linux/mm/slab.c
<<
>>
Prefs
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *      (c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 *      (c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *      Jeff Bonwick (Sun Microsystems).
  20 *      Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *      are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *      and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  72 *      The sem is only needed when accessing/extending the cache-chain, which
  73 *      can never happen inside an interrupt (kmem_cache_create(),
  74 *      kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *      At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *      Shai Fultheim <shai@scalex86.org>.
  80 *      Shobhit Dayal <shobhit@calsoftinc.com>
  81 *      Alok N Kataria <alokk@calsoftinc.com>
  82 *      Christoph Lameter <christoph@lameter.com>
  83 *
  84 *      Modified the slab allocator to be node aware on NUMA systems.
  85 *      Each node has its own list of partial, free and full slabs.
  86 *      All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include        <linux/slab.h>
  90#include        <linux/mm.h>
  91#include        <linux/poison.h>
  92#include        <linux/swap.h>
  93#include        <linux/cache.h>
  94#include        <linux/interrupt.h>
  95#include        <linux/init.h>
  96#include        <linux/compiler.h>
  97#include        <linux/cpuset.h>
  98#include        <linux/proc_fs.h>
  99#include        <linux/seq_file.h>
 100#include        <linux/notifier.h>
 101#include        <linux/kallsyms.h>
 102#include        <linux/cpu.h>
 103#include        <linux/sysctl.h>
 104#include        <linux/module.h>
 105#include        <linux/rcupdate.h>
 106#include        <linux/string.h>
 107#include        <linux/uaccess.h>
 108#include        <linux/nodemask.h>
 109#include        <linux/kmemleak.h>
 110#include        <linux/mempolicy.h>
 111#include        <linux/mutex.h>
 112#include        <linux/fault-inject.h>
 113#include        <linux/rtmutex.h>
 114#include        <linux/reciprocal_div.h>
 115#include        <linux/debugobjects.h>
 116#include        <linux/kmemcheck.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119
 120#include        <net/sock.h>
 121
 122#include        <asm/cacheflush.h>
 123#include        <asm/tlbflush.h>
 124#include        <asm/page.h>
 125
 126#include <trace/events/kmem.h>
 127
 128#include        "internal.h"
 129
 130#include        "slab.h"
 131
 132/*
 133 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 134 *                0 for faster, smaller code (especially in the critical paths).
 135 *
 136 * STATS        - 1 to collect stats for /proc/slabinfo.
 137 *                0 for faster, smaller code (especially in the critical paths).
 138 *
 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 140 */
 141
 142#ifdef CONFIG_DEBUG_SLAB
 143#define DEBUG           1
 144#define STATS           1
 145#define FORCED_DEBUG    1
 146#else
 147#define DEBUG           0
 148#define STATS           0
 149#define FORCED_DEBUG    0
 150#endif
 151
 152/* Shouldn't this be in a header file somewhere? */
 153#define BYTES_PER_WORD          sizeof(void *)
 154#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 155
 156#ifndef ARCH_KMALLOC_FLAGS
 157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 158#endif
 159
 160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 161                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 162
 163#if FREELIST_BYTE_INDEX
 164typedef unsigned char freelist_idx_t;
 165#else
 166typedef unsigned short freelist_idx_t;
 167#endif
 168
 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 170
 171/*
 172 * true if a page was allocated from pfmemalloc reserves for network-based
 173 * swap
 174 */
 175static bool pfmemalloc_active __read_mostly;
 176
 177/*
 178 * struct array_cache
 179 *
 180 * Purpose:
 181 * - LIFO ordering, to hand out cache-warm objects from _alloc
 182 * - reduce the number of linked list operations
 183 * - reduce spinlock operations
 184 *
 185 * The limit is stored in the per-cpu structure to reduce the data cache
 186 * footprint.
 187 *
 188 */
 189struct array_cache {
 190        unsigned int avail;
 191        unsigned int limit;
 192        unsigned int batchcount;
 193        unsigned int touched;
 194        void *entry[];  /*
 195                         * Must have this definition in here for the proper
 196                         * alignment of array_cache. Also simplifies accessing
 197                         * the entries.
 198                         *
 199                         * Entries should not be directly dereferenced as
 200                         * entries belonging to slabs marked pfmemalloc will
 201                         * have the lower bits set SLAB_OBJ_PFMEMALLOC
 202                         */
 203};
 204
 205struct alien_cache {
 206        spinlock_t lock;
 207        struct array_cache ac;
 208};
 209
 210#define SLAB_OBJ_PFMEMALLOC     1
 211static inline bool is_obj_pfmemalloc(void *objp)
 212{
 213        return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
 214}
 215
 216static inline void set_obj_pfmemalloc(void **objp)
 217{
 218        *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
 219        return;
 220}
 221
 222static inline void clear_obj_pfmemalloc(void **objp)
 223{
 224        *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
 225}
 226
 227/*
 228 * bootstrap: The caches do not work without cpuarrays anymore, but the
 229 * cpuarrays are allocated from the generic caches...
 230 */
 231#define BOOT_CPUCACHE_ENTRIES   1
 232struct arraycache_init {
 233        struct array_cache cache;
 234        void *entries[BOOT_CPUCACHE_ENTRIES];
 235};
 236
 237/*
 238 * Need this for bootstrapping a per node allocator.
 239 */
 240#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 242#define CACHE_CACHE 0
 243#define SIZE_NODE (MAX_NUMNODES)
 244
 245static int drain_freelist(struct kmem_cache *cache,
 246                        struct kmem_cache_node *n, int tofree);
 247static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 248                        int node, struct list_head *list);
 249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 251static void cache_reap(struct work_struct *unused);
 252
 253static int slab_early_init = 1;
 254
 255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 256
 257static void kmem_cache_node_init(struct kmem_cache_node *parent)
 258{
 259        INIT_LIST_HEAD(&parent->slabs_full);
 260        INIT_LIST_HEAD(&parent->slabs_partial);
 261        INIT_LIST_HEAD(&parent->slabs_free);
 262        parent->shared = NULL;
 263        parent->alien = NULL;
 264        parent->colour_next = 0;
 265        spin_lock_init(&parent->list_lock);
 266        parent->free_objects = 0;
 267        parent->free_touched = 0;
 268}
 269
 270#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 271        do {                                                            \
 272                INIT_LIST_HEAD(listp);                                  \
 273                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 274        } while (0)
 275
 276#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 277        do {                                                            \
 278        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 279        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 280        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 281        } while (0)
 282
 283#define CFLGS_OFF_SLAB          (0x80000000UL)
 284#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 285#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
 286
 287#define BATCHREFILL_LIMIT       16
 288/*
 289 * Optimization question: fewer reaps means less probability for unnessary
 290 * cpucache drain/refill cycles.
 291 *
 292 * OTOH the cpuarrays can contain lots of objects,
 293 * which could lock up otherwise freeable slabs.
 294 */
 295#define REAPTIMEOUT_AC          (2*HZ)
 296#define REAPTIMEOUT_NODE        (4*HZ)
 297
 298#if STATS
 299#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 300#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 301#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 302#define STATS_INC_GROWN(x)      ((x)->grown++)
 303#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 304#define STATS_SET_HIGH(x)                                               \
 305        do {                                                            \
 306                if ((x)->num_active > (x)->high_mark)                   \
 307                        (x)->high_mark = (x)->num_active;               \
 308        } while (0)
 309#define STATS_INC_ERR(x)        ((x)->errors++)
 310#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 311#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 312#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 313#define STATS_SET_FREEABLE(x, i)                                        \
 314        do {                                                            \
 315                if ((x)->max_freeable < i)                              \
 316                        (x)->max_freeable = i;                          \
 317        } while (0)
 318#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 319#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 320#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 321#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 322#else
 323#define STATS_INC_ACTIVE(x)     do { } while (0)
 324#define STATS_DEC_ACTIVE(x)     do { } while (0)
 325#define STATS_INC_ALLOCED(x)    do { } while (0)
 326#define STATS_INC_GROWN(x)      do { } while (0)
 327#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 328#define STATS_SET_HIGH(x)       do { } while (0)
 329#define STATS_INC_ERR(x)        do { } while (0)
 330#define STATS_INC_NODEALLOCS(x) do { } while (0)
 331#define STATS_INC_NODEFREES(x)  do { } while (0)
 332#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 333#define STATS_SET_FREEABLE(x, i) do { } while (0)
 334#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 335#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 336#define STATS_INC_FREEHIT(x)    do { } while (0)
 337#define STATS_INC_FREEMISS(x)   do { } while (0)
 338#endif
 339
 340#if DEBUG
 341
 342/*
 343 * memory layout of objects:
 344 * 0            : objp
 345 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 346 *              the end of an object is aligned with the end of the real
 347 *              allocation. Catches writes behind the end of the allocation.
 348 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 349 *              redzone word.
 350 * cachep->obj_offset: The real object.
 351 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 352 * cachep->size - 1* BYTES_PER_WORD: last caller address
 353 *                                      [BYTES_PER_WORD long]
 354 */
 355static int obj_offset(struct kmem_cache *cachep)
 356{
 357        return cachep->obj_offset;
 358}
 359
 360static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 361{
 362        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 363        return (unsigned long long*) (objp + obj_offset(cachep) -
 364                                      sizeof(unsigned long long));
 365}
 366
 367static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 368{
 369        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 370        if (cachep->flags & SLAB_STORE_USER)
 371                return (unsigned long long *)(objp + cachep->size -
 372                                              sizeof(unsigned long long) -
 373                                              REDZONE_ALIGN);
 374        return (unsigned long long *) (objp + cachep->size -
 375                                       sizeof(unsigned long long));
 376}
 377
 378static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 379{
 380        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 381        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 382}
 383
 384#else
 385
 386#define obj_offset(x)                   0
 387#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 388#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 389#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 390
 391#endif
 392
 393#define OBJECT_FREE (0)
 394#define OBJECT_ACTIVE (1)
 395
 396#ifdef CONFIG_DEBUG_SLAB_LEAK
 397
 398static void set_obj_status(struct page *page, int idx, int val)
 399{
 400        int freelist_size;
 401        char *status;
 402        struct kmem_cache *cachep = page->slab_cache;
 403
 404        freelist_size = cachep->num * sizeof(freelist_idx_t);
 405        status = (char *)page->freelist + freelist_size;
 406        status[idx] = val;
 407}
 408
 409static inline unsigned int get_obj_status(struct page *page, int idx)
 410{
 411        int freelist_size;
 412        char *status;
 413        struct kmem_cache *cachep = page->slab_cache;
 414
 415        freelist_size = cachep->num * sizeof(freelist_idx_t);
 416        status = (char *)page->freelist + freelist_size;
 417
 418        return status[idx];
 419}
 420
 421#else
 422static inline void set_obj_status(struct page *page, int idx, int val) {}
 423
 424#endif
 425
 426/*
 427 * Do not go above this order unless 0 objects fit into the slab or
 428 * overridden on the command line.
 429 */
 430#define SLAB_MAX_ORDER_HI       1
 431#define SLAB_MAX_ORDER_LO       0
 432static int slab_max_order = SLAB_MAX_ORDER_LO;
 433static bool slab_max_order_set __initdata;
 434
 435static inline struct kmem_cache *virt_to_cache(const void *obj)
 436{
 437        struct page *page = virt_to_head_page(obj);
 438        return page->slab_cache;
 439}
 440
 441static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 442                                 unsigned int idx)
 443{
 444        return page->s_mem + cache->size * idx;
 445}
 446
 447/*
 448 * We want to avoid an expensive divide : (offset / cache->size)
 449 *   Using the fact that size is a constant for a particular cache,
 450 *   we can replace (offset / cache->size) by
 451 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 452 */
 453static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 454                                        const struct page *page, void *obj)
 455{
 456        u32 offset = (obj - page->s_mem);
 457        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 458}
 459
 460/* internal cache of cache description objs */
 461static struct kmem_cache kmem_cache_boot = {
 462        .batchcount = 1,
 463        .limit = BOOT_CPUCACHE_ENTRIES,
 464        .shared = 1,
 465        .size = sizeof(struct kmem_cache),
 466        .name = "kmem_cache",
 467};
 468
 469#define BAD_ALIEN_MAGIC 0x01020304ul
 470
 471static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 472
 473static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 474{
 475        return this_cpu_ptr(cachep->cpu_cache);
 476}
 477
 478static size_t calculate_freelist_size(int nr_objs, size_t align)
 479{
 480        size_t freelist_size;
 481
 482        freelist_size = nr_objs * sizeof(freelist_idx_t);
 483        if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
 484                freelist_size += nr_objs * sizeof(char);
 485
 486        if (align)
 487                freelist_size = ALIGN(freelist_size, align);
 488
 489        return freelist_size;
 490}
 491
 492static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
 493                                size_t idx_size, size_t align)
 494{
 495        int nr_objs;
 496        size_t remained_size;
 497        size_t freelist_size;
 498        int extra_space = 0;
 499
 500        if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
 501                extra_space = sizeof(char);
 502        /*
 503         * Ignore padding for the initial guess. The padding
 504         * is at most @align-1 bytes, and @buffer_size is at
 505         * least @align. In the worst case, this result will
 506         * be one greater than the number of objects that fit
 507         * into the memory allocation when taking the padding
 508         * into account.
 509         */
 510        nr_objs = slab_size / (buffer_size + idx_size + extra_space);
 511
 512        /*
 513         * This calculated number will be either the right
 514         * amount, or one greater than what we want.
 515         */
 516        remained_size = slab_size - nr_objs * buffer_size;
 517        freelist_size = calculate_freelist_size(nr_objs, align);
 518        if (remained_size < freelist_size)
 519                nr_objs--;
 520
 521        return nr_objs;
 522}
 523
 524/*
 525 * Calculate the number of objects and left-over bytes for a given buffer size.
 526 */
 527static void cache_estimate(unsigned long gfporder, size_t buffer_size,
 528                           size_t align, int flags, size_t *left_over,
 529                           unsigned int *num)
 530{
 531        int nr_objs;
 532        size_t mgmt_size;
 533        size_t slab_size = PAGE_SIZE << gfporder;
 534
 535        /*
 536         * The slab management structure can be either off the slab or
 537         * on it. For the latter case, the memory allocated for a
 538         * slab is used for:
 539         *
 540         * - One unsigned int for each object
 541         * - Padding to respect alignment of @align
 542         * - @buffer_size bytes for each object
 543         *
 544         * If the slab management structure is off the slab, then the
 545         * alignment will already be calculated into the size. Because
 546         * the slabs are all pages aligned, the objects will be at the
 547         * correct alignment when allocated.
 548         */
 549        if (flags & CFLGS_OFF_SLAB) {
 550                mgmt_size = 0;
 551                nr_objs = slab_size / buffer_size;
 552
 553        } else {
 554                nr_objs = calculate_nr_objs(slab_size, buffer_size,
 555                                        sizeof(freelist_idx_t), align);
 556                mgmt_size = calculate_freelist_size(nr_objs, align);
 557        }
 558        *num = nr_objs;
 559        *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
 560}
 561
 562#if DEBUG
 563#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 564
 565static void __slab_error(const char *function, struct kmem_cache *cachep,
 566                        char *msg)
 567{
 568        printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
 569               function, cachep->name, msg);
 570        dump_stack();
 571        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 572}
 573#endif
 574
 575/*
 576 * By default on NUMA we use alien caches to stage the freeing of
 577 * objects allocated from other nodes. This causes massive memory
 578 * inefficiencies when using fake NUMA setup to split memory into a
 579 * large number of small nodes, so it can be disabled on the command
 580 * line
 581  */
 582
 583static int use_alien_caches __read_mostly = 1;
 584static int __init noaliencache_setup(char *s)
 585{
 586        use_alien_caches = 0;
 587        return 1;
 588}
 589__setup("noaliencache", noaliencache_setup);
 590
 591static int __init slab_max_order_setup(char *str)
 592{
 593        get_option(&str, &slab_max_order);
 594        slab_max_order = slab_max_order < 0 ? 0 :
 595                                min(slab_max_order, MAX_ORDER - 1);
 596        slab_max_order_set = true;
 597
 598        return 1;
 599}
 600__setup("slab_max_order=", slab_max_order_setup);
 601
 602#ifdef CONFIG_NUMA
 603/*
 604 * Special reaping functions for NUMA systems called from cache_reap().
