linux/net/ceph/messenger.c
<<
>>
Prefs
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
   9#include <linux/nsproxy.h>
  10#include <linux/slab.h>
  11#include <linux/socket.h>
  12#include <linux/string.h>
  13#ifdef  CONFIG_BLOCK
  14#include <linux/bio.h>
  15#endif  /* CONFIG_BLOCK */
  16#include <linux/dns_resolver.h>
  17#include <net/tcp.h>
  18
  19#include <linux/ceph/ceph_features.h>
  20#include <linux/ceph/libceph.h>
  21#include <linux/ceph/messenger.h>
  22#include <linux/ceph/decode.h>
  23#include <linux/ceph/pagelist.h>
  24#include <linux/export.h>
  25
  26/*
  27 * Ceph uses the messenger to exchange ceph_msg messages with other
  28 * hosts in the system.  The messenger provides ordered and reliable
  29 * delivery.  We tolerate TCP disconnects by reconnecting (with
  30 * exponential backoff) in the case of a fault (disconnection, bad
  31 * crc, protocol error).  Acks allow sent messages to be discarded by
  32 * the sender.
  33 */
  34
  35/*
  36 * We track the state of the socket on a given connection using
  37 * values defined below.  The transition to a new socket state is
  38 * handled by a function which verifies we aren't coming from an
  39 * unexpected state.
  40 *
  41 *      --------
  42 *      | NEW* |  transient initial state
  43 *      --------
  44 *          | con_sock_state_init()
  45 *          v
  46 *      ----------
  47 *      | CLOSED |  initialized, but no socket (and no
  48 *      ----------  TCP connection)
  49 *       ^      \
  50 *       |       \ con_sock_state_connecting()
  51 *       |        ----------------------
  52 *       |                              \
  53 *       + con_sock_state_closed()       \
  54 *       |+---------------------------    \
  55 *       | \                          \    \
  56 *       |  -----------                \    \
  57 *       |  | CLOSING |  socket event;  \    \
  58 *       |  -----------  await close     \    \
  59 *       |       ^                        \   |
  60 *       |       |                         \  |
  61 *       |       + con_sock_state_closing() \ |
  62 *       |      / \                         | |
  63 *       |     /   ---------------          | |
  64 *       |    /                   \         v v
  65 *       |   /                    --------------
  66 *       |  /    -----------------| CONNECTING |  socket created, TCP
  67 *       |  |   /                 --------------  connect initiated
  68 *       |  |   | con_sock_state_connected()
  69 *       |  |   v
  70 *      -------------
  71 *      | CONNECTED |  TCP connection established
  72 *      -------------
  73 *
  74 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  75 */
  76
  77#define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
  78#define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
  79#define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
  80#define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
  81#define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
  82
  83/*
  84 * connection states
  85 */
  86#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  87#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  88#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  89#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  90#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  91#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  92
  93/*
  94 * ceph_connection flag bits
  95 */
  96#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  97                                       * messages on errors */
  98#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
  99#define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
 100#define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
 101#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 102
 103static bool con_flag_valid(unsigned long con_flag)
 104{
 105        switch (con_flag) {
 106        case CON_FLAG_LOSSYTX:
 107        case CON_FLAG_KEEPALIVE_PENDING:
 108        case CON_FLAG_WRITE_PENDING:
 109        case CON_FLAG_SOCK_CLOSED:
 110        case CON_FLAG_BACKOFF:
 111                return true;
 112        default:
 113                return false;
 114        }
 115}
 116
 117static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 118{
 119        BUG_ON(!con_flag_valid(con_flag));
 120
 121        clear_bit(con_flag, &con->flags);
 122}
 123
 124static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 125{
 126        BUG_ON(!con_flag_valid(con_flag));
 127
 128        set_bit(con_flag, &con->flags);
 129}
 130
 131static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 132{
 133        BUG_ON(!con_flag_valid(con_flag));
 134
 135        return test_bit(con_flag, &con->flags);
 136}
 137
 138static bool con_flag_test_and_clear(struct ceph_connection *con,
 139                                        unsigned long con_flag)
 140{
 141        BUG_ON(!con_flag_valid(con_flag));
 142
 143        return test_and_clear_bit(con_flag, &con->flags);
 144}
 145
 146static bool con_flag_test_and_set(struct ceph_connection *con,
 147                                        unsigned long con_flag)
 148{
 149        BUG_ON(!con_flag_valid(con_flag));
 150
 151        return test_and_set_bit(con_flag, &con->flags);
 152}
 153
 154/* Slab caches for frequently-allocated structures */
 155
 156static struct kmem_cache        *ceph_msg_cache;
 157static struct kmem_cache        *ceph_msg_data_cache;
 158
 159/* static tag bytes (protocol control messages) */
 160static char tag_msg = CEPH_MSGR_TAG_MSG;
 161static char tag_ack = CEPH_MSGR_TAG_ACK;
 162static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 163static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
 164
 165#ifdef CONFIG_LOCKDEP
 166static struct lock_class_key socket_class;
 167#endif
 168
 169/*
 170 * When skipping (ignoring) a block of input we read it into a "skip
 171 * buffer," which is this many bytes in size.
 172 */
 173#define SKIP_BUF_SIZE   1024
 174
 175static void queue_con(struct ceph_connection *con);
 176static void cancel_con(struct ceph_connection *con);
 177static void ceph_con_workfn(struct work_struct *);
 178static void con_fault(struct ceph_connection *con);
 179
 180/*
 181 * Nicely render a sockaddr as a string.  An array of formatted
 182 * strings is used, to approximate reentrancy.
 183 */
 184#define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
 185#define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
 186#define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
 187#define MAX_ADDR_STR_LEN        64      /* 54 is enough */
 188
 189static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 190static atomic_t addr_str_seq = ATOMIC_INIT(0);
 191
 192static struct page *zero_page;          /* used in certain error cases */
 193
 194const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 195{
 196        int i;
 197        char *s;
 198        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 199        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 200
 201        i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 202        s = addr_str[i];
 203
 204        switch (ss->ss_family) {
 205        case AF_INET:
 206                snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 207                         ntohs(in4->sin_port));
 208                break;
 209
 210        case AF_INET6:
 211                snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 212                         ntohs(in6->sin6_port));
 213                break;
 214
 215        default:
 216                snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 217                         ss->ss_family);
 218        }
 219
 220        return s;
 221}
 222EXPORT_SYMBOL(ceph_pr_addr);
 223
 224static void encode_my_addr(struct ceph_messenger *msgr)
 225{
 226        memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 227        ceph_encode_addr(&msgr->my_enc_addr);
 228}
 229
 230/*
 231 * work queue for all reading and writing to/from the socket.
 232 */
 233static struct workqueue_struct *ceph_msgr_wq;
 234
 235static int ceph_msgr_slab_init(void)
 236{
 237        BUG_ON(ceph_msg_cache);
 238        ceph_msg_cache = kmem_cache_create("ceph_msg",
 239                                        sizeof (struct ceph_msg),
 240                                        __alignof__(struct ceph_msg), 0, NULL);
 241
 242        if (!ceph_msg_cache)
 243                return -ENOMEM;
 244
 245        BUG_ON(ceph_msg_data_cache);
 246        ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
 247                                        sizeof (struct ceph_msg_data),
 248                                        __alignof__(struct ceph_msg_data),
 249                                        0, NULL);
 250        if (ceph_msg_data_cache)
 251                return 0;
 252
 253        kmem_cache_destroy(ceph_msg_cache);
 254        ceph_msg_cache = NULL;
 255
 256        return -ENOMEM;
 257}
 258
 259static void ceph_msgr_slab_exit(void)
 260{
 261        BUG_ON(!ceph_msg_data_cache);
 262        kmem_cache_destroy(ceph_msg_data_cache);
 263        ceph_msg_data_cache = NULL;
 264
 265        BUG_ON(!ceph_msg_cache);
 266        kmem_cache_destroy(ceph_msg_cache);
 267        ceph_msg_cache = NULL;
 268}
 269
 270static void _ceph_msgr_exit(void)
 271{
 272        if (ceph_msgr_wq) {
 273                destroy_workqueue(ceph_msgr_wq);
 274                ceph_msgr_wq = NULL;
 275        }
 276
 277        BUG_ON(zero_page == NULL);
 278        page_cache_release(zero_page);
 279        zero_page = NULL;
 280
 281        ceph_msgr_slab_exit();
 282}
 283
 284int ceph_msgr_init(void)
 285{
 286        if (ceph_msgr_slab_init())
 287                return -ENOMEM;
 288
 289        BUG_ON(zero_page != NULL);
 290        zero_page = ZERO_PAGE(0);
 291        page_cache_get(zero_page);
 292
 293        /*
 294         * The number of active work items is limited by the number of
 295         * connections, so leave @max_active at default.
 296         */
 297        ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 298        if (ceph_msgr_wq)
 299                return 0;
 300
 301        pr_err("msgr_init failed to create workqueue\n");
 302        _ceph_msgr_exit();
 303
 304        return -ENOMEM;
 305}
 306EXPORT_SYMBOL(ceph_msgr_init);
 307
 308void ceph_msgr_exit(void)
 309{
 310        BUG_ON(ceph_msgr_wq == NULL);
 311
 312        _ceph_msgr_exit();
 313}
 314EXPORT_SYMBOL(ceph_msgr_exit);
 315
 316void ceph_msgr_flush(void)
 317{
 318        flush_workqueue(ceph_msgr_wq);
 319}
 320EXPORT_SYMBOL(ceph_msgr_flush);
 321
 322/* Connection socket state transition functions */
 323
 324static void con_sock_state_init(struct ceph_connection *con)
 325{
 326        int old_state;
 327
 328        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 329        if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 330                printk("%s: unexpected old state %d\n", __func__, old_state);
 331        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 332             CON_SOCK_STATE_CLOSED);
 333}
 334
 335static void con_sock_state_connecting(struct ceph_connection *con)
 336{
 337        int old_state;
 338
 339        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 340        if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 341                printk("%s: unexpected old state %d\n", __func__, old_state);
 342        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 343             CON_SOCK_STATE_CONNECTING);
 344}
 345
 346static void con_sock_state_connected(struct ceph_connection *con)
 347{
 348        int old_state;
 349
 350        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 351        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 352                printk("%s: unexpected old state %d\n", __func__, old_state);
 353        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 354             CON_SOCK_STATE_CONNECTED);
 355}
 356
 357static void con_sock_state_closing(struct ceph_connection *con)
 358{
 359        int old_state;
 360
 361        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 362        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 363                        old_state != CON_SOCK_STATE_CONNECTED &&
 364                        old_state != CON_SOCK_STATE_CLOSING))
 365                printk("%s: unexpected old state %d\n", __func__, old_state);
 366        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 367             CON_SOCK_STATE_CLOSING);
 368}
 369
 370static void con_sock_state_closed(struct ceph_connection *con)
 371{
 372        int old_state;
 373
 374        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 375        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 376                    old_state != CON_SOCK_STATE_CLOSING &&
 377                    old_state != CON_SOCK_STATE_CONNECTING &&
 378                    old_state != CON_SOCK_STATE_CLOSED))
 379                printk("%s: unexpected old state %d\n", __func__, old_state);
 380        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 381             CON_SOCK_STATE_CLOSED);
 382}
 383
 384/*
 385 * socket callback functions
 386 */
 387
 388/* data available on socket, or listen socket received a connect */
 389static void ceph_sock_data_ready(struct sock *sk)
 390{
 391        struct ceph_connection *con = sk->sk_user_data;
 392        if (atomic_read(&con->msgr->stopping)) {
 393                return;
 394        }
 395
 396        if (sk->sk_state != TCP_CLOSE_WAIT) {
 397                dout("%s on %p state = %lu, queueing work\n", __func__,
 398                     con, con->state);
 399                queue_con(con);
 400        }
 401}
 402
 403/* socket has buffer space for writing */
 404static void ceph_sock_write_space(struct sock *sk)
 405{
 406        struct ceph_connection *con = sk->sk_user_data;
 407
 408        /* only queue to workqueue if there is data we want to write,
 409         * and there is sufficient space in the socket buffer to accept
 410         * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 411         * doesn't get called again until try_write() fills the socket
 412         * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 413         * and net/core/stream.c:sk_stream_write_space().
