2808 while (batchcount > 0) {
2809 struct page *page;
2810
2811 page = get_first_slab(n);
2812 if (!page)
2813 goto must_grow;
2814
2815 check_spinlock_acquired(cachep);
2816
2817
2818
2819
2820
2821
2822 BUG_ON(page->active >= cachep->num);
2823
2824 while (page->active < cachep->num && batchcount--) {
2825 STATS_INC_ALLOCED(cachep);
2826 STATS_INC_ACTIVE(cachep);
2827 STATS_SET_HIGH(cachep);
2828
2829 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2830 node));
2831 }
2832
2833
2834 list_del(&page->lru);
2835 if (page->active == cachep->num)
2836 list_add(&page->lru, &n->slabs_full);
2837 else
2838 list_add(&page->lru, &n->slabs_partial);
2839 }
2840
2841must_grow:
2842 n->free_objects -= ac->avail;
2843alloc_done:
2844 spin_unlock(&n->list_lock);
2845
2846 if (unlikely(!ac->avail)) {
2847 int x;
2848force_grow:
2849 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2850
2851
2852 ac = cpu_cache_get(cachep);
2853 node = numa_mem_id();
2854
2855
2856 if (!x && (ac->avail == 0 || force_refill))
2857 return NULL;
2858
2859 if (!ac->avail)
2860 goto retry;
2861 }
2862 ac->touched = 1;
2863
2864 return ac_get_obj(cachep, ac, flags, force_refill);
2865}
2866
2867static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2868 gfp_t flags)
2869{
2870 might_sleep_if(gfpflags_allow_blocking(flags));
2871#if DEBUG
2872 kmem_flagcheck(cachep, flags);
2873#endif
2874}
2875
2876#if DEBUG
2877static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2878 gfp_t flags, void *objp, unsigned long caller)
2879{
2880 struct page *page;
2881
2882 if (!objp)
2883 return objp;
2884 if (cachep->flags & SLAB_POISON) {
2885#ifdef CONFIG_DEBUG_PAGEALLOC
2886 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2887 kernel_map_pages(virt_to_page(objp),
2888 cachep->size / PAGE_SIZE, 1);
2889 else
2890 check_poison_obj(cachep, objp);
2891#else
2892 check_poison_obj(cachep, objp);
2893#endif
2894 poison_obj(cachep, objp, POISON_INUSE);
2895 }
2896 if (cachep->flags & SLAB_STORE_USER)
2897 *dbg_userword(cachep, objp) = (void *)caller;
2898
2899 if (cachep->flags & SLAB_RED_ZONE) {
2900 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2901 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2902 slab_error(cachep, "double free, or memory outside"
2903 " object was overwritten");
2904 printk(KERN_ERR
2905 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2906 objp, *dbg_redzone1(cachep, objp),
2907 *dbg_redzone2(cachep, objp));
2908 }
2909 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2910 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2911 }
2912
2913 page = virt_to_head_page(objp);
2914 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2915 objp += obj_offset(cachep);
2916 if (cachep->ctor && cachep->flags & SLAB_POISON)
2917 cachep->ctor(objp);
2918 if (ARCH_SLAB_MINALIGN &&
2919 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2920 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2921 objp, (int)ARCH_SLAB_MINALIGN);
2922 }
2923 return objp;
2924}
2925#else
2926#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2927#endif
2928
2929static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2930{
2931 if (unlikely(cachep == kmem_cache))
2932 return false;
2933
2934 return should_failslab(cachep->object_size, flags, cachep->flags);
2935}
2936
2937static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2938{
2939 void *objp;
2940 struct array_cache *ac;
2941 bool force_refill = false;
2942
2943 check_irq_off();
2944
2945 ac = cpu_cache_get(cachep);
2946 if (likely(ac->avail)) {
2947 ac->touched = 1;
2948 objp = ac_get_obj(cachep, ac, flags, false);
2949
2950
2951
2952
2953
2954 if (objp) {
2955 STATS_INC_ALLOCHIT(cachep);
2956 goto out;
2957 }
2958 force_refill = true;
2959 }
2960
2961 STATS_INC_ALLOCMISS(cachep);
2962 objp = cache_alloc_refill(cachep, flags, force_refill);
2963
2964
2965
2966
2967 ac = cpu_cache_get(cachep);
2968
2969out:
2970
2971
2972
2973
2974
2975 if (objp)
2976 kmemleak_erase(&ac->entry[ac->avail]);
2977 return objp;
2978}
2979
