linux/net/ipv4/arp.c
<<
>>
Prefs
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Removed the Ethernet assumptions in
  17 *                                      Florian's code
  18 *              Alan Cox        :       Fixed some small errors in the ARP
  19 *                                      logic
  20 *              Alan Cox        :       Allow >4K in /proc
  21 *              Alan Cox        :       Make ARP add its own protocol entry
  22 *              Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *              Stephen Henson  :       Add AX25 support to arp_get_info()
  24 *              Alan Cox        :       Drop data when a device is downed.
  25 *              Alan Cox        :       Use init_timer().
  26 *              Alan Cox        :       Double lock fixes.
  27 *              Martin Seine    :       Move the arphdr structure
  28 *                                      to if_arp.h for compatibility.
  29 *                                      with BSD based programs.
  30 *              Andrew Tridgell :       Added ARP netmask code and
  31 *                                      re-arranged proxy handling.
  32 *              Alan Cox        :       Changed to use notifiers.
  33 *              Niibe Yutaka    :       Reply for this device or proxies only.
  34 *              Alan Cox        :       Don't proxy across hardware types!
  35 *              Jonathan Naylor :       Added support for NET/ROM.
  36 *              Mike Shaver     :       RFC1122 checks.
  37 *              Jonathan Naylor :       Only lookup the hardware address for
  38 *                                      the correct hardware type.
  39 *              Germano Caronni :       Assorted subtle races.
  40 *              Craig Schlenter :       Don't modify permanent entry
  41 *                                      during arp_rcv.
  42 *              Russ Nelson     :       Tidied up a few bits.
  43 *              Alexey Kuznetsov:       Major changes to caching and behaviour,
  44 *                                      eg intelligent arp probing and
  45 *                                      generation
  46 *                                      of host down events.
  47 *              Alan Cox        :       Missing unlock in device events.
  48 *              Eckes           :       ARP ioctl control errors.
  49 *              Alexey Kuznetsov:       Arp free fix.
  50 *              Manuel Rodriguez:       Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *              Mike Shaver     :       /proc/sys/net/ipv4/arp_* support
  54 *              Mike McLagan    :       Routing by source
  55 *              Stuart Cheshire :       Metricom and grat arp fixes
  56 *                                      *** FOR 2.1 clean this up ***
  57 *              Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *              Alan Cox        :       Took the AP1000 nasty FDDI hack and
  59 *                                      folded into the mainstream FDDI code.
  60 *                                      Ack spit, Linus how did you allow that
  61 *                                      one in...
  62 *              Jes Sorensen    :       Make FDDI work again in 2.1.x and
  63 *                                      clean up the APFDDI & gen. FDDI bits.
  64 *              Alexey Kuznetsov:       new arp state machine;
  65 *                                      now it is in net/core/neighbour.c.
  66 *              Krzysztof Halasa:       Added Frame Relay ARP support.
  67 *              Arnaldo C. Melo :       convert /proc/net/arp to seq_file
  68 *              Shmulik Hen:            Split arp_send to arp_create and
  69 *                                      arp_xmit so intermediate drivers like
  70 *                                      bonding can change the skb before
  71 *                                      sending (e.g. insert 8021q tag).
  72 *              Harald Welte    :       convert to make use of jenkins hash
  73 *              Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116#include <net/dst_metadata.h>
 117#include <net/ip_tunnels.h>
 118
 119#include <linux/uaccess.h>
 120
 121#include <linux/netfilter_arp.h>
 122
 123/*
 124 *      Interface to generic neighbour cache.
 125 */
 126static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 127static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 128static int arp_constructor(struct neighbour *neigh);
 129static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 130static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 131static void parp_redo(struct sk_buff *skb);
 132
 133static const struct neigh_ops arp_generic_ops = {
 134        .family =               AF_INET,
 135        .solicit =              arp_solicit,
 136        .error_report =         arp_error_report,
 137        .output =               neigh_resolve_output,
 138        .connected_output =     neigh_connected_output,
 139};
 140
 141static const struct neigh_ops arp_hh_ops = {
 142        .family =               AF_INET,
 143        .solicit =              arp_solicit,
 144        .error_report =         arp_error_report,
 145        .output =               neigh_resolve_output,
 146        .connected_output =     neigh_resolve_output,
 147};
 148
 149static const struct neigh_ops arp_direct_ops = {
 150        .family =               AF_INET,
 151        .output =               neigh_direct_output,
 152        .connected_output =     neigh_direct_output,
 153};
 154
 155struct neigh_table arp_tbl = {
 156        .family         = AF_INET,
 157        .key_len        = 4,
 158        .protocol       = cpu_to_be16(ETH_P_IP),
 159        .hash           = arp_hash,
 160        .key_eq         = arp_key_eq,
 161        .constructor    = arp_constructor,
 162        .proxy_redo     = parp_redo,
 163        .id             = "arp_cache",
 164        .parms          = {
 165                .tbl                    = &arp_tbl,
 166                .reachable_time         = 30 * HZ,
 167                .data   = {
 168                        [NEIGH_VAR_MCAST_PROBES] = 3,
 169                        [NEIGH_VAR_UCAST_PROBES] = 3,
