linux/sound/core/pcm_lib.c
<<
>>
Prefs
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
  29#include <sound/tlv.h>
  30#include <sound/info.h>
  31#include <sound/pcm.h>
  32#include <sound/pcm_params.h>
  33#include <sound/timer.h>
  34
  35#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  36#define CREATE_TRACE_POINTS
  37#include "pcm_trace.h"
  38#else
  39#define trace_hwptr(substream, pos, in_interrupt)
  40#define trace_xrun(substream)
  41#define trace_hw_ptr_error(substream, reason)
  42#endif
  43
  44/*
  45 * fill ring buffer with silence
  46 * runtime->silence_start: starting pointer to silence area
  47 * runtime->silence_filled: size filled with silence
  48 * runtime->silence_threshold: threshold from application
  49 * runtime->silence_size: maximal size from application
  50 *
  51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  52 */
  53void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  54{
  55        struct snd_pcm_runtime *runtime = substream->runtime;
  56        snd_pcm_uframes_t frames, ofs, transfer;
  57
  58        if (runtime->silence_size < runtime->boundary) {
  59                snd_pcm_sframes_t noise_dist, n;
  60                if (runtime->silence_start != runtime->control->appl_ptr) {
  61                        n = runtime->control->appl_ptr - runtime->silence_start;
  62                        if (n < 0)
  63                                n += runtime->boundary;
  64                        if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  65                                runtime->silence_filled -= n;
  66                        else
  67                                runtime->silence_filled = 0;
  68                        runtime->silence_start = runtime->control->appl_ptr;
  69                }
  70                if (runtime->silence_filled >= runtime->buffer_size)
  71                        return;
  72                noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  73                if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  74                        return;
  75                frames = runtime->silence_threshold - noise_dist;
  76                if (frames > runtime->silence_size)
  77                        frames = runtime->silence_size;
  78        } else {
  79                if (new_hw_ptr == ULONG_MAX) {  /* initialization */
  80                        snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  81                        if (avail > runtime->buffer_size)
  82                                avail = runtime->buffer_size;
  83                        runtime->silence_filled = avail > 0 ? avail : 0;
  84                        runtime->silence_start = (runtime->status->hw_ptr +
  85                                                  runtime->silence_filled) %
  86                                                 runtime->boundary;
  87                } else {
  88                        ofs = runtime->status->hw_ptr;
  89                        frames = new_hw_ptr - ofs;
  90                        if ((snd_pcm_sframes_t)frames < 0)
  91                                frames += runtime->boundary;
  92                        runtime->silence_filled -= frames;
  93                        if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  94                                runtime->silence_filled = 0;
  95                                runtime->silence_start = new_hw_ptr;
  96                        } else {
  97                                runtime->silence_start = ofs;
  98                        }
  99                }
 100                frames = runtime->buffer_size - runtime->silence_filled;
 101        }
 102        if (snd_BUG_ON(frames > runtime->buffer_size))
 103                return;
 104        if (frames == 0)
 105                return;
 106        ofs = runtime->silence_start % runtime->buffer_size;
 107        while (frames > 0) {
 108                transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 109                if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 110                    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 111                        if (substream->ops->silence) {
 112                                int err;
 113                                err = substream->ops->silence(substream, -1, ofs, transfer);
 114                                snd_BUG_ON(err < 0);
 115                        } else {
 116                                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 117                                snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 118                        }
 119                } else {
 120                        unsigned int c;
 121                        unsigned int channels = runtime->channels;
 122                        if (substream->ops->silence) {
 123                                for (c = 0; c < channels; ++c) {
 124                                        int err;
 125                                        err = substream->ops->silence(substream, c, ofs, transfer);
 126                                        snd_BUG_ON(err < 0);
 127                                }
 128                        } else {
 129                                size_t dma_csize = runtime->dma_bytes / channels;
 130                                for (c = 0; c < channels; ++c) {
 131                                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 132                                        snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 133                                }
 134                        }
 135                }
 136                runtime->silence_filled += transfer;
 137                frames -= transfer;
 138                ofs = 0;
 139        }
 140}
 141
 142#ifdef CONFIG_SND_DEBUG
 143void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 144                           char *name, size_t len)
 145{
 146        snprintf(name, len, "pcmC%dD%d%c:%d",
 147                 substream->pcm->card->number,
 148                 substream->pcm->device,
 149                 substream->stream ? 'c' : 'p',
 150                 substream->number);
 151}
 152EXPORT_SYMBOL(snd_pcm_debug_name);
 153#endif
 154
 155#define XRUN_DEBUG_BASIC        (1<<0)
 156#define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
 157#define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
 158
 159#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 160
 161#define xrun_debug(substream, mask) \
 162                        ((substream)->pstr->xrun_debug & (mask))
 163#else
 164#define xrun_debug(substream, mask)     0
 165#endif
 166
 167#define dump_stack_on_xrun(substream) do {                      \
 168                if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
 169                        dump_stack();                           \
 170        } while (0)
 171
 172static void xrun(struct snd_pcm_substream *substream)
 173{
 174        struct snd_pcm_runtime *runtime = substream->runtime;
 175
 176        trace_xrun(substream);
 177        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 178                snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 179        snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 180        if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 181                char name[16];
 182                snd_pcm_debug_name(substream, name, sizeof(name));
 183                pcm_warn(substream->pcm, "XRUN: %s\n", name);
 184                dump_stack_on_xrun(substream);
 185        }
 186}
 187
 188#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 189#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
 190        do {                                                            \
 191                trace_hw_ptr_error(substream, reason);  \
 192                if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
 193                        pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 194                                           (in_interrupt) ? 'Q' : 'P', ##args); \
 195                        dump_stack_on_xrun(substream);                  \
 196                }                                                       \
 197        } while (0)
 198
 199#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 200
 201#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 202
 203#endif
 204
 205int snd_pcm_update_state(struct snd_pcm_substream *substream,
 206                         struct snd_pcm_runtime *runtime)
 207{
 208        snd_pcm_uframes_t avail;
 209
 210        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 211                avail = snd_pcm_playback_avail(runtime);
 212        else
 213                avail = snd_pcm_capture_avail(runtime);
 214        if (avail > runtime->avail_max)
 215                runtime->avail_max = avail;
 216        if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 217                if (avail >= runtime->buffer_size) {
 218                        snd_pcm_drain_done(substream);
 219                        return -EPIPE;
 220                }
 221        } else {
 222                if (avail >= runtime->stop_threshold) {
 223                        xrun(substream);
 224                        return -EPIPE;
 225                }
 226        }
 227        if (runtime->twake) {
 228                if (avail >= runtime->twake)
 229                        wake_up(&runtime->tsleep);
 230        } else if (avail >= runtime->control->avail_min)
 231                wake_up(&runtime->sleep);
 232        return 0;
 233}
 234
 235static void update_audio_tstamp(struct snd_pcm_substream *substream,
 236                                struct timespec *curr_tstamp,
 237                                struct timespec *audio_tstamp)
 238{
 239        struct snd_pcm_runtime *runtime = substream->runtime;
 240        u64 audio_frames, audio_nsecs;
 241        struct timespec driver_tstamp;
 242
 243        if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 244                return;
 245
 246        if (!(substream->ops->get_time_info) ||
 247                (runtime->audio_tstamp_report.actual_type ==
 248                        SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 249
 250                /*
 251                 * provide audio timestamp derived from pointer position
 252                 * add delay only if requested
 253                 */
 254
 255                audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 256
 257                if (runtime->audio_tstamp_config.report_delay) {
 258                        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 259                                audio_frames -=  runtime->delay;
 260                        else
 261                                audio_frames +=  runtime->delay;
 262                }
 263                audio_nsecs = div_u64(audio_frames * 1000000000LL,
 264                                runtime->rate);
 265                *audio_tstamp = ns_to_timespec(audio_nsecs);
 266        }
 267        runtime->status->audio_tstamp = *audio_tstamp;
 268        runtime->status->tstamp = *curr_tstamp;
 269
 270        /*
 271         * re-take a driver timestamp to let apps detect if the reference tstamp
 272         * read by low-level hardware was provided with a delay
 273         */
 274        snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
 275        runtime->driver_tstamp = driver_tstamp;
 276}
 277
 278static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 279                                  unsigned int in_interrupt)
 280{
 281        struct snd_pcm_runtime *runtime = substream->runtime;
 282        snd_pcm_uframes_t pos;
 283        snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 284        snd_pcm_sframes_t hdelta, delta;
 285        unsigned long jdelta;
 286        unsigned long curr_jiffies;
 287        struct timespec curr_tstamp;
 288        struct timespec audio_tstamp;
 289        int crossed_boundary = 0;
 290
 291        old_hw_ptr = runtime->status->hw_ptr;
 292
 293        /*
 294         * group pointer, time and jiffies reads to allow for more
 295         * accurate correlations/corrections.