 414         */
 415        if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 416                if (sk_stream_is_writeable(sk)) {
 417                        dout("%s %p queueing write work\n", __func__, con);
 418                        clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 419                        queue_con(con);
 420                }
 421        } else {
 422                dout("%s %p nothing to write\n", __func__, con);
 423        }
 424}
 425
 426/* socket's state has changed */
 427static void ceph_sock_state_change(struct sock *sk)
 428{
 429        struct ceph_connection *con = sk->sk_user_data;
 430
 431        dout("%s %p state = %lu sk_state = %u\n", __func__,
 432             con, con->state, sk->sk_state);
 433
 434        switch (sk->sk_state) {
 435        case TCP_CLOSE:
 436                dout("%s TCP_CLOSE\n", __func__);
 437        case TCP_CLOSE_WAIT:
 438                dout("%s TCP_CLOSE_WAIT\n", __func__);
 439                con_sock_state_closing(con);
 440                con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 441                queue_con(con);
 442                break;
 443        case TCP_ESTABLISHED:
 444                dout("%s TCP_ESTABLISHED\n", __func__);
 445                con_sock_state_connected(con);
 446                queue_con(con);
 447                break;
 448        default:        /* Everything else is uninteresting */
 449                break;
 450        }
 451}
 452
 453/*
 454 * set up socket callbacks
 455 */
 456static void set_sock_callbacks(struct socket *sock,
 457                               struct ceph_connection *con)
 458{
 459        struct sock *sk = sock->sk;
 460        sk->sk_user_data = con;
 461        sk->sk_data_ready = ceph_sock_data_ready;
 462        sk->sk_write_space = ceph_sock_write_space;
 463        sk->sk_state_change = ceph_sock_state_change;
 464}
 465
 466
 467/*
 468 * socket helpers
 469 */
 470
 471/*
 472 * initiate connection to a remote socket.
 473 */
 474static int ceph_tcp_connect(struct ceph_connection *con)
 475{
 476        struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 477        struct socket *sock;
 478        int ret;
 479
 480        BUG_ON(con->sock);
 481        ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
 482                               SOCK_STREAM, IPPROTO_TCP, &sock);
 483        if (ret)
 484                return ret;
 485        sock->sk->sk_allocation = GFP_NOFS;
 486
 487#ifdef CONFIG_LOCKDEP
 488        lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 489#endif
 490
 491        set_sock_callbacks(sock, con);
 492
 493        dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 494
 495        con_sock_state_connecting(con);
 496        ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 497                                 O_NONBLOCK);
 498        if (ret == -EINPROGRESS) {
 499                dout("connect %s EINPROGRESS sk_state = %u\n",
 500                     ceph_pr_addr(&con->peer_addr.in_addr),
 501                     sock->sk->sk_state);
 502        } else if (ret < 0) {
 503                pr_err("connect %s error %d\n",
 504                       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 505                sock_release(sock);
 506                return ret;
 507        }
 508
 509        if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
 510                int optval = 1;
 511
 512                ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
 513                                        (char *)&optval, sizeof(optval));
 514                if (ret)
 515                        pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
 516                               ret);
 517        }
 518
 519        con->sock = sock;
 520        return 0;
 521}
 522
 523static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 524{
 525        struct kvec iov = {buf, len};
 526        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 527        int r;
 528
 529        r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
 530        if (r == -EAGAIN)
 531                r = 0;
 532        return r;
 533}
 534
 535static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 536                     int page_offset, size_t length)
 537{
 538        void *kaddr;
 539        int ret;
 540
 541        BUG_ON(page_offset + length > PAGE_SIZE);
 542
 543        kaddr = kmap(page);
 544        BUG_ON(!kaddr);
 545        ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
 546        kunmap(page);
 547
 548        return ret;
 549}
 550
 551/*
 552 * write something.  @more is true if caller will be sending more data
 553 * shortly.
 554 */
 555static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 556                     size_t kvlen, size_t len, int more)
 557{
 558        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 559        int r;
 560
 561        if (more)
 562                msg.msg_flags |= MSG_MORE;
 563        else
 564                msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 565
 566        r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 567        if (r == -EAGAIN)
 568                r = 0;
 569        return r;
 570}
 571
 572static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 573                     int offset, size_t size, bool more)
 574{
 575        int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 576        int ret;
 577
 578        ret = kernel_sendpage(sock, page, offset, size, flags);
 579        if (ret == -EAGAIN)
 580                ret = 0;
 581
 582        return ret;
 583}
 584
 585static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 586                     int offset, size_t size, bool more)
 587{
 588        int ret;
 589        struct kvec iov;
 590
 591        /* sendpage cannot properly handle pages with page_count == 0,
 592         * we need to fallback to sendmsg if that's the case */
 593        if (page_count(page) >= 1)
 594                return __ceph_tcp_sendpage(sock, page, offset, size, more);
 595
 596        iov.iov_base = kmap(page) + offset;
 597        iov.iov_len = size;
 598        ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
 599        kunmap(page);
 600
 601        return ret;
 602}
 603
 604/*
 605 * Shutdown/close the socket for the given connection.
 606 */
 607static int con_close_socket(struct ceph_connection *con)
 608{
 609        int rc = 0;
 610
 611        dout("con_close_socket on %p sock %p\n", con, con->sock);
 612        if (con->sock) {
 613                rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 614                sock_release(con->sock);
 615                con->sock = NULL;
 616        }
 617
 618        /*
 619         * Forcibly clear the SOCK_CLOSED flag.  It gets set
 620         * independent of the connection mutex, and we could have
 621         * received a socket close event before we had the chance to
 622         * shut the socket down.
 623         */
 624        con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 625
 626        con_sock_state_closed(con);
 627        return rc;
 628}
 629
 630/*
 631 * Reset a connection.  Discard all incoming and outgoing messages
 632 * and clear *_seq state.
 633 */
 634static void ceph_msg_remove(struct ceph_msg *msg)
 635{
 636        list_del_init(&msg->list_head);
 637
 638        ceph_msg_put(msg);
 639}
 640static void ceph_msg_remove_list(struct list_head *head)
 641{
 642        while (!list_empty(head)) {
 643                struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 644                                                        list_head);
 645                ceph_msg_remove(msg);
 646        }
 647}
 648
 649static void reset_connection(struct ceph_connection *con)
 650{
 651        /* reset connection, out_queue, msg_ and connect_seq */
 652        /* discard existing out_queue and msg_seq */
 653        dout("reset_connection %p\n", con);
 654        ceph_msg_remove_list(&con->out_queue);
 655        ceph_msg_remove_list(&con->out_sent);
 656
 657        if (con->in_msg) {
 658                BUG_ON(con->in_msg->con != con);
 659                ceph_msg_put(con->in_msg);
 660                con->in_msg = NULL;
 661        }
 662
 663        con->connect_seq = 0;
 664        con->out_seq = 0;
 665        if (con->out_msg) {
 666                BUG_ON(con->out_msg->con != con);
 667                ceph_msg_put(con->out_msg);
 668                con->out_msg = NULL;
 669        }
 670        con->in_seq = 0;
 671        con->in_seq_acked = 0;
 672
 673        con->out_skip = 0;
 674}
 675
 676/*
 677 * mark a peer down.  drop any open connections.
 678 */
 679void ceph_con_close(struct ceph_connection *con)
 680{
 681        mutex_lock(&con->mutex);
 682        dout("con_close %p peer %s\n", con,
 683             ceph_pr_addr(&con->peer_addr.in_addr));
 684        con->state = CON_STATE_CLOSED;
 685
 686        con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
 687        con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 688        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 689        con_flag_clear(con, CON_FLAG_BACKOFF);
 690
 691        reset_connection(con);
 692        con->peer_global_seq = 0;
 693        cancel_con(con);
 694        con_close_socket(con);
 695        mutex_unlock(&con->mutex);
 696}
 697EXPORT_SYMBOL(ceph_con_close);
 698
 699/*
 700 * Reopen a closed connection, with a new peer address.
 701 */
 702void ceph_con_open(struct ceph_connection *con,
 703                   __u8 entity_type, __u64 entity_num,
 704                   struct ceph_entity_addr *addr)
 705{
 706        mutex_lock(&con->mutex);
 707        dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 708
 709        WARN_ON(con->state != CON_STATE_CLOSED);
 710        con->state = CON_STATE_PREOPEN;
 711
 712        con->peer_name.type = (__u8) entity_type;
 713        con->peer_name.num = cpu_to_le64(entity_num);
 714
 715        memcpy(&con->peer_addr, addr, sizeof(*addr));
 716        con->delay = 0;      /* reset backoff memory */
 717        mutex_unlock(&con->mutex);
 718        queue_con(con);
 719}
 720EXPORT_SYMBOL(ceph_con_open);
 721
 722/*
 723 * return true if this connection ever successfully opened
 724 */
 725bool ceph_con_opened(struct ceph_connection *con)
 726{
 727        return con->connect_seq > 0;
 728}
 729
 730/*
 731 * initialize a new connection.
 732 */
 733void ceph_con_init(struct ceph_connection *con, void *private,
 734        const struct ceph_connection_operations *ops,
 735        struct ceph_messenger *msgr)
 736{
 737        dout("con_init %p\n", con);
 738        memset(con, 0, sizeof(*con));
 739        con->private = private;
 740        con->ops = ops;
 741        con->msgr = msgr;
 742
 743        con_sock_state_init(con);
 744
 745        mutex_init(&con->mutex);
 746        INIT_LIST_HEAD(&con->out_queue);
 747        INIT_LIST_HEAD(&con->out_sent);
 748        INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 749
 750        con->state = CON_STATE_CLOSED;
 751}
 752EXPORT_SYMBOL(ceph_con_init);
 753
 754
 755/*
 756 * We maintain a global counter to order connection attempts.  Get
 757 * a unique seq greater than @gt.
 758 */
 759static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 760{
 761        u32 ret;
 762
 763        spin_lock(&msgr->global_seq_lock);
 764        if (msgr->global_seq < gt)
 765                msgr->global_seq = gt;
 766        ret = ++msgr->global_seq;
 767        spin_unlock(&msgr->global_seq_lock);
 768        return ret;
 769}
 770
 771static void con_out_kvec_reset(struct ceph_connection *con)
 772{
 773        BUG_ON(con->out_skip);
 774
 775        con->out_kvec_left = 0;
 776        con->out_kvec_bytes = 0;
 777        con->out_kvec_cur = &con->out_kvec[0];
 778}
 779
 780static void con_out_kvec_add(struct ceph_connection *con,
 781                                size_t size, void *data)
 782{
 783        int index = con->out_kvec_left;
 784
 785        BUG_ON(con->out_skip);
 786        BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 787
 788        con->out_kvec[index].iov_len = size;
 789        con->out_kvec[index].iov_base = data;
 790        con->out_kvec_left++;
 791        con->out_kvec_bytes += size;
 792}
 793
 794/*
 795 * Chop off a kvec from the end.  Return residual number of bytes for
 796 * that kvec, i.e. how many bytes would have been written if the kvec
 797 * hadn't been nuked.
 798 */
 799static int con_out_kvec_skip(struct ceph_connection *con)
 800{
 801        int off = con->out_kvec_cur - con->out_kvec;
 802        int skip = 0;
 803
 804        if (con->out_kvec_bytes > 0) {
 805                skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
 806                BUG_ON(con->out_kvec_bytes < skip);
 807                BUG_ON(!con->out_kvec_left);
 808                con->out_kvec_bytes -= skip;
 809                con->out_kvec_left--;
 810        }
 811
 812        return skip;
 813}
 814
 815#ifdef CONFIG_BLOCK
 816
 817/*
 818 * For a bio data item, a piece is whatever remains of the next
 819 * entry in the current bio iovec, or the first entry in the next
 820 * bio in the list.
 821 */
 822static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 823                                        size_t length)
 824{
 825        struct ceph_msg_data *data = cursor->data;
 826        struct bio *bio;
 827
 828        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 829
 830        bio = data->bio;
 831        BUG_ON(!bio);
 832
 833        cursor->resid = min(length, data->bio_length);
 834        cursor->bio = bio;
 835        cursor->bvec_iter = bio->bi_iter;
 836        cursor->last_piece =
 837                cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
 838}
 839
 840static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 841                                                size_t *page_offset,
 842                                                size_t *length)
 843{
 844        struct ceph_msg_data *data = cursor->data;
 845        struct bio *bio;
 846        struct bio_vec bio_vec;
 847
 848        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 849
 850        bio = cursor->bio;
 851        BUG_ON(!bio);
 852
 853        bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 854
 855        *page_offset = (size_t) bio_vec.bv_offset;
 856        BUG_ON(*page_offset >= PAGE_SIZE);
 857        if (cursor->last_piece) /* pagelist offset is always 0 */
 858                *length = cursor->resid;
 859        else
 860                *length = (size_t) bio_vec.bv_len;
 861        BUG_ON(*length > cursor->resid);
 862        BUG_ON(*page_offset + *length > PAGE_SIZE);
 863
 864        return bio_vec.bv_page;
 865}
 866
 867static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 868                                        size_t bytes)
 869{
 870        struct bio *bio;
 871        struct bio_vec bio_vec;
 872
 873        BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
 874
 875        bio = cursor->bio;
 876        BUG_ON(!bio);
 877
 878        bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 879
 880        /* Advance the cursor offset */
 881
 882        BUG_ON(cursor->resid < bytes);
 883        cursor->resid -= bytes;
 884
 885        bio_advance_iter(bio, &cursor->bvec_iter, bytes);
 886
 887        if (bytes < bio_vec.bv_len)
 888                return false;   /* more bytes to process in this segment */
 889
 890        /* Move on to the next segment, and possibly the next bio */
 891
 892        if (!cursor->bvec_iter.bi_size) {
 893                bio = bio->bi_next;
 894                cursor->bio = bio;
 895                if (bio)
 896                        cursor->bvec_iter = bio->bi_iter;
 897                else
 898                        memset(&cursor->bvec_iter, 0,
 899                               sizeof(cursor->bvec_iter));
 900        }
 901
 902        if (!cursor->last_piece) {
 903                BUG_ON(!cursor->resid);
 904                BUG_ON(!bio);
 905                /* A short read is OK, so use <= rather than == */
 906                if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
 907                        cursor->last_piece = true;
 908        }
 909
 910        return true;
 911}
 912#endif /* CONFIG_BLOCK */
 913
 914/*
 915 * For a page array, a piece comes from the first page in the array
 916 * that has not already been fully consumed.