 170                        [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 171                        [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 172                        [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 173                        [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 174                        [NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
 175                        [NEIGH_VAR_PROXY_QLEN] = 64,
 176                        [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 177                        [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
 178                        [NEIGH_VAR_LOCKTIME] = 1 * HZ,
 179                },
 180        },
 181        .gc_interval    = 30 * HZ,
 182        .gc_thresh1     = 128,
 183        .gc_thresh2     = 512,
 184        .gc_thresh3     = 1024,
 185};
 186EXPORT_SYMBOL(arp_tbl);
 187
 188int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 189{
 190        switch (dev->type) {
 191        case ARPHRD_ETHER:
 192        case ARPHRD_FDDI:
 193        case ARPHRD_IEEE802:
 194                ip_eth_mc_map(addr, haddr);
 195                return 0;
 196        case ARPHRD_INFINIBAND:
 197                ip_ib_mc_map(addr, dev->broadcast, haddr);
 198                return 0;
 199        case ARPHRD_IPGRE:
 200                ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 201                return 0;
 202        default:
 203                if (dir) {
 204                        memcpy(haddr, dev->broadcast, dev->addr_len);
 205                        return 0;
 206                }
 207        }
 208        return -EINVAL;
 209}
 210
 211
 212static u32 arp_hash(const void *pkey,
 213                    const struct net_device *dev,
 214                    __u32 *hash_rnd)
 215{
 216        return arp_hashfn(pkey, dev, hash_rnd);
 217}
 218
 219static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 220{
 221        return neigh_key_eq32(neigh, pkey);
 222}
 223
 224static int arp_constructor(struct neighbour *neigh)
 225{
 226        __be32 addr = *(__be32 *)neigh->primary_key;
 227        struct net_device *dev = neigh->dev;
 228        struct in_device *in_dev;
 229        struct neigh_parms *parms;
 230
 231        rcu_read_lock();
 232        in_dev = __in_dev_get_rcu(dev);
 233        if (!in_dev) {
 234                rcu_read_unlock();
 235                return -EINVAL;
 236        }
 237
 238        neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 239
 240        parms = in_dev->arp_parms;
 241        __neigh_parms_put(neigh->parms);
 242        neigh->parms = neigh_parms_clone(parms);
 243        rcu_read_unlock();
 244
 245        if (!dev->header_ops) {
 246                neigh->nud_state = NUD_NOARP;
 247                neigh->ops = &arp_direct_ops;
 248                neigh->output = neigh_direct_output;
 249        } else {
 250                /* Good devices (checked by reading texts, but only Ethernet is
 251                   tested)
 252
 253                   ARPHRD_ETHER: (ethernet, apfddi)
 254                   ARPHRD_FDDI: (fddi)
 255                   ARPHRD_IEEE802: (tr)
 256                   ARPHRD_METRICOM: (strip)
 257                   ARPHRD_ARCNET:
 258                   etc. etc. etc.
 259
 260                   ARPHRD_IPDDP will also work, if author repairs it.
 261                   I did not it, because this driver does not work even
 262                   in old paradigm.
 263                 */
 264
 265                if (neigh->type == RTN_MULTICAST) {
 266                        neigh->nud_state = NUD_NOARP;
 267                        arp_mc_map(addr, neigh->ha, dev, 1);
 268                } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 269                        neigh->nud_state = NUD_NOARP;
 270                        memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 271                } else if (neigh->type == RTN_BROADCAST ||
 272                           (dev->flags & IFF_POINTOPOINT)) {
 273                        neigh->nud_state = NUD_NOARP;
 274                        memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 275                }
 276
 277                if (dev->header_ops->cache)
 278                        neigh->ops = &arp_hh_ops;
 279                else
 280                        neigh->ops = &arp_generic_ops;
 281
 282                if (neigh->nud_state & NUD_VALID)
 283                        neigh->output = neigh->ops->connected_output;
 284                else
 285                        neigh->output = neigh->ops->output;
 286        }
 287        return 0;
 288}
 289
 290static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 291{
 292        dst_link_failure(skb);
 293        kfree_skb(skb);
 294}
 295
 296/* Create and send an arp packet. */
 297static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 298                         struct net_device *dev, __be32 src_ip,
 299                         const unsigned char *dest_hw,
 300                         const unsigned char *src_hw,
 301                         const unsigned char *target_hw,
 302                         struct dst_entry *dst)
 303{
 304        struct sk_buff *skb;
 305
 306        /* arp on this interface. */
 307        if (dev->flags & IFF_NOARP)
 308                return;
 309
 310        skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 311                         dest_hw, src_hw, target_hw);
 312        if (!skb)
 313                return;
 314
 315        skb_dst_set(skb, dst_clone(dst));
 316        arp_xmit(skb);
 317}
 318
 319void arp_send(int type, int ptype, __be32 dest_ip,
 320              struct net_device *dev, __be32 src_ip,
 321              const unsigned char *dest_hw, const unsigned char *src_hw,
 322              const unsigned char *target_hw)
 323{
 324        arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 325                     target_hw, NULL);
 326}
 327EXPORT_SYMBOL(arp_send);
 328
 329static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 330{
 331        __be32 saddr = 0;
 332        u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 333        struct net_device *dev = neigh->dev;
 334        __be32 target = *(__be32 *)neigh->primary_key;
 335        int probes = atomic_read(&neigh->probes);
 336        struct in_device *in_dev;
 337        struct dst_entry *dst = NULL;
 338
 339        rcu_read_lock();
 340        in_dev = __in_dev_get_rcu(dev);
 341        if (!in_dev) {
 342                rcu_read_unlock();