 605 * These take care of doing round robin flushing of alien caches (containing
 606 * objects freed on different nodes from which they were allocated) and the
 607 * flushing of remote pcps by calling drain_node_pages.
 608 */
 609static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 610
 611static void init_reap_node(int cpu)
 612{
 613        int node;
 614
 615        node = next_node(cpu_to_mem(cpu), node_online_map);
 616        if (node == MAX_NUMNODES)
 617                node = first_node(node_online_map);
 618
 619        per_cpu(slab_reap_node, cpu) = node;
 620}
 621
 622static void next_reap_node(void)
 623{
 624        int node = __this_cpu_read(slab_reap_node);
 625
 626        node = next_node(node, node_online_map);
 627        if (unlikely(node >= MAX_NUMNODES))
 628                node = first_node(node_online_map);
 629        __this_cpu_write(slab_reap_node, node);
 630}
 631
 632#else
 633#define init_reap_node(cpu) do { } while (0)
 634#define next_reap_node(void) do { } while (0)
 635#endif
 636
 637/*
 638 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 639 * via the workqueue/eventd.
 640 * Add the CPU number into the expiration time to minimize the possibility of
 641 * the CPUs getting into lockstep and contending for the global cache chain
 642 * lock.
 643 */
 644static void start_cpu_timer(int cpu)
 645{
 646        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 647
 648        /*
 649         * When this gets called from do_initcalls via cpucache_init(),
 650         * init_workqueues() has already run, so keventd will be setup
 651         * at that time.
 652         */
 653        if (keventd_up() && reap_work->work.func == NULL) {
 654                init_reap_node(cpu);
 655                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 656                schedule_delayed_work_on(cpu, reap_work,
 657                                        __round_jiffies_relative(HZ, cpu));
 658        }
 659}
 660
 661static void init_arraycache(struct array_cache *ac, int limit, int batch)
 662{
 663        /*
 664         * The array_cache structures contain pointers to free object.
 665         * However, when such objects are allocated or transferred to another
 666         * cache the pointers are not cleared and they could be counted as
 667         * valid references during a kmemleak scan. Therefore, kmemleak must
 668         * not scan such objects.
 669         */
 670        kmemleak_no_scan(ac);
 671        if (ac) {
 672                ac->avail = 0;
 673                ac->limit = limit;
 674                ac->batchcount = batch;
 675                ac->touched = 0;
 676        }
 677}
 678
 679static struct array_cache *alloc_arraycache(int node, int entries,
 680                                            int batchcount, gfp_t gfp)
 681{
 682        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 683        struct array_cache *ac = NULL;
 684
 685        ac = kmalloc_node(memsize, gfp, node);
 686        init_arraycache(ac, entries, batchcount);
 687        return ac;
 688}
 689
 690static inline bool is_slab_pfmemalloc(struct page *page)
 691{
 692        return PageSlabPfmemalloc(page);
 693}
 694
 695/* Clears pfmemalloc_active if no slabs have pfmalloc set */
 696static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
 697                                                struct array_cache *ac)
 698{
 699        struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
 700        struct page *page;
 701        unsigned long flags;
 702
 703        if (!pfmemalloc_active)
 704                return;
 705
 706        spin_lock_irqsave(&n->list_lock, flags);
 707        list_for_each_entry(page, &n->slabs_full, lru)
 708                if (is_slab_pfmemalloc(page))
 709                        goto out;
 710
 711        list_for_each_entry(page, &n->slabs_partial, lru)
 712                if (is_slab_pfmemalloc(page))
 713                        goto out;
 714
 715        list_for_each_entry(page, &n->slabs_free, lru)
 716                if (is_slab_pfmemalloc(page))
 717                        goto out;
 718
 719        pfmemalloc_active = false;
 720out:
 721        spin_unlock_irqrestore(&n->list_lock, flags);
 722}
 723
 724static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
 725                                                gfp_t flags, bool force_refill)
 726{
 727        int i;
 728        void *objp = ac->entry[--ac->avail];
 729
 730        /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
 731        if (unlikely(is_obj_pfmemalloc(objp))) {
 732                struct kmem_cache_node *n;
 733
 734                if (gfp_pfmemalloc_allowed(flags)) {
 735                        clear_obj_pfmemalloc(&objp);
 736                        return objp;
 737                }
 738
 739                /* The caller cannot use PFMEMALLOC objects, find another one */
 740                for (i = 0; i < ac->avail; i++) {
 741                        /* If a !PFMEMALLOC object is found, swap them */
 742                        if (!is_obj_pfmemalloc(ac->entry[i])) {
 743                                objp = ac->entry[i];
 744                                ac->entry[i] = ac->entry[ac->avail];
 745                                ac->entry[ac->avail] = objp;
 746                                return objp;
 747                        }
 748                }
 749
 750                /*
 751                 * If there are empty slabs on the slabs_free list and we are
 752                 * being forced to refill the cache, mark this one !pfmemalloc.
 753                 */
 754                n = get_node(cachep, numa_mem_id());
 755                if (!list_empty(&n->slabs_free) && force_refill) {
 756                        struct page *page = virt_to_head_page(objp);
 757                        ClearPageSlabPfmemalloc(page);
 758                        clear_obj_pfmemalloc(&objp);
 759                        recheck_pfmemalloc_active(cachep, ac);
 760                        return objp;
 761                }
 762
 763                /* No !PFMEMALLOC objects available */
 764                ac->avail++;
 765                objp = NULL;
 766        }
 767
 768        return objp;
 769}
 770
 771static inline void *ac_get_obj(struct kmem_cache *cachep,
 772                        struct array_cache *ac, gfp_t flags, bool force_refill)
 773{
 774        void *objp;
 775
 776        if (unlikely(sk_memalloc_socks()))
 777                objp = __ac_get_obj(cachep, ac, flags, force_refill);
 778        else
 779                objp = ac->entry[--ac->avail];
 780
 781        return objp;
 782}
 783
 784static noinline void *__ac_put_obj(struct kmem_cache *cachep,
 785                        struct array_cache *ac, void *objp)
 786{
 787        if (unlikely(pfmemalloc_active)) {
 788                /* Some pfmemalloc slabs exist, check if this is one */
 789                struct page *page = virt_to_head_page(objp);
 790                if (PageSlabPfmemalloc(page))
 791                        set_obj_pfmemalloc(&objp);
 792        }
 793
 794        return objp;
 795}
 796
 797static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
 798                                                                void *objp)
 799{
 800        if (unlikely(sk_memalloc_socks()))
 801                objp = __ac_put_obj(cachep, ac, objp);
 802
 803        ac->entry[ac->avail++] = objp;
 804}
 805
 806/*
 807 * Transfer objects in one arraycache to another.
 808 * Locking must be handled by the caller.
 809 *
 810 * Return the number of entries transferred.
 811 */
 812static int transfer_objects(struct array_cache *to,
 813                struct array_cache *from, unsigned int max)
 814{
 815        /* Figure out how many entries to transfer */
 816        int nr = min3(from->avail, max, to->limit - to->avail);
 817
 818        if (!nr)
 819                return 0;
 820
 821        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 822                        sizeof(void *) *nr);
 823
 824        from->avail -= nr;
 825        to->avail += nr;
 826        return nr;
 827}
 828
 829#ifndef CONFIG_NUMA
 830
 831#define drain_alien_cache(cachep, alien) do { } while (0)
 832#define reap_alien(cachep, n) do { } while (0)
 833
 834static inline struct alien_cache **alloc_alien_cache(int node,
 835                                                int limit, gfp_t gfp)
 836{
 837        return (struct alien_cache **)BAD_ALIEN_MAGIC;
 838}
 839
 840static inline void free_alien_cache(struct alien_cache **ac_ptr)
 841{
 842}
 843
 844static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 845{
 846        return 0;
 847}
 848
 849static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 850                gfp_t flags)
 851{
 852        return NULL;
 853}
 854
 855static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 856                 gfp_t flags, int nodeid)
 857{
 858        return NULL;
 859}
 860
 861static inline gfp_t gfp_exact_node(gfp_t flags)
 862{
 863        return flags;
 864}
 865
 866#else   /* CONFIG_NUMA */
 867
 868static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 869static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 870
 871static struct alien_cache *__alloc_alien_cache(int node, int entries,
 872                                                int batch, gfp_t gfp)
 873{
 874        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 875        struct alien_cache *alc = NULL;
 876
 877        alc = kmalloc_node(memsize, gfp, node);
 878        init_arraycache(&alc->ac, entries, batch);
 879        spin_lock_init(&alc->lock);
 880        return alc;
 881}
 882
 883static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 884{
 885        struct alien_cache **alc_ptr;
 886        size_t memsize = sizeof(void *) * nr_node_ids;
 887        int i;
 888
 889        if (limit > 1)
 890                limit = 12;
 891        alc_ptr = kzalloc_node(memsize, gfp, node);
 892        if (!alc_ptr)
 893                return NULL;
 894
 895        for_each_node(i) {
 896                if (i == node || !node_online(i))
 897                        continue;
 898                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 899                if (!alc_ptr[i]) {
 900                        for (i--; i >= 0; i--)
 901                                kfree(alc_ptr[i]);
 902                        kfree(alc_ptr);
 903                        return NULL;
 904                }
 905        }
 906        return alc_ptr;
 907}
 908
 909static void free_alien_cache(struct alien_cache **alc_ptr)
 910{
 911        int i;
 912
 913        if (!alc_ptr)
 914                return;
 915        for_each_node(i)
 916            kfree(alc_ptr[i]);
 917        kfree(alc_ptr);
 918}
 919
 920static void __drain_alien_cache(struct kmem_cache *cachep,
 921                                struct array_cache *ac, int node,
 922                                struct list_head *list)
 923{
 924        struct kmem_cache_node *n = get_node(cachep, node);
 925
 926        if (ac->avail) {
 927                spin_lock(&n->list_lock);
 928                /*
 929                 * Stuff objects into the remote nodes shared array first.
 930                 * That way we could avoid the overhead of putting the objects
 931                 * into the free lists and getting them back later.
 932                 */
 933                if (n->shared)
 934                        transfer_objects(n->shared, ac, ac->limit);
 935
 936                free_block(cachep, ac->entry, ac->avail, node, list);
 937                ac->avail = 0;
 938                spin_unlock(&n->list_lock);
 939        }
 940}
 941
 942/*
 943 * Called from cache_reap() to regularly drain alien caches round robin.
 944 */
 945static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 946{
 947        int node = __this_cpu_read(slab_reap_node);
 948
 949        if (n->alien) {
 950                struct alien_cache *alc = n->alien[node];
 951                struct array_cache *ac;
 952
 953                if (alc) {
 954                        ac = &alc->ac;
 955                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 956                                LIST_HEAD(list);
 957
 958                                __drain_alien_cache(cachep, ac, node, &list);
 959                                spin_unlock_irq(&alc->lock);
 960                                slabs_destroy(cachep, &list);
 961                        }
 962                }
 963        }
 964}
 965
 966static void drain_alien_cache(struct kmem_cache *cachep,
 967                                struct alien_cache **alien)
 968{
 969        int i = 0;
 970        struct alien_cache *alc;
 971        struct array_cache *ac;
 972        unsigned long flags;
 973
 974        for_each_online_node(i) {
 975                alc = alien[i];
 976                if (alc) {
 977                        LIST_HEAD(list);
 978
 979                        ac = &alc->ac;
 980                        spin_lock_irqsave(&alc->lock, flags);
 981                        __drain_alien_cache(cachep, ac, i, &list);
 982                        spin_unlock_irqrestore(&alc->lock, flags);
 983                        slabs_destroy(cachep, &list);
 984                }
 985        }
 986}
 987
 988static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 989                                int node, int page_node)
 990{
 991        struct kmem_cache_node *n;
 992        struct alien_cache *alien = NULL;
 993        struct array_cache *ac;
 994        LIST_HEAD(list);
 995
 996        n = get_node(cachep, node);
 997        STATS_INC_NODEFREES(cachep);
 998        if (n->alien && n->alien[page_node]) {
 999                alien = n->alien[page_node];
1000                ac = &alien->ac;
1001                spin_lock(&alien->lock);
1002                if (unlikely(ac->avail == ac->limit)) {
1003                        STATS_INC_ACOVERFLOW(cachep);
1004                        __drain_alien_cache(cachep, ac, page_node, &list);
1005                }
1006                ac_put_obj(cachep, ac, objp);
1007                spin_unlock(&alien->lock);
1008                slabs_destroy(cachep, &list);
1009        } else {
1010                n = get_node(cachep, page_node);
1011                spin_lock(&n->list_lock);
1012                free_block(cachep, &objp, 1, page_node, &list);
1013                spin_unlock(&n->list_lock);
1014                slabs_destroy(cachep, &list);
1015        }
1016        return 1;
1017}
1018
1019static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1020{
1021        int page_node = page_to_nid(virt_to_page(objp));
1022        int node = numa_mem_id();
1023        /*
1024         * Make sure we are not freeing a object from another node to the array
1025         * cache on this cpu.
1026         */
1027        if (likely(node == page_node))
1028                return 0;
1029
1030        return __cache_free_alien(cachep, objp, node, page_node);
1031}
1032
1033/*
1034 * Construct gfp mask to allocate from a specific node but do not direct reclaim
1035 * or warn about failures. kswapd may still wake to reclaim in the background.
1036 */
1037static inline gfp_t gfp_exact_node(gfp_t flags)
1038{
1039        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
1040}
1041#endif
1042
1043/*
1044 * Allocates and initializes node for a node on each slab cache, used for
1045 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1046 * will be allocated off-node since memory is not yet online for the new node.
1047 * When hotplugging memory or a cpu, existing node are not replaced if
1048 * already in use.
1049 *
1050 * Must hold slab_mutex.
1051 */
1052static int init_cache_node_node(int node)
1053{
1054        struct kmem_cache *cachep;
1055        struct kmem_cache_node *n;
1056        const size_t memsize = sizeof(struct kmem_cache_node);
1057
1058        list_for_each_entry(cachep, &slab_caches, list) {
1059                /*
1060                 * Set up the kmem_cache_node for cpu before we can
1061                 * begin anything. Make sure some other cpu on this
1062                 * node has not already allocated this
1063                 */
1064                n = get_node(cachep, node);
1065                if (!n) {
1066                        n = kmalloc_node(memsize, GFP_KERNEL, node);
1067                        if (!n)
1068                                return -ENOMEM;
1069                        kmem_cache_node_init(n);
1070                        n->next_reap = jiffies + REAPTIMEOUT_NODE +
1071                            ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1072
1073                        /*
1074                         * The kmem_cache_nodes don't come and go as CPUs
1075                         * come and go.  slab_mutex is sufficient
1076                         * protection here.
