linux/net/sched/sch_pie.c
<<
>>
Prefs
   1/* Copyright (C) 2013 Cisco Systems, Inc, 2013.
   2 *
   3 * This program is free software; you can redistribute it and/or
   4 * modify it under the terms of the GNU General Public License
   5 * as published by the Free Software Foundation; either version 2
   6 * of the License.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 * Author: Vijay Subramanian <vijaynsu@cisco.com>
  14 * Author: Mythili Prabhu <mysuryan@cisco.com>
  15 *
  16 * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
  17 * University of Oslo, Norway.
  18 *
  19 * References:
  20 * IETF draft submission: http://tools.ietf.org/html/draft-pan-aqm-pie-00
  21 * IEEE  Conference on High Performance Switching and Routing 2013 :
  22 * "PIE: A * Lightweight Control Scheme to Address the Bufferbloat Problem"
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/slab.h>
  27#include <linux/types.h>
  28#include <linux/kernel.h>
  29#include <linux/errno.h>
  30#include <linux/skbuff.h>
  31#include <net/pkt_sched.h>
  32#include <net/inet_ecn.h>
  33
  34#define QUEUE_THRESHOLD 10000
  35#define DQCOUNT_INVALID -1
  36#define MAX_PROB  0xffffffff
  37#define PIE_SCALE 8
  38
  39/* parameters used */
  40struct pie_params {
  41        psched_time_t target;   /* user specified target delay in pschedtime */
  42        u32 tupdate;            /* timer frequency (in jiffies) */
  43        u32 limit;              /* number of packets that can be enqueued */
  44        u32 alpha;              /* alpha and beta are between 0 and 32 */
  45        u32 beta;               /* and are used for shift relative to 1 */
  46        bool ecn;               /* true if ecn is enabled */
  47        bool bytemode;          /* to scale drop early prob based on pkt size */
  48};
  49
  50/* variables used */
  51struct pie_vars {
  52        u32 prob;               /* probability but scaled by u32 limit. */
  53        psched_time_t burst_time;
  54        psched_time_t qdelay;
  55        psched_time_t qdelay_old;
  56        u64 dq_count;           /* measured in bytes */
  57        psched_time_t dq_tstamp;        /* drain rate */
  58        u32 avg_dq_rate;        /* bytes per pschedtime tick,scaled */
  59        u32 qlen_old;           /* in bytes */
  60};
  61
  62/* statistics gathering */
  63struct pie_stats {
  64        u32 packets_in;         /* total number of packets enqueued */
  65        u32 dropped;            /* packets dropped due to pie_action */
  66        u32 overlimit;          /* dropped due to lack of space in queue */
  67        u32 maxq;               /* maximum queue size */
  68        u32 ecn_mark;           /* packets marked with ECN */
  69};
  70
  71/* private data for the Qdisc */
  72struct pie_sched_data {
  73        struct pie_params params;
  74        struct pie_vars vars;
  75        struct pie_stats stats;
  76        struct timer_list adapt_timer;
  77};
  78
  79static void pie_params_init(struct pie_params *params)
  80{
  81        params->alpha = 2;
  82        params->beta = 20;
  83        params->tupdate = usecs_to_jiffies(30 * USEC_PER_MSEC); /* 30 ms */
  84        params->limit = 1000;   /* default of 1000 packets */
  85        params->target = PSCHED_NS2TICKS(20 * NSEC_PER_MSEC);   /* 20 ms */
  86        params->ecn = false;
  87        params->bytemode = false;
  88}
  89
  90static void pie_vars_init(struct pie_vars *vars)
  91{
  92        vars->dq_count = DQCOUNT_INVALID;
  93        vars->avg_dq_rate = 0;
  94        /* default of 100 ms in pschedtime */
  95        vars->burst_time = PSCHED_NS2TICKS(100 * NSEC_PER_MSEC);
  96}
  97
  98static bool drop_early(struct Qdisc *sch, u32 packet_size)
  99{
 100        struct pie_sched_data *q = qdisc_priv(sch);
 101        u32 rnd;
 102        u32 local_prob = q->vars.prob;
 103        u32 mtu = psched_mtu(qdisc_dev(sch));
 104
 105        /* If there is still burst allowance left skip random early drop */
 106        if (q->vars.burst_time > 0)
 107                return false;
 108
 109        /* If current delay is less than half of target, and
 110         * if drop prob is low already, disable early_drop
 111         */
 112        if ((q->vars.qdelay < q->params.target / 2)
 113            && (q->vars.prob < MAX_PROB / 5))
 114                return false;
 115
 116        /* If we have fewer than 2 mtu-sized packets, disable drop_early,
 117         * similar to min_th in RED
 118         */
 119        if (sch->qstats.backlog < 2 * mtu)
 120                return false;
 121
 122        /* If bytemode is turned on, use packet size to compute new