 917 */
 918static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 919                                        size_t length)
 920{
 921        struct ceph_msg_data *data = cursor->data;
 922        int page_count;
 923
 924        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 925
 926        BUG_ON(!data->pages);
 927        BUG_ON(!data->length);
 928
 929        cursor->resid = min(length, data->length);
 930        page_count = calc_pages_for(data->alignment, (u64)data->length);
 931        cursor->page_offset = data->alignment & ~PAGE_MASK;
 932        cursor->page_index = 0;
 933        BUG_ON(page_count > (int)USHRT_MAX);
 934        cursor->page_count = (unsigned short)page_count;
 935        BUG_ON(length > SIZE_MAX - cursor->page_offset);
 936        cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 937}
 938
 939static struct page *
 940ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 941                                        size_t *page_offset, size_t *length)
 942{
 943        struct ceph_msg_data *data = cursor->data;
 944
 945        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 946
 947        BUG_ON(cursor->page_index >= cursor->page_count);
 948        BUG_ON(cursor->page_offset >= PAGE_SIZE);
 949
 950        *page_offset = cursor->page_offset;
 951        if (cursor->last_piece)
 952                *length = cursor->resid;
 953        else
 954                *length = PAGE_SIZE - *page_offset;
 955
 956        return data->pages[cursor->page_index];
 957}
 958
 959static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 960                                                size_t bytes)
 961{
 962        BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 963
 964        BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 965
 966        /* Advance the cursor page offset */
 967
 968        cursor->resid -= bytes;
 969        cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 970        if (!bytes || cursor->page_offset)
 971                return false;   /* more bytes to process in the current page */
 972
 973        if (!cursor->resid)
 974                return false;   /* no more data */
 975
 976        /* Move on to the next page; offset is already at 0 */
 977
 978        BUG_ON(cursor->page_index >= cursor->page_count);
 979        cursor->page_index++;
 980        cursor->last_piece = cursor->resid <= PAGE_SIZE;
 981
 982        return true;
 983}
 984
 985/*
 986 * For a pagelist, a piece is whatever remains to be consumed in the
 987 * first page in the list, or the front of the next page.
 988 */
 989static void
 990ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 991                                        size_t length)
 992{
 993        struct ceph_msg_data *data = cursor->data;
 994        struct ceph_pagelist *pagelist;
 995        struct page *page;
 996
 997        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 998
 999        pagelist = data->pagelist;
1000        BUG_ON(!pagelist);
1001
1002        if (!length)
1003                return;         /* pagelist can be assigned but empty */
1004
1005        BUG_ON(list_empty(&pagelist->head));
1006        page = list_first_entry(&pagelist->head, struct page, lru);
1007
1008        cursor->resid = min(length, pagelist->length);
1009        cursor->page = page;
1010        cursor->offset = 0;
1011        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1012}
1013
1014static struct page *
1015ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1016                                size_t *page_offset, size_t *length)
1017{
1018        struct ceph_msg_data *data = cursor->data;
1019        struct ceph_pagelist *pagelist;
1020
1021        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1022
1023        pagelist = data->pagelist;
1024        BUG_ON(!pagelist);
1025
1026        BUG_ON(!cursor->page);
1027        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1028
1029        /* offset of first page in pagelist is always 0 */
1030        *page_offset = cursor->offset & ~PAGE_MASK;
1031        if (cursor->last_piece)
1032                *length = cursor->resid;
1033        else
1034                *length = PAGE_SIZE - *page_offset;
1035
1036        return cursor->page;
1037}
1038
1039static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1040                                                size_t bytes)
1041{
1042        struct ceph_msg_data *data = cursor->data;
1043        struct ceph_pagelist *pagelist;
1044
1045        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1046
1047        pagelist = data->pagelist;
1048        BUG_ON(!pagelist);
1049
1050        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1051        BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1052
1053        /* Advance the cursor offset */
1054
1055        cursor->resid -= bytes;
1056        cursor->offset += bytes;
1057        /* offset of first page in pagelist is always 0 */
1058        if (!bytes || cursor->offset & ~PAGE_MASK)
1059                return false;   /* more bytes to process in the current page */
1060
1061        if (!cursor->resid)
1062                return false;   /* no more data */
1063
1064        /* Move on to the next page */
1065
1066        BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1067        cursor->page = list_next_entry(cursor->page, lru);
1068        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1069
1070        return true;
1071}
1072
1073/*
1074 * Message data is handled (sent or received) in pieces, where each
1075 * piece resides on a single page.  The network layer might not
1076 * consume an entire piece at once.  A data item's cursor keeps
1077 * track of which piece is next to process and how much remains to
1078 * be processed in that piece.  It also tracks whether the current
1079 * piece is the last one in the data item.
1080 */
1081static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1082{
1083        size_t length = cursor->total_resid;
1084
1085        switch (cursor->data->type) {
1086        case CEPH_MSG_DATA_PAGELIST:
1087                ceph_msg_data_pagelist_cursor_init(cursor, length);
1088                break;
1089        case CEPH_MSG_DATA_PAGES:
1090                ceph_msg_data_pages_cursor_init(cursor, length);
1091                break;
1092#ifdef CONFIG_BLOCK
1093        case CEPH_MSG_DATA_BIO:
1094                ceph_msg_data_bio_cursor_init(cursor, length);
1095                break;
1096#endif /* CONFIG_BLOCK */
1097        case CEPH_MSG_DATA_NONE:
1098        default:
1099                /* BUG(); */
1100                break;
1101        }
1102        cursor->need_crc = true;
1103}
1104
1105static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1106{
1107        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1108        struct ceph_msg_data *data;
1109
1110        BUG_ON(!length);
1111        BUG_ON(length > msg->data_length);
1112        BUG_ON(list_empty(&msg->data));
1113
1114        cursor->data_head = &msg->data;
1115        cursor->total_resid = length;
1116        data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1117        cursor->data = data;
1118
1119        __ceph_msg_data_cursor_init(cursor);
1120}
1121
1122/*
1123 * Return the page containing the next piece to process for a given
1124 * data item, and supply the page offset and length of that piece.
1125 * Indicate whether this is the last piece in this data item.
1126 */
1127static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1128                                        size_t *page_offset, size_t *length,
1129                                        bool *last_piece)
1130{
1131        struct page *page;
1132
1133        switch (cursor->data->type) {
1134        case CEPH_MSG_DATA_PAGELIST:
1135                page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1136                break;
1137        case CEPH_MSG_DATA_PAGES:
1138                page = ceph_msg_data_pages_next(cursor, page_offset, length);
1139                break;
1140#ifdef CONFIG_BLOCK
1141        case CEPH_MSG_DATA_BIO:
1142                page = ceph_msg_data_bio_next(cursor, page_offset, length);
1143                break;
1144#endif /* CONFIG_BLOCK */
1145        case CEPH_MSG_DATA_NONE:
1146        default:
1147                page = NULL;
1148                break;
1149        }
1150        BUG_ON(!page);
1151        BUG_ON(*page_offset + *length > PAGE_SIZE);
1152        BUG_ON(!*length);
1153        if (last_piece)
1154                *last_piece = cursor->last_piece;
1155
1156        return page;
1157}
1158
1159/*
1160 * Returns true if the result moves the cursor on to the next piece
1161 * of the data item.
1162 */
1163static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1164                                size_t bytes)
1165{
1166        bool new_piece;
1167
1168        BUG_ON(bytes > cursor->resid);
1169        switch (cursor->data->type) {
1170        case CEPH_MSG_DATA_PAGELIST:
1171                new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1172                break;
1173        case CEPH_MSG_DATA_PAGES:
1174                new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1175                break;
1176#ifdef CONFIG_BLOCK
1177        case CEPH_MSG_DATA_BIO:
1178                new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1179                break;
1180#endif /* CONFIG_BLOCK */
1181        case CEPH_MSG_DATA_NONE:
1182        default:
1183                BUG();
1184                break;
1185        }
1186        cursor->total_resid -= bytes;
1187
1188        if (!cursor->resid && cursor->total_resid) {
1189                WARN_ON(!cursor->last_piece);
1190                BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1191                cursor->data = list_next_entry(cursor->data, links);
1192                __ceph_msg_data_cursor_init(cursor);
1193                new_piece = true;
1194        }
1195        cursor->need_crc = new_piece;
1196
1197        return new_piece;
1198}
1199
1200static size_t sizeof_footer(struct ceph_connection *con)
1201{
1202        return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1203            sizeof(struct ceph_msg_footer) :
1204            sizeof(struct ceph_msg_footer_old);
1205}
1206
1207static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1208{
1209        BUG_ON(!msg);
1210        BUG_ON(!data_len);
1211
1212        /* Initialize data cursor */
1213
1214        ceph_msg_data_cursor_init(msg, (size_t)data_len);
1215}
1216
1217/*
1218 * Prepare footer for currently outgoing message, and finish things
1219 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1220 */
1221static void prepare_write_message_footer(struct ceph_connection *con)
1222{
1223        struct ceph_msg *m = con->out_msg;
1224        int v = con->out_kvec_left;
1225
1226        m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1227
1228        dout("prepare_write_message_footer %p\n", con);
1229        con->out_kvec[v].iov_base = &m->footer;
1230        if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1231                if (con->ops->sign_message)
1232                        con->ops->sign_message(m);
1233                else
1234                        m->footer.sig = 0;
1235                con->out_kvec[v].iov_len = sizeof(m->footer);
1236                con->out_kvec_bytes += sizeof(m->footer);
1237        } else {
1238                m->old_footer.flags = m->footer.flags;
1239                con->out_kvec[v].iov_len = sizeof(m->old_footer);
1240                con->out_kvec_bytes += sizeof(m->old_footer);
1241        }
1242        con->out_kvec_left++;
1243        con->out_more = m->more_to_follow;
1244        con->out_msg_done = true;
1245}
1246
1247/*
1248 * Prepare headers for the next outgoing message.
1249 */
1250static void prepare_write_message(struct ceph_connection *con)
1251{
1252        struct ceph_msg *m;
1253        u32 crc;
1254
1255        con_out_kvec_reset(con);
1256        con->out_msg_done = false;
1257
1258        /* Sneak an ack in there first?  If we can get it into the same
1259         * TCP packet that's a good thing. */
1260        if (con->in_seq > con->in_seq_acked) {
1261                con->in_seq_acked = con->in_seq;
1262                con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1263                con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1264                con_out_kvec_add(con, sizeof (con->out_temp_ack),
1265                        &con->out_temp_ack);
1266        }
1267
1268        BUG_ON(list_empty(&con->out_queue));
1269        m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1270        con->out_msg = m;
1271        BUG_ON(m->con != con);
1272
1273        /* put message on sent list */
1274        ceph_msg_get(m);
1275        list_move_tail(&m->list_head, &con->out_sent);
1276
1277        /*
1278         * only assign outgoing seq # if we haven't sent this message
1279         * yet.  if it is requeued, resend with it's original seq.
1280         */
1281        if (m->needs_out_seq) {
1282                m->hdr.seq = cpu_to_le64(++con->out_seq);
1283                m->needs_out_seq = false;
1284        }
1285        WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1286
1287        dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1288             m, con->out_seq, le16_to_cpu(m->hdr.type),
1289             le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1290             m->data_length);
1291        BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1292
1293        /* tag + hdr + front + middle */
1294        con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1295        con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1296        con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1297
1298        if (m->middle)
1299                con_out_kvec_add(con, m->middle->vec.iov_len,
1300                        m->middle->vec.iov_base);
1301
1302        /* fill in hdr crc and finalize hdr */
1303        crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1304        con->out_msg->hdr.crc = cpu_to_le32(crc);
1305        memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1306
1307        /* fill in front and middle crc, footer */
1308        crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1309        con->out_msg->footer.front_crc = cpu_to_le32(crc);
1310        if (m->middle) {
1311                crc = crc32c(0, m->middle->vec.iov_base,
1312                                m->middle->vec.iov_len);
1313                con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1314        } else
1315                con->out_msg->footer.middle_crc = 0;
1316        dout("%s front_crc %u middle_crc %u\n", __func__,
1317             le32_to_cpu(con->out_msg->footer.front_crc),
1318             le32_to_cpu(con->out_msg->footer.middle_crc));
1319        con->out_msg->footer.flags = 0;
1320
1321        /* is there a data payload? */
1322        con->out_msg->footer.data_crc = 0;
1323        if (m->data_length) {
1324                prepare_message_data(con->out_msg, m->data_length);
1325                con->out_more = 1;  /* data + footer will follow */
1326        } else {
1327                /* no, queue up footer too and be done */
1328                prepare_write_message_footer(con);
1329        }
1330
1331        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1332}
1333
1334/*
1335 * Prepare an ack.