 343                return;
 344        }
 345        switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346        default:
 347        case 0:         /* By default announce any local IP */
 348                if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 349                                          ip_hdr(skb)->saddr) == RTN_LOCAL)
 350                        saddr = ip_hdr(skb)->saddr;
 351                break;
 352        case 1:         /* Restrict announcements of saddr in same subnet */
 353                if (!skb)
 354                        break;
 355                saddr = ip_hdr(skb)->saddr;
 356                if (inet_addr_type_dev_table(dev_net(dev), dev,
 357                                             saddr) == RTN_LOCAL) {
 358                        /* saddr should be known to target */
 359                        if (inet_addr_onlink(in_dev, target, saddr))
 360                                break;
 361                }
 362                saddr = 0;
 363                break;
 364        case 2:         /* Avoid secondary IPs, get a primary/preferred one */
 365                break;
 366        }
 367        rcu_read_unlock();
 368
 369        if (!saddr)
 370                saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 371
 372        probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 373        if (probes < 0) {
 374                if (!(neigh->nud_state & NUD_VALID))
 375                        pr_debug("trying to ucast probe in NUD_INVALID\n");
 376                neigh_ha_snapshot(dst_ha, neigh, dev);
 377                dst_hw = dst_ha;
 378        } else {
 379                probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 380                if (probes < 0) {
 381                        neigh_app_ns(neigh);
 382                        return;
 383                }
 384        }
 385
 386        if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 387                dst = skb_dst(skb);
 388        arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389                     dst_hw, dev->dev_addr, NULL, dst);
 390}
 391
 392static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 393{
 394        struct net *net = dev_net(in_dev->dev);
 395        int scope;
 396
 397        switch (IN_DEV_ARP_IGNORE(in_dev)) {
 398        case 0: /* Reply, the tip is already validated */
 399                return 0;
 400        case 1: /* Reply only if tip is configured on the incoming interface */
 401                sip = 0;
 402                scope = RT_SCOPE_HOST;
 403                break;
 404        case 2: /*
 405                 * Reply only if tip is configured on the incoming interface
 406                 * and is in same subnet as sip
 407                 */
 408                scope = RT_SCOPE_HOST;
 409                break;
 410        case 3: /* Do not reply for scope host addresses */
 411                sip = 0;
 412                scope = RT_SCOPE_LINK;
 413                in_dev = NULL;
 414                break;
 415        case 4: /* Reserved */
 416        case 5:
 417        case 6:
 418        case 7:
 419                return 0;
 420        case 8: /* Do not reply */
 421                return 1;
 422        default:
 423                return 0;
 424        }
 425        return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430        struct rtable *rt;
 431        int flag = 0;
 432        /*unsigned long now; */
 433        struct net *net = dev_net(dev);
 434
 435        rt = ip_route_output(net, sip, tip, 0, 0);
 436        if (IS_ERR(rt))
 437                return 1;
 438        if (rt->dst.dev != dev) {
 439                NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440                flag = 1;
 441        }
 442        ip_rt_put(rt);
 443        return flag;
 444}
 445
 446/*
 447 * Check if we can use proxy ARP for this path
 448 */
 449static inline int arp_fwd_proxy(struct in_device *in_dev,
 450                                struct net_device *dev, struct rtable *rt)
 451{
 452        struct in_device *out_dev;
 453        int imi, omi = -1;
 454
 455        if (rt->dst.dev == dev)
 456                return 0;
 457
 458        if (!IN_DEV_PROXY_ARP(in_dev))
 459                return 0;
 460        imi = IN_DEV_MEDIUM_ID(in_dev);
 461        if (imi == 0)
 462                return 1;
 463        if (imi == -1)
 464                return 0;
 465
 466        /* place to check for proxy_arp for routes */
 467
 468        out_dev = __in_dev_get_rcu(rt->dst.dev);
 469        if (out_dev)
 470                omi = IN_DEV_MEDIUM_ID(out_dev);
 471
 472        return omi != imi && omi != -1;
 473}
 474
 475/*
 476 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 477 *
 478 * RFC3069 supports proxy arp replies back to the same interface.  This
 479 * is done to support (ethernet) switch features, like RFC 3069, where
 480 * the individual ports are not allowed to communicate with each
 481 * other, BUT they are allowed to talk to the upstream router.  As
 482 * described in RFC 3069, it is possible to allow these hosts to
 483 * communicate through the upstream router, by proxy_arp'ing.
 484 *
 485 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 486 *
 487 *  This technology is known by different names:
 488 *    In RFC 3069 it is called VLAN Aggregation.
 489 *    Cisco and Allied Telesyn call it Private VLAN.
 490 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 491 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 492 *
 493 */
 494static inline int arp_fwd_pvlan(struct in_device *in_dev,
 495                                struct net_device *dev, struct rtable *rt,
 496                                __be32 sip, __be32 tip)
 497{
 498        /* Private VLAN is only concerned about the same ethernet segment */
 499        if (rt->dst.dev != dev)
 500                return 0;
 501
 502        /* Don't reply on self probes (often done by windowz boxes)*/
 503        if (sip == tip)
 504                return 0;
 505
 506        if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 507                return 1;
 508        else
 509                return 0;
 510}
 511
 512/*
 513 *      Interface to link layer: send routine and receive handler.
 514 */
 515
 516/*
 517 *      Create an arp packet. If dest_hw is not set, we create a broadcast
 518 *      message.