2980#ifdef CONFIG_NUMA
2981
2982
2983
2984
2985
2986
2987static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2988{
2989 int nid_alloc, nid_here;
2990
2991 if (in_interrupt() || (flags & __GFP_THISNODE))
2992 return NULL;
2993 nid_alloc = nid_here = numa_mem_id();
2994 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2995 nid_alloc = cpuset_slab_spread_node();
2996 else if (current->mempolicy)
2997 nid_alloc = mempolicy_slab_node();
2998 if (nid_alloc != nid_here)
2999 return ____cache_alloc_node(cachep, flags, nid_alloc);
3000 return NULL;
3001}
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3012{
3013 struct zonelist *zonelist;
3014 gfp_t local_flags;
3015 struct zoneref *z;
3016 struct zone *zone;
3017 enum zone_type high_zoneidx = gfp_zone(flags);
3018 void *obj = NULL;
3019 int nid;
3020 unsigned int cpuset_mems_cookie;
3021
3022 if (flags & __GFP_THISNODE)
3023 return NULL;
3024
3025 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3026
3027retry_cpuset:
3028 cpuset_mems_cookie = read_mems_allowed_begin();
3029 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3030
3031retry:
3032
3033
3034
3035
3036 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3037 nid = zone_to_nid(zone);
3038
3039 if (cpuset_zone_allowed(zone, flags) &&
3040 get_node(cache, nid) &&
3041 get_node(cache, nid)->free_objects) {
3042 obj = ____cache_alloc_node(cache,
3043 gfp_exact_node(flags), nid);
3044 if (obj)
3045 break;
3046 }
3047 }
3048
3049 if (!obj) {
3050
3051
3052
3053
3054
3055
3056 struct page *page;
3057
3058 if (gfpflags_allow_blocking(local_flags))
3059 local_irq_enable();
3060 kmem_flagcheck(cache, flags);
3061 page = kmem_getpages(cache, local_flags, numa_mem_id());
3062 if (gfpflags_allow_blocking(local_flags))
3063 local_irq_disable();
3064 if (page) {
3065
3066
3067
3068 nid = page_to_nid(page);
3069 if (cache_grow(cache, flags, nid, page)) {
3070 obj = ____cache_alloc_node(cache,
3071 gfp_exact_node(flags), nid);
3072 if (!obj)
3073
3074
3075
3076
3077
3078 goto retry;
3079 } else {
3080
3081 obj = NULL;
3082 }
3083 }
3084 }
3085
3086 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3087 goto retry_cpuset;
3088 return obj;
3089}
3090
3091
3092
3093
3094static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3095 int nodeid)
3096{
3097 struct page *page;
3098 struct kmem_cache_node *n;
3099 void *obj;
3100 int x;
3101
3102 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3103 n = get_node(cachep, nodeid);
3104 BUG_ON(!n);
3105
3106retry:
3107 check_irq_off();
3108 spin_lock(&n->list_lock);
3109 page = get_first_slab(n);
3110 if (!page)
3111 goto must_grow;
3112
3113 check_spinlock_acquired_node(cachep, nodeid);
3114
3115 STATS_INC_NODEALLOCS(cachep);
3116 STATS_INC_ACTIVE(cachep);
3117 STATS_SET_HIGH(cachep);
3118
3119 BUG_ON(page->active == cachep->num);
3120
3121 obj = slab_get_obj(cachep, page, nodeid);
3122 n->free_objects--;
3123
3124 list_del(&page->lru);
3125
3126 if (page->active == cachep->num)
3127 list_add(&page->lru, &n->slabs_full);
3128 else
3129 list_add(&page->lru, &n->slabs_partial);
3130
3131 spin_unlock(&n->list_lock);
3132 goto done;
3133
3134must_grow:
3135 spin_unlock(&n->list_lock);
3136 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3137 if (x)
3138 goto retry;
3139
3140 return fallback_alloc(cachep, flags);
3141
3142done:
3143 return obj;
3144}
3145
3146static __always_inline void *
3147slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3148 unsigned long caller)
3149{
3150 unsigned long save_flags;
3151 void *ptr;
3152 int slab_node = numa_mem_id();
3153
3154 flags &= gfp_allowed_mask;
3155
3156 lockdep_trace_alloc(flags);
3157
3158 if (slab_should_failslab(cachep, flags))
3159 return NULL;
3160
3161 cachep = memcg_kmem_get_cache(cachep, flags);
3162
3163 cache_alloc_debugcheck_before(cachep, flags);
3164 local_irq_save(save_flags);
3165
3166 if (nodeid == NUMA_NO_NODE)
3167 nodeid = slab_node;
3168
3169 if (unlikely(!get_node(cachep, nodeid))) {
3170
3171 ptr = fallback_alloc(cachep, flags);