 123         * probablity. Smaller packets will have lower drop prob in this case
 124         */
 125        if (q->params.bytemode && packet_size <= mtu)
 126                local_prob = (local_prob / mtu) * packet_size;
 127        else
 128                local_prob = q->vars.prob;
 129
 130        rnd = prandom_u32();
 131        if (rnd < local_prob)
 132                return true;
 133
 134        return false;
 135}
 136
 137static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 138{
 139        struct pie_sched_data *q = qdisc_priv(sch);
 140        bool enqueue = false;
 141
 142        if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
 143                q->stats.overlimit++;
 144                goto out;
 145        }
 146
 147        if (!drop_early(sch, skb->len)) {
 148                enqueue = true;
 149        } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
 150                   INET_ECN_set_ce(skb)) {
 151                /* If packet is ecn capable, mark it if drop probability
 152                 * is lower than 10%, else drop it.
 153                 */
 154                q->stats.ecn_mark++;
 155                enqueue = true;
 156        }
 157
 158        /* we can enqueue the packet */
 159        if (enqueue) {
 160                q->stats.packets_in++;
 161                if (qdisc_qlen(sch) > q->stats.maxq)
 162                        q->stats.maxq = qdisc_qlen(sch);
 163
 164                return qdisc_enqueue_tail(skb, sch);
 165        }
 166
 167out:
 168        q->stats.dropped++;
 169        return qdisc_drop(skb, sch);
 170}
 171
 172static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
 173        [TCA_PIE_TARGET] = {.type = NLA_U32},
 174        [TCA_PIE_LIMIT] = {.type = NLA_U32},
 175        [TCA_PIE_TUPDATE] = {.type = NLA_U32},
 176        [TCA_PIE_ALPHA] = {.type = NLA_U32},
 177        [TCA_PIE_BETA] = {.type = NLA_U32},
 178        [TCA_PIE_ECN] = {.type = NLA_U32},
 179        [TCA_PIE_BYTEMODE] = {.type = NLA_U32},
 180};
 181
 182static int pie_change(struct Qdisc *sch, struct nlattr *opt)
 183{
 184        struct pie_sched_data *q = qdisc_priv(sch);
 185        struct nlattr *tb[TCA_PIE_MAX + 1];
 186        unsigned int qlen;
 187        int err;
 188
 189        if (!opt)
 190                return -EINVAL;
 191
 192        err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy);
 193        if (err < 0)
 194                return err;
 195
 196        sch_tree_lock(sch);
 197
 198        /* convert from microseconds to pschedtime */
 199        if (tb[TCA_PIE_TARGET]) {
 200                /* target is in us */
 201                u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
 202
 203                /* convert to pschedtime */
 204                q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
 205        }
 206
 207        /* tupdate is in jiffies */
 208        if (tb[TCA_PIE_TUPDATE])
 209                q->params.tupdate = usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
 210
 211        if (tb[TCA_PIE_LIMIT]) {
 212                u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
 213
 214                q->params.limit = limit;
 215                sch->limit = limit;
 216        }
 217
 218        if (tb[TCA_PIE_ALPHA])
 219                q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);
 220
 221        if (tb[TCA_PIE_BETA])
 222                q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);
 223
 224        if (tb[TCA_PIE_ECN])
 225                q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);
 226
 227        if (tb[TCA_PIE_BYTEMODE])
 228                q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);
 229
 230        /* Drop excess packets if new limit is lower */
 231        qlen = sch->q.qlen;
 232        while (sch->q.qlen > sch->limit) {
 233                struct sk_buff *skb = __skb_dequeue(&sch->q);
 234
 235                qdisc_qstats_backlog_dec(sch, skb);
 236                qdisc_drop(skb, sch);
 237        }
 238        qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
 239
 240        sch_tree_unlock(sch);
 241        return 0;
 242}
 243
 244static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb)
 245{
 246
 247        struct pie_sched_data *q = qdisc_priv(sch);
 248        int qlen = sch->qstats.backlog; /* current queue size in bytes */
 249
 250        /* If current queue is about 10 packets or more and dq_count is unset
 251         * we have enough packets to calculate the drain rate. Save
 252         * current time as dq_tstamp and start measurement cycle.