 519 */
 520struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 521                           struct net_device *dev, __be32 src_ip,
 522                           const unsigned char *dest_hw,
 523                           const unsigned char *src_hw,
 524                           const unsigned char *target_hw)
 525{
 526        struct sk_buff *skb;
 527        struct arphdr *arp;
 528        unsigned char *arp_ptr;
 529        int hlen = LL_RESERVED_SPACE(dev);
 530        int tlen = dev->needed_tailroom;
 531
 532        /*
 533         *      Allocate a buffer
 534         */
 535
 536        skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 537        if (!skb)
 538                return NULL;
 539
 540        skb_reserve(skb, hlen);
 541        skb_reset_network_header(skb);
 542        arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 543        skb->dev = dev;
 544        skb->protocol = htons(ETH_P_ARP);
 545        if (!src_hw)
 546                src_hw = dev->dev_addr;
 547        if (!dest_hw)
 548                dest_hw = dev->broadcast;
 549
 550        /*
 551         *      Fill the device header for the ARP frame
 552         */
 553        if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 554                goto out;
 555
 556        /*
 557         * Fill out the arp protocol part.
 558         *
 559         * The arp hardware type should match the device type, except for FDDI,
 560         * which (according to RFC 1390) should always equal 1 (Ethernet).
 561         */
 562        /*
 563         *      Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 564         *      DIX code for the protocol. Make these device structure fields.
 565         */
 566        switch (dev->type) {
 567        default:
 568                arp->ar_hrd = htons(dev->type);
 569                arp->ar_pro = htons(ETH_P_IP);
 570                break;
 571
 572#if IS_ENABLED(CONFIG_AX25)
 573        case ARPHRD_AX25:
 574                arp->ar_hrd = htons(ARPHRD_AX25);
 575                arp->ar_pro = htons(AX25_P_IP);
 576                break;
 577
 578#if IS_ENABLED(CONFIG_NETROM)
 579        case ARPHRD_NETROM:
 580                arp->ar_hrd = htons(ARPHRD_NETROM);
 581                arp->ar_pro = htons(AX25_P_IP);
 582                break;
 583#endif
 584#endif
 585
 586#if IS_ENABLED(CONFIG_FDDI)
 587        case ARPHRD_FDDI:
 588                arp->ar_hrd = htons(ARPHRD_ETHER);
 589                arp->ar_pro = htons(ETH_P_IP);
 590                break;
 591#endif
 592        }
 593
 594        arp->ar_hln = dev->addr_len;
 595        arp->ar_pln = 4;
 596        arp->ar_op = htons(type);
 597
 598        arp_ptr = (unsigned char *)(arp + 1);
 599
 600        memcpy(arp_ptr, src_hw, dev->addr_len);
 601        arp_ptr += dev->addr_len;
 602        memcpy(arp_ptr, &src_ip, 4);
 603        arp_ptr += 4;
 604
 605        switch (dev->type) {
 606#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 607        case ARPHRD_IEEE1394:
 608                break;
 609#endif
 610        default:
 611                if (target_hw)
 612                        memcpy(arp_ptr, target_hw, dev->addr_len);
 613                else
 614                        memset(arp_ptr, 0, dev->addr_len);
 615                arp_ptr += dev->addr_len;
 616        }
 617        memcpy(arp_ptr, &dest_ip, 4);
 618
 619        return skb;
 620
 621out:
 622        kfree_skb(skb);
 623        return NULL;
 624}
 625EXPORT_SYMBOL(arp_create);
 626
 627static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 628{
 629        return dev_queue_xmit(skb);
 630}
 631
 632/*
 633 *      Send an arp packet.
 634 */
 635void arp_xmit(struct sk_buff *skb)
 636{
 637        /* Send it off, maybe filter it using firewalling first.  */
 638        NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 639                dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 640                arp_xmit_finish);
 641}
 642EXPORT_SYMBOL(arp_xmit);
 643
 644/*
 645 *      Process an arp request.
 646 */
 647
 648static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 649{
 650        struct net_device *dev = skb->dev;
 651        struct in_device *in_dev = __in_dev_get_rcu(dev);
 652        struct arphdr *arp;
 653        unsigned char *arp_ptr;
 654        struct rtable *rt;
 655        unsigned char *sha;
 656        __be32 sip, tip;
 657        u16 dev_type = dev->type;
 658        int addr_type;
 659        struct neighbour *n;
 660        struct dst_entry *reply_dst = NULL;
 661        bool is_garp = false;
 662
 663        /* arp_rcv below verifies the ARP header and verifies the device
 664         * is ARP'able.