1336 */
1337static void prepare_write_ack(struct ceph_connection *con)
1338{
1339        dout("prepare_write_ack %p %llu -> %llu\n", con,
1340             con->in_seq_acked, con->in_seq);
1341        con->in_seq_acked = con->in_seq;
1342
1343        con_out_kvec_reset(con);
1344
1345        con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1346
1347        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1348        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1349                                &con->out_temp_ack);
1350
1351        con->out_more = 1;  /* more will follow.. eventually.. */
1352        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1353}
1354
1355/*
1356 * Prepare to share the seq during handshake
1357 */
1358static void prepare_write_seq(struct ceph_connection *con)
1359{
1360        dout("prepare_write_seq %p %llu -> %llu\n", con,
1361             con->in_seq_acked, con->in_seq);
1362        con->in_seq_acked = con->in_seq;
1363
1364        con_out_kvec_reset(con);
1365
1366        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1367        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1368                         &con->out_temp_ack);
1369
1370        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1371}
1372
1373/*
1374 * Prepare to write keepalive byte.
1375 */
1376static void prepare_write_keepalive(struct ceph_connection *con)
1377{
1378        dout("prepare_write_keepalive %p\n", con);
1379        con_out_kvec_reset(con);
1380        if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1381                struct timespec now = CURRENT_TIME;
1382
1383                con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1384                ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1385                con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1386                                 &con->out_temp_keepalive2);
1387        } else {
1388                con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1389        }
1390        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1391}
1392
1393/*
1394 * Connection negotiation.
1395 */
1396
1397static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1398                                                int *auth_proto)
1399{
1400        struct ceph_auth_handshake *auth;
1401
1402        if (!con->ops->get_authorizer) {
1403                con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1404                con->out_connect.authorizer_len = 0;
1405                return NULL;
1406        }
1407
1408        /* Can't hold the mutex while getting authorizer */
1409        mutex_unlock(&con->mutex);
1410        auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1411        mutex_lock(&con->mutex);
1412
1413        if (IS_ERR(auth))
1414                return auth;
1415        if (con->state != CON_STATE_NEGOTIATING)
1416                return ERR_PTR(-EAGAIN);
1417
1418        con->auth_reply_buf = auth->authorizer_reply_buf;
1419        con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1420        return auth;
1421}
1422
1423/*
1424 * We connected to a peer and are saying hello.
1425 */
1426static void prepare_write_banner(struct ceph_connection *con)
1427{
1428        con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1429        con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1430                                        &con->msgr->my_enc_addr);
1431
1432        con->out_more = 0;
1433        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1434}
1435
1436static int prepare_write_connect(struct ceph_connection *con)
1437{
1438        unsigned int global_seq = get_global_seq(con->msgr, 0);
1439        int proto;
1440        int auth_proto;
1441        struct ceph_auth_handshake *auth;
1442
1443        switch (con->peer_name.type) {
1444        case CEPH_ENTITY_TYPE_MON:
1445                proto = CEPH_MONC_PROTOCOL;
1446                break;
1447        case CEPH_ENTITY_TYPE_OSD:
1448                proto = CEPH_OSDC_PROTOCOL;
1449                break;
1450        case CEPH_ENTITY_TYPE_MDS:
1451                proto = CEPH_MDSC_PROTOCOL;
1452                break;
1453        default:
1454                BUG();
1455        }
1456
1457        dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1458             con->connect_seq, global_seq, proto);
1459
1460        con->out_connect.features =
1461            cpu_to_le64(from_msgr(con->msgr)->supported_features);
1462        con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1463        con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1464        con->out_connect.global_seq = cpu_to_le32(global_seq);
1465        con->out_connect.protocol_version = cpu_to_le32(proto);
1466        con->out_connect.flags = 0;
1467
1468        auth_proto = CEPH_AUTH_UNKNOWN;
1469        auth = get_connect_authorizer(con, &auth_proto);
1470        if (IS_ERR(auth))
1471                return PTR_ERR(auth);
1472
1473        con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1474        con->out_connect.authorizer_len = auth ?
1475                cpu_to_le32(auth->authorizer_buf_len) : 0;
1476
1477        con_out_kvec_add(con, sizeof (con->out_connect),
1478                                        &con->out_connect);
1479        if (auth && auth->authorizer_buf_len)
1480                con_out_kvec_add(con, auth->authorizer_buf_len,
1481                                        auth->authorizer_buf);
1482
1483        con->out_more = 0;
1484        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1485
1486        return 0;
1487}
1488
1489/*
1490 * write as much of pending kvecs to the socket as we can.
1491 *  1 -> done
1492 *  0 -> socket full, but more to do
1493 * <0 -> error
1494 */
1495static int write_partial_kvec(struct ceph_connection *con)
1496{
1497        int ret;
1498
1499        dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1500        while (con->out_kvec_bytes > 0) {
1501                ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1502                                       con->out_kvec_left, con->out_kvec_bytes,
1503                                       con->out_more);
1504                if (ret <= 0)
1505                        goto out;
1506                con->out_kvec_bytes -= ret;
1507                if (con->out_kvec_bytes == 0)
1508                        break;            /* done */
1509
1510                /* account for full iov entries consumed */
1511                while (ret >= con->out_kvec_cur->iov_len) {
1512                        BUG_ON(!con->out_kvec_left);
1513                        ret -= con->out_kvec_cur->iov_len;
1514                        con->out_kvec_cur++;
1515                        con->out_kvec_left--;
1516                }
1517                /* and for a partially-consumed entry */
1518                if (ret) {
1519                        con->out_kvec_cur->iov_len -= ret;
1520                        con->out_kvec_cur->iov_base += ret;
1521                }
1522        }
1523        con->out_kvec_left = 0;
1524        ret = 1;
1525out:
1526        dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1527             con->out_kvec_bytes, con->out_kvec_left, ret);
1528        return ret;  /* done! */
1529}
1530
1531static u32 ceph_crc32c_page(u32 crc, struct page *page,
1532                                unsigned int page_offset,
1533                                unsigned int length)
1534{
1535        char *kaddr;
1536
1537        kaddr = kmap(page);
1538        BUG_ON(kaddr == NULL);
1539        crc = crc32c(crc, kaddr + page_offset, length);
1540        kunmap(page);
1541
1542        return crc;
1543}
1544/*
1545 * Write as much message data payload as we can.  If we finish, queue
1546 * up the footer.
1547 *  1 -> done, footer is now queued in out_kvec[].
1548 *  0 -> socket full, but more to do
1549 * <0 -> error
1550 */
1551static int write_partial_message_data(struct ceph_connection *con)
1552{
1553        struct ceph_msg *msg = con->out_msg;
1554        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1555        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1556        u32 crc;
1557
1558        dout("%s %p msg %p\n", __func__, con, msg);
1559
1560        if (list_empty(&msg->data))
1561                return -EINVAL;
1562
1563        /*
1564         * Iterate through each page that contains data to be
1565         * written, and send as much as possible for each.
1566         *
1567         * If we are calculating the data crc (the default), we will
1568         * need to map the page.  If we have no pages, they have
1569         * been revoked, so use the zero page.
1570         */
1571        crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1572        while (cursor->resid) {
1573                struct page *page;
1574                size_t page_offset;
1575                size_t length;
1576                bool last_piece;
1577                bool need_crc;
1578                int ret;
1579
1580                page = ceph_msg_data_next(cursor, &page_offset, &length,
1581                                          &last_piece);
1582                ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1583                                        length, !last_piece);
1584                if (ret <= 0) {
1585                        if (do_datacrc)
1586                                msg->footer.data_crc = cpu_to_le32(crc);
1587
1588                        return ret;
1589                }
1590                if (do_datacrc && cursor->need_crc)
1591                        crc = ceph_crc32c_page(crc, page, page_offset, length);
1592                need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1593        }
1594
1595        dout("%s %p msg %p done\n", __func__, con, msg);
1596
1597        /* prepare and queue up footer, too */
1598        if (do_datacrc)
1599                msg->footer.data_crc = cpu_to_le32(crc);
1600        else
1601                msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1602        con_out_kvec_reset(con);
1603        prepare_write_message_footer(con);
1604
1605        return 1;       /* must return > 0 to indicate success */
1606}
1607
1608/*
1609 * write some zeros
1610 */
1611static int write_partial_skip(struct ceph_connection *con)
1612{
1613        int ret;
1614
1615        dout("%s %p %d left\n", __func__, con, con->out_skip);
1616        while (con->out_skip > 0) {
1617                size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1618
1619                ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1620                if (ret <= 0)
1621                        goto out;
1622                con->out_skip -= ret;
1623        }
1624        ret = 1;
1625out:
1626        return ret;
1627}
1628
1629/*
1630 * Prepare to read connection handshake, or an ack.
1631 */
1632static void prepare_read_banner(struct ceph_connection *con)
1633{
1634        dout("prepare_read_banner %p\n", con);
1635        con->in_base_pos = 0;
1636}
1637
1638static void prepare_read_connect(struct ceph_connection *con)
1639{
1640        dout("prepare_read_connect %p\n", con);
1641        con->in_base_pos = 0;
1642}
1643
1644static void prepare_read_ack(struct ceph_connection *con)
1645{
1646        dout("prepare_read_ack %p\n", con);
1647        con->in_base_pos = 0;
1648}
1649
1650static void prepare_read_seq(struct ceph_connection *con)
1651{
1652        dout("prepare_read_seq %p\n", con);
1653        con->in_base_pos = 0;
1654        con->in_tag = CEPH_MSGR_TAG_SEQ;
1655}
1656
1657static void prepare_read_tag(struct ceph_connection *con)
1658{
1659        dout("prepare_read_tag %p\n", con);
1660        con->in_base_pos = 0;
1661        con->in_tag = CEPH_MSGR_TAG_READY;
1662}
1663
1664static void prepare_read_keepalive_ack(struct ceph_connection *con)
1665{
1666        dout("prepare_read_keepalive_ack %p\n", con);
1667        con->in_base_pos = 0;
1668}
1669
1670/*
1671 * Prepare to read a message.
1672 */
1673static int prepare_read_message(struct ceph_connection *con)
1674{
1675        dout("prepare_read_message %p\n", con);
1676        BUG_ON(con->in_msg != NULL);
1677        con->in_base_pos = 0;
1678        con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1679        return 0;
1680}
1681
1682
1683static int read_partial(struct ceph_connection *con,
1684                        int end, int size, void *object)
1685{
1686        while (con->in_base_pos < end) {
1687                int left = end - con->in_base_pos;
1688                int have = size - left;
1689                int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1690                if (ret <= 0)
1691                        return ret;
1692                con->in_base_pos += ret;
1693        }
1694        return 1;
1695}
1696
1697
1698/*
1699 * Read all or part of the connect-side handshake on a new connection
1700 */
1701static int read_partial_banner(struct ceph_connection *con)
1702{
1703        int size;
1704        int end;
1705        int ret;
1706
1707        dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1708
1709        /* peer's banner */
1710        size = strlen(CEPH_BANNER);
1711        end = size;
1712        ret = read_partial(con, end, size, con->in_banner);
1713        if (ret <= 0)
1714                goto out;
1715
1716        size = sizeof (con->actual_peer_addr);
1717        end += size;
1718        ret = read_partial(con, end, size, &con->actual_peer_addr);
1719        if (ret <= 0)
1720                goto out;
1721
1722        size = sizeof (con->peer_addr_for_me);
1723        end += size;
1724        ret = read_partial(con, end, size, &con->peer_addr_for_me);
1725        if (ret <= 0)
1726                goto out;
1727
1728out:
1729        return ret;
1730}
1731
1732static int read_partial_connect(struct ceph_connection *con)
1733{
1734        int size;
1735        int end;
1736        int ret;
1737
1738        dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1739
1740        size = sizeof (con->in_reply);
1741        end = size;
1742        ret = read_partial(con, end, size, &con->in_reply);
1743        if (ret <= 0)
1744                goto out;
1745
1746        size = le32_to_cpu(con->in_reply.authorizer_len);
1747        end += size;
1748        ret = read_partial(con, end, size, con->auth_reply_buf);
1749        if (ret <= 0)
1750                goto out;
1751
1752        dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1753             con, (int)con->in_reply.tag,
1754             le32_to_cpu(con->in_reply.connect_seq),
1755             le32_to_cpu(con->in_reply.global_seq));
1756out:
1757        return ret;
1758
1759}
1760
1761/*
1762 * Verify the hello banner looks okay.