 253         */
 254        if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) {
 255                q->vars.dq_tstamp = psched_get_time();
 256                q->vars.dq_count = 0;
 257        }
 258
 259        /* Calculate the average drain rate from this value.  If queue length
 260         * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset
 261         * the dq_count to -1 as we don't have enough packets to calculate the
 262         * drain rate anymore The following if block is entered only when we
 263         * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
 264         * and we calculate the drain rate for the threshold here.  dq_count is
 265         * in bytes, time difference in psched_time, hence rate is in
 266         * bytes/psched_time.
 267         */
 268        if (q->vars.dq_count != DQCOUNT_INVALID) {
 269                q->vars.dq_count += skb->len;
 270
 271                if (q->vars.dq_count >= QUEUE_THRESHOLD) {
 272                        psched_time_t now = psched_get_time();
 273                        u32 dtime = now - q->vars.dq_tstamp;
 274                        u32 count = q->vars.dq_count << PIE_SCALE;
 275
 276                        if (dtime == 0)
 277                                return;
 278
 279                        count = count / dtime;
 280
 281                        if (q->vars.avg_dq_rate == 0)
 282                                q->vars.avg_dq_rate = count;
 283                        else
 284                                q->vars.avg_dq_rate =
 285                                    (q->vars.avg_dq_rate -
 286                                     (q->vars.avg_dq_rate >> 3)) + (count >> 3);
 287
 288                        /* If the queue has receded below the threshold, we hold
 289                         * on to the last drain rate calculated, else we reset
 290                         * dq_count to 0 to re-enter the if block when the next
 291                         * packet is dequeued
 292                         */
 293                        if (qlen < QUEUE_THRESHOLD)
 294                                q->vars.dq_count = DQCOUNT_INVALID;
 295                        else {
 296                                q->vars.dq_count = 0;
 297                                q->vars.dq_tstamp = psched_get_time();
 298                        }
 299
 300                        if (q->vars.burst_time > 0) {
 301                                if (q->vars.burst_time > dtime)
 302                                        q->vars.burst_time -= dtime;
 303                                else
 304                                        q->vars.burst_time = 0;
 305                        }
 306                }
 307        }
 308}
 309
 310static void calculate_probability(struct Qdisc *sch)
 311{
 312        struct pie_sched_data *q = qdisc_priv(sch);
 313        u32 qlen = sch->qstats.backlog; /* queue size in bytes */
 314        psched_time_t qdelay = 0;       /* in pschedtime */
 315        psched_time_t qdelay_old = q->vars.qdelay;      /* in pschedtime */
 316        s32 delta = 0;          /* determines the change in probability */
 317        u32 oldprob;
 318        u32 alpha, beta;
 319        bool update_prob = true;
 320
 321        q->vars.qdelay_old = q->vars.qdelay;
 322
 323        if (q->vars.avg_dq_rate > 0)
 324                qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate;
 325        else
 326                qdelay = 0;
 327
 328        /* If qdelay is zero and qlen is not, it means qlen is very small, less
 329         * than dequeue_rate, so we do not update probabilty in this round
 330         */
 331        if (qdelay == 0 && qlen != 0)
 332                update_prob = false;
 333
 334        /* In the algorithm, alpha and beta are between 0 and 2 with typical
 335         * value for alpha as 0.125. In this implementation, we use values 0-32
 336         * passed from user space to represent this. Also, alpha and beta have
 337         * unit of HZ and need to be scaled before they can used to update
 338         * probability. alpha/beta are updated locally below by 1) scaling them
 339         * appropriately 2) scaling down by 16 to come to 0-2 range.