1077                         */
1078                        cachep->node[node] = n;
1079                }
1080
1081                spin_lock_irq(&n->list_lock);
1082                n->free_limit =
1083                        (1 + nr_cpus_node(node)) *
1084                        cachep->batchcount + cachep->num;
1085                spin_unlock_irq(&n->list_lock);
1086        }
1087        return 0;
1088}
1089
1090static inline int slabs_tofree(struct kmem_cache *cachep,
1091                                                struct kmem_cache_node *n)
1092{
1093        return (n->free_objects + cachep->num - 1) / cachep->num;
1094}
1095
1096static void cpuup_canceled(long cpu)
1097{
1098        struct kmem_cache *cachep;
1099        struct kmem_cache_node *n = NULL;
1100        int node = cpu_to_mem(cpu);
1101        const struct cpumask *mask = cpumask_of_node(node);
1102
1103        list_for_each_entry(cachep, &slab_caches, list) {
1104                struct array_cache *nc;
1105                struct array_cache *shared;
1106                struct alien_cache **alien;
1107                LIST_HEAD(list);
1108
1109                n = get_node(cachep, node);
1110                if (!n)
1111                        continue;
1112
1113                spin_lock_irq(&n->list_lock);
1114
1115                /* Free limit for this kmem_cache_node */
1116                n->free_limit -= cachep->batchcount;
1117
1118                /* cpu is dead; no one can alloc from it. */
1119                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1120                if (nc) {
1121                        free_block(cachep, nc->entry, nc->avail, node, &list);
1122                        nc->avail = 0;
1123                }
1124
1125                if (!cpumask_empty(mask)) {
1126                        spin_unlock_irq(&n->list_lock);
1127                        goto free_slab;
1128                }
1129
1130                shared = n->shared;
1131                if (shared) {
1132                        free_block(cachep, shared->entry,
1133                                   shared->avail, node, &list);
1134                        n->shared = NULL;
1135                }
1136
1137                alien = n->alien;
1138                n->alien = NULL;
1139
1140                spin_unlock_irq(&n->list_lock);
1141
1142                kfree(shared);
1143                if (alien) {
1144                        drain_alien_cache(cachep, alien);
1145                        free_alien_cache(alien);
1146                }
1147
1148free_slab:
1149                slabs_destroy(cachep, &list);
1150        }
1151        /*
1152         * In the previous loop, all the objects were freed to
1153         * the respective cache's slabs,  now we can go ahead and
1154         * shrink each nodelist to its limit.
1155         */
1156        list_for_each_entry(cachep, &slab_caches, list) {
1157                n = get_node(cachep, node);
1158                if (!n)
1159                        continue;
1160                drain_freelist(cachep, n, slabs_tofree(cachep, n));
1161        }
1162}
1163
1164static int cpuup_prepare(long cpu)
1165{
1166        struct kmem_cache *cachep;
1167        struct kmem_cache_node *n = NULL;
1168        int node = cpu_to_mem(cpu);
1169        int err;
1170
1171        /*
1172         * We need to do this right in the beginning since
1173         * alloc_arraycache's are going to use this list.
1174         * kmalloc_node allows us to add the slab to the right
1175         * kmem_cache_node and not this cpu's kmem_cache_node
1176         */
1177        err = init_cache_node_node(node);
1178        if (err < 0)
1179                goto bad;
1180
1181        /*
1182         * Now we can go ahead with allocating the shared arrays and
1183         * array caches
1184         */
1185        list_for_each_entry(cachep, &slab_caches, list) {
1186                struct array_cache *shared = NULL;
1187                struct alien_cache **alien = NULL;
1188
1189                if (cachep->shared) {
1190                        shared = alloc_arraycache(node,
1191                                cachep->shared * cachep->batchcount,
1192                                0xbaadf00d, GFP_KERNEL);
1193                        if (!shared)
1194                                goto bad;
1195                }
1196                if (use_alien_caches) {
1197                        alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1198                        if (!alien) {
1199                                kfree(shared);
1200                                goto bad;
1201                        }
1202                }
1203                n = get_node(cachep, node);
1204                BUG_ON(!n);
1205
1206                spin_lock_irq(&n->list_lock);
1207                if (!n->shared) {
1208                        /*
1209                         * We are serialised from CPU_DEAD or
1210                         * CPU_UP_CANCELLED by the cpucontrol lock
1211                         */
1212                        n->shared = shared;
1213                        shared = NULL;
1214                }
1215#ifdef CONFIG_NUMA
1216                if (!n->alien) {
1217                        n->alien = alien;
1218                        alien = NULL;
1219                }
1220#endif
1221                spin_unlock_irq(&n->list_lock);
1222                kfree(shared);
1223                free_alien_cache(alien);
1224        }
1225
1226        return 0;
1227bad:
1228        cpuup_canceled(cpu);
1229        return -ENOMEM;
1230}
1231
1232static int cpuup_callback(struct notifier_block *nfb,
1233                                    unsigned long action, void *hcpu)
1234{
1235        long cpu = (long)hcpu;
1236        int err = 0;
1237
1238        switch (action) {
1239        case CPU_UP_PREPARE:
1240        case CPU_UP_PREPARE_FROZEN:
1241                mutex_lock(&slab_mutex);
1242                err = cpuup_prepare(cpu);
1243                mutex_unlock(&slab_mutex);
1244                break;
1245        case CPU_ONLINE:
1246        case CPU_ONLINE_FROZEN:
1247                start_cpu_timer(cpu);
1248                break;
1249#ifdef CONFIG_HOTPLUG_CPU
1250        case CPU_DOWN_PREPARE:
1251        case CPU_DOWN_PREPARE_FROZEN:
1252                /*
1253                 * Shutdown cache reaper. Note that the slab_mutex is
1254                 * held so that if cache_reap() is invoked it cannot do
1255                 * anything expensive but will only modify reap_work
1256                 * and reschedule the timer.
1257                */
1258                cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1259                /* Now the cache_reaper is guaranteed to be not running. */
1260                per_cpu(slab_reap_work, cpu).work.func = NULL;
1261                break;
1262        case CPU_DOWN_FAILED:
1263        case CPU_DOWN_FAILED_FROZEN:
1264                start_cpu_timer(cpu);
1265                break;
1266        case CPU_DEAD:
1267        case CPU_DEAD_FROZEN:
1268                /*
1269                 * Even if all the cpus of a node are down, we don't free the
1270                 * kmem_cache_node of any cache. This to avoid a race between
1271                 * cpu_down, and a kmalloc allocation from another cpu for
1272                 * memory from the node of the cpu going down.  The node
1273                 * structure is usually allocated from kmem_cache_create() and
1274                 * gets destroyed at kmem_cache_destroy().
1275                 */
1276                /* fall through */
1277#endif
1278        case CPU_UP_CANCELED:
1279        case CPU_UP_CANCELED_FROZEN:
1280                mutex_lock(&slab_mutex);
1281                cpuup_canceled(cpu);
1282                mutex_unlock(&slab_mutex);
1283                break;
1284        }
1285        return notifier_from_errno(err);
1286}
1287
1288static struct notifier_block cpucache_notifier = {
1289        &cpuup_callback, NULL, 0
1290};
1291
1292#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1293/*
1294 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1295 * Returns -EBUSY if all objects cannot be drained so that the node is not
1296 * removed.
1297 *
1298 * Must hold slab_mutex.
1299 */
1300static int __meminit drain_cache_node_node(int node)
1301{
1302        struct kmem_cache *cachep;
1303        int ret = 0;
1304
1305        list_for_each_entry(cachep, &slab_caches, list) {
1306                struct kmem_cache_node *n;
1307
1308                n = get_node(cachep, node);
1309                if (!n)
1310                        continue;
1311
1312                drain_freelist(cachep, n, slabs_tofree(cachep, n));
1313
1314                if (!list_empty(&n->slabs_full) ||
1315                    !list_empty(&n->slabs_partial)) {
1316                        ret = -EBUSY;
1317                        break;
1318                }
1319        }
1320        return ret;
1321}
1322
1323static int __meminit slab_memory_callback(struct notifier_block *self,
1324                                        unsigned long action, void *arg)
1325{
1326        struct memory_notify *mnb = arg;
1327        int ret = 0;
1328        int nid;
1329
1330        nid = mnb->status_change_nid;
1331        if (nid < 0)
1332                goto out;
1333
1334        switch (action) {
1335        case MEM_GOING_ONLINE:
1336                mutex_lock(&slab_mutex);
1337                ret = init_cache_node_node(nid);
1338                mutex_unlock(&slab_mutex);
1339                break;
1340        case MEM_GOING_OFFLINE:
1341                mutex_lock(&slab_mutex);
1342                ret = drain_cache_node_node(nid);
1343                mutex_unlock(&slab_mutex);
1344                break;
1345        case MEM_ONLINE:
1346        case MEM_OFFLINE:
1347        case MEM_CANCEL_ONLINE:
1348        case MEM_CANCEL_OFFLINE:
1349                break;
1350        }
1351out:
1352        return notifier_from_errno(ret);
1353}
1354#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1355
1356/*
1357 * swap the static kmem_cache_node with kmalloced memory
1358 */
1359static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1360                                int nodeid)
1361{
1362        struct kmem_cache_node *ptr;
1363
1364        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1365        BUG_ON(!ptr);
1366
1367        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1368        /*
1369         * Do not assume that spinlocks can be initialized via memcpy:
1370         */
1371        spin_lock_init(&ptr->list_lock);
1372
1373        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1374        cachep->node[nodeid] = ptr;
1375}
1376
1377/*
1378 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1379 * size of kmem_cache_node.
1380 */
1381static void __init set_up_node(struct kmem_cache *cachep, int index)
1382{
1383        int node;
1384
1385        for_each_online_node(node) {
1386                cachep->node[node] = &init_kmem_cache_node[index + node];
1387                cachep->node[node]->next_reap = jiffies +
1388                    REAPTIMEOUT_NODE +
1389                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1390        }
1391}
1392
1393/*
1394 * Initialisation.  Called after the page allocator have been initialised and
1395 * before smp_init().
1396 */
1397void __init kmem_cache_init(void)
1398{
1399        int i;
1400
1401        BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1402                                        sizeof(struct rcu_head));
1403        kmem_cache = &kmem_cache_boot;
1404
1405        if (num_possible_nodes() == 1)
1406                use_alien_caches = 0;
1407
1408        for (i = 0; i < NUM_INIT_LISTS; i++)
1409                kmem_cache_node_init(&init_kmem_cache_node[i]);
1410
1411        /*
1412         * Fragmentation resistance on low memory - only use bigger
1413         * page orders on machines with more than 32MB of memory if
1414         * not overridden on the command line.
1415         */
1416        if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1417                slab_max_order = SLAB_MAX_ORDER_HI;
1418
1419        /* Bootstrap is tricky, because several objects are allocated
1420         * from caches that do not exist yet:
1421         * 1) initialize the kmem_cache cache: it contains the struct
1422         *    kmem_cache structures of all caches, except kmem_cache itself:
1423         *    kmem_cache is statically allocated.
1424         *    Initially an __init data area is used for the head array and the
1425         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1426         *    array at the end of the bootstrap.
1427         * 2) Create the first kmalloc cache.
1428         *    The struct kmem_cache for the new cache is allocated normally.
1429         *    An __init data area is used for the head array.
1430         * 3) Create the remaining kmalloc caches, with minimally sized
1431         *    head arrays.
1432         * 4) Replace the __init data head arrays for kmem_cache and the first
1433         *    kmalloc cache with kmalloc allocated arrays.
1434         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1435         *    the other cache's with kmalloc allocated memory.
1436         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1437         */
1438
1439        /* 1) create the kmem_cache */
1440
1441        /*
1442         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1443         */
1444        create_boot_cache(kmem_cache, "kmem_cache",
1445                offsetof(struct kmem_cache, node) +
1446                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1447                                  SLAB_HWCACHE_ALIGN);
1448        list_add(&kmem_cache->list, &slab_caches);
1449        slab_state = PARTIAL;
1450
1451        /*
1452         * Initialize the caches that provide memory for the  kmem_cache_node
1453         * structures first.  Without this, further allocations will bug.
1454         */
1455        kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1456                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1457        slab_state = PARTIAL_NODE;
1458        setup_kmalloc_cache_index_table();
1459
1460        slab_early_init = 0;
1461
1462        /* 5) Replace the bootstrap kmem_cache_node */
1463        {
1464                int nid;
1465
1466                for_each_online_node(nid) {
1467                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1468
1469                        init_list(kmalloc_caches[INDEX_NODE],
1470                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1471                }
1472        }
1473
1474        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1475}
1476
1477void __init kmem_cache_init_late(void)
1478{
1479        struct kmem_cache *cachep;
1480
1481        slab_state = UP;
1482
1483        /* 6) resize the head arrays to their final sizes */
1484        mutex_lock(&slab_mutex);
1485        list_for_each_entry(cachep, &slab_caches, list)
1486                if (enable_cpucache(cachep, GFP_NOWAIT))
1487                        BUG();
1488        mutex_unlock(&slab_mutex);
1489
1490        /* Done! */
1491        slab_state = FULL;
1492
1493        /*
1494         * Register a cpu startup notifier callback that initializes
1495         * cpu_cache_get for all new cpus
1496         */
1497        register_cpu_notifier(&cpucache_notifier);
1498
1499#ifdef CONFIG_NUMA
1500        /*
1501         * Register a memory hotplug callback that initializes and frees
1502         * node.
1503         */
1504        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1505#endif
1506
1507        /*
1508         * The reap timers are started later, with a module init call: That part
1509         * of the kernel is not yet operational.
1510         */
1511}
1512
1513static int __init cpucache_init(void)
1514{
1515        int cpu;
1516
1517        /*
1518         * Register the timers that return unneeded pages to the page allocator
1519         */
1520        for_each_online_cpu(cpu)
1521                start_cpu_timer(cpu);
1522
1523        /* Done! */
1524        slab_state = FULL;
1525        return 0;
1526}
1527__initcall(cpucache_init);
1528
1529static noinline void
1530slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1531{
1532#if DEBUG
1533        struct kmem_cache_node *n;
1534        struct page *page;
1535        unsigned long flags;
1536        int node;
1537        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1538                                      DEFAULT_RATELIMIT_BURST);
1539
1540        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1541                return;
1542
1543        printk(KERN_WARNING
1544                "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1545                nodeid, gfpflags);
1546        printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1547                cachep->name, cachep->size, cachep->gfporder);
1548
1549        for_each_kmem_cache_node(cachep, node, n) {
1550                unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1551                unsigned long active_slabs = 0, num_slabs = 0;
1552
1553                spin_lock_irqsave(&n->list_lock, flags);
1554                list_for_each_entry(page, &n->slabs_full, lru) {
1555                        active_objs += cachep->num;
1556                        active_slabs++;
1557                }
1558                list_for_each_entry(page, &n->slabs_partial, lru) {
1559                        active_objs += page->active;
1560                        active_slabs++;
1561                }
1562                list_for_each_entry(page, &n->slabs_free, lru)
1563                        num_slabs++;
1564
1565                free_objects += n->free_objects;
1566                spin_unlock_irqrestore(&n->list_lock, flags);
1567
1568                num_slabs += active_slabs;
1569                num_objs = num_slabs * cachep->num;
1570                printk(KERN_WARNING
1571                        "  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1572                        node, active_slabs, num_slabs, active_objs, num_objs,
1573                        free_objects);
1574        }
1575#endif
1576}
1577
1578/*
1579 * Interface to system's page allocator. No need to hold the
1580 * kmem_cache_node ->list_lock.
1581 *
1582 * If we requested dmaable memory, we will get it. Even if we
1583 * did not request dmaable memory, we might get it, but that
1584 * would be relatively rare and ignorable.
1585 */
1586static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1587                                                                int nodeid)
1588{
1589        struct page *page;
1590        int nr_pages;
1591
1592        flags |= cachep->allocflags;
1593        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1594                flags |= __GFP_RECLAIMABLE;
1595
1596        page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1597        if (!page) {
1598                slab_out_of_memory(cachep, flags, nodeid);
1599                return NULL;
1600        }
1601
1602        if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1603                __free_pages(page, cachep->gfporder);
1604                return NULL;
1605        }
1606
1607        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1608        if (page_is_pfmemalloc(page))
1609                pfmemalloc_active = true;
1610
1611        nr_pages = (1 << cachep->gfporder);
1612        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1613                add_zone_page_state(page_zone(page),
1614                        NR_SLAB_RECLAIMABLE, nr_pages);
1615        else
1616                add_zone_page_state(page_zone(page),
1617                        NR_SLAB_UNRECLAIMABLE, nr_pages);
1618        __SetPageSlab(page);
1619        if (page_is_pfmemalloc(page))
1620                SetPageSlabPfmemalloc(page);
1621
1622        if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1623                kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1624
1625                if (cachep->ctor)
1626                        kmemcheck_mark_uninitialized_pages(page, nr_pages);
1627                else
1628                        kmemcheck_mark_unallocated_pages(page, nr_pages);
1629        }
1630
1631        return page;
1632}
1633
1634/*
1635 * Interface to system's page release.