 296         * The values are stored at the end of this routine after
 297         * corrections for hw_ptr position
 298         */
 299        pos = substream->ops->pointer(substream);
 300        curr_jiffies = jiffies;
 301        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 302                if ((substream->ops->get_time_info) &&
 303                        (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 304                        substream->ops->get_time_info(substream, &curr_tstamp,
 305                                                &audio_tstamp,
 306                                                &runtime->audio_tstamp_config,
 307                                                &runtime->audio_tstamp_report);
 308
 309                        /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 310                        if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 311                                snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 312                } else
 313                        snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 314        }
 315
 316        if (pos == SNDRV_PCM_POS_XRUN) {
 317                xrun(substream);
 318                return -EPIPE;
 319        }
 320        if (pos >= runtime->buffer_size) {
 321                if (printk_ratelimit()) {
 322                        char name[16];
 323                        snd_pcm_debug_name(substream, name, sizeof(name));
 324                        pcm_err(substream->pcm,
 325                                "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 326                                name, pos, runtime->buffer_size,
 327                                runtime->period_size);
 328                }
 329                pos = 0;
 330        }
 331        pos -= pos % runtime->min_align;
 332        trace_hwptr(substream, pos, in_interrupt);
 333        hw_base = runtime->hw_ptr_base;
 334        new_hw_ptr = hw_base + pos;
 335        if (in_interrupt) {
 336                /* we know that one period was processed */
 337                /* delta = "expected next hw_ptr" for in_interrupt != 0 */
 338                delta = runtime->hw_ptr_interrupt + runtime->period_size;
 339                if (delta > new_hw_ptr) {
 340                        /* check for double acknowledged interrupts */
 341                        hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 342                        if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 343                                hw_base += runtime->buffer_size;
 344                                if (hw_base >= runtime->boundary) {
 345                                        hw_base = 0;
 346                                        crossed_boundary++;
 347                                }
 348                                new_hw_ptr = hw_base + pos;
 349                                goto __delta;
 350                        }
 351                }
 352        }
 353        /* new_hw_ptr might be lower than old_hw_ptr in case when */
 354        /* pointer crosses the end of the ring buffer */
 355        if (new_hw_ptr < old_hw_ptr) {
 356                hw_base += runtime->buffer_size;
 357                if (hw_base >= runtime->boundary) {
 358                        hw_base = 0;
 359                        crossed_boundary++;
 360                }
 361                new_hw_ptr = hw_base + pos;
 362        }
 363      __delta:
 364        delta = new_hw_ptr - old_hw_ptr;
 365        if (delta < 0)
 366                delta += runtime->boundary;
 367
 368        if (runtime->no_period_wakeup) {
 369                snd_pcm_sframes_t xrun_threshold;
 370                /*
 371                 * Without regular period interrupts, we have to check
 372                 * the elapsed time to detect xruns.
 373                 */
 374                jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 375                if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 376                        goto no_delta_check;
 377                hdelta = jdelta - delta * HZ / runtime->rate;
 378                xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 379                while (hdelta > xrun_threshold) {
 380                        delta += runtime->buffer_size;
 381                        hw_base += runtime->buffer_size;
 382                        if (hw_base >= runtime->boundary) {
 383                                hw_base = 0;
 384                                crossed_boundary++;
 385                        }
 386                        new_hw_ptr = hw_base + pos;
 387                        hdelta -= runtime->hw_ptr_buffer_jiffies;
 388                }
 389                goto no_delta_check;
 390        }
 391
 392        /* something must be really wrong */
 393        if (delta >= runtime->buffer_size + runtime->period_size) {
 394                hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 395                             "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 396                             substream->stream, (long)pos,
 397                             (long)new_hw_ptr, (long)old_hw_ptr);
 398                return 0;
 399        }
 400
 401        /* Do jiffies check only in xrun_debug mode */
 402        if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 403                goto no_jiffies_check;
 404
 405        /* Skip the jiffies check for hardwares with BATCH flag.
 406         * Such hardware usually just increases the position at each IRQ,
 407         * thus it can't give any strange position.
 408         */
 409        if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 410                goto no_jiffies_check;
 411        hdelta = delta;
 412        if (hdelta < runtime->delay)
 413                goto no_jiffies_check;
 414        hdelta -= runtime->delay;
 415        jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 416        if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 417                delta = jdelta /
 418                        (((runtime->period_size * HZ) / runtime->rate)
 419                                                                + HZ/100);
 420                /* move new_hw_ptr according jiffies not pos variable */
 421                new_hw_ptr = old_hw_ptr;
 422                hw_base = delta;
 423                /* use loop to avoid checks for delta overflows */
 424                /* the delta value is small or zero in most cases */
 425                while (delta > 0) {
 426                        new_hw_ptr += runtime->period_size;
 427                        if (new_hw_ptr >= runtime->boundary) {
 428                                new_hw_ptr -= runtime->boundary;
 429                                crossed_boundary--;
 430                        }
 431                        delta--;
 432                }
 433                /* align hw_base to buffer_size */
 434                hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 435                             "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 436                             (long)pos, (long)hdelta,
 437                             (long)runtime->period_size, jdelta,
 438                             ((hdelta * HZ) / runtime->rate), hw_base,
 439                             (unsigned long)old_hw_ptr,
 440                             (unsigned long)new_hw_ptr);
 441                /* reset values to proper state */
 442                delta = 0;
 443                hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 444        }
 445 no_jiffies_check:
 446        if (delta > runtime->period_size + runtime->period_size / 2) {
 447                hw_ptr_error(substream, in_interrupt,
 448                             "Lost interrupts?",
 449                             "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 450                             substream->stream, (long)delta,
 451                             (long)new_hw_ptr,
 452                             (long)old_hw_ptr);
 453        }
 454
 455 no_delta_check:
 456        if (runtime->status->hw_ptr == new_hw_ptr) {
 457                update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 458                return 0;
 459        }
 460
 461        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 462            runtime->silence_size > 0)
 463                snd_pcm_playback_silence(substream, new_hw_ptr);
 464
 465        if (in_interrupt) {
 466                delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 467                if (delta < 0)
 468                        delta += runtime->boundary;
 469                delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 470                runtime->hw_ptr_interrupt += delta;
 471                if (runtime->hw_ptr_interrupt >= runtime->boundary)
 472                        runtime->hw_ptr_interrupt -= runtime->boundary;
 473        }
 474        runtime->hw_ptr_base = hw_base;
 475        runtime->status->hw_ptr = new_hw_ptr;
 476        runtime->hw_ptr_jiffies = curr_jiffies;
 477        if (crossed_boundary) {
 478                snd_BUG_ON(crossed_boundary != 1);
 479                runtime->hw_ptr_wrap += runtime->boundary;
 480        }
 481
 482        update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 483
 484        return snd_pcm_update_state(substream, runtime);
 485}
 486
 487/* CAUTION: call it with irq disabled */
 488int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 489{
 490        return snd_pcm_update_hw_ptr0(substream, 0);
 491}
 492
 493/**
 494 * snd_pcm_set_ops - set the PCM operators
 495 * @pcm: the pcm instance
 496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 497 * @ops: the operator table
 498 *
 499 * Sets the given PCM operators to the pcm instance.
 500 */
 501void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 502                     const struct snd_pcm_ops *ops)
 503{
 504        struct snd_pcm_str *stream = &pcm->streams[direction];
 505        struct snd_pcm_substream *substream;
 506        
 507        for (substream = stream->substream; substream != NULL; substream = substream->next)
 508                substream->ops = ops;
 509}
 510
 511EXPORT_SYMBOL(snd_pcm_set_ops);
 512
 513/**
 514 * snd_pcm_sync - set the PCM sync id
 515 * @substream: the pcm substream
 516 *
 517 * Sets the PCM sync identifier for the card.
 518 */
 519void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 520{
 521        struct snd_pcm_runtime *runtime = substream->runtime;
 522        
 523        runtime->sync.id32[0] = substream->pcm->card->number;
 524        runtime->sync.id32[1] = -1;
 525        runtime->sync.id32[2] = -1;
 526        runtime->sync.id32[3] = -1;
 527}
 528
 529EXPORT_SYMBOL(snd_pcm_set_sync);
 530
 531/*
 532 *  Standard ioctl routine
 533 */
 534
 535static inline unsigned int div32(unsigned int a, unsigned int b, 
 536                                 unsigned int *r)
 537{
 538        if (b == 0) {
 539                *r = 0;
 540                return UINT_MAX;
 541        }
 542        *r = a % b;
 543        return a / b;
 544}
 545
 546static inline unsigned int div_down(unsigned int a, unsigned int b)
 547{
 548        if (b == 0)
 549                return UINT_MAX;
 550        return a / b;
 551}
 552
 553static inline unsigned int div_up(unsigned int a, unsigned int b)
 554{
 555        unsigned int r;
 556        unsigned int q;
 557        if (b == 0)
 558                return UINT_MAX;
 559        q = div32(a, b, &r);
 560        if (r)
 561                ++q;
 562        return q;
 563}
 564
 565static inline unsigned int mul(unsigned int a, unsigned int b)
 566{
 567        if (a == 0)
 568                return 0;
 569        if (div_down(UINT_MAX, a) < b)
 570                return UINT_MAX;
 571        return a * b;
 572}
 573
 574static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 575                                    unsigned int c, unsigned int *r)
 576{
 577        u_int64_t n = (u_int64_t) a * b;
 578        if (c == 0) {
 579                snd_BUG_ON(!n);
 580                *r = 0;
 581                return UINT_MAX;
 582        }
 583        n = div_u64_rem(n, c, r);
 584        if (n >= UINT_MAX) {
 585                *r = 0;
 586                return UINT_MAX;
 587        }
 588        return n;
 589}
 590
 591/**
 592 * snd_interval_refine - refine the interval value of configurator
 593 * @i: the interval value to refine
 594 * @v: the interval value to refer to
 595 *
 596 * Refines the interval value with the reference value.