1763 */
1764static int verify_hello(struct ceph_connection *con)
1765{
1766        if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1767                pr_err("connect to %s got bad banner\n",
1768                       ceph_pr_addr(&con->peer_addr.in_addr));
1769                con->error_msg = "protocol error, bad banner";
1770                return -1;
1771        }
1772        return 0;
1773}
1774
1775static bool addr_is_blank(struct sockaddr_storage *ss)
1776{
1777        struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1778        struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1779
1780        switch (ss->ss_family) {
1781        case AF_INET:
1782                return addr->s_addr == htonl(INADDR_ANY);
1783        case AF_INET6:
1784                return ipv6_addr_any(addr6);
1785        default:
1786                return true;
1787        }
1788}
1789
1790static int addr_port(struct sockaddr_storage *ss)
1791{
1792        switch (ss->ss_family) {
1793        case AF_INET:
1794                return ntohs(((struct sockaddr_in *)ss)->sin_port);
1795        case AF_INET6:
1796                return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1797        }
1798        return 0;
1799}
1800
1801static void addr_set_port(struct sockaddr_storage *ss, int p)
1802{
1803        switch (ss->ss_family) {
1804        case AF_INET:
1805                ((struct sockaddr_in *)ss)->sin_port = htons(p);
1806                break;
1807        case AF_INET6:
1808                ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1809                break;
1810        }
1811}
1812
1813/*
1814 * Unlike other *_pton function semantics, zero indicates success.
1815 */
1816static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1817                char delim, const char **ipend)
1818{
1819        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1820        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1821
1822        memset(ss, 0, sizeof(*ss));
1823
1824        if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1825                ss->ss_family = AF_INET;
1826                return 0;
1827        }
1828
1829        if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1830                ss->ss_family = AF_INET6;
1831                return 0;
1832        }
1833
1834        return -EINVAL;
1835}
1836
1837/*
1838 * Extract hostname string and resolve using kernel DNS facility.
1839 */
1840#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1841static int ceph_dns_resolve_name(const char *name, size_t namelen,
1842                struct sockaddr_storage *ss, char delim, const char **ipend)
1843{
1844        const char *end, *delim_p;
1845        char *colon_p, *ip_addr = NULL;
1846        int ip_len, ret;
1847
1848        /*
1849         * The end of the hostname occurs immediately preceding the delimiter or
1850         * the port marker (':') where the delimiter takes precedence.
1851         */
1852        delim_p = memchr(name, delim, namelen);
1853        colon_p = memchr(name, ':', namelen);
1854
1855        if (delim_p && colon_p)
1856                end = delim_p < colon_p ? delim_p : colon_p;
1857        else if (!delim_p && colon_p)
1858                end = colon_p;
1859        else {
1860                end = delim_p;
1861                if (!end) /* case: hostname:/ */
1862                        end = name + namelen;
1863        }
1864
1865        if (end <= name)
1866                return -EINVAL;
1867
1868        /* do dns_resolve upcall */
1869        ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1870        if (ip_len > 0)
1871                ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1872        else
1873                ret = -ESRCH;
1874
1875        kfree(ip_addr);
1876
1877        *ipend = end;
1878
1879        pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1880                        ret, ret ? "failed" : ceph_pr_addr(ss));
1881
1882        return ret;
1883}
1884#else
1885static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1886                struct sockaddr_storage *ss, char delim, const char **ipend)
1887{
1888        return -EINVAL;
1889}
1890#endif
1891
1892/*
1893 * Parse a server name (IP or hostname). If a valid IP address is not found
1894 * then try to extract a hostname to resolve using userspace DNS upcall.
1895 */
1896static int ceph_parse_server_name(const char *name, size_t namelen,
1897                        struct sockaddr_storage *ss, char delim, const char **ipend)
1898{
1899        int ret;
1900
1901        ret = ceph_pton(name, namelen, ss, delim, ipend);
1902        if (ret)
1903                ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1904
1905        return ret;
1906}
1907
1908/*
1909 * Parse an ip[:port] list into an addr array.  Use the default
1910 * monitor port if a port isn't specified.
1911 */
1912int ceph_parse_ips(const char *c, const char *end,
1913                   struct ceph_entity_addr *addr,
1914                   int max_count, int *count)
1915{
1916        int i, ret = -EINVAL;
1917        const char *p = c;
1918
1919        dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1920        for (i = 0; i < max_count; i++) {
1921                const char *ipend;
1922                struct sockaddr_storage *ss = &addr[i].in_addr;
1923                int port;
1924                char delim = ',';
1925
1926                if (*p == '[') {
1927                        delim = ']';
1928                        p++;
1929                }
1930
1931                ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1932                if (ret)
1933                        goto bad;
1934                ret = -EINVAL;
1935
1936                p = ipend;
1937
1938                if (delim == ']') {
1939                        if (*p != ']') {
1940                                dout("missing matching ']'\n");
1941                                goto bad;
1942                        }
1943                        p++;
1944                }
1945
1946                /* port? */
1947                if (p < end && *p == ':') {
1948                        port = 0;
1949                        p++;
1950                        while (p < end && *p >= '0' && *p <= '9') {
1951                                port = (port * 10) + (*p - '0');
1952                                p++;
1953                        }
1954                        if (port == 0)
1955                                port = CEPH_MON_PORT;
1956                        else if (port > 65535)
1957                                goto bad;
1958                } else {
1959                        port = CEPH_MON_PORT;
1960                }
1961
1962                addr_set_port(ss, port);
1963
1964                dout("parse_ips got %s\n", ceph_pr_addr(ss));
1965
1966                if (p == end)
1967                        break;
1968                if (*p != ',')
1969                        goto bad;
1970                p++;
1971        }
1972
1973        if (p != end)
1974                goto bad;
1975
1976        if (count)
1977                *count = i + 1;
1978        return 0;
1979
1980bad:
1981        pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1982        return ret;
1983}
1984EXPORT_SYMBOL(ceph_parse_ips);
1985
1986static int process_banner(struct ceph_connection *con)
1987{
1988        dout("process_banner on %p\n", con);
1989
1990        if (verify_hello(con) < 0)
1991                return -1;
1992
1993        ceph_decode_addr(&con->actual_peer_addr);
1994        ceph_decode_addr(&con->peer_addr_for_me);
1995
1996        /*
1997         * Make sure the other end is who we wanted.  note that the other
1998         * end may not yet know their ip address, so if it's 0.0.0.0, give
1999         * them the benefit of the doubt.
2000         */
2001        if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2002                   sizeof(con->peer_addr)) != 0 &&
2003            !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2004              con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2005                pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2006                        ceph_pr_addr(&con->peer_addr.in_addr),
2007                        (int)le32_to_cpu(con->peer_addr.nonce),
2008                        ceph_pr_addr(&con->actual_peer_addr.in_addr),
2009                        (int)le32_to_cpu(con->actual_peer_addr.nonce));
2010                con->error_msg = "wrong peer at address";
2011                return -1;
2012        }
2013
2014        /*
2015         * did we learn our address?
2016         */
2017        if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2018                int port = addr_port(&con->msgr->inst.addr.in_addr);
2019
2020                memcpy(&con->msgr->inst.addr.in_addr,
2021                       &con->peer_addr_for_me.in_addr,
2022                       sizeof(con->peer_addr_for_me.in_addr));
2023                addr_set_port(&con->msgr->inst.addr.in_addr, port);
2024                encode_my_addr(con->msgr);
2025                dout("process_banner learned my addr is %s\n",
2026                     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2027        }
2028
2029        return 0;
2030}
2031
2032static int process_connect(struct ceph_connection *con)
2033{
2034        u64 sup_feat = from_msgr(con->msgr)->supported_features;
2035        u64 req_feat = from_msgr(con->msgr)->required_features;
2036        u64 server_feat = ceph_sanitize_features(
2037                                le64_to_cpu(con->in_reply.features));
2038        int ret;
2039
2040        dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2041
2042        switch (con->in_reply.tag) {
2043        case CEPH_MSGR_TAG_FEATURES:
2044                pr_err("%s%lld %s feature set mismatch,"
2045                       " my %llx < server's %llx, missing %llx\n",
2046                       ENTITY_NAME(con->peer_name),
2047                       ceph_pr_addr(&con->peer_addr.in_addr),
2048                       sup_feat, server_feat, server_feat & ~sup_feat);
2049                con->error_msg = "missing required protocol features";
2050                reset_connection(con);
2051                return -1;
2052
2053        case CEPH_MSGR_TAG_BADPROTOVER:
2054                pr_err("%s%lld %s protocol version mismatch,"
2055                       " my %d != server's %d\n",
2056                       ENTITY_NAME(con->peer_name),
2057                       ceph_pr_addr(&con->peer_addr.in_addr),
2058                       le32_to_cpu(con->out_connect.protocol_version),
2059                       le32_to_cpu(con->in_reply.protocol_version));
2060                con->error_msg = "protocol version mismatch";
2061                reset_connection(con);
2062                return -1;
2063
2064        case CEPH_MSGR_TAG_BADAUTHORIZER:
2065                con->auth_retry++;
2066                dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2067                     con->auth_retry);
2068                if (con->auth_retry == 2) {
2069                        con->error_msg = "connect authorization failure";
2070                        return -1;
2071                }
2072                con_out_kvec_reset(con);
2073                ret = prepare_write_connect(con);
2074                if (ret < 0)
2075                        return ret;
2076                prepare_read_connect(con);
2077                break;
2078
2079        case CEPH_MSGR_TAG_RESETSESSION:
2080                /*
2081                 * If we connected with a large connect_seq but the peer
2082                 * has no record of a session with us (no connection, or
2083                 * connect_seq == 0), they will send RESETSESION to indicate
2084                 * that they must have reset their session, and may have
2085                 * dropped messages.
2086                 */
2087                dout("process_connect got RESET peer seq %u\n",
2088                     le32_to_cpu(con->in_reply.connect_seq));
2089                pr_err("%s%lld %s connection reset\n",
2090                       ENTITY_NAME(con->peer_name),
2091                       ceph_pr_addr(&con->peer_addr.in_addr));
2092                reset_connection(con);
2093                con_out_kvec_reset(con);
2094                ret = prepare_write_connect(con);
2095                if (ret < 0)
2096                        return ret;
2097                prepare_read_connect(con);
2098
2099                /* Tell ceph about it. */
2100                mutex_unlock(&con->mutex);
2101                pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2102                if (con->ops->peer_reset)
2103                        con->ops->peer_reset(con);
2104                mutex_lock(&con->mutex);
2105                if (con->state != CON_STATE_NEGOTIATING)
2106                        return -EAGAIN;
2107                break;
2108
2109        case CEPH_MSGR_TAG_RETRY_SESSION:
2110                /*
2111                 * If we sent a smaller connect_seq than the peer has, try
2112                 * again with a larger value.
2113                 */
2114                dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2115                     le32_to_cpu(con->out_connect.connect_seq),
2116                     le32_to_cpu(con->in_reply.connect_seq));
2117                con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2118                con_out_kvec_reset(con);
2119                ret = prepare_write_connect(con);
2120                if (ret < 0)
2121                        return ret;
2122                prepare_read_connect(con);
2123                break;
2124
2125        case CEPH_MSGR_TAG_RETRY_GLOBAL:
2126                /*
2127                 * If we sent a smaller global_seq than the peer has, try
2128                 * again with a larger value.
2129                 */
2130                dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2131                     con->peer_global_seq,
2132                     le32_to_cpu(con->in_reply.global_seq));
2133                get_global_seq(con->msgr,
2134                               le32_to_cpu(con->in_reply.global_seq));
2135                con_out_kvec_reset(con);
2136                ret = prepare_write_connect(con);
2137                if (ret < 0)
2138                        return ret;
2139                prepare_read_connect(con);
2140                break;
2141
2142        case CEPH_MSGR_TAG_SEQ:
2143        case CEPH_MSGR_TAG_READY:
2144                if (req_feat & ~server_feat) {
2145                        pr_err("%s%lld %s protocol feature mismatch,"
2146                               " my required %llx > server's %llx, need %llx\n",
2147                               ENTITY_NAME(con->peer_name),
2148                               ceph_pr_addr(&con->peer_addr.in_addr),
2149                               req_feat, server_feat, req_feat & ~server_feat);
2150                        con->error_msg = "missing required protocol features";
2151                        reset_connection(con);
2152                        return -1;
2153                }
2154
2155                WARN_ON(con->state != CON_STATE_NEGOTIATING);
2156                con->state = CON_STATE_OPEN;
2157                con->auth_retry = 0;    /* we authenticated; clear flag */
2158                con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2159                con->connect_seq++;
2160                con->peer_features = server_feat;
2161                dout("process_connect got READY gseq %d cseq %d (%d)\n",
2162                     con->peer_global_seq,
2163                     le32_to_cpu(con->in_reply.connect_seq),
2164                     con->connect_seq);
2165                WARN_ON(con->connect_seq !=
2166                        le32_to_cpu(con->in_reply.connect_seq));
2167
2168                if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2169                        con_flag_set(con, CON_FLAG_LOSSYTX);
2170
2171                con->delay = 0;      /* reset backoff memory */
2172
2173                if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2174                        prepare_write_seq(con);
2175                        prepare_read_seq(con);
2176                } else {
2177                        prepare_read_tag(con);
2178                }
2179                break;
2180
2181        case CEPH_MSGR_TAG_WAIT:
2182                /*
2183                 * If there is a connection race (we are opening
2184                 * connections to each other), one of us may just have
2185                 * to WAIT.  This shouldn't happen if we are the
2186                 * client.