1636 */
1637static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1638{
1639        const unsigned long nr_freed = (1 << cachep->gfporder);
1640
1641        kmemcheck_free_shadow(page, cachep->gfporder);
1642
1643        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1644                sub_zone_page_state(page_zone(page),
1645                                NR_SLAB_RECLAIMABLE, nr_freed);
1646        else
1647                sub_zone_page_state(page_zone(page),
1648                                NR_SLAB_UNRECLAIMABLE, nr_freed);
1649
1650        BUG_ON(!PageSlab(page));
1651        __ClearPageSlabPfmemalloc(page);
1652        __ClearPageSlab(page);
1653        page_mapcount_reset(page);
1654        page->mapping = NULL;
1655
1656        if (current->reclaim_state)
1657                current->reclaim_state->reclaimed_slab += nr_freed;
1658        __free_kmem_pages(page, cachep->gfporder);
1659}
1660
1661static void kmem_rcu_free(struct rcu_head *head)
1662{
1663        struct kmem_cache *cachep;
1664        struct page *page;
1665
1666        page = container_of(head, struct page, rcu_head);
1667        cachep = page->slab_cache;
1668
1669        kmem_freepages(cachep, page);
1670}
1671
1672#if DEBUG
1673
1674#ifdef CONFIG_DEBUG_PAGEALLOC
1675static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1676                            unsigned long caller)
1677{
1678        int size = cachep->object_size;
1679
1680        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1681
1682        if (size < 5 * sizeof(unsigned long))
1683                return;
1684
1685        *addr++ = 0x12345678;
1686        *addr++ = caller;
1687        *addr++ = smp_processor_id();
1688        size -= 3 * sizeof(unsigned long);
1689        {
1690                unsigned long *sptr = &caller;
1691                unsigned long svalue;
1692
1693                while (!kstack_end(sptr)) {
1694                        svalue = *sptr++;
1695                        if (kernel_text_address(svalue)) {
1696                                *addr++ = svalue;
1697                                size -= sizeof(unsigned long);
1698                                if (size <= sizeof(unsigned long))
1699                                        break;
1700                        }
1701                }
1702
1703        }
1704        *addr++ = 0x87654321;
1705}
1706#endif
1707
1708static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1709{
1710        int size = cachep->object_size;
1711        addr = &((char *)addr)[obj_offset(cachep)];
1712
1713        memset(addr, val, size);
1714        *(unsigned char *)(addr + size - 1) = POISON_END;
1715}
1716
1717static void dump_line(char *data, int offset, int limit)
1718{
1719        int i;
1720        unsigned char error = 0;
1721        int bad_count = 0;
1722
1723        printk(KERN_ERR "%03x: ", offset);
1724        for (i = 0; i < limit; i++) {
1725                if (data[offset + i] != POISON_FREE) {
1726                        error = data[offset + i];
1727                        bad_count++;
1728                }
1729        }
1730        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1731                        &data[offset], limit, 1);
1732
1733        if (bad_count == 1) {
1734                error ^= POISON_FREE;
1735                if (!(error & (error - 1))) {
1736                        printk(KERN_ERR "Single bit error detected. Probably "
1737                                        "bad RAM.\n");
1738#ifdef CONFIG_X86
1739                        printk(KERN_ERR "Run memtest86+ or a similar memory "
1740                                        "test tool.\n");
1741#else
1742                        printk(KERN_ERR "Run a memory test tool.\n");
1743#endif
1744                }
1745        }
1746}
1747#endif
1748
1749#if DEBUG
1750
1751static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1752{
1753        int i, size;
1754        char *realobj;
1755
1756        if (cachep->flags & SLAB_RED_ZONE) {
1757                printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1758                        *dbg_redzone1(cachep, objp),
1759                        *dbg_redzone2(cachep, objp));
1760        }
1761
1762        if (cachep->flags & SLAB_STORE_USER) {
1763                printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1764                       *dbg_userword(cachep, objp),
1765                       *dbg_userword(cachep, objp));
1766        }
1767        realobj = (char *)objp + obj_offset(cachep);
1768        size = cachep->object_size;
1769        for (i = 0; i < size && lines; i += 16, lines--) {
1770                int limit;
1771                limit = 16;
1772                if (i + limit > size)
1773                        limit = size - i;
1774                dump_line(realobj, i, limit);
1775        }
1776}
1777
1778static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1779{
1780        char *realobj;
1781        int size, i;
1782        int lines = 0;
1783
1784        realobj = (char *)objp + obj_offset(cachep);
1785        size = cachep->object_size;
1786
1787        for (i = 0; i < size; i++) {
1788                char exp = POISON_FREE;
1789                if (i == size - 1)
1790                        exp = POISON_END;
1791                if (realobj[i] != exp) {
1792                        int limit;
1793                        /* Mismatch ! */
1794                        /* Print header */
1795                        if (lines == 0) {
1796                                printk(KERN_ERR
1797                                        "Slab corruption (%s): %s start=%p, len=%d\n",
1798                                        print_tainted(), cachep->name, realobj, size);
1799                                print_objinfo(cachep, objp, 0);
1800                        }
1801                        /* Hexdump the affected line */
1802                        i = (i / 16) * 16;
1803                        limit = 16;
1804                        if (i + limit > size)
1805                                limit = size - i;
1806                        dump_line(realobj, i, limit);
1807                        i += 16;
1808                        lines++;
1809                        /* Limit to 5 lines */
1810                        if (lines > 5)
1811                                break;
1812                }
1813        }
1814        if (lines != 0) {
1815                /* Print some data about the neighboring objects, if they
1816                 * exist:
1817                 */
1818                struct page *page = virt_to_head_page(objp);
1819                unsigned int objnr;
1820
1821                objnr = obj_to_index(cachep, page, objp);
1822                if (objnr) {
1823                        objp = index_to_obj(cachep, page, objnr - 1);
1824                        realobj = (char *)objp + obj_offset(cachep);
1825                        printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1826                               realobj, size);
1827                        print_objinfo(cachep, objp, 2);
1828                }
1829                if (objnr + 1 < cachep->num) {
1830                        objp = index_to_obj(cachep, page, objnr + 1);
1831                        realobj = (char *)objp + obj_offset(cachep);
1832                        printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1833                               realobj, size);
1834                        print_objinfo(cachep, objp, 2);
1835                }
1836        }
1837}
1838#endif
1839
1840#if DEBUG
1841static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1842                                                struct page *page)
1843{
1844        int i;
1845        for (i = 0; i < cachep->num; i++) {
1846                void *objp = index_to_obj(cachep, page, i);
1847
1848                if (cachep->flags & SLAB_POISON) {
1849#ifdef CONFIG_DEBUG_PAGEALLOC
1850                        if (cachep->size % PAGE_SIZE == 0 &&
1851                                        OFF_SLAB(cachep))
1852                                kernel_map_pages(virt_to_page(objp),
1853                                        cachep->size / PAGE_SIZE, 1);
1854                        else
1855                                check_poison_obj(cachep, objp);
1856#else
1857                        check_poison_obj(cachep, objp);
1858#endif
1859                }
1860                if (cachep->flags & SLAB_RED_ZONE) {
1861                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1862                                slab_error(cachep, "start of a freed object "
1863                                           "was overwritten");
1864                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1865                                slab_error(cachep, "end of a freed object "
1866                                           "was overwritten");
1867                }
1868        }
1869}
1870#else
1871static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1872                                                struct page *page)
1873{
1874}
1875#endif
1876
1877/**
1878 * slab_destroy - destroy and release all objects in a slab
1879 * @cachep: cache pointer being destroyed
1880 * @page: page pointer being destroyed
1881 *
1882 * Destroy all the objs in a slab page, and release the mem back to the system.
1883 * Before calling the slab page must have been unlinked from the cache. The
1884 * kmem_cache_node ->list_lock is not held/needed.
1885 */
1886static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1887{
1888        void *freelist;
1889
1890        freelist = page->freelist;
1891        slab_destroy_debugcheck(cachep, page);
1892        if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1893                call_rcu(&page->rcu_head, kmem_rcu_free);
1894        else
1895                kmem_freepages(cachep, page);
1896
1897        /*
1898         * From now on, we don't use freelist
1899         * although actual page can be freed in rcu context
1900         */
1901        if (OFF_SLAB(cachep))
1902                kmem_cache_free(cachep->freelist_cache, freelist);
1903}
1904
1905static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1906{
1907        struct page *page, *n;
1908
1909        list_for_each_entry_safe(page, n, list, lru) {
1910                list_del(&page->lru);
1911                slab_destroy(cachep, page);
1912        }
1913}
1914
1915/**
1916 * calculate_slab_order - calculate size (page order) of slabs
1917 * @cachep: pointer to the cache that is being created
1918 * @size: size of objects to be created in this cache.
1919 * @align: required alignment for the objects.
1920 * @flags: slab allocation flags
1921 *
1922 * Also calculates the number of objects per slab.
1923 *
1924 * This could be made much more intelligent.  For now, try to avoid using
1925 * high order pages for slabs.  When the gfp() functions are more friendly
1926 * towards high-order requests, this should be changed.
1927 */
1928static size_t calculate_slab_order(struct kmem_cache *cachep,
1929                        size_t size, size_t align, unsigned long flags)
1930{
1931        unsigned long offslab_limit;
1932        size_t left_over = 0;
1933        int gfporder;
1934
1935        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1936                unsigned int num;
1937                size_t remainder;
1938
1939                cache_estimate(gfporder, size, align, flags, &remainder, &num);
1940                if (!num)
1941                        continue;
1942
1943                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1944                if (num > SLAB_OBJ_MAX_NUM)
1945                        break;
1946
1947                if (flags & CFLGS_OFF_SLAB) {
1948                        size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1949                        /*
1950                         * Max number of objs-per-slab for caches which
1951                         * use off-slab slabs. Needed to avoid a possible
1952                         * looping condition in cache_grow().
1953                         */
1954                        if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1955                                freelist_size_per_obj += sizeof(char);
1956                        offslab_limit = size;
1957                        offslab_limit /= freelist_size_per_obj;
1958
1959                        if (num > offslab_limit)
1960                                break;
1961                }
1962
1963                /* Found something acceptable - save it away */
1964                cachep->num = num;
1965                cachep->gfporder = gfporder;
1966                left_over = remainder;
1967
1968                /*
1969                 * A VFS-reclaimable slab tends to have most allocations
1970                 * as GFP_NOFS and we really don't want to have to be allocating
1971                 * higher-order pages when we are unable to shrink dcache.
1972                 */
1973                if (flags & SLAB_RECLAIM_ACCOUNT)
1974                        break;
1975
1976                /*
1977                 * Large number of objects is good, but very large slabs are
1978                 * currently bad for the gfp()s.
1979                 */
1980                if (gfporder >= slab_max_order)
1981                        break;
1982
1983                /*
1984                 * Acceptable internal fragmentation?
1985                 */
1986                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1987                        break;
1988        }
1989        return left_over;
1990}
1991
1992static struct array_cache __percpu *alloc_kmem_cache_cpus(
1993                struct kmem_cache *cachep, int entries, int batchcount)
1994{
1995        int cpu;
1996        size_t size;
1997        struct array_cache __percpu *cpu_cache;
1998
1999        size = sizeof(void *) * entries + sizeof(struct array_cache);
2000        cpu_cache = __alloc_percpu(size, sizeof(void *));
2001
2002        if (!cpu_cache)
2003                return NULL;
2004
2005        for_each_possible_cpu(cpu) {
2006                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2007                                entries, batchcount);
2008        }
2009
2010        return cpu_cache;
2011}
2012
2013static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2014{
2015        if (slab_state >= FULL)
2016                return enable_cpucache(cachep, gfp);
2017
2018        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2019        if (!cachep->cpu_cache)
2020                return 1;
2021
2022        if (slab_state == DOWN) {
2023                /* Creation of first cache (kmem_cache). */
2024                set_up_node(kmem_cache, CACHE_CACHE);
2025        } else if (slab_state == PARTIAL) {
2026                /* For kmem_cache_node */
2027                set_up_node(cachep, SIZE_NODE);
2028        } else {
2029                int node;
2030
2031                for_each_online_node(node) {
2032                        cachep->node[node] = kmalloc_node(
2033                                sizeof(struct kmem_cache_node), gfp, node);
2034                        BUG_ON(!cachep->node[node]);
2035                        kmem_cache_node_init(cachep->node[node]);
2036                }
2037        }
2038
2039        cachep->node[numa_mem_id()]->next_reap =
2040                        jiffies + REAPTIMEOUT_NODE +
2041                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2042
2043        cpu_cache_get(cachep)->avail = 0;
2044        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2045        cpu_cache_get(cachep)->batchcount = 1;
2046        cpu_cache_get(cachep)->touched = 0;
2047        cachep->batchcount = 1;
2048        cachep->limit = BOOT_CPUCACHE_ENTRIES;
2049        return 0;
2050}
2051
2052unsigned long kmem_cache_flags(unsigned long object_size,
2053        unsigned long flags, const char *name,
2054        void (*ctor)(void *))
2055{
2056        return flags;
2057}
2058
2059struct kmem_cache *
2060__kmem_cache_alias(const char *name, size_t size, size_t align,
2061                   unsigned long flags, void (*ctor)(void *))
2062{
2063        struct kmem_cache *cachep;
2064
2065        cachep = find_mergeable(size, align, flags, name, ctor);
2066        if (cachep) {
2067                cachep->refcount++;
2068
2069                /*
2070                 * Adjust the object sizes so that we clear
2071                 * the complete object on kzalloc.
2072                 */
2073                cachep->object_size = max_t(int, cachep->object_size, size);
2074        }
2075        return cachep;
2076}
2077
2078/**
2079 * __kmem_cache_create - Create a cache.
2080 * @cachep: cache management descriptor
2081 * @flags: SLAB flags
2082 *
2083 * Returns a ptr to the cache on success, NULL on failure.
2084 * Cannot be called within a int, but can be interrupted.
2085 * The @ctor is run when new pages are allocated by the cache.
2086 *
2087 * The flags are
2088 *
2089 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2090 * to catch references to uninitialised memory.
2091 *
2092 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2093 * for buffer overruns.
2094 *
2095 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2096 * cacheline.  This can be beneficial if you're counting cycles as closely
2097 * as davem.
2098 */
2099int
2100__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2101{
2102        size_t left_over, freelist_size;
2103        size_t ralign = BYTES_PER_WORD;
2104        gfp_t gfp;
2105        int err;
2106        size_t size = cachep->size;
2107
2108#if DEBUG
2109#if FORCED_DEBUG
2110        /*
2111         * Enable redzoning and last user accounting, except for caches with
2112         * large objects, if the increased size would increase the object size
2113         * above the next power of two: caches with object sizes just above a
2114         * power of two have a significant amount of internal fragmentation.
2115         */
2116        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2117                                                2 * sizeof(unsigned long long)))
2118                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2119        if (!(flags & SLAB_DESTROY_BY_RCU))
2120                flags |= SLAB_POISON;
2121#endif
2122        if (flags & SLAB_DESTROY_BY_RCU)
2123                BUG_ON(flags & SLAB_POISON);
2124#endif
2125
2126        /*
2127         * Check that size is in terms of words.  This is needed to avoid
2128         * unaligned accesses for some archs when redzoning is used, and makes
2129         * sure any on-slab bufctl's are also correctly aligned.