3172 goto out;
3173 }
3174
3175 if (nodeid == slab_node) {
3176
3177
3178
3179
3180
3181
3182 ptr = ____cache_alloc(cachep, flags);
3183 if (ptr)
3184 goto out;
3185 }
3186
3187 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3188 out:
3189 local_irq_restore(save_flags);
3190 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3191 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3192 flags);
3193
3194 if (likely(ptr)) {
3195 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3196 if (unlikely(flags & __GFP_ZERO))
3197 memset(ptr, 0, cachep->object_size);
3198 }
3199
3200 memcg_kmem_put_cache(cachep);
3201 return ptr;
3202}
3203
3204static __always_inline void *
3205__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3206{
3207 void *objp;
3208
3209 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3210 objp = alternate_node_alloc(cache, flags);
3211 if (objp)
3212 goto out;
3213 }
3214 objp = ____cache_alloc(cache, flags);
3215
3216
3217
3218
3219
3220 if (!objp)
3221 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3222
3223 out:
3224 return objp;
3225}
3226#else
3227
3228static __always_inline void *
3229__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3230{
3231 return ____cache_alloc(cachep, flags);
3232}
3233
3234#endif
3235
3236static __always_inline void *
3237slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3238{
3239 unsigned long save_flags;
3240 void *objp;
3241
3242 flags &= gfp_allowed_mask;
3243
3244 lockdep_trace_alloc(flags);
3245
3246 if (slab_should_failslab(cachep, flags))
3247 return NULL;
3248
3249 cachep = memcg_kmem_get_cache(cachep, flags);
3250
3251 cache_alloc_debugcheck_before(cachep, flags);
3252 local_irq_save(save_flags);
3253 objp = __do_cache_alloc(cachep, flags);
3254 local_irq_restore(save_flags);
3255 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3256 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3257 flags);
3258 prefetchw(objp);
3259
3260 if (likely(objp)) {
3261 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3262 if (unlikely(flags & __GFP_ZERO))
3263 memset(objp, 0, cachep->object_size);
3264 }
3265
3266 memcg_kmem_put_cache(cachep);
3267 return objp;
3268}
3269
3270
3271
3272
3273
3274static void free_block(struct kmem_cache *cachep, void **objpp,
3275 int nr_objects, int node, struct list_head *list)
3276{
3277 int i;
3278 struct kmem_cache_node *n = get_node(cachep, node);
3279
3280 for (i = 0; i < nr_objects; i++) {
3281 void *objp;
3282 struct page *page;
3283
3284 clear_obj_pfmemalloc(&objpp[i]);
3285 objp = objpp[i];
3286
3287 page = virt_to_head_page(objp);
3288 list_del(&page->lru);
3289 check_spinlock_acquired_node(cachep, node);
3290 slab_put_obj(cachep, page, objp, node);
3291 STATS_DEC_ACTIVE(cachep);
3292 n->free_objects++;
3293
3294
3295 if (page->active == 0) {
3296 if (n->free_objects > n->free_limit) {
3297 n->free_objects -= cachep->num;
3298 list_add_tail(&page->lru, list);
3299 } else {
3300 list_add(&page->lru, &n->slabs_free);
3301 }
3302 } else {
3303
3304
3305
3306
3307 list_add_tail(&page->lru, &n->slabs_partial);
3308 }
3309 }
3310}
3311
3312static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3313{
3314 int batchcount;
3315 struct kmem_cache_node *n;
3316 int node = numa_mem_id();
3317 LIST_HEAD(list);
3318
3319 batchcount = ac->batchcount;
3320#if DEBUG
3321 BUG_ON(!batchcount || batchcount > ac->avail);
3322#endif
3323 check_irq_off();
3324 n = get_node(cachep, node);
3325 spin_lock(&n->list_lock);
3326 if (n->shared) {
3327 struct array_cache *shared_array = n->shared;
3328 int max = shared_array->limit - shared_array->avail;
3329 if (max) {
3330 if (batchcount > max)
3331 batchcount = max;
3332 memcpy(&(shared_array->entry[shared_array->avail]),
3333 ac->entry, sizeof(void *) * batchcount);
3334 shared_array->avail += batchcount;
3335 goto free_done;
3336 }
3337 }
3338
3339 free_block(cachep, ac->entry, batchcount, node, &list);
3340free_done:
3341#if STATS
3342 {
3343 int i = 0;
3344 struct page *page;
3345
3346 list_for_each_entry(page, &n->slabs_free, lru) {