 340         * Please see paper for details.
 341         *
 342         * We scale alpha and beta differently depending on whether we are in
 343         * light, medium or high dropping mode.
 344         */
 345        if (q->vars.prob < MAX_PROB / 100) {
 346                alpha =
 347                    (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
 348                beta =
 349                    (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
 350        } else if (q->vars.prob < MAX_PROB / 10) {
 351                alpha =
 352                    (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
 353                beta =
 354                    (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
 355        } else {
 356                alpha =
 357                    (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
 358                beta =
 359                    (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
 360        }
 361
 362        /* alpha and beta should be between 0 and 32, in multiples of 1/16 */
 363        delta += alpha * ((qdelay - q->params.target));
 364        delta += beta * ((qdelay - qdelay_old));
 365
 366        oldprob = q->vars.prob;
 367
 368        /* to ensure we increase probability in steps of no more than 2% */
 369        if (delta > (s32) (MAX_PROB / (100 / 2)) &&
 370            q->vars.prob >= MAX_PROB / 10)
 371                delta = (MAX_PROB / 100) * 2;
 372
 373        /* Non-linear drop:
 374         * Tune drop probability to increase quickly for high delays(>= 250ms)
 375         * 250ms is derived through experiments and provides error protection
 376         */
 377
 378        if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
 379                delta += MAX_PROB / (100 / 2);
 380
 381        q->vars.prob += delta;
 382
 383        if (delta > 0) {
 384                /* prevent overflow */
 385                if (q->vars.prob < oldprob) {
 386                        q->vars.prob = MAX_PROB;
 387                        /* Prevent normalization error. If probability is at
 388                         * maximum value already, we normalize it here, and
 389                         * skip the check to do a non-linear drop in the next
 390                         * section.
 391                         */
 392                        update_prob = false;
 393                }
 394        } else {
 395                /* prevent underflow */
 396                if (q->vars.prob > oldprob)
 397                        q->vars.prob = 0;
 398        }
 399
 400        /* Non-linear drop in probability: Reduce drop probability quickly if
 401         * delay is 0 for 2 consecutive Tupdate periods.
 402         */
 403
 404        if ((qdelay == 0) && (qdelay_old == 0) && update_prob)
 405                q->vars.prob = (q->vars.prob * 98) / 100;
 406
 407        q->vars.qdelay = qdelay;
 408        q->vars.qlen_old = qlen;
 409
 410        /* We restart the measurement cycle if the following conditions are met
 411         * 1. If the delay has been low for 2 consecutive Tupdate periods
 412         * 2. Calculated drop probability is zero
 413         * 3. We have atleast one estimate for the avg_dq_rate ie.,
 414         *    is a non-zero value
 415         */
 416        if ((q->vars.qdelay < q->params.target / 2) &&
 417            (q->vars.qdelay_old < q->params.target / 2) &&
 418            (q->vars.prob == 0) &&
 419            (q->vars.avg_dq_rate > 0))
 420                pie_vars_init(&q->vars);
 421}
 422
 423static void pie_timer(unsigned long arg)
 424{
 425        struct Qdisc *sch = (struct Qdisc *)arg;
 426        struct pie_sched_data *q = qdisc_priv(sch);
 427        spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
 428
 429        spin_lock(root_lock);
 430        calculate_probability(sch);
 431
 432        /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
 433        if (q->params.tupdate)
 434                mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
 435        spin_unlock(root_lock);
 436
 437}
 438
 439static int pie_init(struct Qdisc *sch, struct nlattr *opt)
 440{
 441        struct pie_sched_data *q = qdisc_priv(sch);
 442
 443        pie_params_init(&q->params);