 665         */
 666
 667        if (!in_dev)
 668                goto out;
 669
 670        arp = arp_hdr(skb);
 671
 672        switch (dev_type) {
 673        default:
 674                if (arp->ar_pro != htons(ETH_P_IP) ||
 675                    htons(dev_type) != arp->ar_hrd)
 676                        goto out;
 677                break;
 678        case ARPHRD_ETHER:
 679        case ARPHRD_FDDI:
 680        case ARPHRD_IEEE802:
 681                /*
 682                 * ETHERNET, and Fibre Channel (which are IEEE 802
 683                 * devices, according to RFC 2625) devices will accept ARP
 684                 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 685                 * This is the case also of FDDI, where the RFC 1390 says that
 686                 * FDDI devices should accept ARP hardware of (1) Ethernet,
 687                 * however, to be more robust, we'll accept both 1 (Ethernet)
 688                 * or 6 (IEEE 802.2)
 689                 */
 690                if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 691                     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 692                    arp->ar_pro != htons(ETH_P_IP))
 693                        goto out;
 694                break;
 695        case ARPHRD_AX25:
 696                if (arp->ar_pro != htons(AX25_P_IP) ||
 697                    arp->ar_hrd != htons(ARPHRD_AX25))
 698                        goto out;
 699                break;
 700        case ARPHRD_NETROM:
 701                if (arp->ar_pro != htons(AX25_P_IP) ||
 702                    arp->ar_hrd != htons(ARPHRD_NETROM))
 703                        goto out;
 704                break;
 705        }
 706
 707        /* Understand only these message types */
 708
 709        if (arp->ar_op != htons(ARPOP_REPLY) &&
 710            arp->ar_op != htons(ARPOP_REQUEST))
 711                goto out;
 712
 713/*
 714 *      Extract fields
 715 */
 716        arp_ptr = (unsigned char *)(arp + 1);
 717        sha     = arp_ptr;
 718        arp_ptr += dev->addr_len;
 719        memcpy(&sip, arp_ptr, 4);
 720        arp_ptr += 4;
 721        switch (dev_type) {
 722#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 723        case ARPHRD_IEEE1394:
 724                break;
 725#endif
 726        default:
 727                arp_ptr += dev->addr_len;
 728        }
 729        memcpy(&tip, arp_ptr, 4);
 730/*
 731 *      Check for bad requests for 127.x.x.x and requests for multicast
 732 *      addresses.  If this is one such, delete it.
 733 */
 734        if (ipv4_is_multicast(tip) ||
 735            (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 736                goto out;
 737
 738/*
 739 *     Special case: We must set Frame Relay source Q.922 address
 740 */
 741        if (dev_type == ARPHRD_DLCI)
 742                sha = dev->broadcast;
 743
 744/*
 745 *  Process entry.  The idea here is we want to send a reply if it is a
 746 *  request for us or if it is a request for someone else that we hold
 747 *  a proxy for.  We want to add an entry to our cache if it is a reply
 748 *  to us or if it is a request for our address.
 749 *  (The assumption for this last is that if someone is requesting our
 750 *  address, they are probably intending to talk to us, so it saves time
 751 *  if we cache their address.  Their address is also probably not in
 752 *  our cache, since ours is not in their cache.)
 753 *
 754 *  Putting this another way, we only care about replies if they are to
 755 *  us, in which case we add them to the cache.  For requests, we care
 756 *  about those for us and those for our proxies.  We reply to both,
 757 *  and in the case of requests for us we add the requester to the arp
 758 *  cache.
 759 */
 760
 761        if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 762                reply_dst = (struct dst_entry *)
 763                            iptunnel_metadata_reply(skb_metadata_dst(skb),
 764                                                    GFP_ATOMIC);
 765
 766        /* Special case: IPv4 duplicate address detection packet (RFC2131) */
 767        if (sip == 0) {
 768                if (arp->ar_op == htons(ARPOP_REQUEST) &&
 769                    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 770                    !arp_ignore(in_dev, sip, tip))
 771                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 772                                     sha, dev->dev_addr, sha, reply_dst);
 773                goto out;
 774        }
 775
 776        if (arp->ar_op == htons(ARPOP_REQUEST) &&
 777            ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 778
 779                rt = skb_rtable(skb);
 780                addr_type = rt->rt_type;
 781
 782                if (addr_type == RTN_LOCAL) {
 783                        int dont_send;
 784
 785                        dont_send = arp_ignore(in_dev, sip, tip);
 786                        if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 787                                dont_send = arp_filter(sip, tip, dev);
 788                        if (!dont_send) {
 789                                n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 790                                if (n) {
 791                                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 792                                                     sip, dev, tip, sha,
 793                                                     dev->dev_addr, sha,
 794                                                     reply_dst);
 795                                        neigh_release(n);
 796                                }
 797                        }
 798                        goto out;
 799                } else if (IN_DEV_FORWARD(in_dev)) {
 800                        if (addr_type == RTN_UNICAST  &&
 801                            (arp_fwd_proxy(in_dev, dev, rt) ||
 802                             arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 803                             (rt->dst.dev != dev &&
 804                              pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 805                                n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 806                                if (n)
 807                                        neigh_release(n);
 808
 809                                if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 810                                    skb->pkt_type == PACKET_HOST ||
 811                                    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 812                                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 813                                                     sip, dev, tip, sha,
 814                                                     dev->dev_addr, sha,
 815                                                     reply_dst);
 816                                } else {
 817                                        pneigh_enqueue(&arp_tbl,
 818                                                       in_dev->arp_parms, skb);
 819                                        goto out_free_dst;
 820                                }
 821                                goto out;
 822                        }
 823                }
 824        }
 825
 826        /* Update our ARP tables */
 827
 828        n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 829
 830        if (IN_DEV_ARP_ACCEPT(in_dev)) {
 831                unsigned int addr_type = inet_addr_type_dev_table(net, dev, sip);
 832
 833                /* Unsolicited ARP is not accepted by default.
 834                   It is possible, that this option should be enabled for some
 835                   devices (strip is candidate)
 836                 */
 837                is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
 838                          addr_type == RTN_UNICAST;
 839
 840                if (!n &&
 841                    ((arp->ar_op == htons(ARPOP_REPLY)  &&
 842                                addr_type == RTN_UNICAST) || is_garp))
 843                        n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 844        }
 845
 846        if (n) {
 847                int state = NUD_REACHABLE;
 848                int override;
 849
 850                /* If several different ARP replies follows back-to-back,
 851                   use the FIRST one. It is possible, if several proxy
 852                   agents are active. Taking the first reply prevents
 853                   arp trashing and chooses the fastest router.