3347 BUG_ON(page->active);
3348
3349 i++;
3350 }
3351 STATS_SET_FREEABLE(cachep, i);
3352 }
3353#endif
3354 spin_unlock(&n->list_lock);
3355 slabs_destroy(cachep, &list);
3356 ac->avail -= batchcount;
3357 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3358}
3359
3360
3361
3362
3363
3364static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3365 unsigned long caller)
3366{
3367 struct array_cache *ac = cpu_cache_get(cachep);
3368
3369 check_irq_off();
3370 kmemleak_free_recursive(objp, cachep->flags);
3371 objp = cache_free_debugcheck(cachep, objp, caller);
3372
3373 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3374
3375
3376
3377
3378
3379
3380
3381
3382 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3383 return;
3384
3385 if (ac->avail < ac->limit) {
3386 STATS_INC_FREEHIT(cachep);
3387 } else {
3388 STATS_INC_FREEMISS(cachep);
3389 cache_flusharray(cachep, ac);
3390 }
3391
3392 ac_put_obj(cachep, ac, objp);
3393}
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3404{
3405 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3406
3407 trace_kmem_cache_alloc(_RET_IP_, ret,
3408 cachep->object_size, cachep->size, flags);
3409
3410 return ret;
3411}
3412EXPORT_SYMBOL(kmem_cache_alloc);
3413
3414void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3415{
3416 __kmem_cache_free_bulk(s, size, p);
3417}
3418EXPORT_SYMBOL(kmem_cache_free_bulk);
3419
3420int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3421 void **p)
3422{
3423 return __kmem_cache_alloc_bulk(s, flags, size, p);
3424}
3425EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3426
3427#ifdef CONFIG_TRACING
3428void *
3429kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3430{
3431 void *ret;
3432
3433 ret = slab_alloc(cachep, flags, _RET_IP_);
3434
3435 trace_kmalloc(_RET_IP_, ret,
3436 size, cachep->size, flags);
3437 return ret;
3438}
3439EXPORT_SYMBOL(kmem_cache_alloc_trace);
3440#endif
3441
3442#ifdef CONFIG_NUMA
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3455{
3456 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3457
3458 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3459 cachep->object_size, cachep->size,
3460 flags, nodeid);
3461
3462 return ret;
3463}
3464EXPORT_SYMBOL(kmem_cache_alloc_node);
3465
3466#ifdef CONFIG_TRACING
3467void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3468 gfp_t flags,
3469 int nodeid,
3470 size_t size)
3471{
3472 void *ret;
3473
3474 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3475
3476 trace_kmalloc_node(_RET_IP_, ret,
3477 size, cachep->size,
3478 flags, nodeid);
3479 return ret;
3480}
3481EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3482#endif
3483
3484static __always_inline void *
3485__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3486{
3487 struct kmem_cache *cachep;
3488
3489 cachep = kmalloc_slab(size, flags);
3490 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3491 return cachep;
3492 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3493}
3494
3495void *__kmalloc_node(size_t size, gfp_t flags, int node)
3496{
3497 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3498}
3499EXPORT_SYMBOL(__kmalloc_node);
3500
3501void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3502 int node, unsigned long caller)
3503{
3504 return __do_kmalloc_node(size, flags, node, caller);
3505}
3506EXPORT_SYMBOL(__kmalloc_node_track_caller);
3507#endif
3508
3509
3510
3511
3512
3513
3514
3515static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3516 unsigned long caller)
3517{
3518 struct kmem_cache *cachep;
3519 void *ret;
3520
3521 cachep = kmalloc_slab(size, flags);
3522 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3523 return cachep;
3524 ret = slab_alloc(cachep, flags, caller);
3525
3526 trace_kmalloc(caller, ret,
3527 size, cachep->size, flags);
3528
3529 return ret;
3530}
3531
3532void *__kmalloc(size_t size, gfp_t flags)
3533{
3534 return __do_kmalloc(size, flags, _RET_IP_);
3535}
3536EXPORT_SYMBOL(__kmalloc);
3537