 597 * The interval is changed to the range satisfying both intervals.
 598 * The interval status (min, max, integer, etc.) are evaluated.
 599 *
 600 * Return: Positive if the value is changed, zero if it's not changed, or a
 601 * negative error code.
 602 */
 603int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 604{
 605        int changed = 0;
 606        if (snd_BUG_ON(snd_interval_empty(i)))
 607                return -EINVAL;
 608        if (i->min < v->min) {
 609                i->min = v->min;
 610                i->openmin = v->openmin;
 611                changed = 1;
 612        } else if (i->min == v->min && !i->openmin && v->openmin) {
 613                i->openmin = 1;
 614                changed = 1;
 615        }
 616        if (i->max > v->max) {
 617                i->max = v->max;
 618                i->openmax = v->openmax;
 619                changed = 1;
 620        } else if (i->max == v->max && !i->openmax && v->openmax) {
 621                i->openmax = 1;
 622                changed = 1;
 623        }
 624        if (!i->integer && v->integer) {
 625                i->integer = 1;
 626                changed = 1;
 627        }
 628        if (i->integer) {
 629                if (i->openmin) {
 630                        i->min++;
 631                        i->openmin = 0;
 632                }
 633                if (i->openmax) {
 634                        i->max--;
 635                        i->openmax = 0;
 636                }
 637        } else if (!i->openmin && !i->openmax && i->min == i->max)
 638                i->integer = 1;
 639        if (snd_interval_checkempty(i)) {
 640                snd_interval_none(i);
 641                return -EINVAL;
 642        }
 643        return changed;
 644}
 645
 646EXPORT_SYMBOL(snd_interval_refine);
 647
 648static int snd_interval_refine_first(struct snd_interval *i)
 649{
 650        if (snd_BUG_ON(snd_interval_empty(i)))
 651                return -EINVAL;
 652        if (snd_interval_single(i))
 653                return 0;
 654        i->max = i->min;
 655        i->openmax = i->openmin;
 656        if (i->openmax)
 657                i->max++;
 658        return 1;
 659}
 660
 661static int snd_interval_refine_last(struct snd_interval *i)
 662{
 663        if (snd_BUG_ON(snd_interval_empty(i)))
 664                return -EINVAL;
 665        if (snd_interval_single(i))
 666                return 0;
 667        i->min = i->max;
 668        i->openmin = i->openmax;
 669        if (i->openmin)
 670                i->min--;
 671        return 1;
 672}
 673
 674void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 675{
 676        if (a->empty || b->empty) {
 677                snd_interval_none(c);
 678                return;
 679        }
 680        c->empty = 0;
 681        c->min = mul(a->min, b->min);
 682        c->openmin = (a->openmin || b->openmin);
 683        c->max = mul(a->max,  b->max);
 684        c->openmax = (a->openmax || b->openmax);
 685        c->integer = (a->integer && b->integer);
 686}
 687
 688/**
 689 * snd_interval_div - refine the interval value with division
 690 * @a: dividend
 691 * @b: divisor
 692 * @c: quotient
 693 *
 694 * c = a / b
 695 *
 696 * Returns non-zero if the value is changed, zero if not changed.
 697 */
 698void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 699{
 700        unsigned int r;
 701        if (a->empty || b->empty) {
 702                snd_interval_none(c);
 703                return;
 704        }
 705        c->empty = 0;
 706        c->min = div32(a->min, b->max, &r);
 707        c->openmin = (r || a->openmin || b->openmax);
 708        if (b->min > 0) {
 709                c->max = div32(a->max, b->min, &r);
 710                if (r) {
 711                        c->max++;
 712                        c->openmax = 1;
 713                } else
 714                        c->openmax = (a->openmax || b->openmin);
 715        } else {
 716                c->max = UINT_MAX;
 717                c->openmax = 0;
 718        }
 719        c->integer = 0;
 720}
 721
 722/**
 723 * snd_interval_muldivk - refine the interval value
 724 * @a: dividend 1
 725 * @b: dividend 2
 726 * @k: divisor (as integer)
 727 * @c: result
 728  *
 729 * c = a * b / k
 730 *
 731 * Returns non-zero if the value is changed, zero if not changed.
 732 */
 733void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 734                      unsigned int k, struct snd_interval *c)
 735{
 736        unsigned int r;
 737        if (a->empty || b->empty) {
 738                snd_interval_none(c);
 739                return;
 740        }
 741        c->empty = 0;
 742        c->min = muldiv32(a->min, b->min, k, &r);
 743        c->openmin = (r || a->openmin || b->openmin);
 744        c->max = muldiv32(a->max, b->max, k, &r);
 745        if (r) {
 746                c->max++;
 747                c->openmax = 1;
 748        } else
 749                c->openmax = (a->openmax || b->openmax);
 750        c->integer = 0;
 751}
 752
 753/**
 754 * snd_interval_mulkdiv - refine the interval value
 755 * @a: dividend 1
 756 * @k: dividend 2 (as integer)
 757 * @b: divisor
 758 * @c: result
 759 *
 760 * c = a * k / b
 761 *
 762 * Returns non-zero if the value is changed, zero if not changed.
 763 */
 764void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 765                      const struct snd_interval *b, struct snd_interval *c)
 766{
 767        unsigned int r;
 768        if (a->empty || b->empty) {
 769                snd_interval_none(c);
 770                return;
 771        }
 772        c->empty = 0;
 773        c->min = muldiv32(a->min, k, b->max, &r);
 774        c->openmin = (r || a->openmin || b->openmax);
 775        if (b->min > 0) {
 776                c->max = muldiv32(a->max, k, b->min, &r);
 777                if (r) {
 778                        c->max++;
 779                        c->openmax = 1;
 780                } else
 781                        c->openmax = (a->openmax || b->openmin);
 782        } else {
 783                c->max = UINT_MAX;
 784                c->openmax = 0;
 785        }
 786        c->integer = 0;
 787}
 788
 789/* ---- */
 790
 791
 792/**
 793 * snd_interval_ratnum - refine the interval value
 794 * @i: interval to refine
 795 * @rats_count: number of ratnum_t 
 796 * @rats: ratnum_t array
 797 * @nump: pointer to store the resultant numerator
 798 * @denp: pointer to store the resultant denominator
 799 *
 800 * Return: Positive if the value is changed, zero if it's not changed, or a
 801 * negative error code.
 802 */
 803int snd_interval_ratnum(struct snd_interval *i,
 804                        unsigned int rats_count, const struct snd_ratnum *rats,
 805                        unsigned int *nump, unsigned int *denp)
 806{
 807        unsigned int best_num, best_den;
 808        int best_diff;
 809        unsigned int k;
 810        struct snd_interval t;
 811        int err;
 812        unsigned int result_num, result_den;
 813        int result_diff;
 814
 815        best_num = best_den = best_diff = 0;
 816        for (k = 0; k < rats_count; ++k) {
 817                unsigned int num = rats[k].num;
 818                unsigned int den;
 819                unsigned int q = i->min;
 820                int diff;
 821                if (q == 0)
 822                        q = 1;
 823                den = div_up(num, q);
 824                if (den < rats[k].den_min)
 825                        continue;
 826                if (den > rats[k].den_max)
 827                        den = rats[k].den_max;
 828                else {
 829                        unsigned int r;
 830                        r = (den - rats[k].den_min) % rats[k].den_step;
 831                        if (r != 0)
 832                                den -= r;
 833                }
 834                diff = num - q * den;
 835                if (diff < 0)
 836                        diff = -diff;
 837                if (best_num == 0 ||
 838                    diff * best_den < best_diff * den) {
 839                        best_diff = diff;
 840                        best_den = den;
 841                        best_num = num;
 842                }
 843        }
 844        if (best_den == 0) {
 845                i->empty = 1;
 846                return -EINVAL;
 847        }
 848        t.min = div_down(best_num, best_den);
 849        t.openmin = !!(best_num % best_den);
 850        
 851        result_num = best_num;
 852        result_diff = best_diff;
 853        result_den = best_den;
 854        best_num = best_den = best_diff = 0;
 855        for (k = 0; k < rats_count; ++k) {
 856                unsigned int num = rats[k].num;
 857                unsigned int den;
 858                unsigned int q = i->max;
 859                int diff;
 860                if (q == 0) {
 861                        i->empty = 1;
 862                        return -EINVAL;
 863                }
 864                den = div_down(num, q);
 865                if (den > rats[k].den_max)
 866                        continue;
 867                if (den < rats[k].den_min)
 868                        den = rats[k].den_min;
 869                else {
 870                        unsigned int r;
 871                        r = (den - rats[k].den_min) % rats[k].den_step;
 872                        if (r != 0)
 873                                den += rats[k].den_step - r;
 874                }
 875                diff = q * den - num;
 876                if (diff < 0)
 877                        diff = -diff;
 878                if (best_num == 0 ||
 879                    diff * best_den < best_diff * den) {
 880                        best_diff = diff;
 881                        best_den = den;
 882                        best_num = num;
 883                }
 884        }
 885        if (best_den == 0) {
 886                i->empty = 1;
 887                return -EINVAL;
 888        }
 889        t.max = div_up(best_num, best_den);
 890        t.openmax = !!(best_num % best_den);
 891        t.integer = 0;
 892        err = snd_interval_refine(i, &t);
 893        if (err < 0)
 894                return err;
 895
 896        if (snd_interval_single(i)) {
 897                if (best_diff * result_den < result_diff * best_den) {
 898                        result_num = best_num;
 899                        result_den = best_den;
 900                }
 901                if (nump)
 902                        *nump = result_num;
 903                if (denp)
 904                        *denp = result_den;
 905        }
 906        return err;
 907}
 908
 909EXPORT_SYMBOL(snd_interval_ratnum);
 910
 911/**
 912 * snd_interval_ratden - refine the interval value
 913 * @i: interval to refine
 914 * @rats_count: number of struct ratden
 915 * @rats: struct ratden array
 916 * @nump: pointer to store the resultant numerator
 917 * @denp: pointer to store the resultant denominator
 918 *
 919 * Return: Positive if the value is changed, zero if it's not changed, or a
 920 * negative error code.