 854                 */
 855                override = time_after(jiffies,
 856                                      n->updated +
 857                                      NEIGH_VAR(n->parms, LOCKTIME)) ||
 858                           is_garp;
 859
 860                /* Broadcast replies and request packets
 861                   do not assert neighbour reachability.
 862                 */
 863                if (arp->ar_op != htons(ARPOP_REPLY) ||
 864                    skb->pkt_type != PACKET_HOST)
 865                        state = NUD_STALE;
 866                neigh_update(n, sha, state,
 867                             override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 868                neigh_release(n);
 869        }
 870
 871out:
 872        consume_skb(skb);
 873out_free_dst:
 874        dst_release(reply_dst);
 875        return 0;
 876}
 877
 878static void parp_redo(struct sk_buff *skb)
 879{
 880        arp_process(dev_net(skb->dev), NULL, skb);
 881}
 882
 883
 884/*
 885 *      Receive an arp request from the device layer.
 886 */
 887
 888static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 889                   struct packet_type *pt, struct net_device *orig_dev)
 890{
 891        const struct arphdr *arp;
 892
 893        /* do not tweak dropwatch on an ARP we will ignore */
 894        if (dev->flags & IFF_NOARP ||
 895            skb->pkt_type == PACKET_OTHERHOST ||
 896            skb->pkt_type == PACKET_LOOPBACK)
 897                goto consumeskb;
 898
 899        skb = skb_share_check(skb, GFP_ATOMIC);
 900        if (!skb)
 901                goto out_of_mem;
 902
 903        /* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 904        if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 905                goto freeskb;
 906
 907        arp = arp_hdr(skb);
 908        if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 909                goto freeskb;
 910
 911        memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 912
 913        return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 914                       dev_net(dev), NULL, skb, dev, NULL,
 915                       arp_process);
 916
 917consumeskb:
 918        consume_skb(skb);
 919        return 0;
 920freeskb:
 921        kfree_skb(skb);
 922out_of_mem:
 923        return 0;
 924}
 925
 926/*
 927 *      User level interface (ioctl)
 928 */
 929
 930/*
 931 *      Set (create) an ARP cache entry.
 932 */
 933
 934static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 935{
 936        if (!dev) {
 937                IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 938                return 0;
 939        }
 940        if (__in_dev_get_rtnl(dev)) {
 941                IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 942                return 0;
 943        }
 944        return -ENXIO;
 945}
 946
 947static int arp_req_set_public(struct net *net, struct arpreq *r,
 948                struct net_device *dev)
 949{
 950        __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 951        __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
 952
 953        if (mask && mask != htonl(0xFFFFFFFF))
 954                return -EINVAL;
 955        if (!dev && (r->arp_flags & ATF_COM)) {
 956                dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
 957                                      r->arp_ha.sa_data);
 958                if (!dev)
 959                        return -ENODEV;
 960        }
 961        if (mask) {
 962                if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
 963                        return -ENOBUFS;
 964                return 0;
 965        }
 966
 967        return arp_req_set_proxy(net, dev, 1);
 968}
 969
 970static int arp_req_set(struct net *net, struct arpreq *r,
 971                       struct net_device *dev)
 972{
 973        __be32 ip;
 974        struct neighbour *neigh;
 975        int err;
 976
 977        if (r->arp_flags & ATF_PUBL)
 978                return arp_req_set_public(net, r, dev);
 979
 980        ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 981        if (r->arp_flags & ATF_PERM)
 982                r->arp_flags |= ATF_COM;
 983        if (!dev) {
 984                struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
 985
 986                if (IS_ERR(rt))
 987                        return PTR_ERR(rt);
 988                dev = rt->dst.dev;
 989                ip_rt_put(rt);
 990                if (!dev)
 991                        return -EINVAL;
 992        }
 993        switch (dev->type) {
 994#if IS_ENABLED(CONFIG_FDDI)
 995        case ARPHRD_FDDI:
 996                /*
 997                 * According to RFC 1390, FDDI devices should accept ARP
 998                 * hardware types of 1 (Ethernet).  However, to be more
 999                 * robust, we'll accept hardware types of either 1 (Ethernet)
1000                 * or 6 (IEEE 802.2).
1001                 */
1002                if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1003                    r->arp_ha.sa_family != ARPHRD_ETHER &&
1004                    r->arp_ha.sa_family != ARPHRD_IEEE802)
1005                        return -EINVAL;
1006                break;
1007#endif
1008        default:
1009                if (r->arp_ha.sa_family != dev->type)
1010                        return -EINVAL;
1011                break;
1012        }
1013
1014        neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1015        err = PTR_ERR(neigh);
1016        if (!IS_ERR(neigh)) {
1017                unsigned int state = NUD_STALE;
1018                if (r->arp_flags & ATF_PERM)
1019                        state = NUD_PERMANENT;
1020                err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1021                                   r->arp_ha.sa_data : NULL, state,
1022                                   NEIGH_UPDATE_F_OVERRIDE |
1023                                   NEIGH_UPDATE_F_ADMIN);
1024                neigh_release(neigh);
1025        }
1026        return err;
1027}
1028
1029static unsigned int arp_state_to_flags(struct neighbour *neigh)
1030{
1031        if (neigh->nud_state&NUD_PERMANENT)
1032                return ATF_PERM | ATF_COM;
1033        else if (neigh->nud_state&NUD_VALID)
1034                return ATF_COM;
1035        else
1036                return 0;
1037}
1038
1039/*
1040 *      Get an ARP cache entry.