2130         */
2131        if (size & (BYTES_PER_WORD - 1)) {
2132                size += (BYTES_PER_WORD - 1);
2133                size &= ~(BYTES_PER_WORD - 1);
2134        }
2135
2136        if (flags & SLAB_RED_ZONE) {
2137                ralign = REDZONE_ALIGN;
2138                /* If redzoning, ensure that the second redzone is suitably
2139                 * aligned, by adjusting the object size accordingly. */
2140                size += REDZONE_ALIGN - 1;
2141                size &= ~(REDZONE_ALIGN - 1);
2142        }
2143
2144        /* 3) caller mandated alignment */
2145        if (ralign < cachep->align) {
2146                ralign = cachep->align;
2147        }
2148        /* disable debug if necessary */
2149        if (ralign > __alignof__(unsigned long long))
2150                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2151        /*
2152         * 4) Store it.
2153         */
2154        cachep->align = ralign;
2155
2156        if (slab_is_available())
2157                gfp = GFP_KERNEL;
2158        else
2159                gfp = GFP_NOWAIT;
2160
2161#if DEBUG
2162
2163        /*
2164         * Both debugging options require word-alignment which is calculated
2165         * into align above.
2166         */
2167        if (flags & SLAB_RED_ZONE) {
2168                /* add space for red zone words */
2169                cachep->obj_offset += sizeof(unsigned long long);
2170                size += 2 * sizeof(unsigned long long);
2171        }
2172        if (flags & SLAB_STORE_USER) {
2173                /* user store requires one word storage behind the end of
2174                 * the real object. But if the second red zone needs to be
2175                 * aligned to 64 bits, we must allow that much space.
2176                 */
2177                if (flags & SLAB_RED_ZONE)
2178                        size += REDZONE_ALIGN;
2179                else
2180                        size += BYTES_PER_WORD;
2181        }
2182#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2183        /*
2184         * To activate debug pagealloc, off-slab management is necessary
2185         * requirement. In early phase of initialization, small sized slab
2186         * doesn't get initialized so it would not be possible. So, we need
2187         * to check size >= 256. It guarantees that all necessary small
2188         * sized slab is initialized in current slab initialization sequence.
2189         */
2190        if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2191                size >= 256 && cachep->object_size > cache_line_size() &&
2192                ALIGN(size, cachep->align) < PAGE_SIZE) {
2193                cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2194                size = PAGE_SIZE;
2195        }
2196#endif
2197#endif
2198
2199        /*
2200         * Determine if the slab management is 'on' or 'off' slab.
2201         * (bootstrapping cannot cope with offslab caches so don't do
2202         * it too early on. Always use on-slab management when
2203         * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2204         */
2205        if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
2206            !(flags & SLAB_NOLEAKTRACE))
2207                /*
2208                 * Size is large, assume best to place the slab management obj
2209                 * off-slab (should allow better packing of objs).
2210                 */
2211                flags |= CFLGS_OFF_SLAB;
2212
2213        size = ALIGN(size, cachep->align);
2214        /*
2215         * We should restrict the number of objects in a slab to implement
2216         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2217         */
2218        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2219                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2220
2221        left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2222
2223        if (!cachep->num)
2224                return -E2BIG;
2225
2226        freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2227
2228        /*
2229         * If the slab has been placed off-slab, and we have enough space then
2230         * move it on-slab. This is at the expense of any extra colouring.
2231         */
2232        if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2233                flags &= ~CFLGS_OFF_SLAB;
2234                left_over -= freelist_size;
2235        }
2236
2237        if (flags & CFLGS_OFF_SLAB) {
2238                /* really off slab. No need for manual alignment */
2239                freelist_size = calculate_freelist_size(cachep->num, 0);
2240
2241#ifdef CONFIG_PAGE_POISONING
2242                /* If we're going to use the generic kernel_map_pages()
2243                 * poisoning, then it's going to smash the contents of
2244                 * the redzone and userword anyhow, so switch them off.
2245                 */
2246                if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2247                        flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2248#endif
2249        }
2250
2251        cachep->colour_off = cache_line_size();
2252        /* Offset must be a multiple of the alignment. */
2253        if (cachep->colour_off < cachep->align)
2254                cachep->colour_off = cachep->align;
2255        cachep->colour = left_over / cachep->colour_off;
2256        cachep->freelist_size = freelist_size;
2257        cachep->flags = flags;
2258        cachep->allocflags = __GFP_COMP;
2259        if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2260                cachep->allocflags |= GFP_DMA;
2261        cachep->size = size;
2262        cachep->reciprocal_buffer_size = reciprocal_value(size);
2263
2264        if (flags & CFLGS_OFF_SLAB) {
2265                cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2266                /*
2267                 * This is a possibility for one of the kmalloc_{dma,}_caches.
2268                 * But since we go off slab only for object size greater than
2269                 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2270                 * in ascending order,this should not happen at all.
2271                 * But leave a BUG_ON for some lucky dude.
2272                 */
2273                BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2274        }
2275
2276        err = setup_cpu_cache(cachep, gfp);
2277        if (err) {
2278                __kmem_cache_release(cachep);
2279                return err;
2280        }
2281
2282        return 0;
2283}
2284
2285#if DEBUG
2286static void check_irq_off(void)
2287{
2288        BUG_ON(!irqs_disabled());
2289}
2290
2291static void check_irq_on(void)
2292{
2293        BUG_ON(irqs_disabled());
2294}
2295
2296static void check_spinlock_acquired(struct kmem_cache *cachep)
2297{
2298#ifdef CONFIG_SMP
2299        check_irq_off();
2300        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2301#endif
2302}
2303
2304static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2305{
2306#ifdef CONFIG_SMP
2307        check_irq_off();
2308        assert_spin_locked(&get_node(cachep, node)->list_lock);
2309#endif
2310}
2311
2312#else
2313#define check_irq_off() do { } while(0)
2314#define check_irq_on()  do { } while(0)
2315#define check_spinlock_acquired(x) do { } while(0)
2316#define check_spinlock_acquired_node(x, y) do { } while(0)
2317#endif
2318
2319static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2320                        struct array_cache *ac,
2321                        int force, int node);
2322
2323static void do_drain(void *arg)
2324{
2325        struct kmem_cache *cachep = arg;
2326        struct array_cache *ac;
2327        int node = numa_mem_id();
2328        struct kmem_cache_node *n;
2329        LIST_HEAD(list);
2330
2331        check_irq_off();
2332        ac = cpu_cache_get(cachep);
2333        n = get_node(cachep, node);
2334        spin_lock(&n->list_lock);
2335        free_block(cachep, ac->entry, ac->avail, node, &list);
2336        spin_unlock(&n->list_lock);
2337        slabs_destroy(cachep, &list);
2338        ac->avail = 0;
2339}
2340
2341static void drain_cpu_caches(struct kmem_cache *cachep)
2342{
2343        struct kmem_cache_node *n;
2344        int node;
2345
2346        on_each_cpu(do_drain, cachep, 1);
2347        check_irq_on();
2348        for_each_kmem_cache_node(cachep, node, n)
2349                if (n->alien)
2350                        drain_alien_cache(cachep, n->alien);
2351
2352        for_each_kmem_cache_node(cachep, node, n)
2353                drain_array(cachep, n, n->shared, 1, node);
2354}
2355
2356/*
2357 * Remove slabs from the list of free slabs.
2358 * Specify the number of slabs to drain in tofree.
2359 *
2360 * Returns the actual number of slabs released.
2361 */
2362static int drain_freelist(struct kmem_cache *cache,
2363                        struct kmem_cache_node *n, int tofree)
2364{
2365        struct list_head *p;
2366        int nr_freed;
2367        struct page *page;
2368
2369        nr_freed = 0;
2370        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2371
2372                spin_lock_irq(&n->list_lock);
2373                p = n->slabs_free.prev;
2374                if (p == &n->slabs_free) {
2375                        spin_unlock_irq(&n->list_lock);
2376                        goto out;
2377                }
2378
2379                page = list_entry(p, struct page, lru);
2380#if DEBUG
2381                BUG_ON(page->active);
2382#endif
2383                list_del(&page->lru);
2384                /*
2385                 * Safe to drop the lock. The slab is no longer linked
2386                 * to the cache.
2387                 */
2388                n->free_objects -= cache->num;
2389                spin_unlock_irq(&n->list_lock);
2390                slab_destroy(cache, page);
2391                nr_freed++;
2392        }
2393out:
2394        return nr_freed;
2395}
2396
2397int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2398{
2399        int ret = 0;
2400        int node;
2401        struct kmem_cache_node *n;
2402
2403        drain_cpu_caches(cachep);
2404
2405        check_irq_on();
2406        for_each_kmem_cache_node(cachep, node, n) {
2407                drain_freelist(cachep, n, slabs_tofree(cachep, n));
2408
2409                ret += !list_empty(&n->slabs_full) ||
2410                        !list_empty(&n->slabs_partial);
2411        }
2412        return (ret ? 1 : 0);
2413}
2414
2415int __kmem_cache_shutdown(struct kmem_cache *cachep)
2416{
2417        return __kmem_cache_shrink(cachep, false);
2418}
2419
2420void __kmem_cache_release(struct kmem_cache *cachep)
2421{
2422        int i;
2423        struct kmem_cache_node *n;
2424
2425        free_percpu(cachep->cpu_cache);
2426
2427        /* NUMA: free the node structures */
2428        for_each_kmem_cache_node(cachep, i, n) {
2429                kfree(n->shared);
2430                free_alien_cache(n->alien);
2431                kfree(n);
2432                cachep->node[i] = NULL;
2433        }
2434}
2435
2436/*
2437 * Get the memory for a slab management obj.
2438 *
2439 * For a slab cache when the slab descriptor is off-slab, the
2440 * slab descriptor can't come from the same cache which is being created,
2441 * Because if it is the case, that means we defer the creation of
2442 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2443 * And we eventually call down to __kmem_cache_create(), which
2444 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2445 * This is a "chicken-and-egg" problem.
2446 *
2447 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2448 * which are all initialized during kmem_cache_init().
2449 */
2450static void *alloc_slabmgmt(struct kmem_cache *cachep,
2451                                   struct page *page, int colour_off,
2452                                   gfp_t local_flags, int nodeid)
2453{
2454        void *freelist;
2455        void *addr = page_address(page);
2456
2457        if (OFF_SLAB(cachep)) {
2458                /* Slab management obj is off-slab. */
2459                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2460                                              local_flags, nodeid);
2461                if (!freelist)
2462                        return NULL;
2463        } else {
2464                freelist = addr + colour_off;
2465                colour_off += cachep->freelist_size;
2466        }
2467        page->active = 0;
2468        page->s_mem = addr + colour_off;
2469        return freelist;
2470}
2471
2472static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2473{
2474        return ((freelist_idx_t *)page->freelist)[idx];
2475}
2476
2477static inline void set_free_obj(struct page *page,
2478                                        unsigned int idx, freelist_idx_t val)
2479{
2480        ((freelist_idx_t *)(page->freelist))[idx] = val;
2481}
2482
2483static void cache_init_objs(struct kmem_cache *cachep,
2484                            struct page *page)
2485{
2486        int i;
2487
2488        for (i = 0; i < cachep->num; i++) {
2489                void *objp = index_to_obj(cachep, page, i);
2490#if DEBUG
2491                /* need to poison the objs? */
2492                if (cachep->flags & SLAB_POISON)
2493                        poison_obj(cachep, objp, POISON_FREE);
2494                if (cachep->flags & SLAB_STORE_USER)
2495                        *dbg_userword(cachep, objp) = NULL;
2496
2497                if (cachep->flags & SLAB_RED_ZONE) {
2498                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2499                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2500                }
2501                /*
2502                 * Constructors are not allowed to allocate memory from the same
2503                 * cache which they are a constructor for.  Otherwise, deadlock.
2504                 * They must also be threaded.
2505                 */
2506                if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2507                        cachep->ctor(objp + obj_offset(cachep));
2508
2509                if (cachep->flags & SLAB_RED_ZONE) {
2510                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2511                                slab_error(cachep, "constructor overwrote the"
2512                                           " end of an object");
2513                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2514                                slab_error(cachep, "constructor overwrote the"
2515                                           " start of an object");
2516                }
2517                if ((cachep->size % PAGE_SIZE) == 0 &&
2518                            OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2519                        kernel_map_pages(virt_to_page(objp),
2520                                         cachep->size / PAGE_SIZE, 0);
2521#else
2522                if (cachep->ctor)
2523                        cachep->ctor(objp);
2524#endif
2525                set_obj_status(page, i, OBJECT_FREE);
2526                set_free_obj(page, i, i);
2527        }
2528}
2529
2530static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2531{
2532        if (CONFIG_ZONE_DMA_FLAG) {
2533                if (flags & GFP_DMA)
2534                        BUG_ON(!(cachep->allocflags & GFP_DMA));
2535                else
2536                        BUG_ON(cachep->allocflags & GFP_DMA);
2537        }
2538}
2539
2540static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2541                                int nodeid)
2542{
2543        void *objp;
2544
2545        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2546        page->active++;
2547#if DEBUG
2548        WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2549#endif
2550
2551        return objp;
2552}
2553
2554static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2555                                void *objp, int nodeid)
2556{
2557        unsigned int objnr = obj_to_index(cachep, page, objp);
2558#if DEBUG
2559        unsigned int i;
2560
2561        /* Verify that the slab belongs to the intended node */
2562        WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2563
2564        /* Verify double free bug */
2565        for (i = page->active; i < cachep->num; i++) {
2566                if (get_free_obj(page, i) == objnr) {
2567                        printk(KERN_ERR "slab: double free detected in cache "
2568                                        "'%s', objp %p\n", cachep->name, objp);
2569                        BUG();
2570                }
2571        }
2572#endif
2573        page->active--;
2574        set_free_obj(page, page->active, objnr);
2575}
2576
2577/*
2578 * Map pages beginning at addr to the given cache and slab. This is required
2579 * for the slab allocator to be able to lookup the cache and slab of a
2580 * virtual address for kfree, ksize, and slab debugging.
2581 */
2582static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2583                           void *freelist)
2584{
2585        page->slab_cache = cache;
2586        page->freelist = freelist;
2587}
2588
2589/*
2590 * Grow (by 1) the number of slabs within a cache.  This is called by
2591 * kmem_cache_alloc() when there are no active objs left in a cache.
2592 */
2593static int cache_grow(struct kmem_cache *cachep,
2594                gfp_t flags, int nodeid, struct page *page)
2595{
2596        void *freelist;
2597        size_t offset;
2598        gfp_t local_flags;
2599        struct kmem_cache_node *n;
2600
2601        /*
2602         * Be lazy and only check for valid flags here,  keeping it out of the
2603         * critical path in kmem_cache_alloc().
2604         */
2605        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2606                pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2607                BUG();
2608        }
2609        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2610
2611        /* Take the node list lock to change the colour_next on this node */
2612        check_irq_off();
2613        n = get_node(cachep, nodeid);
2614        spin_lock(&n->list_lock);
2615
2616        /* Get colour for the slab, and cal the next value. */
2617        offset = n->colour_next;
2618        n->colour_next++;
2619        if (n->colour_next >= cachep->colour)
2620                n->colour_next = 0;
2621        spin_unlock(&n->list_lock);
2622
2623        offset *= cachep->colour_off;
2624
2625        if (gfpflags_allow_blocking(local_flags))
2626                local_irq_enable();
2627
2628        /*
2629         * The test for missing atomic flag is performed here, rather than
2630         * the more obvious place, simply to reduce the critical path length
2631         * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2632         * will eventually be caught here (where it matters).
2633         */
2634        kmem_flagcheck(cachep, flags);
2635
2636        /*
2637         * Get mem for the objs.  Attempt to allocate a physical page from
2638         * 'nodeid'.