 921 */
 922static int snd_interval_ratden(struct snd_interval *i,
 923                               unsigned int rats_count,
 924                               const struct snd_ratden *rats,
 925                               unsigned int *nump, unsigned int *denp)
 926{
 927        unsigned int best_num, best_diff, best_den;
 928        unsigned int k;
 929        struct snd_interval t;
 930        int err;
 931
 932        best_num = best_den = best_diff = 0;
 933        for (k = 0; k < rats_count; ++k) {
 934                unsigned int num;
 935                unsigned int den = rats[k].den;
 936                unsigned int q = i->min;
 937                int diff;
 938                num = mul(q, den);
 939                if (num > rats[k].num_max)
 940                        continue;
 941                if (num < rats[k].num_min)
 942                        num = rats[k].num_max;
 943                else {
 944                        unsigned int r;
 945                        r = (num - rats[k].num_min) % rats[k].num_step;
 946                        if (r != 0)
 947                                num += rats[k].num_step - r;
 948                }
 949                diff = num - q * den;
 950                if (best_num == 0 ||
 951                    diff * best_den < best_diff * den) {
 952                        best_diff = diff;
 953                        best_den = den;
 954                        best_num = num;
 955                }
 956        }
 957        if (best_den == 0) {
 958                i->empty = 1;
 959                return -EINVAL;
 960        }
 961        t.min = div_down(best_num, best_den);
 962        t.openmin = !!(best_num % best_den);
 963        
 964        best_num = best_den = best_diff = 0;
 965        for (k = 0; k < rats_count; ++k) {
 966                unsigned int num;
 967                unsigned int den = rats[k].den;
 968                unsigned int q = i->max;
 969                int diff;
 970                num = mul(q, den);
 971                if (num < rats[k].num_min)
 972                        continue;
 973                if (num > rats[k].num_max)
 974                        num = rats[k].num_max;
 975                else {
 976                        unsigned int r;
 977                        r = (num - rats[k].num_min) % rats[k].num_step;
 978                        if (r != 0)
 979                                num -= r;
 980                }
 981                diff = q * den - num;
 982                if (best_num == 0 ||
 983                    diff * best_den < best_diff * den) {
 984                        best_diff = diff;
 985                        best_den = den;
 986                        best_num = num;
 987                }
 988        }
 989        if (best_den == 0) {
 990                i->empty = 1;
 991                return -EINVAL;
 992        }
 993        t.max = div_up(best_num, best_den);
 994        t.openmax = !!(best_num % best_den);
 995        t.integer = 0;
 996        err = snd_interval_refine(i, &t);
 997        if (err < 0)
 998                return err;
 999
1000        if (snd_interval_single(i)) {
1001                if (nump)
1002                        *nump = best_num;
1003                if (denp)
1004                        *denp = best_den;
1005        }
1006        return err;
1007}
1008
1009/**
1010 * snd_interval_list - refine the interval value from the list
1011 * @i: the interval value to refine
1012 * @count: the number of elements in the list
1013 * @list: the value list
1014 * @mask: the bit-mask to evaluate
1015 *
1016 * Refines the interval value from the list.
1017 * When mask is non-zero, only the elements corresponding to bit 1 are
1018 * evaluated.
1019 *
1020 * Return: Positive if the value is changed, zero if it's not changed, or a
1021 * negative error code.
1022 */
1023int snd_interval_list(struct snd_interval *i, unsigned int count,
1024                      const unsigned int *list, unsigned int mask)
1025{
1026        unsigned int k;
1027        struct snd_interval list_range;
1028
1029        if (!count) {
1030                i->empty = 1;
1031                return -EINVAL;
1032        }
1033        snd_interval_any(&list_range);
1034        list_range.min = UINT_MAX;
1035        list_range.max = 0;
1036        for (k = 0; k < count; k++) {
1037                if (mask && !(mask & (1 << k)))
1038                        continue;
1039                if (!snd_interval_test(i, list[k]))
1040                        continue;
1041                list_range.min = min(list_range.min, list[k]);
1042                list_range.max = max(list_range.max, list[k]);
1043        }
1044        return snd_interval_refine(i, &list_range);
1045}
1046
1047EXPORT_SYMBOL(snd_interval_list);
1048
1049/**
1050 * snd_interval_ranges - refine the interval value from the list of ranges
1051 * @i: the interval value to refine
1052 * @count: the number of elements in the list of ranges
1053 * @ranges: the ranges list
1054 * @mask: the bit-mask to evaluate
1055 *
1056 * Refines the interval value from the list of ranges.
1057 * When mask is non-zero, only the elements corresponding to bit 1 are
1058 * evaluated.
1059 *
1060 * Return: Positive if the value is changed, zero if it's not changed, or a
1061 * negative error code.
1062 */
1063int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1064                        const struct snd_interval *ranges, unsigned int mask)
1065{
1066        unsigned int k;
1067        struct snd_interval range_union;
1068        struct snd_interval range;
1069
1070        if (!count) {
1071                snd_interval_none(i);
1072                return -EINVAL;
1073        }
1074        snd_interval_any(&range_union);
1075        range_union.min = UINT_MAX;
1076        range_union.max = 0;
1077        for (k = 0; k < count; k++) {
1078                if (mask && !(mask & (1 << k)))
1079                        continue;
1080                snd_interval_copy(&range, &ranges[k]);
1081                if (snd_interval_refine(&range, i) < 0)
1082                        continue;
1083                if (snd_interval_empty(&range))
1084                        continue;
1085
1086                if (range.min < range_union.min) {
1087                        range_union.min = range.min;
1088                        range_union.openmin = 1;
1089                }
1090                if (range.min == range_union.min && !range.openmin)
1091                        range_union.openmin = 0;
1092                if (range.max > range_union.max) {
1093                        range_union.max = range.max;
1094                        range_union.openmax = 1;
1095                }
1096                if (range.max == range_union.max && !range.openmax)
1097                        range_union.openmax = 0;
1098        }
1099        return snd_interval_refine(i, &range_union);
1100}
1101EXPORT_SYMBOL(snd_interval_ranges);
1102
1103static int snd_interval_step(struct snd_interval *i, unsigned int step)
1104{
1105        unsigned int n;
1106        int changed = 0;
1107        n = i->min % step;
1108        if (n != 0 || i->openmin) {
1109                i->min += step - n;
1110                i->openmin = 0;
1111                changed = 1;
1112        }
1113        n = i->max % step;
1114        if (n != 0 || i->openmax) {
1115                i->max -= n;
1116                i->openmax = 0;
1117                changed = 1;
1118        }
1119        if (snd_interval_checkempty(i)) {
1120                i->empty = 1;
1121                return -EINVAL;
1122        }
1123        return changed;
1124}
1125
1126/* Info constraints helpers */
1127
1128/**
1129 * snd_pcm_hw_rule_add - add the hw-constraint rule
1130 * @runtime: the pcm runtime instance
1131 * @cond: condition bits
1132 * @var: the variable to evaluate
1133 * @func: the evaluation function
1134 * @private: the private data pointer passed to function
1135 * @dep: the dependent variables
1136 *
1137 * Return: Zero if successful, or a negative error code on failure.
1138 */
1139int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1140                        int var,
1141                        snd_pcm_hw_rule_func_t func, void *private,
1142                        int dep, ...)