1041 */
1042
1043static int arp_req_get(struct arpreq *r, struct net_device *dev)
1044{
1045        __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1046        struct neighbour *neigh;
1047        int err = -ENXIO;
1048
1049        neigh = neigh_lookup(&arp_tbl, &ip, dev);
1050        if (neigh) {
1051                if (!(neigh->nud_state & NUD_NOARP)) {
1052                        read_lock_bh(&neigh->lock);
1053                        memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1054                        r->arp_flags = arp_state_to_flags(neigh);
1055                        read_unlock_bh(&neigh->lock);
1056                        r->arp_ha.sa_family = dev->type;
1057                        strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1058                        err = 0;
1059                }
1060                neigh_release(neigh);
1061        }
1062        return err;
1063}
1064
1065static int arp_invalidate(struct net_device *dev, __be32 ip)
1066{
1067        struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1068        int err = -ENXIO;
1069
1070        if (neigh) {
1071                if (neigh->nud_state & ~NUD_NOARP)
1072                        err = neigh_update(neigh, NULL, NUD_FAILED,
1073                                           NEIGH_UPDATE_F_OVERRIDE|
1074                                           NEIGH_UPDATE_F_ADMIN);
1075                neigh_release(neigh);
1076        }
1077
1078        return err;
1079}
1080
1081static int arp_req_delete_public(struct net *net, struct arpreq *r,
1082                struct net_device *dev)
1083{
1084        __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1085        __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1086
1087        if (mask == htonl(0xFFFFFFFF))
1088                return pneigh_delete(&arp_tbl, net, &ip, dev);
1089
1090        if (mask)
1091                return -EINVAL;
1092
1093        return arp_req_set_proxy(net, dev, 0);
1094}
1095
1096static int arp_req_delete(struct net *net, struct arpreq *r,
1097                          struct net_device *dev)
1098{
1099        __be32 ip;
1100
1101        if (r->arp_flags & ATF_PUBL)
1102                return arp_req_delete_public(net, r, dev);
1103
1104        ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1105        if (!dev) {
1106                struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1107                if (IS_ERR(rt))
1108                        return PTR_ERR(rt);
1109                dev = rt->dst.dev;
1110                ip_rt_put(rt);
1111                if (!dev)
1112                        return -EINVAL;
1113        }
1114        return arp_invalidate(dev, ip);
1115}
1116
1117/*
1118 *      Handle an ARP layer I/O control request.
1119 */
1120
1121int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1122{
1123        int err;
1124        struct arpreq r;
1125        struct net_device *dev = NULL;
1126
1127        switch (cmd) {
1128        case SIOCDARP:
1129        case SIOCSARP:
1130                if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1131                        return -EPERM;
1132        case SIOCGARP:
1133                err = copy_from_user(&r, arg, sizeof(struct arpreq));
1134                if (err)
1135                        return -EFAULT;
1136                break;
1137        default:
1138                return -EINVAL;
1139        }
1140
1141        if (r.arp_pa.sa_family != AF_INET)
1142                return -EPFNOSUPPORT;
1143
1144        if (!(r.arp_flags & ATF_PUBL) &&
1145            (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1146                return -EINVAL;
1147        if (!(r.arp_flags & ATF_NETMASK))
1148                ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1149                                                           htonl(0xFFFFFFFFUL);
1150        rtnl_lock();
1151        if (r.arp_dev[0]) {
1152                err = -ENODEV;
1153                dev = __dev_get_by_name(net, r.arp_dev);
1154                if (!dev)
1155                        goto out;
1156
1157                /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1158                if (!r.arp_ha.sa_family)
1159                        r.arp_ha.sa_family = dev->type;
1160                err = -EINVAL;
1161                if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1162                        goto out;
1163        } else if (cmd == SIOCGARP) {
1164                err = -ENODEV;
1165                goto out;
1166        }
1167
1168        switch (cmd) {
1169        case SIOCDARP:
1170                err = arp_req_delete(net, &r, dev);
1171                break;
1172        case SIOCSARP:
1173                err = arp_req_set(net, &r, dev);
1174                break;
1175        case SIOCGARP:
1176                err = arp_req_get(&r, dev);
1177                break;
1178        }
1179out:
1180        rtnl_unlock();
1181        if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1182                err = -EFAULT;
1183        return err;
1184}
1185
1186static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1187                            void *ptr)
1188{
1189        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1190        struct netdev_notifier_change_info *change_info;
1191
1192        switch (event) {
1193        case NETDEV_CHANGEADDR:
1194                neigh_changeaddr(&arp_tbl, dev);
1195                rt_cache_flush(dev_net(dev));
1196                break;
1197        case NETDEV_CHANGE:
1198                change_info = ptr;
1199                if (change_info->flags_changed & IFF_NOARP)
1200                        neigh_changeaddr(&arp_tbl, dev);
1201                break;
1202        default:
1203                break;
1204        }
1205
1206        return NOTIFY_DONE;
1207}
1208
1209static struct notifier_block arp_netdev_notifier = {
1210        .notifier_call = arp_netdev_event,
1211};
1212
1213/* Note, that it is not on notifier chain.
1214   It is necessary, that this routine was called after route cache will be
1215   flushed.
1216 */
1217void arp_ifdown(struct net_device *dev)
1218{
1219        neigh_ifdown(&arp_tbl, dev);
1220}
1221
1222
1223/*
1224 *      Called once on startup.