2187                 */
2188                con->error_msg = "protocol error, got WAIT as client";
2189                return -1;
2190
2191        default:
2192                con->error_msg = "protocol error, garbage tag during connect";
2193                return -1;
2194        }
2195        return 0;
2196}
2197
2198
2199/*
2200 * read (part of) an ack
2201 */
2202static int read_partial_ack(struct ceph_connection *con)
2203{
2204        int size = sizeof (con->in_temp_ack);
2205        int end = size;
2206
2207        return read_partial(con, end, size, &con->in_temp_ack);
2208}
2209
2210/*
2211 * We can finally discard anything that's been acked.
2212 */
2213static void process_ack(struct ceph_connection *con)
2214{
2215        struct ceph_msg *m;
2216        u64 ack = le64_to_cpu(con->in_temp_ack);
2217        u64 seq;
2218
2219        while (!list_empty(&con->out_sent)) {
2220                m = list_first_entry(&con->out_sent, struct ceph_msg,
2221                                     list_head);
2222                seq = le64_to_cpu(m->hdr.seq);
2223                if (seq > ack)
2224                        break;
2225                dout("got ack for seq %llu type %d at %p\n", seq,
2226                     le16_to_cpu(m->hdr.type), m);
2227                m->ack_stamp = jiffies;
2228                ceph_msg_remove(m);
2229        }
2230        prepare_read_tag(con);
2231}
2232
2233
2234static int read_partial_message_section(struct ceph_connection *con,
2235                                        struct kvec *section,
2236                                        unsigned int sec_len, u32 *crc)
2237{
2238        int ret, left;
2239
2240        BUG_ON(!section);
2241
2242        while (section->iov_len < sec_len) {
2243                BUG_ON(section->iov_base == NULL);
2244                left = sec_len - section->iov_len;
2245                ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2246                                       section->iov_len, left);
2247                if (ret <= 0)
2248                        return ret;
2249                section->iov_len += ret;
2250        }
2251        if (section->iov_len == sec_len)
2252                *crc = crc32c(0, section->iov_base, section->iov_len);
2253
2254        return 1;
2255}
2256
2257static int read_partial_msg_data(struct ceph_connection *con)
2258{
2259        struct ceph_msg *msg = con->in_msg;
2260        struct ceph_msg_data_cursor *cursor = &msg->cursor;
2261        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2262        struct page *page;
2263        size_t page_offset;
2264        size_t length;
2265        u32 crc = 0;
2266        int ret;
2267
2268        BUG_ON(!msg);
2269        if (list_empty(&msg->data))
2270                return -EIO;
2271
2272        if (do_datacrc)
2273                crc = con->in_data_crc;
2274        while (cursor->resid) {
2275                page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2276                ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2277                if (ret <= 0) {
2278                        if (do_datacrc)
2279                                con->in_data_crc = crc;
2280
2281                        return ret;
2282                }
2283
2284                if (do_datacrc)
2285                        crc = ceph_crc32c_page(crc, page, page_offset, ret);
2286                (void) ceph_msg_data_advance(cursor, (size_t)ret);
2287        }
2288        if (do_datacrc)
2289                con->in_data_crc = crc;
2290
2291        return 1;       /* must return > 0 to indicate success */
2292}
2293
2294/*
2295 * read (part of) a message.
2296 */
2297static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2298
2299static int read_partial_message(struct ceph_connection *con)
2300{
2301        struct ceph_msg *m = con->in_msg;
2302        int size;
2303        int end;
2304        int ret;
2305        unsigned int front_len, middle_len, data_len;
2306        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2307        bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2308        u64 seq;
2309        u32 crc;
2310
2311        dout("read_partial_message con %p msg %p\n", con, m);
2312
2313        /* header */
2314        size = sizeof (con->in_hdr);
2315        end = size;
2316        ret = read_partial(con, end, size, &con->in_hdr);
2317        if (ret <= 0)
2318                return ret;
2319
2320        crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2321        if (cpu_to_le32(crc) != con->in_hdr.crc) {
2322                pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2323                       crc, con->in_hdr.crc);
2324                return -EBADMSG;
2325        }
2326
2327        front_len = le32_to_cpu(con->in_hdr.front_len);
2328        if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2329                return -EIO;
2330        middle_len = le32_to_cpu(con->in_hdr.middle_len);
2331        if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2332                return -EIO;
2333        data_len = le32_to_cpu(con->in_hdr.data_len);
2334        if (data_len > CEPH_MSG_MAX_DATA_LEN)
2335                return -EIO;
2336
2337        /* verify seq# */
2338        seq = le64_to_cpu(con->in_hdr.seq);
2339        if ((s64)seq - (s64)con->in_seq < 1) {
2340                pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2341                        ENTITY_NAME(con->peer_name),
2342                        ceph_pr_addr(&con->peer_addr.in_addr),
2343                        seq, con->in_seq + 1);
2344                con->in_base_pos = -front_len - middle_len - data_len -
2345                        sizeof_footer(con);
2346                con->in_tag = CEPH_MSGR_TAG_READY;
2347                return 1;
2348        } else if ((s64)seq - (s64)con->in_seq > 1) {
2349                pr_err("read_partial_message bad seq %lld expected %lld\n",
2350                       seq, con->in_seq + 1);
2351                con->error_msg = "bad message sequence # for incoming message";
2352                return -EBADE;
2353        }
2354
2355        /* allocate message? */
2356        if (!con->in_msg) {
2357                int skip = 0;
2358
2359                dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2360                     front_len, data_len);
2361                ret = ceph_con_in_msg_alloc(con, &skip);
2362                if (ret < 0)
2363                        return ret;
2364
2365                BUG_ON(!con->in_msg ^ skip);
2366                if (skip) {
2367                        /* skip this message */
2368                        dout("alloc_msg said skip message\n");
2369                        con->in_base_pos = -front_len - middle_len - data_len -
2370                                sizeof_footer(con);
2371                        con->in_tag = CEPH_MSGR_TAG_READY;
2372                        con->in_seq++;
2373                        return 1;
2374                }
2375
2376                BUG_ON(!con->in_msg);
2377                BUG_ON(con->in_msg->con != con);
2378                m = con->in_msg;
2379                m->front.iov_len = 0;    /* haven't read it yet */
2380                if (m->middle)
2381                        m->middle->vec.iov_len = 0;
2382
2383                /* prepare for data payload, if any */
2384
2385                if (data_len)
2386                        prepare_message_data(con->in_msg, data_len);
2387        }
2388
2389        /* front */
2390        ret = read_partial_message_section(con, &m->front, front_len,
2391                                           &con->in_front_crc);
2392        if (ret <= 0)
2393                return ret;
2394
2395        /* middle */
2396        if (m->middle) {
2397                ret = read_partial_message_section(con, &m->middle->vec,
2398                                                   middle_len,
2399                                                   &con->in_middle_crc);
2400                if (ret <= 0)
2401                        return ret;
2402        }
2403
2404        /* (page) data */
2405        if (data_len) {
2406                ret = read_partial_msg_data(con);
2407                if (ret <= 0)
2408                        return ret;
2409        }
2410
2411        /* footer */
2412        if (need_sign)
2413                size = sizeof(m->footer);
2414        else
2415                size = sizeof(m->old_footer);
2416
2417        end += size;
2418        ret = read_partial(con, end, size, &m->footer);
2419        if (ret <= 0)
2420                return ret;
2421
2422        if (!need_sign) {
2423                m->footer.flags = m->old_footer.flags;
2424                m->footer.sig = 0;
2425        }
2426
2427        dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2428             m, front_len, m->footer.front_crc, middle_len,
2429             m->footer.middle_crc, data_len, m->footer.data_crc);
2430
2431        /* crc ok? */
2432        if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2433                pr_err("read_partial_message %p front crc %u != exp. %u\n",
2434                       m, con->in_front_crc, m->footer.front_crc);
2435                return -EBADMSG;
2436        }
2437        if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2438                pr_err("read_partial_message %p middle crc %u != exp %u\n",
2439                       m, con->in_middle_crc, m->footer.middle_crc);
2440                return -EBADMSG;
2441        }
2442        if (do_datacrc &&
2443            (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2444            con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2445                pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2446                       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2447                return -EBADMSG;
2448        }
2449
2450        if (need_sign && con->ops->check_message_signature &&
2451            con->ops->check_message_signature(m)) {
2452                pr_err("read_partial_message %p signature check failed\n", m);
2453                return -EBADMSG;
2454        }
2455
2456        return 1; /* done! */
2457}
2458
2459/*
2460 * Process message.  This happens in the worker thread.  The callback should
2461 * be careful not to do anything that waits on other incoming messages or it
2462 * may deadlock.
2463 */
2464static void process_message(struct ceph_connection *con)
2465{
2466        struct ceph_msg *msg = con->in_msg;
2467
2468        BUG_ON(con->in_msg->con != con);
2469        con->in_msg = NULL;
2470
2471        /* if first message, set peer_name */
2472        if (con->peer_name.type == 0)
2473                con->peer_name = msg->hdr.src;
2474
2475        con->in_seq++;
2476        mutex_unlock(&con->mutex);
2477
2478        dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2479             msg, le64_to_cpu(msg->hdr.seq),
2480             ENTITY_NAME(msg->hdr.src),
2481             le16_to_cpu(msg->hdr.type),
2482             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2483             le32_to_cpu(msg->hdr.front_len),
2484             le32_to_cpu(msg->hdr.data_len),
2485             con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2486        con->ops->dispatch(con, msg);
2487
2488        mutex_lock(&con->mutex);
2489}
2490
2491static int read_keepalive_ack(struct ceph_connection *con)
2492{
2493        struct ceph_timespec ceph_ts;
2494        size_t size = sizeof(ceph_ts);
2495        int ret = read_partial(con, size, size, &ceph_ts);
2496        if (ret <= 0)
2497                return ret;
2498        ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2499        prepare_read_tag(con);
2500        return 1;
2501}
2502
2503/*
2504 * Write something to the socket.  Called in a worker thread when the
2505 * socket appears to be writeable and we have something ready to send.
2506 */
2507static int try_write(struct ceph_connection *con)
2508{
2509        int ret = 1;
2510
2511        dout("try_write start %p state %lu\n", con, con->state);
2512
2513more:
2514        dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2515
2516        /* open the socket first? */
2517        if (con->state == CON_STATE_PREOPEN) {
2518                BUG_ON(con->sock);
2519                con->state = CON_STATE_CONNECTING;
2520
2521                con_out_kvec_reset(con);
2522                prepare_write_banner(con);
2523                prepare_read_banner(con);
2524
2525                BUG_ON(con->in_msg);
2526                con->in_tag = CEPH_MSGR_TAG_READY;
2527                dout("try_write initiating connect on %p new state %lu\n",
2528                     con, con->state);
2529                ret = ceph_tcp_connect(con);
2530                if (ret < 0) {
2531                        con->error_msg = "connect error";
2532                        goto out;
2533                }
2534        }
2535
2536more_kvec:
2537        /* kvec data queued? */
2538        if (con->out_kvec_left) {
2539                ret = write_partial_kvec(con);
2540                if (ret <= 0)
2541                        goto out;
2542        }
2543        if (con->out_skip) {
2544                ret = write_partial_skip(con);
2545                if (ret <= 0)
2546                        goto out;
2547        }
2548
2549        /* msg pages? */
2550        if (con->out_msg) {
2551                if (con->out_msg_done) {
2552                        ceph_msg_put(con->out_msg);
2553                        con->out_msg = NULL;   /* we're done with this one */
2554                        goto do_next;
2555                }
2556
2557                ret = write_partial_message_data(con);
2558                if (ret == 1)
2559                        goto more_kvec;  /* we need to send the footer, too! */
2560                if (ret == 0)
2561                        goto out;
2562                if (ret < 0) {
2563                        dout("try_write write_partial_message_data err %d\n",
2564                             ret);
2565                        goto out;
2566                }
2567        }
2568
2569do_next:
2570        if (con->state == CON_STATE_OPEN) {
2571                if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2572                        prepare_write_keepalive(con);
2573                        goto more;
2574                }
2575                /* is anything else pending? */
2576                if (!list_empty(&con->out_queue)) {
2577                        prepare_write_message(con);
2578                        goto more;
2579                }
2580                if (con->in_seq > con->in_seq_acked) {
2581                        prepare_write_ack(con);
2582                        goto more;
2583                }
2584        }
2585
2586        /* Nothing to do! */
2587        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2588        dout("try_write nothing else to write.\n");
2589        ret = 0;
2590out:
2591        dout("try_write done on %p ret %d\n", con, ret);
2592        return ret;
2593}
2594
2595
2596
2597/*
2598 * Read what we can from the socket.
2599 */
2600static int try_read(struct ceph_connection *con)
2601{
2602        int ret = -1;
2603
2604more:
2605        dout("try_read start on %p state %lu\n", con, con->state);
2606        if (con->state != CON_STATE_CONNECTING &&
2607            con->state != CON_STATE_NEGOTIATING &&
2608            con->state != CON_STATE_OPEN)
2609                return 0;
2610
2611        BUG_ON(!con->sock);
2612
2613        dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2614             con->in_base_pos);
2615
2616        if (con->state == CON_STATE_CONNECTING) {
2617                dout("try_read connecting\n");
2618                ret = read_partial_banner(con);
2619                if (ret <= 0)
2620                        goto out;
2621                ret = process_banner(con);
2622                if (ret < 0)
2623                        goto out;
2624
2625                con->state = CON_STATE_NEGOTIATING;
2626
2627                /*
2628                 * Received banner is good, exchange connection info.