2639         */
2640        if (!page)
2641                page = kmem_getpages(cachep, local_flags, nodeid);
2642        if (!page)
2643                goto failed;
2644
2645        /* Get slab management. */
2646        freelist = alloc_slabmgmt(cachep, page, offset,
2647                        local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2648        if (!freelist)
2649                goto opps1;
2650
2651        slab_map_pages(cachep, page, freelist);
2652
2653        cache_init_objs(cachep, page);
2654
2655        if (gfpflags_allow_blocking(local_flags))
2656                local_irq_disable();
2657        check_irq_off();
2658        spin_lock(&n->list_lock);
2659
2660        /* Make slab active. */
2661        list_add_tail(&page->lru, &(n->slabs_free));
2662        STATS_INC_GROWN(cachep);
2663        n->free_objects += cachep->num;
2664        spin_unlock(&n->list_lock);
2665        return 1;
2666opps1:
2667        kmem_freepages(cachep, page);
2668failed:
2669        if (gfpflags_allow_blocking(local_flags))
2670                local_irq_disable();
2671        return 0;
2672}
2673
2674#if DEBUG
2675
2676/*
2677 * Perform extra freeing checks:
2678 * - detect bad pointers.
2679 * - POISON/RED_ZONE checking
2680 */
2681static void kfree_debugcheck(const void *objp)
2682{
2683        if (!virt_addr_valid(objp)) {
2684                printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2685                       (unsigned long)objp);
2686                BUG();
2687        }
2688}
2689
2690static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2691{
2692        unsigned long long redzone1, redzone2;
2693
2694        redzone1 = *dbg_redzone1(cache, obj);
2695        redzone2 = *dbg_redzone2(cache, obj);
2696
2697        /*
2698         * Redzone is ok.
2699         */
2700        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2701                return;
2702
2703        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2704                slab_error(cache, "double free detected");
2705        else
2706                slab_error(cache, "memory outside object was overwritten");
2707
2708        printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2709                        obj, redzone1, redzone2);
2710}
2711
2712static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2713                                   unsigned long caller)
2714{
2715        unsigned int objnr;
2716        struct page *page;
2717
2718        BUG_ON(virt_to_cache(objp) != cachep);
2719
2720        objp -= obj_offset(cachep);
2721        kfree_debugcheck(objp);
2722        page = virt_to_head_page(objp);
2723
2724        if (cachep->flags & SLAB_RED_ZONE) {
2725                verify_redzone_free(cachep, objp);
2726                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2727                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2728        }
2729        if (cachep->flags & SLAB_STORE_USER)
2730                *dbg_userword(cachep, objp) = (void *)caller;
2731
2732        objnr = obj_to_index(cachep, page, objp);
2733
2734        BUG_ON(objnr >= cachep->num);
2735        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2736
2737        set_obj_status(page, objnr, OBJECT_FREE);
2738        if (cachep->flags & SLAB_POISON) {
2739#ifdef CONFIG_DEBUG_PAGEALLOC
2740                if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2741                        store_stackinfo(cachep, objp, caller);
2742                        kernel_map_pages(virt_to_page(objp),
2743                                         cachep->size / PAGE_SIZE, 0);
2744                } else {
2745                        poison_obj(cachep, objp, POISON_FREE);
2746                }
2747#else
2748                poison_obj(cachep, objp, POISON_FREE);
2749#endif
2750        }
2751        return objp;
2752}
2753
2754#else
2755#define kfree_debugcheck(x) do { } while(0)
2756#define cache_free_debugcheck(x,objp,z) (objp)
2757#endif
2758
2759static struct page *get_first_slab(struct kmem_cache_node *n)
2760{
2761        struct page *page;
2762
2763        page = list_first_entry_or_null(&n->slabs_partial,
2764                        struct page, lru);
2765        if (!page) {
2766                n->free_touched = 1;
2767                page = list_first_entry_or_null(&n->slabs_free,
2768                                struct page, lru);
2769        }
2770
2771        return page;
2772}
2773
2774static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2775                                                        bool force_refill)
2776{
2777        int batchcount;
2778        struct kmem_cache_node *n;
2779        struct array_cache *ac;
2780        int node;
2781
2782        check_irq_off();
2783        node = numa_mem_id();
2784        if (unlikely(force_refill))
2785                goto force_grow;
2786retry:
2787        ac = cpu_cache_get(cachep);
2788        batchcount = ac->batchcount;
2789        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2790                /*
2791                 * If there was little recent activity on this cache, then
2792                 * perform only a partial refill.  Otherwise we could generate
2793                 * refill bouncing.
2794                 */
2795                batchcount = BATCHREFILL_LIMIT;
2796        }
2797        n = get_node(cachep, node);
2798
2799        BUG_ON(ac->avail > 0 || !n);
2800        spin_lock(&n->list_lock);
2801
2802        /* See if we can refill from the shared array */
2803        if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2804                n->shared->touched = 1;
2805                goto alloc_done;
2806        }
2807
2808        while (batchcount > 0) {
2809                struct page *page;
2810                /* Get slab alloc is to come from. */
2811                page = get_first_slab(n);
2812                if (!page)
2813                        goto must_grow;
2814
2815                check_spinlock_acquired(cachep);
2816
2817                /*
2818                 * The slab was either on partial or free list so
2819                 * there must be at least one object available for
2820                 * allocation.
2821                 */
2822                BUG_ON(page->active >= cachep->num);
2823
2824                while (page->active < cachep->num && batchcount--) {
2825                        STATS_INC_ALLOCED(cachep);
2826                        STATS_INC_ACTIVE(cachep);
2827                        STATS_SET_HIGH(cachep);
2828
2829                        ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2830                                                                        node));
2831                }
2832
2833                /* move slabp to correct slabp list: */
2834                list_del(&page->lru);
2835                if (page->active == cachep->num)
2836                        list_add(&page->lru, &n->slabs_full);
2837                else
2838                        list_add(&page->lru, &n->slabs_partial);
2839        }
2840
2841must_grow:
2842        n->free_objects -= ac->avail;
2843alloc_done:
2844        spin_unlock(&n->list_lock);
2845
2846        if (unlikely(!ac->avail)) {
2847                int x;
2848force_grow:
2849                x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2850
2851                /* cache_grow can reenable interrupts, then ac could change. */
2852                ac = cpu_cache_get(cachep);
2853                node = numa_mem_id();
2854
2855                /* no objects in sight? abort */
2856                if (!x && (ac->avail == 0 || force_refill))
2857                        return NULL;
2858
2859                if (!ac->avail)         /* objects refilled by interrupt? */
2860                        goto retry;
2861        }
2862        ac->touched = 1;
2863
2864        return ac_get_obj(cachep, ac, flags, force_refill);
2865}
2866
2867static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2868                                                gfp_t flags)
2869{
2870        might_sleep_if(gfpflags_allow_blocking(flags));
2871#if DEBUG
2872        kmem_flagcheck(cachep, flags);
2873#endif
2874}
2875
2876#if DEBUG
2877static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2878                                gfp_t flags, void *objp, unsigned long caller)
2879{
2880        struct page *page;
2881
2882        if (!objp)
2883                return objp;
2884        if (cachep->flags & SLAB_POISON) {
2885#ifdef CONFIG_DEBUG_PAGEALLOC
2886                if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2887                        kernel_map_pages(virt_to_page(objp),
2888                                         cachep->size / PAGE_SIZE, 1);
2889                else
2890                        check_poison_obj(cachep, objp);
2891#else
2892                check_poison_obj(cachep, objp);
2893#endif
2894                poison_obj(cachep, objp, POISON_INUSE);
2895        }
2896        if (cachep->flags & SLAB_STORE_USER)
2897                *dbg_userword(cachep, objp) = (void *)caller;
2898
2899        if (cachep->flags & SLAB_RED_ZONE) {
2900                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2901                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2902                        slab_error(cachep, "double free, or memory outside"
2903                                                " object was overwritten");
2904                        printk(KERN_ERR
2905                                "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2906                                objp, *dbg_redzone1(cachep, objp),
2907                                *dbg_redzone2(cachep, objp));
2908                }
2909                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2910                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2911        }
2912
2913        page = virt_to_head_page(objp);
2914        set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2915        objp += obj_offset(cachep);
2916        if (cachep->ctor && cachep->flags & SLAB_POISON)
2917                cachep->ctor(objp);
2918        if (ARCH_SLAB_MINALIGN &&
2919            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2920                printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2921                       objp, (int)ARCH_SLAB_MINALIGN);
2922        }
2923        return objp;
2924}
2925#else
2926#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2927#endif
2928
2929static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2930{
2931        if (unlikely(cachep == kmem_cache))
2932                return false;
2933
2934        return should_failslab(cachep->object_size, flags, cachep->flags);
2935}
2936
2937static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2938{
2939        void *objp;
2940        struct array_cache *ac;
2941        bool force_refill = false;
2942
2943        check_irq_off();
2944
2945        ac = cpu_cache_get(cachep);
2946        if (likely(ac->avail)) {
2947                ac->touched = 1;
2948                objp = ac_get_obj(cachep, ac, flags, false);
2949
2950                /*
2951                 * Allow for the possibility all avail objects are not allowed
2952                 * by the current flags
2953                 */
2954                if (objp) {
2955                        STATS_INC_ALLOCHIT(cachep);
2956                        goto out;
2957                }
2958                force_refill = true;
2959        }
2960
2961        STATS_INC_ALLOCMISS(cachep);
2962        objp = cache_alloc_refill(cachep, flags, force_refill);
2963        /*
2964         * the 'ac' may be updated by cache_alloc_refill(),
2965         * and kmemleak_erase() requires its correct value.
2966         */
2967        ac = cpu_cache_get(cachep);
2968
2969out:
2970        /*
2971         * To avoid a false negative, if an object that is in one of the
2972         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2973         * treat the array pointers as a reference to the object.
2974         */
2975        if (objp)
2976                kmemleak_erase(&ac->entry[ac->avail]);
2977        return objp;
2978}
2979
2980#ifdef CONFIG_NUMA
2981/*
2982 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2983 *
2984 * If we are in_interrupt, then process context, including cpusets and
2985 * mempolicy, may not apply and should not be used for allocation policy.
2986 */
2987static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2988{
2989        int nid_alloc, nid_here;
2990
2991        if (in_interrupt() || (flags & __GFP_THISNODE))
2992                return NULL;
2993        nid_alloc = nid_here = numa_mem_id();
2994        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2995                nid_alloc = cpuset_slab_spread_node();
2996        else if (current->mempolicy)
2997                nid_alloc = mempolicy_slab_node();
2998        if (nid_alloc != nid_here)
2999                return ____cache_alloc_node(cachep, flags, nid_alloc);
3000        return NULL;
3001}
3002
3003/*
3004 * Fallback function if there was no memory available and no objects on a
3005 * certain node and fall back is permitted. First we scan all the
3006 * available node for available objects. If that fails then we
3007 * perform an allocation without specifying a node. This allows the page
3008 * allocator to do its reclaim / fallback magic. We then insert the
3009 * slab into the proper nodelist and then allocate from it.
3010 */
3011static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3012{
3013        struct zonelist *zonelist;
3014        gfp_t local_flags;
3015        struct zoneref *z;
3016        struct zone *zone;
3017        enum zone_type high_zoneidx = gfp_zone(flags);
3018        void *obj = NULL;
3019        int nid;
3020        unsigned int cpuset_mems_cookie;
3021
3022        if (flags & __GFP_THISNODE)
3023                return NULL;
3024
3025        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3026
3027retry_cpuset:
3028        cpuset_mems_cookie = read_mems_allowed_begin();
3029        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3030
3031retry:
3032        /*
3033         * Look through allowed nodes for objects available
3034         * from existing per node queues.
3035         */
3036        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3037                nid = zone_to_nid(zone);
3038
3039                if (cpuset_zone_allowed(zone, flags) &&
3040                        get_node(cache, nid) &&
3041                        get_node(cache, nid)->free_objects) {
3042                                obj = ____cache_alloc_node(cache,
3043                                        gfp_exact_node(flags), nid);
3044                                if (obj)
3045                                        break;
3046                }
3047        }
3048
3049        if (!obj) {
3050                /*
3051                 * This allocation will be performed within the constraints
3052                 * of the current cpuset / memory policy requirements.
3053                 * We may trigger various forms of reclaim on the allowed
3054                 * set and go into memory reserves if necessary.
3055                 */
3056                struct page *page;
3057
3058                if (gfpflags_allow_blocking(local_flags))
3059                        local_irq_enable();
3060                kmem_flagcheck(cache, flags);
3061                page = kmem_getpages(cache, local_flags, numa_mem_id());
3062                if (gfpflags_allow_blocking(local_flags))
3063                        local_irq_disable();
3064                if (page) {
3065                        /*
3066                         * Insert into the appropriate per node queues
3067                         */
3068                        nid = page_to_nid(page);
3069                        if (cache_grow(cache, flags, nid, page)) {
3070                                obj = ____cache_alloc_node(cache,
3071                                        gfp_exact_node(flags), nid);
3072                                if (!obj)
3073                                        /*
3074                                         * Another processor may allocate the
3075                                         * objects in the slab since we are
3076                                         * not holding any locks.
3077                                         */
3078                                        goto retry;
3079                        } else {
3080                                /* cache_grow already freed obj */
3081                                obj = NULL;
3082                        }
3083                }
3084        }
3085
3086        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3087                goto retry_cpuset;
3088        return obj;
3089}
3090
3091/*
3092 * A interface to enable slab creation on nodeid
3093 */
3094static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3095                                int nodeid)
3096{
3097        struct page *page;
3098        struct kmem_cache_node *n;
3099        void *obj;
3100        int x;
3101
3102        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3103        n = get_node(cachep, nodeid);
3104        BUG_ON(!n);
3105
3106retry:
3107        check_irq_off();
3108        spin_lock(&n->list_lock);
3109        page = get_first_slab(n);
3110        if (!page)
3111                goto must_grow;
3112
3113        check_spinlock_acquired_node(cachep, nodeid);
3114
3115        STATS_INC_NODEALLOCS(cachep);
3116        STATS_INC_ACTIVE(cachep);
3117        STATS_SET_HIGH(cachep);
3118
3119        BUG_ON(page->active == cachep->num);
3120
3121        obj = slab_get_obj(cachep, page, nodeid);
3122        n->free_objects--;
3123        /* move slabp to correct slabp list: */
3124        list_del(&page->lru);
3125
3126        if (page->active == cachep->num)
3127                list_add(&page->lru, &n->slabs_full);
3128        else
3129                list_add(&page->lru, &n->slabs_partial);
3130
3131        spin_unlock(&n->list_lock);
3132        goto done;
3133
3134must_grow:
3135        spin_unlock(&n->list_lock);
3136        x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3137        if (x)
3138                goto retry;
3139
3140        return fallback_alloc(cachep, flags);
3141
3142done:
3143        return obj;
3144}
3145
3146static __always_inline void *
3147slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3148                   unsigned long caller)
3149{
3150        unsigned long save_flags;
3151        void *ptr;
3152        int slab_node = numa_mem_id();
3153
3154        flags &= gfp_allowed_mask;
3155
3156        lockdep_trace_alloc(flags);
3157
3158        if (slab_should_failslab(cachep, flags))
3159                return NULL;
3160
3161        cachep = memcg_kmem_get_cache(cachep, flags);
3162
3163        cache_alloc_debugcheck_before(cachep, flags);
3164        local_irq_save(save_flags);
3165
3166        if (nodeid == NUMA_NO_NODE)
3167                nodeid = slab_node;
3168
3169        if (unlikely(!get_node(cachep, nodeid))) {
3170                /* Node not bootstrapped yet */
3171                ptr = fallback_alloc(cachep, flags);
3172                goto out;
3173        }
3174
3175        if (nodeid == slab_node) {
3176                /*
3177                 * Use the locally cached objects if possible.
3178                 * However ____cache_alloc does not allow fallback
3179                 * to other nodes. It may fail while we still have
3180                 * objects on other nodes available.