1143{
1144        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1145        struct snd_pcm_hw_rule *c;
1146        unsigned int k;
1147        va_list args;
1148        va_start(args, dep);
1149        if (constrs->rules_num >= constrs->rules_all) {
1150                struct snd_pcm_hw_rule *new;
1151                unsigned int new_rules = constrs->rules_all + 16;
1152                new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1153                if (!new) {
1154                        va_end(args);
1155                        return -ENOMEM;
1156                }
1157                if (constrs->rules) {
1158                        memcpy(new, constrs->rules,
1159                               constrs->rules_num * sizeof(*c));
1160                        kfree(constrs->rules);
1161                }
1162                constrs->rules = new;
1163                constrs->rules_all = new_rules;
1164        }
1165        c = &constrs->rules[constrs->rules_num];
1166        c->cond = cond;
1167        c->func = func;
1168        c->var = var;
1169        c->private = private;
1170        k = 0;
1171        while (1) {
1172                if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1173                        va_end(args);
1174                        return -EINVAL;
1175                }
1176                c->deps[k++] = dep;
1177                if (dep < 0)
1178                        break;
1179                dep = va_arg(args, int);
1180        }
1181        constrs->rules_num++;
1182        va_end(args);
1183        return 0;
1184}
1185
1186EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1187
1188/**
1189 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the mask
1192 * @mask: the bitmap mask
1193 *
1194 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1195 *
1196 * Return: Zero if successful, or a negative error code on failure.
1197 */
1198int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1199                               u_int32_t mask)
1200{
1201        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1202        struct snd_mask *maskp = constrs_mask(constrs, var);
1203        *maskp->bits &= mask;
1204        memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1205        if (*maskp->bits == 0)
1206                return -EINVAL;
1207        return 0;
1208}
1209
1210/**
1211 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the mask
1214 * @mask: the 64bit bitmap mask
1215 *
1216 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1217 *
1218 * Return: Zero if successful, or a negative error code on failure.
1219 */
1220int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1221                                 u_int64_t mask)
1222{
1223        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1224        struct snd_mask *maskp = constrs_mask(constrs, var);
1225        maskp->bits[0] &= (u_int32_t)mask;
1226        maskp->bits[1] &= (u_int32_t)(mask >> 32);
1227        memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1228        if (! maskp->bits[0] && ! maskp->bits[1])
1229                return -EINVAL;
1230        return 0;
1231}
1232EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1233
1234/**
1235 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1236 * @runtime: PCM runtime instance
1237 * @var: hw_params variable to apply the integer constraint
1238 *
1239 * Apply the constraint of integer to an interval parameter.
1240 *
1241 * Return: Positive if the value is changed, zero if it's not changed, or a
1242 * negative error code.
1243 */
1244int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1245{
1246        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247        return snd_interval_setinteger(constrs_interval(constrs, var));
1248}
1249
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 * 
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265                                 unsigned int min, unsigned int max)
1266{
1267        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268        struct snd_interval t;
1269        t.min = min;
1270        t.max = max;
1271        t.openmin = t.openmax = 0;
1272        t.integer = 0;
1273        return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
1275
1276EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1277
1278static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1279                                struct snd_pcm_hw_rule *rule)
1280{
1281        struct snd_pcm_hw_constraint_list *list = rule->private;
1282        return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1283}               
1284
1285
1286/**
1287 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1288 * @runtime: PCM runtime instance
1289 * @cond: condition bits
1290 * @var: hw_params variable to apply the list constraint
1291 * @l: list
1292 * 
1293 * Apply the list of constraints to an interval parameter.
1294 *
1295 * Return: Zero if successful, or a negative error code on failure.
1296 */
1297int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1298                               unsigned int cond,
1299                               snd_pcm_hw_param_t var,
1300                               const struct snd_pcm_hw_constraint_list *l)
1301{
1302        return snd_pcm_hw_rule_add(runtime, cond, var,
1303                                   snd_pcm_hw_rule_list, (void *)l,
1304                                   var, -1);
1305}
1306
1307EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1308
1309static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1310                                  struct snd_pcm_hw_rule *rule)
1311{
1312        struct snd_pcm_hw_constraint_ranges *r = rule->private;
1313        return snd_interval_ranges(hw_param_interval(params, rule->var),
1314                                   r->count, r->ranges, r->mask);
1315}
1316
1317
1318/**
1319 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1320 * @runtime: PCM runtime instance
1321 * @cond: condition bits
1322 * @var: hw_params variable to apply the list of range constraints
1323 * @r: ranges
1324 *
1325 * Apply the list of range constraints to an interval parameter.
1326 *
1327 * Return: Zero if successful, or a negative error code on failure.
1328 */
1329int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1330                                 unsigned int cond,
1331                                 snd_pcm_hw_param_t var,
1332                                 const struct snd_pcm_hw_constraint_ranges *r)
1333{
1334        return snd_pcm_hw_rule_add(runtime, cond, var,
1335                                   snd_pcm_hw_rule_ranges, (void *)r,
1336                                   var, -1);
1337}
1338EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1339
1340static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1341                                   struct snd_pcm_hw_rule *rule)
1342{
1343        const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1344        unsigned int num = 0, den = 0;
1345        int err;
1346        err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1347                                  r->nrats, r->rats, &num, &den);
1348        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1349                params->rate_num = num;
1350                params->rate_den = den;
1351        }
1352        return err;
1353}
1354
1355/**
1356 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1357 * @runtime: PCM runtime instance
1358 * @cond: condition bits
1359 * @var: hw_params variable to apply the ratnums constraint
1360 * @r: struct snd_ratnums constriants
1361 *
1362 * Return: Zero if successful, or a negative error code on failure.
1363 */
1364int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1365                                  unsigned int cond,
1366                                  snd_pcm_hw_param_t var,
1367                                  const struct snd_pcm_hw_constraint_ratnums *r)
1368{
1369        return snd_pcm_hw_rule_add(runtime, cond, var,
1370                                   snd_pcm_hw_rule_ratnums, (void *)r,
1371                                   var, -1);
1372}
1373
1374EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1375
1376static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1377                                   struct snd_pcm_hw_rule *rule)
1378{
1379        const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1380        unsigned int num = 0, den = 0;
1381        int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1382                                  r->nrats, r->rats, &num, &den);
1383        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1384                params->rate_num = num;
1385                params->rate_den = den;
1386        }
1387        return err;
1388}
1389
1390/**
1391 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1392 * @runtime: PCM runtime instance
1393 * @cond: condition bits
1394 * @var: hw_params variable to apply the ratdens constraint
1395 * @r: struct snd_ratdens constriants
1396 *
1397 * Return: Zero if successful, or a negative error code on failure.
1398 */
1399int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1400                                  unsigned int cond,
1401                                  snd_pcm_hw_param_t var,
1402                                  const struct snd_pcm_hw_constraint_ratdens *r)
1403{
1404        return snd_pcm_hw_rule_add(runtime, cond, var,
1405                                   snd_pcm_hw_rule_ratdens, (void *)r,
1406                                   var, -1);
1407}
1408
1409EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1410
1411static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1412                                  struct snd_pcm_hw_rule *rule)
1413{
1414        unsigned int l = (unsigned long) rule->private;
1415        int width = l & 0xffff;
1416        unsigned int msbits = l >> 16;
1417        struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1418
1419        if (!snd_interval_single(i))
1420                return 0;
1421
1422        if ((snd_interval_value(i) == width) ||
1423            (width == 0 && snd_interval_value(i) > msbits))
1424                params->msbits = min_not_zero(params->msbits, msbits);
1425
1426        return 0;
1427}
1428
1429/**
1430 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1431 * @runtime: PCM runtime instance
1432 * @cond: condition bits
1433 * @width: sample bits width
1434 * @msbits: msbits width
1435 *
1436 * This constraint will set the number of most significant bits (msbits) if a
1437 * sample format with the specified width has been select. If width is set to 0
1438 * the msbits will be set for any sample format with a width larger than the
1439 * specified msbits.
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
1443int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1444                                 unsigned int cond,
1445                                 unsigned int width,
1446                                 unsigned int msbits)
1447{
1448        unsigned long l = (msbits << 16) | width;
1449        return snd_pcm_hw_rule_add(runtime, cond, -1,
1450                                    snd_pcm_hw_rule_msbits,
1451                                    (void*) l,
1452                                    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1453}
1454
1455EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1456
1457static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1458                                struct snd_pcm_hw_rule *rule)
1459{
1460        unsigned long step = (unsigned long) rule->private;
1461        return snd_interval_step(hw_param_interval(params, rule->var), step);
1462}
1463
1464/**
1465 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1466 * @runtime: PCM runtime instance
1467 * @cond: condition bits
1468 * @var: hw_params variable to apply the step constraint
1469 * @step: step size
1470 *
1471 * Return: Zero if successful, or a negative error code on failure.
1472 */
1473int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1474                               unsigned int cond,
1475                               snd_pcm_hw_param_t var,
1476                               unsigned long step)
1477{
1478        return snd_pcm_hw_rule_add(runtime, cond, var, 
1479                                   snd_pcm_hw_rule_step, (void *) step,
1480                                   var, -1);
1481}
1482
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1484
1485static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1486{
1487        static unsigned int pow2_sizes[] = {
1488                1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1489                1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1490                1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1491                1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1492        };
1493        return snd_interval_list(hw_param_interval(params, rule->var),
1494                                 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1495}               
1496
1497/**
1498 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1499 * @runtime: PCM runtime instance
1500 * @cond: condition bits
1501 * @var: hw_params variable to apply the power-of-2 constraint
1502 *
1503 * Return: Zero if successful, or a negative error code on failure.