 444        pie_vars_init(&q->vars);
 445        sch->limit = q->params.limit;
 446
 447        setup_timer(&q->adapt_timer, pie_timer, (unsigned long)sch);
 448
 449        if (opt) {
 450                int err = pie_change(sch, opt);
 451
 452                if (err)
 453                        return err;
 454        }
 455
 456        mod_timer(&q->adapt_timer, jiffies + HZ / 2);
 457        return 0;
 458}
 459
 460static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
 461{
 462        struct pie_sched_data *q = qdisc_priv(sch);
 463        struct nlattr *opts;
 464
 465        opts = nla_nest_start(skb, TCA_OPTIONS);
 466        if (opts == NULL)
 467                goto nla_put_failure;
 468
 469        /* convert target from pschedtime to us */
 470        if (nla_put_u32(skb, TCA_PIE_TARGET,
 471                        ((u32) PSCHED_TICKS2NS(q->params.target)) /
 472                        NSEC_PER_USEC) ||
 473            nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
 474            nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(q->params.tupdate)) ||
 475            nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
 476            nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
 477            nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
 478            nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode))
 479                goto nla_put_failure;
 480
 481        return nla_nest_end(skb, opts);
 482
 483nla_put_failure:
 484        nla_nest_cancel(skb, opts);
 485        return -1;
 486
 487}
 488
 489static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 490{
 491        struct pie_sched_data *q = qdisc_priv(sch);
 492        struct tc_pie_xstats st = {
 493                .prob           = q->vars.prob,
 494                .delay          = ((u32) PSCHED_TICKS2NS(q->vars.qdelay)) /
 495                                   NSEC_PER_USEC,
 496                /* unscale and return dq_rate in bytes per sec */
 497                .avg_dq_rate    = q->vars.avg_dq_rate *
 498                                  (PSCHED_TICKS_PER_SEC) >> PIE_SCALE,
 499                .packets_in     = q->stats.packets_in,
 500                .overlimit      = q->stats.overlimit,
 501                .maxq           = q->stats.maxq,
 502                .dropped        = q->stats.dropped,
 503                .ecn_mark       = q->stats.ecn_mark,
 504        };
 505
 506        return gnet_stats_copy_app(d, &st, sizeof(st));
 507}
 508
 509static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
 510{
 511        struct sk_buff *skb;
 512        skb = __qdisc_dequeue_head(sch, &sch->q);
 513
 514        if (!skb)
 515                return NULL;
 516
 517        pie_process_dequeue(sch, skb);
 518        return skb;
 519}
 520
 521static void pie_reset(struct Qdisc *sch)
 522{
 523        struct pie_sched_data *q = qdisc_priv(sch);
 524        qdisc_reset_queue(sch);
 525        pie_vars_init(&q->vars);
 526}
 527
 528static void pie_destroy(struct Qdisc *sch)
 529{
 530        struct pie_sched_data *q = qdisc_priv(sch);
 531        q->params.tupdate = 0;
 532        del_timer_sync(&q->adapt_timer);
 533}
 534
 535static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
 536        .id = "pie",
 537        .priv_size      = sizeof(struct pie_sched_data),
 538        .enqueue        = pie_qdisc_enqueue,
 539        .dequeue        = pie_qdisc_dequeue,
 540        .peek           = qdisc_peek_dequeued,
 541        .init           = pie_init,
 542        .destroy        = pie_destroy,
 543        .reset          = pie_reset,
 544        .change         = pie_change,
 545        .dump           = pie_dump,
 546        .dump_stats     = pie_dump_stats,
 547        .owner          = THIS_MODULE,
 548};
 549
 550static int __init pie_module_init(void)
 551{
 552        return register_qdisc(&pie_qdisc_ops);
 553}
 554
 555static void __exit pie_module_exit(void)
 556{
 557        unregister_qdisc(&pie_qdisc_ops);
 558}
 559
 560module_init(pie_module_init);
 561module_exit(pie_module_exit);
 562
 563MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
 564MODULE_AUTHOR("Vijay Subramanian");
 565MODULE_AUTHOR("Mythili Prabhu");
 566MODULE_LICENSE("GPL");
 567