3538void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3539{
3540 return __do_kmalloc(size, flags, caller);
3541}
3542EXPORT_SYMBOL(__kmalloc_track_caller);
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3553{
3554 unsigned long flags;
3555 cachep = cache_from_obj(cachep, objp);
3556 if (!cachep)
3557 return;
3558
3559 local_irq_save(flags);
3560 debug_check_no_locks_freed(objp, cachep->object_size);
3561 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3562 debug_check_no_obj_freed(objp, cachep->object_size);
3563 __cache_free(cachep, objp, _RET_IP_);
3564 local_irq_restore(flags);
3565
3566 trace_kmem_cache_free(_RET_IP_, objp);
3567}
3568EXPORT_SYMBOL(kmem_cache_free);
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579void kfree(const void *objp)
3580{
3581 struct kmem_cache *c;
3582 unsigned long flags;
3583
3584 trace_kfree(_RET_IP_, objp);
3585
3586 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3587 return;
3588 local_irq_save(flags);
3589 kfree_debugcheck(objp);
3590 c = virt_to_cache(objp);
3591 debug_check_no_locks_freed(objp, c->object_size);
3592
3593 debug_check_no_obj_freed(objp, c->object_size);
3594 __cache_free(c, (void *)objp, _RET_IP_);
3595 local_irq_restore(flags);
3596}
3597EXPORT_SYMBOL(kfree);
3598
3599
3600
3601
3602static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3603{
3604 int node;
3605 struct kmem_cache_node *n;
3606 struct array_cache *new_shared;
3607 struct alien_cache **new_alien = NULL;
3608
3609 for_each_online_node(node) {
3610
3611 if (use_alien_caches) {
3612 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3613 if (!new_alien)
3614 goto fail;
3615 }
3616
3617 new_shared = NULL;
3618 if (cachep->shared) {
3619 new_shared = alloc_arraycache(node,
3620 cachep->shared*cachep->batchcount,
3621 0xbaadf00d, gfp);
3622 if (!new_shared) {
3623 free_alien_cache(new_alien);
3624 goto fail;
3625 }
3626 }
3627
3628 n = get_node(cachep, node);
3629 if (n) {
3630 struct array_cache *shared = n->shared;
3631 LIST_HEAD(list);
3632
3633 spin_lock_irq(&n->list_lock);
3634
3635 if (shared)
3636 free_block(cachep, shared->entry,
3637 shared->avail, node, &list);
3638
3639 n->shared = new_shared;
3640 if (!n->alien) {
3641 n->alien = new_alien;
3642 new_alien = NULL;
3643 }
3644 n->free_limit = (1 + nr_cpus_node(node)) *
3645 cachep->batchcount + cachep->num;
3646 spin_unlock_irq(&n->list_lock);
3647 slabs_destroy(cachep, &list);
3648 kfree(shared);
3649 free_alien_cache(new_alien);
3650 continue;
3651 }
3652 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3653 if (!n) {
3654 free_alien_cache(new_alien);
3655 kfree(new_shared);
3656 goto fail;
3657 }
3658
3659 kmem_cache_node_init(n);
3660 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3661 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3662 n->shared = new_shared;
3663 n->alien = new_alien;
3664 n->free_limit = (1 + nr_cpus_node(node)) *
3665 cachep->batchcount + cachep->num;
3666 cachep->node[node] = n;
3667 }
3668 return 0;
3669
3670fail:
3671 if (!cachep->list.next) {
3672
3673 node--;
3674 while (node >= 0) {
3675 n = get_node(cachep, node);
3676 if (n) {
3677 kfree(n->shared);
3678 free_alien_cache(n->alien);
3679 kfree(n);
3680 cachep->node[node] = NULL;
3681 }
3682 node--;
3683 }
3684 }
3685 return -ENOMEM;
3686}
3687
3688
3689static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3690 int batchcount, int shared, gfp_t gfp)
3691{
3692 struct array_cache __percpu *cpu_cache, *prev;
3693 int cpu;
3694
3695 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3696 if (!cpu_cache)
3697 return -ENOMEM;
3698
3699 prev = cachep->cpu_cache;
3700 cachep->cpu_cache = cpu_cache;
3701 kick_all_cpus_sync();
3702
3703 check_irq_on();
3704 cachep->batchcount = batchcount;
3705 cachep->limit = limit;
3706 cachep->shared = shared;
3707
3708 if (!prev)
3709 goto alloc_node;
3710
3711 for_each_online_cpu(cpu) {
3712 LIST_HEAD(list);
3713 int node;
3714 struct kmem_cache_node *n;
3715 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3716
3717 node = cpu_to_mem(cpu);