1504 */
1505int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1506                               unsigned int cond,
1507                               snd_pcm_hw_param_t var)
1508{
1509        return snd_pcm_hw_rule_add(runtime, cond, var, 
1510                                   snd_pcm_hw_rule_pow2, NULL,
1511                                   var, -1);
1512}
1513
1514EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1515
1516static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1517                                           struct snd_pcm_hw_rule *rule)
1518{
1519        unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1520        struct snd_interval *rate;
1521
1522        rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1523        return snd_interval_list(rate, 1, &base_rate, 0);
1524}
1525
1526/**
1527 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1528 * @runtime: PCM runtime instance
1529 * @base_rate: the rate at which the hardware does not resample
1530 *
1531 * Return: Zero if successful, or a negative error code on failure.
1532 */
1533int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1534                               unsigned int base_rate)
1535{
1536        return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1537                                   SNDRV_PCM_HW_PARAM_RATE,
1538                                   snd_pcm_hw_rule_noresample_func,
1539                                   (void *)(uintptr_t)base_rate,
1540                                   SNDRV_PCM_HW_PARAM_RATE, -1);
1541}
1542EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1543
1544static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1545                                  snd_pcm_hw_param_t var)
1546{
1547        if (hw_is_mask(var)) {
1548                snd_mask_any(hw_param_mask(params, var));
1549                params->cmask |= 1 << var;
1550                params->rmask |= 1 << var;
1551                return;
1552        }
1553        if (hw_is_interval(var)) {
1554                snd_interval_any(hw_param_interval(params, var));
1555                params->cmask |= 1 << var;
1556                params->rmask |= 1 << var;
1557                return;
1558        }
1559        snd_BUG();
1560}
1561
1562void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1563{
1564        unsigned int k;
1565        memset(params, 0, sizeof(*params));
1566        for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1567                _snd_pcm_hw_param_any(params, k);
1568        for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1569                _snd_pcm_hw_param_any(params, k);
1570        params->info = ~0U;
1571}
1572
1573EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1574
1575/**
1576 * snd_pcm_hw_param_value - return @params field @var value
1577 * @params: the hw_params instance
1578 * @var: parameter to retrieve
1579 * @dir: pointer to the direction (-1,0,1) or %NULL
1580 *
1581 * Return: The value for field @var if it's fixed in configuration space
1582 * defined by @params. -%EINVAL otherwise.
1583 */
1584int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1585                           snd_pcm_hw_param_t var, int *dir)
1586{
1587        if (hw_is_mask(var)) {
1588                const struct snd_mask *mask = hw_param_mask_c(params, var);
1589                if (!snd_mask_single(mask))
1590                        return -EINVAL;
1591                if (dir)
1592                        *dir = 0;
1593                return snd_mask_value(mask);
1594        }
1595        if (hw_is_interval(var)) {
1596                const struct snd_interval *i = hw_param_interval_c(params, var);
1597                if (!snd_interval_single(i))
1598                        return -EINVAL;
1599                if (dir)
1600                        *dir = i->openmin;
1601                return snd_interval_value(i);
1602        }
1603        return -EINVAL;
1604}
1605
1606EXPORT_SYMBOL(snd_pcm_hw_param_value);
1607
1608void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1609                                snd_pcm_hw_param_t var)
1610{
1611        if (hw_is_mask(var)) {
1612                snd_mask_none(hw_param_mask(params, var));
1613                params->cmask |= 1 << var;
1614                params->rmask |= 1 << var;
1615        } else if (hw_is_interval(var)) {
1616                snd_interval_none(hw_param_interval(params, var));
1617                params->cmask |= 1 << var;
1618                params->rmask |= 1 << var;
1619        } else {
1620                snd_BUG();
1621        }
1622}
1623
1624EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1625
1626static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1627                                   snd_pcm_hw_param_t var)
1628{
1629        int changed;
1630        if (hw_is_mask(var))
1631                changed = snd_mask_refine_first(hw_param_mask(params, var));
1632        else if (hw_is_interval(var))
1633                changed = snd_interval_refine_first(hw_param_interval(params, var));
1634        else
1635                return -EINVAL;
1636        if (changed) {
1637                params->cmask |= 1 << var;
1638                params->rmask |= 1 << var;
1639        }
1640        return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_first - refine config space and return minimum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values > minimum. Reduce configuration space accordingly.
1653 *
1654 * Return: The minimum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1657                           struct snd_pcm_hw_params *params, 
1658                           snd_pcm_hw_param_t var, int *dir)
1659{
1660        int changed = _snd_pcm_hw_param_first(params, var);
1661        if (changed < 0)
1662                return changed;
1663        if (params->rmask) {
1664                int err = snd_pcm_hw_refine(pcm, params);
1665                if (snd_BUG_ON(err < 0))
1666                        return err;
1667        }
1668        return snd_pcm_hw_param_value(params, var, dir);
1669}
1670
1671EXPORT_SYMBOL(snd_pcm_hw_param_first);
1672
1673static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1674                                  snd_pcm_hw_param_t var)
1675{
1676        int changed;
1677        if (hw_is_mask(var))
1678                changed = snd_mask_refine_last(hw_param_mask(params, var));
1679        else if (hw_is_interval(var))
1680                changed = snd_interval_refine_last(hw_param_interval(params, var));
1681        else
1682                return -EINVAL;
1683        if (changed) {
1684                params->cmask |= 1 << var;
1685                params->rmask |= 1 << var;
1686        }
1687        return changed;
1688}
1689
1690
1691/**
1692 * snd_pcm_hw_param_last - refine config space and return maximum value
1693 * @pcm: PCM instance
1694 * @params: the hw_params instance
1695 * @var: parameter to retrieve
1696 * @dir: pointer to the direction (-1,0,1) or %NULL
1697 *
1698 * Inside configuration space defined by @params remove from @var all
1699 * values < maximum. Reduce configuration space accordingly.
1700 *
1701 * Return: The maximum, or a negative error code on failure.
1702 */
1703int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1704                          struct snd_pcm_hw_params *params,
1705                          snd_pcm_hw_param_t var, int *dir)
1706{
1707        int changed = _snd_pcm_hw_param_last(params, var);
1708        if (changed < 0)
1709                return changed;
1710        if (params->rmask) {
1711                int err = snd_pcm_hw_refine(pcm, params);
1712                if (snd_BUG_ON(err < 0))
1713                        return err;
1714        }
1715        return snd_pcm_hw_param_value(params, var, dir);
1716}
1717
1718EXPORT_SYMBOL(snd_pcm_hw_param_last);
1719
1720/**
1721 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1722 * @pcm: PCM instance
1723 * @params: the hw_params instance
1724 *
1725 * Choose one configuration from configuration space defined by @params.
1726 * The configuration chosen is that obtained fixing in this order:
1727 * first access, first format, first subformat, min channels,
1728 * min rate, min period time, max buffer size, min tick time
1729 *
1730 * Return: Zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1733                             struct snd_pcm_hw_params *params)
1734{
1735        static int vars[] = {
1736                SNDRV_PCM_HW_PARAM_ACCESS,
1737                SNDRV_PCM_HW_PARAM_FORMAT,
1738                SNDRV_PCM_HW_PARAM_SUBFORMAT,
1739                SNDRV_PCM_HW_PARAM_CHANNELS,
1740                SNDRV_PCM_HW_PARAM_RATE,
1741                SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1742                SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1743                SNDRV_PCM_HW_PARAM_TICK_TIME,
1744                -1
1745        };
1746        int err, *v;
1747
1748        for (v = vars; *v != -1; v++) {
1749                if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1750                        err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1751                else
1752                        err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1753                if (snd_BUG_ON(err < 0))
1754                        return err;
1755        }
1756        return 0;
1757}
1758
1759static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1760                                   void *arg)
1761{
1762        struct snd_pcm_runtime *runtime = substream->runtime;
1763        unsigned long flags;
1764        snd_pcm_stream_lock_irqsave(substream, flags);
1765        if (snd_pcm_running(substream) &&
1766            snd_pcm_update_hw_ptr(substream) >= 0)
1767                runtime->status->hw_ptr %= runtime->buffer_size;
1768        else {
1769                runtime->status->hw_ptr = 0;
1770                runtime->hw_ptr_wrap = 0;
1771        }
1772        snd_pcm_stream_unlock_irqrestore(substream, flags);
1773        return 0;
1774}
1775
1776static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1777                                          void *arg)
1778{
1779        struct snd_pcm_channel_info *info = arg;
1780        struct snd_pcm_runtime *runtime = substream->runtime;
1781        int width;
1782        if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1783                info->offset = -1;
1784                return 0;
1785        }
1786        width = snd_pcm_format_physical_width(runtime->format);
1787        if (width < 0)
1788                return width;
1789        info->offset = 0;
1790        switch (runtime->access) {
1791        case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1792        case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1793                info->first = info->channel * width;
1794                info->step = runtime->channels * width;
1795                break;
1796        case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1797        case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1798        {
1799                size_t size = runtime->dma_bytes / runtime->channels;
1800                info->first = info->channel * size * 8;
1801                info->step = width;
1802                break;
1803        }
1804        default:
1805                snd_BUG();
1806                break;
1807        }
1808        return 0;
1809}
1810
1811static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1812                                       void *arg)
1813{
1814        struct snd_pcm_hw_params *params = arg;
1815        snd_pcm_format_t format;
1816        int channels;
1817        ssize_t frame_size;
1818
1819        params->fifo_size = substream->runtime->hw.fifo_size;
1820        if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1821                format = params_format(params);
1822                channels = params_channels(params);
1823                frame_size = snd_pcm_format_size(format, channels);
1824                if (frame_size > 0)
1825                        params->fifo_size /= (unsigned)frame_size;
1826        }
1827        return 0;
1828}
1829
1830/**
1831 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1832 * @substream: the pcm substream instance
1833 * @cmd: ioctl command
1834 * @arg: ioctl argument
1835 *
1836 * Processes the generic ioctl commands for PCM.