2629                 * Do not reset out_kvec, as sending our banner raced
2630                 * with receiving peer banner after connect completed.
2631                 */
2632                ret = prepare_write_connect(con);
2633                if (ret < 0)
2634                        goto out;
2635                prepare_read_connect(con);
2636
2637                /* Send connection info before awaiting response */
2638                goto out;
2639        }
2640
2641        if (con->state == CON_STATE_NEGOTIATING) {
2642                dout("try_read negotiating\n");
2643                ret = read_partial_connect(con);
2644                if (ret <= 0)
2645                        goto out;
2646                ret = process_connect(con);
2647                if (ret < 0)
2648                        goto out;
2649                goto more;
2650        }
2651
2652        WARN_ON(con->state != CON_STATE_OPEN);
2653
2654        if (con->in_base_pos < 0) {
2655                /*
2656                 * skipping + discarding content.
2657                 *
2658                 * FIXME: there must be a better way to do this!
2659                 */
2660                static char buf[SKIP_BUF_SIZE];
2661                int skip = min((int) sizeof (buf), -con->in_base_pos);
2662
2663                dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2664                ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2665                if (ret <= 0)
2666                        goto out;
2667                con->in_base_pos += ret;
2668                if (con->in_base_pos)
2669                        goto more;
2670        }
2671        if (con->in_tag == CEPH_MSGR_TAG_READY) {
2672                /*
2673                 * what's next?
2674                 */
2675                ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2676                if (ret <= 0)
2677                        goto out;
2678                dout("try_read got tag %d\n", (int)con->in_tag);
2679                switch (con->in_tag) {
2680                case CEPH_MSGR_TAG_MSG:
2681                        prepare_read_message(con);
2682                        break;
2683                case CEPH_MSGR_TAG_ACK:
2684                        prepare_read_ack(con);
2685                        break;
2686                case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2687                        prepare_read_keepalive_ack(con);
2688                        break;
2689                case CEPH_MSGR_TAG_CLOSE:
2690                        con_close_socket(con);
2691                        con->state = CON_STATE_CLOSED;
2692                        goto out;
2693                default:
2694                        goto bad_tag;
2695                }
2696        }
2697        if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2698                ret = read_partial_message(con);
2699                if (ret <= 0) {
2700                        switch (ret) {
2701                        case -EBADMSG:
2702                                con->error_msg = "bad crc/signature";
2703                                /* fall through */
2704                        case -EBADE:
2705                                ret = -EIO;
2706                                break;
2707                        case -EIO:
2708                                con->error_msg = "io error";
2709                                break;
2710                        }
2711                        goto out;
2712                }
2713                if (con->in_tag == CEPH_MSGR_TAG_READY)
2714                        goto more;
2715                process_message(con);
2716                if (con->state == CON_STATE_OPEN)
2717                        prepare_read_tag(con);
2718                goto more;
2719        }
2720        if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2721            con->in_tag == CEPH_MSGR_TAG_SEQ) {
2722                /*
2723                 * the final handshake seq exchange is semantically
2724                 * equivalent to an ACK
2725                 */
2726                ret = read_partial_ack(con);
2727                if (ret <= 0)
2728                        goto out;
2729                process_ack(con);
2730                goto more;
2731        }
2732        if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2733                ret = read_keepalive_ack(con);
2734                if (ret <= 0)
2735                        goto out;
2736                goto more;
2737        }
2738
2739out:
2740        dout("try_read done on %p ret %d\n", con, ret);
2741        return ret;
2742
2743bad_tag:
2744        pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2745        con->error_msg = "protocol error, garbage tag";
2746        ret = -1;
2747        goto out;
2748}
2749
2750
2751/*
2752 * Atomically queue work on a connection after the specified delay.
2753 * Bump @con reference to avoid races with connection teardown.
2754 * Returns 0 if work was queued, or an error code otherwise.
2755 */
2756static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2757{
2758        if (!con->ops->get(con)) {
2759                dout("%s %p ref count 0\n", __func__, con);
2760                return -ENOENT;
2761        }
2762
2763        if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2764                dout("%s %p - already queued\n", __func__, con);
2765                con->ops->put(con);
2766                return -EBUSY;
2767        }
2768
2769        dout("%s %p %lu\n", __func__, con, delay);
2770        return 0;
2771}
2772
2773static void queue_con(struct ceph_connection *con)
2774{
2775        (void) queue_con_delay(con, 0);
2776}
2777
2778static void cancel_con(struct ceph_connection *con)
2779{
2780        if (cancel_delayed_work(&con->work)) {
2781                dout("%s %p\n", __func__, con);
2782                con->ops->put(con);
2783        }
2784}
2785
2786static bool con_sock_closed(struct ceph_connection *con)
2787{
2788        if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2789                return false;
2790
2791#define CASE(x)                                                         \
2792        case CON_STATE_ ## x:                                           \
2793                con->error_msg = "socket closed (con state " #x ")";    \
2794                break;
2795
2796        switch (con->state) {
2797        CASE(CLOSED);
2798        CASE(PREOPEN);
2799        CASE(CONNECTING);
2800        CASE(NEGOTIATING);
2801        CASE(OPEN);
2802        CASE(STANDBY);
2803        default:
2804                pr_warn("%s con %p unrecognized state %lu\n",
2805                        __func__, con, con->state);
2806                con->error_msg = "unrecognized con state";
2807                BUG();
2808                break;
2809        }
2810#undef CASE
2811
2812        return true;
2813}
2814
2815static bool con_backoff(struct ceph_connection *con)
2816{
2817        int ret;
2818
2819        if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2820                return false;
2821
2822        ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2823        if (ret) {
2824                dout("%s: con %p FAILED to back off %lu\n", __func__,
2825                        con, con->delay);
2826                BUG_ON(ret == -ENOENT);
2827                con_flag_set(con, CON_FLAG_BACKOFF);
2828        }
2829
2830        return true;
2831}
2832
2833/* Finish fault handling; con->mutex must *not* be held here */
2834
2835static void con_fault_finish(struct ceph_connection *con)
2836{
2837        dout("%s %p\n", __func__, con);
2838
2839        /*
2840         * in case we faulted due to authentication, invalidate our
2841         * current tickets so that we can get new ones.
2842         */
2843        if (con->auth_retry) {
2844                dout("auth_retry %d, invalidating\n", con->auth_retry);
2845                if (con->ops->invalidate_authorizer)
2846                        con->ops->invalidate_authorizer(con);
2847                con->auth_retry = 0;
2848        }
2849
2850        if (con->ops->fault)
2851                con->ops->fault(con);
2852}
2853
2854/*
2855 * Do some work on a connection.  Drop a connection ref when we're done.
2856 */
2857static void ceph_con_workfn(struct work_struct *work)
2858{
2859        struct ceph_connection *con = container_of(work, struct ceph_connection,
2860                                                   work.work);
2861        bool fault;
2862
2863        mutex_lock(&con->mutex);
2864        while (true) {
2865                int ret;
2866
2867                if ((fault = con_sock_closed(con))) {
2868                        dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2869                        break;
2870                }
2871                if (con_backoff(con)) {
2872                        dout("%s: con %p BACKOFF\n", __func__, con);
2873                        break;
2874                }
2875                if (con->state == CON_STATE_STANDBY) {
2876                        dout("%s: con %p STANDBY\n", __func__, con);
2877                        break;
2878                }
2879                if (con->state == CON_STATE_CLOSED) {
2880                        dout("%s: con %p CLOSED\n", __func__, con);
2881                        BUG_ON(con->sock);
2882                        break;
2883                }
2884                if (con->state == CON_STATE_PREOPEN) {
2885                        dout("%s: con %p PREOPEN\n", __func__, con);
2886                        BUG_ON(con->sock);
2887                }
2888
2889                ret = try_read(con);
2890                if (ret < 0) {
2891                        if (ret == -EAGAIN)
2892                                continue;
2893                        if (!con->error_msg)
2894                                con->error_msg = "socket error on read";
2895                        fault = true;
2896                        break;
2897                }
2898
2899                ret = try_write(con);
2900                if (ret < 0) {
2901                        if (ret == -EAGAIN)
2902                                continue;
2903                        if (!con->error_msg)
2904                                con->error_msg = "socket error on write";
2905                        fault = true;
2906                }
2907
2908                break;  /* If we make it to here, we're done */
2909        }
2910        if (fault)
2911                con_fault(con);
2912        mutex_unlock(&con->mutex);
2913
2914        if (fault)
2915                con_fault_finish(con);
2916
2917        con->ops->put(con);
2918}
2919
2920/*
2921 * Generic error/fault handler.  A retry mechanism is used with
2922 * exponential backoff
2923 */
2924static void con_fault(struct ceph_connection *con)
2925{
2926        dout("fault %p state %lu to peer %s\n",
2927             con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2928
2929        pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2930                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2931        con->error_msg = NULL;
2932
2933        WARN_ON(con->state != CON_STATE_CONNECTING &&
2934               con->state != CON_STATE_NEGOTIATING &&
2935               con->state != CON_STATE_OPEN);
2936
2937        con_close_socket(con);
2938
2939        if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2940                dout("fault on LOSSYTX channel, marking CLOSED\n");
2941                con->state = CON_STATE_CLOSED;
2942                return;
2943        }
2944
2945        if (con->in_msg) {
2946                BUG_ON(con->in_msg->con != con);
2947                ceph_msg_put(con->in_msg);
2948                con->in_msg = NULL;
2949        }
2950
2951        /* Requeue anything that hasn't been acked */
2952        list_splice_init(&con->out_sent, &con->out_queue);
2953
2954        /* If there are no messages queued or keepalive pending, place
2955         * the connection in a STANDBY state */
2956        if (list_empty(&con->out_queue) &&
2957            !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2958                dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2959                con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2960                con->state = CON_STATE_STANDBY;
2961        } else {
2962                /* retry after a delay. */
2963                con->state = CON_STATE_PREOPEN;
2964                if (con->delay == 0)
2965                        con->delay = BASE_DELAY_INTERVAL;
2966                else if (con->delay < MAX_DELAY_INTERVAL)
2967                        con->delay *= 2;
2968                con_flag_set(con, CON_FLAG_BACKOFF);
2969                queue_con(con);
2970        }
2971}
2972
2973
2974
2975/*
2976 * initialize a new messenger instance
2977 */
2978void ceph_messenger_init(struct ceph_messenger *msgr,
2979                         struct ceph_entity_addr *myaddr)
2980{
2981        spin_lock_init(&msgr->global_seq_lock);
2982
2983        if (myaddr)
2984                msgr->inst.addr = *myaddr;
2985
2986        /* select a random nonce */
2987        msgr->inst.addr.type = 0;
2988        get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2989        encode_my_addr(msgr);
2990
2991        atomic_set(&msgr->stopping, 0);
2992        write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2993
2994        dout("%s %p\n", __func__, msgr);
2995}
2996EXPORT_SYMBOL(ceph_messenger_init);
2997
2998void ceph_messenger_fini(struct ceph_messenger *msgr)
2999{
3000        put_net(read_pnet(&msgr->net));
3001}
3002EXPORT_SYMBOL(ceph_messenger_fini);
3003
3004static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3005{
3006        if (msg->con)
3007                msg->con->ops->put(msg->con);
3008
3009        msg->con = con ? con->ops->get(con) : NULL;
3010        BUG_ON(msg->con != con);
3011}
3012
3013static void clear_standby(struct ceph_connection *con)
3014{
3015        /* come back from STANDBY? */
3016        if (con->state == CON_STATE_STANDBY) {
3017                dout("clear_standby %p and ++connect_seq\n", con);
3018                con->state = CON_STATE_PREOPEN;
3019                con->connect_seq++;
3020                WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3021                WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3022        }
3023}
3024
3025/*
3026 * Queue up an outgoing message on the given connection.