1225 */
1226
1227static struct packet_type arp_packet_type __read_mostly = {
1228        .type = cpu_to_be16(ETH_P_ARP),
1229        .func = arp_rcv,
1230};
1231
1232static int arp_proc_init(void);
1233
1234void __init arp_init(void)
1235{
1236        neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1237
1238        dev_add_pack(&arp_packet_type);
1239        arp_proc_init();
1240#ifdef CONFIG_SYSCTL
1241        neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1242#endif
1243        register_netdevice_notifier(&arp_netdev_notifier);
1244}
1245
1246#ifdef CONFIG_PROC_FS
1247#if IS_ENABLED(CONFIG_AX25)
1248
1249/* ------------------------------------------------------------------------ */
1250/*
1251 *      ax25 -> ASCII conversion
1252 */
1253static char *ax2asc2(ax25_address *a, char *buf)
1254{
1255        char c, *s;
1256        int n;
1257
1258        for (n = 0, s = buf; n < 6; n++) {
1259                c = (a->ax25_call[n] >> 1) & 0x7F;
1260
1261                if (c != ' ')
1262                        *s++ = c;
1263        }
1264
1265        *s++ = '-';
1266        n = (a->ax25_call[6] >> 1) & 0x0F;
1267        if (n > 9) {
1268                *s++ = '1';
1269                n -= 10;
1270        }
1271
1272        *s++ = n + '0';
1273        *s++ = '\0';
1274
1275        if (*buf == '\0' || *buf == '-')
1276                return "*";
1277
1278        return buf;
1279}
1280#endif /* CONFIG_AX25 */
1281
1282#define HBUFFERLEN 30
1283
1284static void arp_format_neigh_entry(struct seq_file *seq,
1285                                   struct neighbour *n)
1286{
1287        char hbuffer[HBUFFERLEN];
1288        int k, j;
1289        char tbuf[16];
1290        struct net_device *dev = n->dev;
1291        int hatype = dev->type;
1292
1293        read_lock(&n->lock);
1294        /* Convert hardware address to XX:XX:XX:XX ... form. */
1295#if IS_ENABLED(CONFIG_AX25)
1296        if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1297                ax2asc2((ax25_address *)n->ha, hbuffer);
1298        else {
1299#endif
1300        for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1301                hbuffer[k++] = hex_asc_hi(n->ha[j]);
1302                hbuffer[k++] = hex_asc_lo(n->ha[j]);
1303                hbuffer[k++] = ':';
1304        }
1305        if (k != 0)
1306                --k;
1307        hbuffer[k] = 0;
1308#if IS_ENABLED(CONFIG_AX25)
1309        }
1310#endif
1311        sprintf(tbuf, "%pI4", n->primary_key);
1312        seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1313                   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1314        read_unlock(&n->lock);
1315}
1316
1317static void arp_format_pneigh_entry(struct seq_file *seq,
1318                                    struct pneigh_entry *n)
1319{
1320        struct net_device *dev = n->dev;
1321        int hatype = dev ? dev->type : 0;
1322        char tbuf[16];
1323
1324        sprintf(tbuf, "%pI4", n->key);
1325        seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1326                   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1327                   dev ? dev->name : "*");
1328}
1329
1330static int arp_seq_show(struct seq_file *seq, void *v)
1331{
1332        if (v == SEQ_START_TOKEN) {
1333                seq_puts(seq, "IP address       HW type     Flags       "
1334                              "HW address            Mask     Device\n");
1335        } else {
1336                struct neigh_seq_state *state = seq->private;
1337
1338                if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1339                        arp_format_pneigh_entry(seq, v);
1340                else
1341                        arp_format_neigh_entry(seq, v);
1342        }
1343
1344        return 0;
1345}
1346
1347static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1348{
1349        /* Don't want to confuse "arp -a" w/ magic entries,
1350         * so we tell the generic iterator to skip NUD_NOARP.
1351         */
1352        return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1353}
1354
1355/* ------------------------------------------------------------------------ */
1356
1357static const struct seq_operations arp_seq_ops = {
1358        .start  = arp_seq_start,
1359        .next   = neigh_seq_next,
1360        .stop   = neigh_seq_stop,
1361        .show   = arp_seq_show,
1362};
1363
1364static int arp_seq_open(struct inode *inode, struct file *file)
1365{
1366        return seq_open_net(inode, file, &arp_seq_ops,
1367                            sizeof(struct neigh_seq_state));
1368}
1369
1370static const struct file_operations arp_seq_fops = {
1371        .owner          = THIS_MODULE,
1372        .open           = arp_seq_open,
1373        .read           = seq_read,
1374        .llseek         = seq_lseek,
1375        .release        = seq_release_net,
1376};
1377
1378
1379static int __net_init arp_net_init(struct net *net)
1380{
1381        if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1382                return -ENOMEM;
1383        return 0;
1384}
1385
1386static void __net_exit arp_net_exit(struct net *net)
1387{
1388        remove_proc_entry("arp", net->proc_net);
1389}
1390
1391static struct pernet_operations arp_net_ops = {
1392        .init = arp_net_init,
1393        .exit = arp_net_exit,
1394};
1395
1396static int __init arp_proc_init(void)
1397{
1398        return register_pernet_subsys(&arp_net_ops);
1399}
1400
1401#else /* CONFIG_PROC_FS */
1402
1403static int __init arp_proc_init(void)
1404{
1405        return 0;
1406}
1407
1408#endif /* CONFIG_PROC_FS */
1409