1837 * Can be passed as the ioctl callback for PCM ops.
1838 *
1839 * Return: Zero if successful, or a negative error code on failure.
1840 */
1841int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1842                      unsigned int cmd, void *arg)
1843{
1844        switch (cmd) {
1845        case SNDRV_PCM_IOCTL1_INFO:
1846                return 0;
1847        case SNDRV_PCM_IOCTL1_RESET:
1848                return snd_pcm_lib_ioctl_reset(substream, arg);
1849        case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1850                return snd_pcm_lib_ioctl_channel_info(substream, arg);
1851        case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1852                return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1853        }
1854        return -ENXIO;
1855}
1856
1857EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1858
1859/**
1860 * snd_pcm_period_elapsed - update the pcm status for the next period
1861 * @substream: the pcm substream instance
1862 *
1863 * This function is called from the interrupt handler when the
1864 * PCM has processed the period size.  It will update the current
1865 * pointer, wake up sleepers, etc.
1866 *
1867 * Even if more than one periods have elapsed since the last call, you
1868 * have to call this only once.
1869 */
1870void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1871{
1872        struct snd_pcm_runtime *runtime;
1873        unsigned long flags;
1874
1875        if (PCM_RUNTIME_CHECK(substream))
1876                return;
1877        runtime = substream->runtime;
1878
1879        snd_pcm_stream_lock_irqsave(substream, flags);
1880        if (!snd_pcm_running(substream) ||
1881            snd_pcm_update_hw_ptr0(substream, 1) < 0)
1882                goto _end;
1883
1884#ifdef CONFIG_SND_PCM_TIMER
1885        if (substream->timer_running)
1886                snd_timer_interrupt(substream->timer, 1);
1887#endif
1888 _end:
1889        snd_pcm_stream_unlock_irqrestore(substream, flags);
1890        kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1891}
1892
1893EXPORT_SYMBOL(snd_pcm_period_elapsed);
1894
1895/*
1896 * Wait until avail_min data becomes available
1897 * Returns a negative error code if any error occurs during operation.
1898 * The available space is stored on availp.  When err = 0 and avail = 0
1899 * on the capture stream, it indicates the stream is in DRAINING state.
1900 */
1901static int wait_for_avail(struct snd_pcm_substream *substream,
1902                              snd_pcm_uframes_t *availp)
1903{
1904        struct snd_pcm_runtime *runtime = substream->runtime;
1905        int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1906        wait_queue_t wait;
1907        int err = 0;
1908        snd_pcm_uframes_t avail = 0;
1909        long wait_time, tout;
1910
1911        init_waitqueue_entry(&wait, current);
1912        set_current_state(TASK_INTERRUPTIBLE);
1913        add_wait_queue(&runtime->tsleep, &wait);
1914
1915        if (runtime->no_period_wakeup)
1916                wait_time = MAX_SCHEDULE_TIMEOUT;
1917        else {
1918                wait_time = 10;
1919                if (runtime->rate) {
1920                        long t = runtime->period_size * 2 / runtime->rate;
1921                        wait_time = max(t, wait_time);
1922                }
1923                wait_time = msecs_to_jiffies(wait_time * 1000);
1924        }
1925
1926        for (;;) {
1927                if (signal_pending(current)) {
1928                        err = -ERESTARTSYS;
1929                        break;
1930                }
1931
1932                /*
1933                 * We need to check if space became available already
1934                 * (and thus the wakeup happened already) first to close
1935                 * the race of space already having become available.
1936                 * This check must happen after been added to the waitqueue
1937                 * and having current state be INTERRUPTIBLE.
1938                 */
1939                if (is_playback)
1940                        avail = snd_pcm_playback_avail(runtime);
1941                else
1942                        avail = snd_pcm_capture_avail(runtime);
1943                if (avail >= runtime->twake)
1944                        break;
1945                snd_pcm_stream_unlock_irq(substream);
1946
1947                tout = schedule_timeout(wait_time);
1948
1949                snd_pcm_stream_lock_irq(substream);
1950                set_current_state(TASK_INTERRUPTIBLE);
1951                switch (runtime->status->state) {
1952                case SNDRV_PCM_STATE_SUSPENDED:
1953                        err = -ESTRPIPE;
1954                        goto _endloop;
1955                case SNDRV_PCM_STATE_XRUN:
1956                        err = -EPIPE;
1957                        goto _endloop;
1958                case SNDRV_PCM_STATE_DRAINING:
1959                        if (is_playback)
1960                                err = -EPIPE;
1961                        else 
1962                                avail = 0; /* indicate draining */
1963                        goto _endloop;
1964                case SNDRV_PCM_STATE_OPEN:
1965                case SNDRV_PCM_STATE_SETUP:
1966                case SNDRV_PCM_STATE_DISCONNECTED:
1967                        err = -EBADFD;
1968                        goto _endloop;
1969                case SNDRV_PCM_STATE_PAUSED:
1970                        continue;
1971                }
1972                if (!tout) {
1973                        pcm_dbg(substream->pcm,
1974                                "%s write error (DMA or IRQ trouble?)\n",
1975                                is_playback ? "playback" : "capture");
1976                        err = -EIO;
1977                        break;
1978                }
1979        }
1980 _endloop:
1981        set_current_state(TASK_RUNNING);
1982        remove_wait_queue(&runtime->tsleep, &wait);
1983        *availp = avail;
1984        return err;
1985}
1986        
1987static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1988                                      unsigned int hwoff,
1989                                      unsigned long data, unsigned int off,
1990                                      snd_pcm_uframes_t frames)
1991{
1992        struct snd_pcm_runtime *runtime = substream->runtime;
1993        int err;
1994        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1995        if (substream->ops->copy) {
1996                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1997                        return err;
1998        } else {
1999                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2000                if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2001                        return -EFAULT;
2002        }
2003        return 0;
2004}
2005 
2006typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2007                          unsigned long data, unsigned int off,
2008                          snd_pcm_uframes_t size);
2009
2010static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
2011                                            unsigned long data,
2012                                            snd_pcm_uframes_t size,
2013                                            int nonblock,
2014                                            transfer_f transfer)
2015{
2016        struct snd_pcm_runtime *runtime = substream->runtime;
2017        snd_pcm_uframes_t xfer = 0;
2018        snd_pcm_uframes_t offset = 0;
2019        snd_pcm_uframes_t avail;
2020        int err = 0;
2021
2022        if (size == 0)
2023                return 0;
2024
2025        snd_pcm_stream_lock_irq(substream);
2026        switch (runtime->status->state) {
2027        case SNDRV_PCM_STATE_PREPARED:
2028        case SNDRV_PCM_STATE_RUNNING:
2029        case SNDRV_PCM_STATE_PAUSED:
2030                break;
2031        case SNDRV_PCM_STATE_XRUN:
2032                err = -EPIPE;
2033                goto _end_unlock;
2034        case SNDRV_PCM_STATE_SUSPENDED:
2035                err = -ESTRPIPE;
2036                goto _end_unlock;
2037        default:
2038                err = -EBADFD;
2039                goto _end_unlock;
2040        }
2041
2042        runtime->twake = runtime->control->avail_min ? : 1;
2043        if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2044                snd_pcm_update_hw_ptr(substream);
2045        avail = snd_pcm_playback_avail(runtime);
2046        while (size > 0) {
2047                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2048                snd_pcm_uframes_t cont;
2049                if (!avail) {
2050                        if (nonblock) {
2051                                err = -EAGAIN;
2052                                goto _end_unlock;
2053                        }
2054                        runtime->twake = min_t(snd_pcm_uframes_t, size,
2055                                        runtime->control->avail_min ? : 1);
2056                        err = wait_for_avail(substream, &avail);
2057                        if (err < 0)
2058                                goto _end_unlock;
2059                }
2060                frames = size > avail ? avail : size;
2061                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2062                if (frames > cont)
2063                        frames = cont;
2064                if (snd_BUG_ON(!frames)) {
2065                        runtime->twake = 0;
2066                        snd_pcm_stream_unlock_irq(substream);
2067                        return -EINVAL;
2068                }
2069                appl_ptr = runtime->control->appl_ptr;
2070                appl_ofs = appl_ptr % runtime->buffer_size;
2071                snd_pcm_stream_unlock_irq(substream);
2072                err = transfer(substream, appl_ofs, data, offset, frames);
2073                snd_pcm_stream_lock_irq(substream);
2074                if (err < 0)
2075                        goto _end_unlock;
2076                switch (runtime->status->state) {
2077                case SNDRV_PCM_STATE_XRUN:
2078                        err = -EPIPE;
2079                        goto _end_unlock;
2080                case SNDRV_PCM_STATE_SUSPENDED:
2081                        err = -ESTRPIPE;
2082                        goto _end_unlock;
2083                default:
2084                        break;
2085                }
2086                appl_ptr += frames;
2087                if (appl_ptr >= runtime->boundary)
2088                        appl_ptr -= runtime->boundary;
2089                runtime->control->appl_ptr = appl_ptr;
2090                if (substream->ops->ack)