3181                 */
3182                ptr = ____cache_alloc(cachep, flags);
3183                if (ptr)
3184                        goto out;
3185        }
3186        /* ___cache_alloc_node can fall back to other nodes */
3187        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3188  out:
3189        local_irq_restore(save_flags);
3190        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3191        kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3192                                 flags);
3193
3194        if (likely(ptr)) {
3195                kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3196                if (unlikely(flags & __GFP_ZERO))
3197                        memset(ptr, 0, cachep->object_size);
3198        }
3199
3200        memcg_kmem_put_cache(cachep);
3201        return ptr;
3202}
3203
3204static __always_inline void *
3205__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3206{
3207        void *objp;
3208
3209        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3210                objp = alternate_node_alloc(cache, flags);
3211                if (objp)
3212                        goto out;
3213        }
3214        objp = ____cache_alloc(cache, flags);
3215
3216        /*
3217         * We may just have run out of memory on the local node.
3218         * ____cache_alloc_node() knows how to locate memory on other nodes
3219         */
3220        if (!objp)
3221                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3222
3223  out:
3224        return objp;
3225}
3226#else
3227
3228static __always_inline void *
3229__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3230{
3231        return ____cache_alloc(cachep, flags);
3232}
3233
3234#endif /* CONFIG_NUMA */
3235
3236static __always_inline void *
3237slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3238{
3239        unsigned long save_flags;
3240        void *objp;
3241
3242        flags &= gfp_allowed_mask;
3243
3244        lockdep_trace_alloc(flags);
3245
3246        if (slab_should_failslab(cachep, flags))
3247                return NULL;
3248
3249        cachep = memcg_kmem_get_cache(cachep, flags);
3250
3251        cache_alloc_debugcheck_before(cachep, flags);
3252        local_irq_save(save_flags);
3253        objp = __do_cache_alloc(cachep, flags);
3254        local_irq_restore(save_flags);
3255        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3256        kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3257                                 flags);
3258        prefetchw(objp);
3259
3260        if (likely(objp)) {
3261                kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3262                if (unlikely(flags & __GFP_ZERO))
3263                        memset(objp, 0, cachep->object_size);
3264        }
3265
3266        memcg_kmem_put_cache(cachep);
3267        return objp;
3268}
3269
3270/*
3271 * Caller needs to acquire correct kmem_cache_node's list_lock
3272 * @list: List of detached free slabs should be freed by caller
3273 */
3274static void free_block(struct kmem_cache *cachep, void **objpp,
3275                        int nr_objects, int node, struct list_head *list)
3276{
3277        int i;
3278        struct kmem_cache_node *n = get_node(cachep, node);
3279
3280        for (i = 0; i < nr_objects; i++) {
3281                void *objp;
3282                struct page *page;
3283
3284                clear_obj_pfmemalloc(&objpp[i]);
3285                objp = objpp[i];
3286
3287                page = virt_to_head_page(objp);
3288                list_del(&page->lru);
3289                check_spinlock_acquired_node(cachep, node);
3290                slab_put_obj(cachep, page, objp, node);
3291                STATS_DEC_ACTIVE(cachep);
3292                n->free_objects++;
3293
3294                /* fixup slab chains */
3295                if (page->active == 0) {
3296                        if (n->free_objects > n->free_limit) {
3297                                n->free_objects -= cachep->num;
3298                                list_add_tail(&page->lru, list);
3299                        } else {
3300                                list_add(&page->lru, &n->slabs_free);
3301                        }
3302                } else {
3303                        /* Unconditionally move a slab to the end of the
3304                         * partial list on free - maximum time for the
3305                         * other objects to be freed, too.
3306                         */
3307                        list_add_tail(&page->lru, &n->slabs_partial);
3308                }
3309        }
3310}
3311
3312static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3313{
3314        int batchcount;
3315        struct kmem_cache_node *n;
3316        int node = numa_mem_id();
3317        LIST_HEAD(list);
3318
3319        batchcount = ac->batchcount;
3320#if DEBUG
3321        BUG_ON(!batchcount || batchcount > ac->avail);
3322#endif
3323        check_irq_off();
3324        n = get_node(cachep, node);
3325        spin_lock(&n->list_lock);
3326        if (n->shared) {
3327                struct array_cache *shared_array = n->shared;
3328                int max = shared_array->limit - shared_array->avail;
3329                if (max) {
3330                        if (batchcount > max)
3331                                batchcount = max;
3332                        memcpy(&(shared_array->entry[shared_array->avail]),
3333                               ac->entry, sizeof(void *) * batchcount);
3334                        shared_array->avail += batchcount;
3335                        goto free_done;
3336                }
3337        }
3338
3339        free_block(cachep, ac->entry, batchcount, node, &list);
3340free_done:
3341#if STATS
3342        {
3343                int i = 0;
3344                struct page *page;
3345
3346                list_for_each_entry(page, &n->slabs_free, lru) {
3347                        BUG_ON(page->active);
3348
3349                        i++;
3350                }
3351                STATS_SET_FREEABLE(cachep, i);
3352        }
3353#endif
3354        spin_unlock(&n->list_lock);
3355        slabs_destroy(cachep, &list);
3356        ac->avail -= batchcount;
3357        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3358}
3359
3360/*
3361 * Release an obj back to its cache. If the obj has a constructed state, it must
3362 * be in this state _before_ it is released.  Called with disabled ints.
3363 */
3364static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3365                                unsigned long caller)
3366{
3367        struct array_cache *ac = cpu_cache_get(cachep);
3368
3369        check_irq_off();
3370        kmemleak_free_recursive(objp, cachep->flags);
3371        objp = cache_free_debugcheck(cachep, objp, caller);
3372
3373        kmemcheck_slab_free(cachep, objp, cachep->object_size);
3374
3375        /*
3376         * Skip calling cache_free_alien() when the platform is not numa.
3377         * This will avoid cache misses that happen while accessing slabp (which
3378         * is per page memory  reference) to get nodeid. Instead use a global
3379         * variable to skip the call, which is mostly likely to be present in
3380         * the cache.
3381         */
3382        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3383                return;
3384
3385        if (ac->avail < ac->limit) {
3386                STATS_INC_FREEHIT(cachep);
3387        } else {
3388                STATS_INC_FREEMISS(cachep);
3389                cache_flusharray(cachep, ac);
3390        }
3391
3392        ac_put_obj(cachep, ac, objp);
3393}
3394
3395/**
3396 * kmem_cache_alloc - Allocate an object
3397 * @cachep: The cache to allocate from.
3398 * @flags: See kmalloc().
3399 *
3400 * Allocate an object from this cache.  The flags are only relevant
3401 * if the cache has no available objects.
3402 */
3403void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3404{
3405        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3406
3407        trace_kmem_cache_alloc(_RET_IP_, ret,
3408                               cachep->object_size, cachep->size, flags);
3409
3410        return ret;
3411}
3412EXPORT_SYMBOL(kmem_cache_alloc);
3413
3414void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3415{
3416        __kmem_cache_free_bulk(s, size, p);
3417}
3418EXPORT_SYMBOL(kmem_cache_free_bulk);
3419
3420int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3421                                                                void **p)
3422{
3423        return __kmem_cache_alloc_bulk(s, flags, size, p);
3424}
3425EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3426
3427#ifdef CONFIG_TRACING
3428void *
3429kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3430{
3431        void *ret;
3432
3433        ret = slab_alloc(cachep, flags, _RET_IP_);
3434
3435        trace_kmalloc(_RET_IP_, ret,
3436                      size, cachep->size, flags);
3437        return ret;
3438}
3439EXPORT_SYMBOL(kmem_cache_alloc_trace);
3440#endif
3441
3442#ifdef CONFIG_NUMA
3443/**
3444 * kmem_cache_alloc_node - Allocate an object on the specified node
3445 * @cachep: The cache to allocate from.
3446 * @flags: See kmalloc().
3447 * @nodeid: node number of the target node.
3448 *
3449 * Identical to kmem_cache_alloc but it will allocate memory on the given
3450 * node, which can improve the performance for cpu bound structures.
3451 *
3452 * Fallback to other node is possible if __GFP_THISNODE is not set.
3453 */
3454void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3455{
3456        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3457
3458        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3459                                    cachep->object_size, cachep->size,
3460                                    flags, nodeid);
3461
3462        return ret;
3463}
3464EXPORT_SYMBOL(kmem_cache_alloc_node);
3465
3466#ifdef CONFIG_TRACING
3467void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3468                                  gfp_t flags,
3469                                  int nodeid,
3470                                  size_t size)
3471{
3472        void *ret;
3473
3474        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3475
3476        trace_kmalloc_node(_RET_IP_, ret,
3477                           size, cachep->size,
3478                           flags, nodeid);
3479        return ret;
3480}
3481EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3482#endif
3483
3484static __always_inline void *
3485__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3486{
3487        struct kmem_cache *cachep;
3488
3489        cachep = kmalloc_slab(size, flags);
3490        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3491                return cachep;
3492        return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3493}
3494
3495void *__kmalloc_node(size_t size, gfp_t flags, int node)
3496{
3497        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3498}
3499EXPORT_SYMBOL(__kmalloc_node);
3500
3501void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3502                int node, unsigned long caller)
3503{
3504        return __do_kmalloc_node(size, flags, node, caller);
3505}
3506EXPORT_SYMBOL(__kmalloc_node_track_caller);
3507#endif /* CONFIG_NUMA */
3508
3509/**
3510 * __do_kmalloc - allocate memory
3511 * @size: how many bytes of memory are required.
3512 * @flags: the type of memory to allocate (see kmalloc).
3513 * @caller: function caller for debug tracking of the caller
3514 */
3515static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3516                                          unsigned long caller)
3517{
3518        struct kmem_cache *cachep;
3519        void *ret;
3520
3521        cachep = kmalloc_slab(size, flags);
3522        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3523                return cachep;
3524        ret = slab_alloc(cachep, flags, caller);
3525
3526        trace_kmalloc(caller, ret,
3527                      size, cachep->size, flags);
3528
3529        return ret;
3530}
3531
3532void *__kmalloc(size_t size, gfp_t flags)
3533{
3534        return __do_kmalloc(size, flags, _RET_IP_);
3535}
3536EXPORT_SYMBOL(__kmalloc);
3537
3538void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3539{
3540        return __do_kmalloc(size, flags, caller);
3541}
3542EXPORT_SYMBOL(__kmalloc_track_caller);
3543
3544/**
3545 * kmem_cache_free - Deallocate an object
3546 * @cachep: The cache the allocation was from.
3547 * @objp: The previously allocated object.
3548 *
3549 * Free an object which was previously allocated from this
3550 * cache.
3551 */
3552void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3553{
3554        unsigned long flags;
3555        cachep = cache_from_obj(cachep, objp);
3556        if (!cachep)
3557                return;
3558
3559        local_irq_save(flags);
3560        debug_check_no_locks_freed(objp, cachep->object_size);
3561        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3562                debug_check_no_obj_freed(objp, cachep->object_size);
3563        __cache_free(cachep, objp, _RET_IP_);
3564        local_irq_restore(flags);
3565
3566        trace_kmem_cache_free(_RET_IP_, objp);
3567}
3568EXPORT_SYMBOL(kmem_cache_free);
3569
3570/**
3571 * kfree - free previously allocated memory
3572 * @objp: pointer returned by kmalloc.
3573 *
3574 * If @objp is NULL, no operation is performed.
3575 *
3576 * Don't free memory not originally allocated by kmalloc()
3577 * or you will run into trouble.
3578 */
3579void kfree(const void *objp)
3580{
3581        struct kmem_cache *c;
3582        unsigned long flags;
3583
3584        trace_kfree(_RET_IP_, objp);
3585
3586        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3587                return;
3588        local_irq_save(flags);
3589        kfree_debugcheck(objp);
3590        c = virt_to_cache(objp);
3591        debug_check_no_locks_freed(objp, c->object_size);
3592
3593        debug_check_no_obj_freed(objp, c->object_size);
3594        __cache_free(c, (void *)objp, _RET_IP_);
3595        local_irq_restore(flags);
3596}
3597EXPORT_SYMBOL(kfree);
3598
3599/*
3600 * This initializes kmem_cache_node or resizes various caches for all nodes.
3601 */
3602static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3603{
3604        int node;
3605        struct kmem_cache_node *n;
3606        struct array_cache *new_shared;
3607        struct alien_cache **new_alien = NULL;
3608
3609        for_each_online_node(node) {
3610
3611                if (use_alien_caches) {
3612                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3613                        if (!new_alien)
3614                                goto fail;
3615                }
3616
3617                new_shared = NULL;
3618                if (cachep->shared) {
3619                        new_shared = alloc_arraycache(node,
3620                                cachep->shared*cachep->batchcount,
3621                                        0xbaadf00d, gfp);
3622                        if (!new_shared) {
3623                                free_alien_cache(new_alien);
3624                                goto fail;
3625                        }
3626                }
3627
3628                n = get_node(cachep, node);
3629                if (n) {
3630                        struct array_cache *shared = n->shared;
3631                        LIST_HEAD(list);
3632
3633                        spin_lock_irq(&n->list_lock);
3634
3635                        if (shared)
3636                                free_block(cachep, shared->entry,
3637                                                shared->avail, node, &list);
3638
3639                        n->shared = new_shared;
3640                        if (!n->alien) {
3641                                n->alien = new_alien;
3642                                new_alien = NULL;
3643                        }
3644                        n->free_limit = (1 + nr_cpus_node(node)) *
3645                                        cachep->batchcount + cachep->num;
3646                        spin_unlock_irq(&n->list_lock);
3647                        slabs_destroy(cachep, &list);
3648                        kfree(shared);
3649                        free_alien_cache(new_alien);
3650                        continue;
3651                }
3652                n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3653                if (!n) {
3654                        free_alien_cache(new_alien);
3655                        kfree(new_shared);
3656                        goto fail;
3657                }
3658
3659                kmem_cache_node_init(n);
3660                n->next_reap = jiffies + REAPTIMEOUT_NODE +
3661                                ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3662                n->shared = new_shared;
3663                n->alien = new_alien;
3664                n->free_limit = (1 + nr_cpus_node(node)) *
3665                                        cachep->batchcount + cachep->num;
3666                cachep->node[node] = n;
3667        }
3668        return 0;
3669
3670fail:
3671        if (!cachep->list.next) {
3672                /* Cache is not active yet. Roll back what we did */
3673                node--;
3674                while (node >= 0) {
3675                        n = get_node(cachep, node);
3676                        if (n) {
3677                                kfree(n->shared);
3678                                free_alien_cache(n->alien);
3679                                kfree(n);
3680                                cachep->node[node] = NULL;
3681                        }
3682                        node--;
3683                }
3684        }
3685        return -ENOMEM;
3686}
3687
3688/* Always called with the slab_mutex held */
3689static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3690                                int batchcount, int shared, gfp_t gfp)
3691{
3692        struct array_cache __percpu *cpu_cache, *prev;
3693        int cpu;
3694
3695        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3696        if (!cpu_cache)
3697                return -ENOMEM;
3698
3699        prev = cachep->cpu_cache;
3700        cachep->cpu_cache = cpu_cache;
3701        kick_all_cpus_sync();
3702
3703        check_irq_on();
3704        cachep->batchcount = batchcount;
3705        cachep->limit = limit;
3706        cachep->shared = shared;
3707
3708        if (!prev)
3709                goto alloc_node;
3710
3711        for_each_online_cpu(cpu) {
3712                LIST_HEAD(list);
3713                int node;
3714                struct kmem_cache_node *n;
3715                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3716
3717                node = cpu_to_mem(cpu);
3718                n = get_node(cachep, node);
3719                spin_lock_irq(&n->list_lock);
3720                free_block(cachep, ac->entry, ac->avail, node, &list);
3721                spin_unlock_irq(&n->list_lock);
3722                slabs_destroy(cachep, &list);
3723        }
3724        free_percpu(prev);
3725
3726alloc_node:
3727        return alloc_kmem_cache_node(cachep, gfp);
3728}
3729
3730static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3731                                int batchcount, int shared, gfp_t gfp)
3732{
3733        int ret;
3734        struct kmem_cache *c;
3735
3736        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3737
3738        if (slab_state < FULL)
3739                return ret;
3740
3741        if ((ret < 0) || !is_root_cache(cachep))
3742                return ret;
3743
3744        lockdep_assert_held(&slab_mutex);
3745        for_each_memcg_cache(c, cachep) {
3746                /* return value determined by the root cache only */
3747                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3748        }
3749
3750        return ret;
3751}
3752
3753/* Called with slab_mutex held always */
3754static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3755{
3756        int err;
3757        int limit = 0;
3758        int shared = 0;
3759        int batchcount = 0;
3760
3761        if (!is_root_cache(cachep)) {
3762                struct kmem_cache *root = memcg_root_cache(cachep);
3763                limit = root->limit;
3764                shared = root->shared;
3765                batchcount = root->batchcount;
3766        }
3767
3768        if (limit && shared && batchcount)
3769                goto skip_setup;
3770        /*
3771         * The head array serves three purposes:
3772         * - create a LIFO ordering, i.e. return objects that are cache-warm
3773         * - reduce the number of spinlock operations.