3718 n = get_node(cachep, node);
3719 spin_lock_irq(&n->list_lock);
3720 free_block(cachep, ac->entry, ac->avail, node, &list);
3721 spin_unlock_irq(&n->list_lock);
3722 slabs_destroy(cachep, &list);
3723 }
3724 free_percpu(prev);
3725
3726alloc_node:
3727 return alloc_kmem_cache_node(cachep, gfp);
3728}
3729
3730static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3731 int batchcount, int shared, gfp_t gfp)
3732{
3733 int ret;
3734 struct kmem_cache *c;
3735
3736 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3737
3738 if (slab_state < FULL)
3739 return ret;
3740
3741 if ((ret < 0) || !is_root_cache(cachep))
3742 return ret;
3743
3744 lockdep_assert_held(&slab_mutex);
3745 for_each_memcg_cache(c, cachep) {
3746
3747 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3748 }
3749
3750 return ret;
3751}
3752
3753
3754static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3755{
3756 int err;
3757 int limit = 0;
3758 int shared = 0;
3759 int batchcount = 0;
3760
3761 if (!is_root_cache(cachep)) {
3762 struct kmem_cache *root = memcg_root_cache(cachep);
3763 limit = root->limit;
3764 shared = root->shared;
3765 batchcount = root->batchcount;
3766 }
3767
3768 if (limit && shared && batchcount)
3769 goto skip_setup;
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779 if (cachep->size > 131072)
3780 limit = 1;
3781 else if (cachep->size > PAGE_SIZE)
3782 limit = 8;
3783 else if (cachep->size > 1024)
3784 limit = 24;
3785 else if (cachep->size > 256)
3786 limit = 54;
3787 else
3788 limit = 120;
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799 shared = 0;
3800 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3801 shared = 8;
3802
3803#if DEBUG
3804
3805
3806
3807
3808 if (limit > 32)
3809 limit = 32;
3810#endif
3811 batchcount = (limit + 1) / 2;
3812skip_setup:
3813 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3814 if (err)
3815 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3816 cachep->name, -err);
3817 return err;
3818}
3819
3820
3821
3822
3823
3824
3825static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3826 struct array_cache *ac, int force, int node)
3827{
3828 LIST_HEAD(list);
3829 int tofree;
3830
3831 if (!ac || !ac->avail)
3832 return;
3833 if (ac->touched && !force) {
3834 ac->touched = 0;
3835 } else {
3836 spin_lock_irq(&n->list_lock);
3837 if (ac->avail) {
3838 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3839 if (tofree > ac->avail)
3840 tofree = (ac->avail + 1) / 2;
3841 free_block(cachep, ac->entry, tofree, node, &list);
3842 ac->avail -= tofree;
3843 memmove(ac->entry, &(ac->entry[tofree]),
3844 sizeof(void *) * ac->avail);
3845 }
3846 spin_unlock_irq(&n->list_lock);
3847 slabs_destroy(cachep, &list);
3848 }
3849}
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863static void cache_reap(struct work_struct *w)
3864{
3865 struct kmem_cache *searchp;
3866 struct kmem_cache_node *n;
3867 int node = numa_mem_id();
3868 struct delayed_work *work = to_delayed_work(w);
3869
3870 if (!mutex_trylock(&slab_mutex))
3871
3872 goto out;
3873
3874 list_for_each_entry(searchp, &slab_caches, list) {
3875 check_irq_on();
3876
3877
3878
3879
3880
3881
3882 n = get_node(searchp, node);
3883
3884 reap_alien(searchp, n);
3885
3886 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3887
3888
3889
3890
3891
3892 if (time_after(n->next_reap, jiffies))
3893 goto next;
3894
3895 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3896
3897 drain_array(searchp, n, n->shared, 0, node);
3898
3899 if (n->free_touched)
3900 n->free_touched = 0;
3901 else {
3902 int freed;
3903
3904 freed = drain_freelist(searchp, n, (n->free_limit +
3905 5 * searchp->num - 1) / (5 * searchp->num));
3906 STATS_ADD_REAPED(searchp, freed);
3907 }
3908next:
3909 cond_resched();
3910 }
3911 check_irq_on();
3912 mutex_unlock(&slab_mutex);
3913 next_reap_node();
3914out:
3915
3916 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3917}
3918
3919#ifdef CONFIG_SLABINFO
3920void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3921{
3922 struct page *page;