3027 */
3028void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3029{
3030        /* set src+dst */
3031        msg->hdr.src = con->msgr->inst.name;
3032        BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3033        msg->needs_out_seq = true;
3034
3035        mutex_lock(&con->mutex);
3036
3037        if (con->state == CON_STATE_CLOSED) {
3038                dout("con_send %p closed, dropping %p\n", con, msg);
3039                ceph_msg_put(msg);
3040                mutex_unlock(&con->mutex);
3041                return;
3042        }
3043
3044        msg_con_set(msg, con);
3045
3046        BUG_ON(!list_empty(&msg->list_head));
3047        list_add_tail(&msg->list_head, &con->out_queue);
3048        dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3049             ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3050             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3051             le32_to_cpu(msg->hdr.front_len),
3052             le32_to_cpu(msg->hdr.middle_len),
3053             le32_to_cpu(msg->hdr.data_len));
3054
3055        clear_standby(con);
3056        mutex_unlock(&con->mutex);
3057
3058        /* if there wasn't anything waiting to send before, queue
3059         * new work */
3060        if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3061                queue_con(con);
3062}
3063EXPORT_SYMBOL(ceph_con_send);
3064
3065/*
3066 * Revoke a message that was previously queued for send
3067 */
3068void ceph_msg_revoke(struct ceph_msg *msg)
3069{
3070        struct ceph_connection *con = msg->con;
3071
3072        if (!con) {
3073                dout("%s msg %p null con\n", __func__, msg);
3074                return;         /* Message not in our possession */
3075        }
3076
3077        mutex_lock(&con->mutex);
3078        if (!list_empty(&msg->list_head)) {
3079                dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3080                list_del_init(&msg->list_head);
3081                msg->hdr.seq = 0;
3082
3083                ceph_msg_put(msg);
3084        }
3085        if (con->out_msg == msg) {
3086                BUG_ON(con->out_skip);
3087                /* footer */
3088                if (con->out_msg_done) {
3089                        con->out_skip += con_out_kvec_skip(con);
3090                } else {
3091                        BUG_ON(!msg->data_length);
3092                        if (con->peer_features & CEPH_FEATURE_MSG_AUTH)
3093                                con->out_skip += sizeof(msg->footer);
3094                        else
3095                                con->out_skip += sizeof(msg->old_footer);
3096                }
3097                /* data, middle, front */
3098                if (msg->data_length)
3099                        con->out_skip += msg->cursor.total_resid;
3100                if (msg->middle)
3101                        con->out_skip += con_out_kvec_skip(con);
3102                con->out_skip += con_out_kvec_skip(con);
3103
3104                dout("%s %p msg %p - was sending, will write %d skip %d\n",
3105                     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3106                msg->hdr.seq = 0;
3107                con->out_msg = NULL;
3108                ceph_msg_put(msg);
3109        }
3110
3111        mutex_unlock(&con->mutex);
3112}
3113
3114/*
3115 * Revoke a message that we may be reading data into
3116 */
3117void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3118{
3119        struct ceph_connection *con = msg->con;
3120
3121        if (!con) {
3122                dout("%s msg %p null con\n", __func__, msg);
3123                return;         /* Message not in our possession */
3124        }
3125
3126        mutex_lock(&con->mutex);
3127        if (con->in_msg == msg) {
3128                unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3129                unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3130                unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3131
3132                /* skip rest of message */
3133                dout("%s %p msg %p revoked\n", __func__, con, msg);
3134                con->in_base_pos = con->in_base_pos -
3135                                sizeof(struct ceph_msg_header) -
3136                                front_len -
3137                                middle_len -
3138                                data_len -
3139                                sizeof(struct ceph_msg_footer);
3140                ceph_msg_put(con->in_msg);
3141                con->in_msg = NULL;
3142                con->in_tag = CEPH_MSGR_TAG_READY;
3143                con->in_seq++;
3144        } else {
3145                dout("%s %p in_msg %p msg %p no-op\n",
3146                     __func__, con, con->in_msg, msg);
3147        }
3148        mutex_unlock(&con->mutex);
3149}
3150
3151/*
3152 * Queue a keepalive byte to ensure the tcp connection is alive.
3153 */
3154void ceph_con_keepalive(struct ceph_connection *con)
3155{
3156        dout("con_keepalive %p\n", con);
3157        mutex_lock(&con->mutex);
3158        clear_standby(con);
3159        mutex_unlock(&con->mutex);
3160        if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3161            con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3162                queue_con(con);
3163}
3164EXPORT_SYMBOL(ceph_con_keepalive);
3165
3166bool ceph_con_keepalive_expired(struct ceph_connection *con,
3167                               unsigned long interval)
3168{
3169        if (interval > 0 &&
3170            (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3171                struct timespec now = CURRENT_TIME;
3172                struct timespec ts;
3173                jiffies_to_timespec(interval, &ts);
3174                ts = timespec_add(con->last_keepalive_ack, ts);
3175                return timespec_compare(&now, &ts) >= 0;
3176        }
3177        return false;
3178}
3179
3180static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3181{
3182        struct ceph_msg_data *data;
3183
3184        if (WARN_ON(!ceph_msg_data_type_valid(type)))
3185                return NULL;
3186
3187        data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3188        if (data)
3189                data->type = type;
3190        INIT_LIST_HEAD(&data->links);
3191
3192        return data;
3193}
3194
3195static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3196{
3197        if (!data)
3198                return;
3199
3200        WARN_ON(!list_empty(&data->links));
3201        if (data->type == CEPH_MSG_DATA_PAGELIST)
3202                ceph_pagelist_release(data->pagelist);
3203        kmem_cache_free(ceph_msg_data_cache, data);
3204}
3205
3206void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3207                size_t length, size_t alignment)
3208{
3209        struct ceph_msg_data *data;
3210
3211        BUG_ON(!pages);
3212        BUG_ON(!length);
3213
3214        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3215        BUG_ON(!data);
3216        data->pages = pages;
3217        data->length = length;
3218        data->alignment = alignment & ~PAGE_MASK;
3219
3220        list_add_tail(&data->links, &msg->data);
3221        msg->data_length += length;
3222}
3223EXPORT_SYMBOL(ceph_msg_data_add_pages);
3224
3225void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3226                                struct ceph_pagelist *pagelist)
3227{
3228        struct ceph_msg_data *data;
3229
3230        BUG_ON(!pagelist);
3231        BUG_ON(!pagelist->length);
3232
3233        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3234        BUG_ON(!data);
3235        data->pagelist = pagelist;
3236
3237        list_add_tail(&data->links, &msg->data);
3238        msg->data_length += pagelist->length;
3239}
3240EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3241
3242#ifdef  CONFIG_BLOCK
3243void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3244                size_t length)
3245{
3246        struct ceph_msg_data *data;
3247
3248        BUG_ON(!bio);
3249
3250        data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3251        BUG_ON(!data);
3252        data->bio = bio;
3253        data->bio_length = length;
3254
3255        list_add_tail(&data->links, &msg->data);
3256        msg->data_length += length;
3257}
3258EXPORT_SYMBOL(ceph_msg_data_add_bio);
3259#endif  /* CONFIG_BLOCK */
3260
3261/*
3262 * construct a new message with given type, size
3263 * the new msg has a ref count of 1.
3264 */
3265struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3266                              bool can_fail)
3267{
3268        struct ceph_msg *m;
3269
3270        m = kmem_cache_zalloc(ceph_msg_cache, flags);
3271        if (m == NULL)
3272                goto out;
3273
3274        m->hdr.type = cpu_to_le16(type);
3275        m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3276        m->hdr.front_len = cpu_to_le32(front_len);
3277
3278        INIT_LIST_HEAD(&m->list_head);
3279        kref_init(&m->kref);
3280        INIT_LIST_HEAD(&m->data);
3281
3282        /* front */
3283        if (front_len) {
3284                m->front.iov_base = ceph_kvmalloc(front_len, flags);
3285                if (m->front.iov_base == NULL) {
3286                        dout("ceph_msg_new can't allocate %d bytes\n",
3287                             front_len);
3288                        goto out2;
3289                }
3290        } else {
3291                m->front.iov_base = NULL;
3292        }
3293        m->front_alloc_len = m->front.iov_len = front_len;
3294
3295        dout("ceph_msg_new %p front %d\n", m, front_len);
3296        return m;
3297
3298out2:
3299        ceph_msg_put(m);
3300out:
3301        if (!can_fail) {
3302                pr_err("msg_new can't create type %d front %d\n", type,
3303                       front_len);
3304                WARN_ON(1);
3305        } else {
3306                dout("msg_new can't create type %d front %d\n", type,
3307                     front_len);
3308        }
3309        return NULL;
3310}
3311EXPORT_SYMBOL(ceph_msg_new);
3312
3313/*
3314 * Allocate "middle" portion of a message, if it is needed and wasn't
3315 * allocated by alloc_msg.  This allows us to read a small fixed-size
3316 * per-type header in the front and then gracefully fail (i.e.,
3317 * propagate the error to the caller based on info in the front) when
3318 * the middle is too large.
3319 */
3320static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3321{
3322        int type = le16_to_cpu(msg->hdr.type);
3323        int middle_len = le32_to_cpu(msg->hdr.middle_len);
3324
3325        dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3326             ceph_msg_type_name(type), middle_len);
3327        BUG_ON(!middle_len);
3328        BUG_ON(msg->middle);
3329
3330        msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3331        if (!msg->middle)
3332                return -ENOMEM;
3333        return 0;
3334}
3335
3336/*
3337 * Allocate a message for receiving an incoming message on a
3338 * connection, and save the result in con->in_msg.  Uses the
3339 * connection's private alloc_msg op if available.
3340 *
3341 * Returns 0 on success, or a negative error code.
3342 *
3343 * On success, if we set *skip = 1:
3344 *  - the next message should be skipped and ignored.
3345 *  - con->in_msg == NULL
3346 * or if we set *skip = 0:
3347 *  - con->in_msg is non-null.
3348 * On error (ENOMEM, EAGAIN, ...),
3349 *  - con->in_msg == NULL
3350 */
3351static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3352{
3353        struct ceph_msg_header *hdr = &con->in_hdr;
3354        int middle_len = le32_to_cpu(hdr->middle_len);
3355        struct ceph_msg *msg;
3356        int ret = 0;
3357
3358        BUG_ON(con->in_msg != NULL);
3359        BUG_ON(!con->ops->alloc_msg);
3360
3361        mutex_unlock(&con->mutex);
3362        msg = con->ops->alloc_msg(con, hdr, skip);
3363        mutex_lock(&con->mutex);
3364        if (con->state != CON_STATE_OPEN) {
3365                if (msg)
3366                        ceph_msg_put(msg);
3367                return -EAGAIN;
3368        }
3369        if (msg) {
3370                BUG_ON(*skip);
3371                msg_con_set(msg, con);
3372                con->in_msg = msg;
3373        } else {
3374                /*
3375                 * Null message pointer means either we should skip
3376                 * this message or we couldn't allocate memory.  The
3377                 * former is not an error.
3378                 */
3379                if (*skip)
3380                        return 0;
3381
3382                con->error_msg = "error allocating memory for incoming message";
3383                return -ENOMEM;
3384        }
3385        memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3386
3387        if (middle_len && !con->in_msg->middle) {
3388                ret = ceph_alloc_middle(con, con->in_msg);
3389                if (ret < 0) {
3390                        ceph_msg_put(con->in_msg);
3391                        con->in_msg = NULL;
3392                }
3393        }
3394
3395        return ret;
3396}
3397
3398
3399/*
3400 * Free a generically kmalloc'd message.
3401 */
3402static void ceph_msg_free(struct ceph_msg *m)
3403{
3404        dout("%s %p\n", __func__, m);
3405        kvfree(m->front.iov_base);
3406        kmem_cache_free(ceph_msg_cache, m);
3407}
3408
3409static void ceph_msg_release(struct kref *kref)
3410{
3411        struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3412        struct ceph_msg_data *data, *next;
3413
3414        dout("%s %p\n", __func__, m);
3415        WARN_ON(!list_empty(&m->list_head));
3416
3417        msg_con_set(m, NULL);
3418
3419        /* drop middle, data, if any */
3420        if (m->middle) {
3421                ceph_buffer_put(m->middle);
3422                m->middle = NULL;
3423        }
3424
3425        list_for_each_entry_safe(data, next, &m->data, links) {
3426                list_del_init(&data->links);
3427                ceph_msg_data_destroy(data);
3428        }
3429        m->data_length = 0;
3430
3431        if (m->pool)
3432                ceph_msgpool_put(m->pool, m);
3433        else
3434                ceph_msg_free(m);
3435}
3436
3437struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3438{
3439        dout("%s %p (was %d)\n", __func__, msg,
3440             atomic_read(&msg->kref.refcount));
3441        kref_get(&msg->kref);
3442        return msg;
3443}
3444EXPORT_SYMBOL(ceph_msg_get);
3445
3446void ceph_msg_put(struct ceph_msg *msg)
3447{
3448        dout("%s %p (was %d)\n", __func__, msg,
3449             atomic_read(&msg->kref.refcount));
3450        kref_put(&msg->kref, ceph_msg_release);
3451}
3452EXPORT_SYMBOL(ceph_msg_put);
3453
3454void ceph_msg_dump(struct ceph_msg *msg)
3455{
3456        pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3457                 msg->front_alloc_len, msg->data_length);
3458        print_hex_dump(KERN_DEBUG, "header: ",
3459                       DUMP_PREFIX_OFFSET, 16, 1,
3460                       &msg->hdr, sizeof(msg->hdr), true);
3461        print_hex_dump(KERN_DEBUG, " front: ",
3462                       DUMP_PREFIX_OFFSET, 16, 1,
3463                       msg->front.iov_base, msg->front.iov_len, true);
3464        if (msg->middle)
3465                print_hex_dump(KERN_DEBUG, "middle: ",
3466                               DUMP_PREFIX_OFFSET, 16, 1,
3467                               msg->middle->vec.iov_base,
3468                               msg->middle->vec.iov_len, true);
3469        print_hex_dump(KERN_DEBUG, "footer: ",
3470                       DUMP_PREFIX_OFFSET, 16, 1,
3471                       &msg->footer, sizeof(msg->footer), true);
3472}
3473EXPORT_SYMBOL(ceph_msg_dump);
3474