3774         * - reduce the number of linked list operations on the slab and
3775         *   bufctl chains: array operations are cheaper.
3776         * The numbers are guessed, we should auto-tune as described by
3777         * Bonwick.
3778         */
3779        if (cachep->size > 131072)
3780                limit = 1;
3781        else if (cachep->size > PAGE_SIZE)
3782                limit = 8;
3783        else if (cachep->size > 1024)
3784                limit = 24;
3785        else if (cachep->size > 256)
3786                limit = 54;
3787        else
3788                limit = 120;
3789
3790        /*
3791         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3792         * allocation behaviour: Most allocs on one cpu, most free operations
3793         * on another cpu. For these cases, an efficient object passing between
3794         * cpus is necessary. This is provided by a shared array. The array
3795         * replaces Bonwick's magazine layer.
3796         * On uniprocessor, it's functionally equivalent (but less efficient)
3797         * to a larger limit. Thus disabled by default.
3798         */
3799        shared = 0;
3800        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3801                shared = 8;
3802
3803#if DEBUG
3804        /*
3805         * With debugging enabled, large batchcount lead to excessively long
3806         * periods with disabled local interrupts. Limit the batchcount
3807         */
3808        if (limit > 32)
3809                limit = 32;
3810#endif
3811        batchcount = (limit + 1) / 2;
3812skip_setup:
3813        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3814        if (err)
3815                printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3816                       cachep->name, -err);
3817        return err;
3818}
3819
3820/*
3821 * Drain an array if it contains any elements taking the node lock only if
3822 * necessary. Note that the node listlock also protects the array_cache
3823 * if drain_array() is used on the shared array.
3824 */
3825static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3826                         struct array_cache *ac, int force, int node)
3827{
3828        LIST_HEAD(list);
3829        int tofree;
3830
3831        if (!ac || !ac->avail)
3832                return;
3833        if (ac->touched && !force) {
3834                ac->touched = 0;
3835        } else {
3836                spin_lock_irq(&n->list_lock);
3837                if (ac->avail) {
3838                        tofree = force ? ac->avail : (ac->limit + 4) / 5;
3839                        if (tofree > ac->avail)
3840                                tofree = (ac->avail + 1) / 2;
3841                        free_block(cachep, ac->entry, tofree, node, &list);
3842                        ac->avail -= tofree;
3843                        memmove(ac->entry, &(ac->entry[tofree]),
3844                                sizeof(void *) * ac->avail);
3845                }
3846                spin_unlock_irq(&n->list_lock);
3847                slabs_destroy(cachep, &list);
3848        }
3849}
3850
3851/**
3852 * cache_reap - Reclaim memory from caches.
3853 * @w: work descriptor
3854 *
3855 * Called from workqueue/eventd every few seconds.
3856 * Purpose:
3857 * - clear the per-cpu caches for this CPU.
3858 * - return freeable pages to the main free memory pool.
3859 *
3860 * If we cannot acquire the cache chain mutex then just give up - we'll try
3861 * again on the next iteration.
3862 */
3863static void cache_reap(struct work_struct *w)
3864{
3865        struct kmem_cache *searchp;
3866        struct kmem_cache_node *n;
3867        int node = numa_mem_id();
3868        struct delayed_work *work = to_delayed_work(w);
3869
3870        if (!mutex_trylock(&slab_mutex))
3871                /* Give up. Setup the next iteration. */
3872                goto out;
3873
3874        list_for_each_entry(searchp, &slab_caches, list) {
3875                check_irq_on();
3876
3877                /*
3878                 * We only take the node lock if absolutely necessary and we
3879                 * have established with reasonable certainty that
3880                 * we can do some work if the lock was obtained.
3881                 */
3882                n = get_node(searchp, node);
3883
3884                reap_alien(searchp, n);
3885
3886                drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3887
3888                /*
3889                 * These are racy checks but it does not matter
3890                 * if we skip one check or scan twice.
3891                 */
3892                if (time_after(n->next_reap, jiffies))
3893                        goto next;
3894
3895                n->next_reap = jiffies + REAPTIMEOUT_NODE;
3896
3897                drain_array(searchp, n, n->shared, 0, node);
3898
3899                if (n->free_touched)
3900                        n->free_touched = 0;
3901                else {
3902                        int freed;
3903
3904                        freed = drain_freelist(searchp, n, (n->free_limit +
3905                                5 * searchp->num - 1) / (5 * searchp->num));
3906                        STATS_ADD_REAPED(searchp, freed);
3907                }
3908next:
3909                cond_resched();
3910        }
3911        check_irq_on();
3912        mutex_unlock(&slab_mutex);
3913        next_reap_node();
3914out:
3915        /* Set up the next iteration */
3916        schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3917}
3918
3919#ifdef CONFIG_SLABINFO
3920void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3921{
3922        struct page *page;
3923        unsigned long active_objs;
3924        unsigned long num_objs;
3925        unsigned long active_slabs = 0;
3926        unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3927        const char *name;
3928        char *error = NULL;
3929        int node;
3930        struct kmem_cache_node *n;
3931
3932        active_objs = 0;
3933        num_slabs = 0;
3934        for_each_kmem_cache_node(cachep, node, n) {
3935
3936                check_irq_on();
3937                spin_lock_irq(&n->list_lock);
3938
3939                list_for_each_entry(page, &n->slabs_full, lru) {
3940                        if (page->active != cachep->num && !error)
3941                                error = "slabs_full accounting error";
3942                        active_objs += cachep->num;
3943                        active_slabs++;
3944                }
3945                list_for_each_entry(page, &n->slabs_partial, lru) {
3946                        if (page->active == cachep->num && !error)
3947                                error = "slabs_partial accounting error";
3948                        if (!page->active && !error)
3949                                error = "slabs_partial accounting error";
3950                        active_objs += page->active;
3951                        active_slabs++;
3952                }
3953                list_for_each_entry(page, &n->slabs_free, lru) {
3954                        if (page->active && !error)
3955                                error = "slabs_free accounting error";
3956                        num_slabs++;
3957                }
3958                free_objects += n->free_objects;
3959                if (n->shared)
3960                        shared_avail += n->shared->avail;
3961
3962                spin_unlock_irq(&n->list_lock);
3963        }
3964        num_slabs += active_slabs;
3965        num_objs = num_slabs * cachep->num;
3966        if (num_objs - active_objs != free_objects && !error)
3967                error = "free_objects accounting error";
3968
3969        name = cachep->name;
3970        if (error)
3971                printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3972
3973        sinfo->active_objs = active_objs;
3974        sinfo->num_objs = num_objs;
3975        sinfo->active_slabs = active_slabs;
3976        sinfo->num_slabs = num_slabs;
3977        sinfo->shared_avail = shared_avail;
3978        sinfo->limit = cachep->limit;
3979        sinfo->batchcount = cachep->batchcount;
3980        sinfo->shared = cachep->shared;
3981        sinfo->objects_per_slab = cachep->num;
3982        sinfo->cache_order = cachep->gfporder;
3983}
3984
3985void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3986{
3987#if STATS
3988        {                       /* node stats */
3989                unsigned long high = cachep->high_mark;
3990                unsigned long allocs = cachep->num_allocations;
3991                unsigned long grown = cachep->grown;
3992                unsigned long reaped = cachep->reaped;
3993                unsigned long errors = cachep->errors;
3994                unsigned long max_freeable = cachep->max_freeable;
3995                unsigned long node_allocs = cachep->node_allocs;
3996                unsigned long node_frees = cachep->node_frees;
3997                unsigned long overflows = cachep->node_overflow;
3998
3999                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4000                           "%4lu %4lu %4lu %4lu %4lu",
4001                           allocs, high, grown,
4002                           reaped, errors, max_freeable, node_allocs,
4003                           node_frees, overflows);
4004        }
4005        /* cpu stats */
4006        {
4007                unsigned long allochit = atomic_read(&cachep->allochit);
4008                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4009                unsigned long freehit = atomic_read(&cachep->freehit);
4010                unsigned long freemiss = atomic_read(&cachep->freemiss);
4011
4012                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4013                           allochit, allocmiss, freehit, freemiss);
4014        }
4015#endif
4016}
4017
4018#define MAX_SLABINFO_WRITE 128
4019/**
4020 * slabinfo_write - Tuning for the slab allocator
4021 * @file: unused
4022 * @buffer: user buffer
4023 * @count: data length
4024 * @ppos: unused
4025 */
4026ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4027                       size_t count, loff_t *ppos)
4028{
4029        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4030        int limit, batchcount, shared, res;
4031        struct kmem_cache *cachep;
4032
4033        if (count > MAX_SLABINFO_WRITE)
4034                return -EINVAL;
4035        if (copy_from_user(&kbuf, buffer, count))
4036                return -EFAULT;
4037        kbuf[MAX_SLABINFO_WRITE] = '\0';
4038
4039        tmp = strchr(kbuf, ' ');
4040        if (!tmp)
4041                return -EINVAL;
4042        *tmp = '\0';
4043        tmp++;
4044        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4045                return -EINVAL;
4046
4047        /* Find the cache in the chain of caches. */
4048        mutex_lock(&slab_mutex);
4049        res = -EINVAL;
4050        list_for_each_entry(cachep, &slab_caches, list) {
4051                if (!strcmp(cachep->name, kbuf)) {
4052                        if (limit < 1 || batchcount < 1 ||
4053                                        batchcount > limit || shared < 0) {
4054                                res = 0;
4055                        } else {
4056                                res = do_tune_cpucache(cachep, limit,
4057                                                       batchcount, shared,
4058                                                       GFP_KERNEL);
4059                        }
4060                        break;
4061                }
4062        }
4063        mutex_unlock(&slab_mutex);
4064        if (res >= 0)
4065                res = count;
4066        return res;
4067}
4068
4069#ifdef CONFIG_DEBUG_SLAB_LEAK
4070
4071static inline int add_caller(unsigned long *n, unsigned long v)
4072{
4073        unsigned long *p;
4074        int l;
4075        if (!v)
4076                return 1;
4077        l = n[1];
4078        p = n + 2;
4079        while (l) {
4080                int i = l/2;
4081                unsigned long *q = p + 2 * i;
4082                if (*q == v) {
4083                        q[1]++;
4084                        return 1;
4085                }
4086                if (*q > v) {
4087                        l = i;
4088                } else {
4089                        p = q + 2;
4090                        l -= i + 1;
4091                }
4092        }
4093        if (++n[1] == n[0])
4094                return 0;
4095        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4096        p[0] = v;
4097        p[1] = 1;
4098        return 1;
4099}
4100
4101static void handle_slab(unsigned long *n, struct kmem_cache *c,
4102                                                struct page *page)
4103{
4104        void *p;
4105        int i;
4106
4107        if (n[0] == n[1])
4108                return;
4109        for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4110                if (get_obj_status(page, i) != OBJECT_ACTIVE)
4111                        continue;
4112
4113                if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4114                        return;
4115        }
4116}
4117
4118static void show_symbol(struct seq_file *m, unsigned long address)
4119{
4120#ifdef CONFIG_KALLSYMS
4121        unsigned long offset, size;
4122        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4123
4124        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4125                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4126                if (modname[0])
4127                        seq_printf(m, " [%s]", modname);
4128                return;
4129        }
4130#endif
4131        seq_printf(m, "%p", (void *)address);
4132}
4133
4134static int leaks_show(struct seq_file *m, void *p)
4135{
4136        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4137        struct page *page;
4138        struct kmem_cache_node *n;
4139        const char *name;
4140        unsigned long *x = m->private;
4141        int node;
4142        int i;
4143
4144        if (!(cachep->flags & SLAB_STORE_USER))
4145                return 0;
4146        if (!(cachep->flags & SLAB_RED_ZONE))
4147                return 0;
4148
4149        /* OK, we can do it */
4150
4151        x[1] = 0;
4152
4153        for_each_kmem_cache_node(cachep, node, n) {
4154
4155                check_irq_on();
4156                spin_lock_irq(&n->list_lock);
4157
4158                list_for_each_entry(page, &n->slabs_full, lru)
4159                        handle_slab(x, cachep, page);
4160                list_for_each_entry(page, &n->slabs_partial, lru)
4161                        handle_slab(x, cachep, page);
4162                spin_unlock_irq(&n->list_lock);
4163        }
4164        name = cachep->name;
4165        if (x[0] == x[1]) {
4166                /* Increase the buffer size */
4167                mutex_unlock(&slab_mutex);
4168                m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4169                if (!m->private) {
4170                        /* Too bad, we are really out */
4171                        m->private = x;
4172                        mutex_lock(&slab_mutex);
4173                        return -ENOMEM;
4174                }
4175                *(unsigned long *)m->private = x[0] * 2;
4176                kfree(x);
4177                mutex_lock(&slab_mutex);
4178                /* Now make sure this entry will be retried */
4179                m->count = m->size;
4180                return 0;
4181        }
4182        for (i = 0; i < x[1]; i++) {
4183                seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4184                show_symbol(m, x[2*i+2]);
4185                seq_putc(m, '\n');
4186        }
4187
4188        return 0;
4189}
4190
4191static const struct seq_operations slabstats_op = {
4192        .start = slab_start,
4193        .next = slab_next,
4194        .stop = slab_stop,
4195        .show = leaks_show,
4196};
4197
4198static int slabstats_open(struct inode *inode, struct file *file)
4199{
4200        unsigned long *n;
4201
4202        n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4203        if (!n)
4204                return -ENOMEM;
4205
4206        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4207
4208        return 0;
4209}
4210
4211static const struct file_operations proc_slabstats_operations = {
4212        .open           = slabstats_open,
4213        .read           = seq_read,
4214        .llseek         = seq_lseek,
4215        .release        = seq_release_private,
4216};
4217#endif
4218
4219static int __init slab_proc_init(void)
4220{
4221#ifdef CONFIG_DEBUG_SLAB_LEAK
4222        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4223#endif
4224        return 0;
4225}
4226module_init(slab_proc_init);
4227#endif
4228
4229/**
4230 * ksize - get the actual amount of memory allocated for a given object
4231 * @objp: Pointer to the object
4232 *
4233 * kmalloc may internally round up allocations and return more memory
4234 * than requested. ksize() can be used to determine the actual amount of
4235 * memory allocated. The caller may use this additional memory, even though
4236 * a smaller amount of memory was initially specified with the kmalloc call.
4237 * The caller must guarantee that objp points to a valid object previously
4238 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4239 * must not be freed during the duration of the call.
4240 */
4241size_t ksize(const void *objp)
4242{
4243        BUG_ON(!objp);
4244        if (unlikely(objp == ZERO_SIZE_PTR))
4245                return 0;
4246
4247        return virt_to_cache(objp)->object_size;
4248}
4249EXPORT_SYMBOL(ksize);
4250