3923 unsigned long active_objs;
3924 unsigned long num_objs;
3925 unsigned long active_slabs = 0;
3926 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3927 const char *name;
3928 char *error = NULL;
3929 int node;
3930 struct kmem_cache_node *n;
3931
3932 active_objs = 0;
3933 num_slabs = 0;
3934 for_each_kmem_cache_node(cachep, node, n) {
3935
3936 check_irq_on();
3937 spin_lock_irq(&n->list_lock);
3938
3939 list_for_each_entry(page, &n->slabs_full, lru) {
3940 if (page->active != cachep->num && !error)
3941 error = "slabs_full accounting error";
3942 active_objs += cachep->num;
3943 active_slabs++;
3944 }
3945 list_for_each_entry(page, &n->slabs_partial, lru) {
3946 if (page->active == cachep->num && !error)
3947 error = "slabs_partial accounting error";
3948 if (!page->active && !error)
3949 error = "slabs_partial accounting error";
3950 active_objs += page->active;
3951 active_slabs++;
3952 }
3953 list_for_each_entry(page, &n->slabs_free, lru) {
3954 if (page->active && !error)
3955 error = "slabs_free accounting error";
3956 num_slabs++;
3957 }
3958 free_objects += n->free_objects;
3959 if (n->shared)
3960 shared_avail += n->shared->avail;
3961
3962 spin_unlock_irq(&n->list_lock);
3963 }
3964 num_slabs += active_slabs;
3965 num_objs = num_slabs * cachep->num;
3966 if (num_objs - active_objs != free_objects && !error)
3967 error = "free_objects accounting error";
3968
3969 name = cachep->name;
3970 if (error)
3971 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3972
3973 sinfo->active_objs = active_objs;
3974 sinfo->num_objs = num_objs;
3975 sinfo->active_slabs = active_slabs;
3976 sinfo->num_slabs = num_slabs;
3977 sinfo->shared_avail = shared_avail;
3978 sinfo->limit = cachep->limit;
3979 sinfo->batchcount = cachep->batchcount;
3980 sinfo->shared = cachep->shared;
3981 sinfo->objects_per_slab = cachep->num;
3982 sinfo->cache_order = cachep->gfporder;
3983}
3984
3985void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3986{
3987#if STATS
3988 {
3989 unsigned long high = cachep->high_mark;
3990 unsigned long allocs = cachep->num_allocations;
3991 unsigned long grown = cachep->grown;
3992 unsigned long reaped = cachep->reaped;
3993 unsigned long errors = cachep->errors;
3994 unsigned long max_freeable = cachep->max_freeable;
3995 unsigned long node_allocs = cachep->node_allocs;
3996 unsigned long node_frees = cachep->node_frees;
3997 unsigned long overflows = cachep->node_overflow;
3998
3999 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4000 "%4lu %4lu %4lu %4lu %4lu",
4001 allocs, high, grown,
4002 reaped, errors, max_freeable, node_allocs,
4003 node_frees, overflows);
4004 }
4005
4006 {
4007 unsigned long allochit = atomic_read(&cachep->allochit);
4008 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4009 unsigned long freehit = atomic_read(&cachep->freehit);
4010 unsigned long freemiss = atomic_read(&cachep->freemiss);
4011
4012 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4013 allochit, allocmiss, freehit, freemiss);
4014 }
4015#endif
4016}
4017
4018#define MAX_SLABINFO_WRITE 128
4019
4020
4021
4022
4023
4024
4025
4026ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4027 size_t count, loff_t *ppos)
4028{
4029 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4030 int limit, batchcount, shared, res;
4031 struct kmem_cache *cachep;
4032
4033 if (count > MAX_SLABINFO_WRITE)
4034 return -EINVAL;
4035 if (copy_from_user(&kbuf, buffer, count))
4036 return -EFAULT;
4037 kbuf[MAX_SLABINFO_WRITE] = '\0';
4038
4039 tmp = strchr(kbuf, ' ');
4040 if (!tmp)
4041 return -EINVAL;
4042 *tmp = '\0';
4043 tmp++;
4044 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4045 return -EINVAL;
4046
4047
4048 mutex_lock(&slab_mutex);
4049 res = -EINVAL;
4050 list_for_each_entry(cachep, &slab_caches, list) {
4051 if (!strcmp(cachep->name, kbuf)) {
4052 if (limit < 1 || batchcount < 1 ||
4053 batchcount > limit || shared < 0) {
4054 res = 0;
4055 } else {
4056 res = do_tune_cpucache(cachep, limit,
4057 batchcount, shared,
4058 GFP_KERNEL);
4059 }
4060 break;
4061 }
4062 }
4063 mutex_unlock(&slab_mutex);
4064 if (res >= 0)
4065 res = count;
4066 return res;
4067}
4068
4069#ifdef CONFIG_DEBUG_SLAB_LEAK
4070
4071static inline int add_caller(unsigned long *n, unsigned long v)
4072{
4073 unsigned long *p;
4074 int l;
4075 if (!v)
4076 return 1;
4077 l = n[1];
4078 p = n + 2;
4079 while (l) {
4080 int i = l/2;
4081 unsigned long *q = p + 2 * i;
4082 if (*q == v) {
4083 q[1]++;
4084 return 1;
4085 }
4086 if (*q > v) {
4087 l = i;
4088 } else {
4089 p = q + 2;
4090 l -= i + 1;
4091 }
4092 }
4093 if (++n[1] == n[0])
4094 return 0;
4095 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4096 p[0] = v;
4097 p[1] = 1;
4098 return 1;
4099}
4100
4101static void handle_slab(unsigned long *n, struct kmem_cache *c,
4102 struct page *page)
4103{
4104 void *p;
4105 int i;
4106
4107 if (n[0] == n[1])
4108 return;
4109 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4110 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4111 continue;
4112
4113 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4114 return;
4115 }
4116}
4117
4118static void show_symbol(struct seq_file *m, unsigned long address)
4119{
4120#ifdef CONFIG_KALLSYMS
4121 unsigned long offset, size;
4122 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4123
4124 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4125 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4126 if (modname[0])
4127 seq_printf(m, " [%s]", modname);
4128 return;
4129 }
4130#endif
4131 seq_printf(m, "%p", (void *)address);
4132}
4133
4134static int leaks_show(struct seq_file *m, void *p)
4135{
4136 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4137 struct page *page;
4138 struct kmem_cache_node *n;
4139 const char *name;
4140 unsigned long *x = m->private;
4141 int node;
4142 int i;
4143
4144 if (!(cachep->flags & SLAB_STORE_USER))
4145 return 0;
4146 if (!(cachep->flags & SLAB_RED_ZONE))
4147 return 0;
4148
4149
4150
4151 x[1] = 0;
4152
4153 for_each_kmem_cache_node(cachep, node, n) {
4154
4155 check_irq_on();
4156 spin_lock_irq(&n->list_lock);
4157
4158 list_for_each_entry(page, &n->slabs_full, lru)
4159 handle_slab(x, cachep, page);
4160 list_for_each_entry(page, &n->slabs_partial, lru)
4161 handle_slab(x, cachep, page);
4162 spin_unlock_irq(&n->list_lock);
4163 }
4164 name = cachep->name;
4165 if (x[0] == x[1]) {
4166
4167 mutex_unlock(&slab_mutex);
4168 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4169 if (!m->private) {
4170
4171 m->private = x;
4172 mutex_lock(&slab_mutex);
4173 return -ENOMEM;
4174 }
4175 *(unsigned long *)m->private = x[0] * 2;
4176 kfree(x);
4177 mutex_lock(&slab_mutex);
4178
4179 m->count = m->size;
4180 return 0;
4181 }
4182 for (i = 0; i < x[1]; i++) {
4183 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4184 show_symbol(m, x[2*i+2]);
4185 seq_putc(m, '\n');
4186 }
4187
4188 return 0;
4189}
4190
4191static const struct seq_operations slabstats_op = {
4192 .start = slab_start,
4193 .next = slab_next,
4194 .stop = slab_stop,
4195 .show = leaks_show,
4196};
4197
4198static int slabstats_open(struct inode *inode, struct file *file)
4199{
4200 unsigned long *n;
4201
4202 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4203 if (!n)
4204 return -ENOMEM;
4205
4206 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4207
4208 return 0;
4209}
4210
4211static const struct file_operations proc_slabstats_operations = {
4212 .open = slabstats_open,
4213 .read = seq_read,
4214 .llseek = seq_lseek,
4215 .release = seq_release_private,
4216};
4217#endif
4218
4219static int __init slab_proc_init(void)
4220{
4221#ifdef CONFIG_DEBUG_SLAB_LEAK
4222 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4223#endif
4224 return 0;
4225}
4226module_init(slab_proc_init);
4227#endif
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241size_t ksize(const void *objp)
4242{
4243 BUG_ON(!objp);
4244 if (unlikely(objp == ZERO_SIZE_PTR))
4245 return 0;
4246
4247 return virt_to_cache(objp)->object_size;
4248}
4249EXPORT_SYMBOL(ksize);
4250