2091                        substream->ops->ack(substream);
2092
2093                offset += frames;
2094                size -= frames;
2095                xfer += frames;
2096                avail -= frames;
2097                if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2098                    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2099                        err = snd_pcm_start(substream);
2100                        if (err < 0)
2101                                goto _end_unlock;
2102                }
2103        }
2104 _end_unlock:
2105        runtime->twake = 0;
2106        if (xfer > 0 && err >= 0)
2107                snd_pcm_update_state(substream, runtime);
2108        snd_pcm_stream_unlock_irq(substream);
2109        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2110}
2111
2112/* sanity-check for read/write methods */
2113static int pcm_sanity_check(struct snd_pcm_substream *substream)
2114{
2115        struct snd_pcm_runtime *runtime;
2116        if (PCM_RUNTIME_CHECK(substream))
2117                return -ENXIO;
2118        runtime = substream->runtime;
2119        if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2120                return -EINVAL;
2121        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2122                return -EBADFD;
2123        return 0;
2124}
2125
2126snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2127{
2128        struct snd_pcm_runtime *runtime;
2129        int nonblock;
2130        int err;
2131
2132        err = pcm_sanity_check(substream);
2133        if (err < 0)
2134                return err;
2135        runtime = substream->runtime;
2136        nonblock = !!(substream->f_flags & O_NONBLOCK);
2137
2138        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2139            runtime->channels > 1)
2140                return -EINVAL;
2141        return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2142                                  snd_pcm_lib_write_transfer);
2143}
2144
2145EXPORT_SYMBOL(snd_pcm_lib_write);
2146
2147static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2148                                       unsigned int hwoff,
2149                                       unsigned long data, unsigned int off,
2150                                       snd_pcm_uframes_t frames)
2151{
2152        struct snd_pcm_runtime *runtime = substream->runtime;
2153        int err;
2154        void __user **bufs = (void __user **)data;
2155        int channels = runtime->channels;
2156        int c;
2157        if (substream->ops->copy) {
2158                if (snd_BUG_ON(!substream->ops->silence))
2159                        return -EINVAL;
2160                for (c = 0; c < channels; ++c, ++bufs) {
2161                        if (*bufs == NULL) {
2162                                if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2163                                        return err;
2164                        } else {
2165                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
2166                                if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2167                                        return err;
2168                        }
2169                }
2170        } else {
2171                /* default transfer behaviour */
2172                size_t dma_csize = runtime->dma_bytes / channels;
2173                for (c = 0; c < channels; ++c, ++bufs) {
2174                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2175                        if (*bufs == NULL) {
2176                                snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2177                        } else {
2178                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
2179                                if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2180                                        return -EFAULT;
2181                        }
2182                }
2183        }
2184        return 0;
2185}
2186 
2187snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2188                                     void __user **bufs,
2189                                     snd_pcm_uframes_t frames)
2190{
2191        struct snd_pcm_runtime *runtime;
2192        int nonblock;
2193        int err;
2194
2195        err = pcm_sanity_check(substream);
2196        if (err < 0)
2197                return err;
2198        runtime = substream->runtime;
2199        nonblock = !!(substream->f_flags & O_NONBLOCK);
2200
2201        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2202                return -EINVAL;
2203        return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2204                                  nonblock, snd_pcm_lib_writev_transfer);
2205}
2206
2207EXPORT_SYMBOL(snd_pcm_lib_writev);
2208
2209static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2210                                     unsigned int hwoff,
2211                                     unsigned long data, unsigned int off,
2212                                     snd_pcm_uframes_t frames)
2213{
2214        struct snd_pcm_runtime *runtime = substream->runtime;
2215        int err;
2216        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2217        if (substream->ops->copy) {
2218                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2219                        return err;
2220        } else {
2221                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2222                if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2223                        return -EFAULT;
2224        }
2225        return 0;
2226}
2227
2228static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2229                                           unsigned long data,
2230                                           snd_pcm_uframes_t size,
2231                                           int nonblock,
2232                                           transfer_f transfer)
2233{
2234        struct snd_pcm_runtime *runtime = substream->runtime;
2235        snd_pcm_uframes_t xfer = 0;
2236        snd_pcm_uframes_t offset = 0;
2237        snd_pcm_uframes_t avail;
2238        int err = 0;
2239
2240        if (size == 0)
2241                return 0;
2242
2243        snd_pcm_stream_lock_irq(substream);
2244        switch (runtime->status->state) {
2245        case SNDRV_PCM_STATE_PREPARED:
2246                if (size >= runtime->start_threshold) {
2247                        err = snd_pcm_start(substream);
2248                        if (err < 0)
2249                                goto _end_unlock;
2250                }
2251                break;
2252        case SNDRV_PCM_STATE_DRAINING:
2253        case SNDRV_PCM_STATE_RUNNING:
2254        case SNDRV_PCM_STATE_PAUSED:
2255                break;
2256        case SNDRV_PCM_STATE_XRUN:
2257                err = -EPIPE;
2258                goto _end_unlock;
2259        case SNDRV_PCM_STATE_SUSPENDED:
2260                err = -ESTRPIPE;
2261                goto _end_unlock;
2262        default:
2263                err = -EBADFD;
2264                goto _end_unlock;
2265        }
2266
2267        runtime->twake = runtime->control->avail_min ? : 1;
2268        if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2269                snd_pcm_update_hw_ptr(substream);
2270        avail = snd_pcm_capture_avail(runtime);
2271        while (size > 0) {
2272                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2273                snd_pcm_uframes_t cont;
2274                if (!avail) {
2275                        if (runtime->status->state ==
2276                            SNDRV_PCM_STATE_DRAINING) {
2277                                snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2278                                goto _end_unlock;
2279                        }
2280                        if (nonblock) {
2281                                err = -EAGAIN;
2282                                goto _end_unlock;
2283                        }
2284                        runtime->twake = min_t(snd_pcm_uframes_t, size,
2285                                        runtime->control->avail_min ? : 1);
2286                        err = wait_for_avail(substream, &avail);
2287                        if (err < 0)
2288                                goto _end_unlock;
2289                        if (!avail)
2290                                continue; /* draining */
2291                }
2292                frames = size > avail ? avail : size;
2293                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2294                if (frames > cont)
2295                        frames = cont;
2296                if (snd_BUG_ON(!frames)) {
2297                        runtime->twake = 0;
2298                        snd_pcm_stream_unlock_irq(substream);
2299                        return -EINVAL;
2300                }
2301                appl_ptr = runtime->control->appl_ptr;
2302                appl_ofs = appl_ptr % runtime->buffer_size;
2303                snd_pcm_stream_unlock_irq(substream);
2304                err = transfer(substream, appl_ofs, data, offset, frames);
2305                snd_pcm_stream_lock_irq(substream);
2306                if (err < 0)
2307                        goto _end_unlock;
2308                switch (runtime->status->state) {
2309                case SNDRV_PCM_STATE_XRUN:
2310                        err = -EPIPE;
2311                        goto _end_unlock;
2312                case SNDRV_PCM_STATE_SUSPENDED:
2313                        err = -ESTRPIPE;
2314                        goto _end_unlock;
2315                default:
2316                        break;
2317                }
2318                appl_ptr += frames;
2319                if (appl_ptr >= runtime->boundary)
2320                        appl_ptr -= runtime->boundary;
2321                runtime->control->appl_ptr = appl_ptr;
2322                if (substream->ops->ack)
2323                        substream->ops->ack(substream);
2324
2325                offset += frames;
2326                size -= frames;
2327                xfer += frames;
2328                avail -= frames;
2329        }
2330 _end_unlock:
2331        runtime->twake = 0;
2332        if (xfer > 0 && err >= 0)
2333                snd_pcm_update_state(substream, runtime);
2334        snd_pcm_stream_unlock_irq(substream);
2335        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2336}
2337
2338snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2339{
2340        struct snd_pcm_runtime *runtime;
2341        int nonblock;
2342        int err;
2343        
2344        err = pcm_sanity_check(substream);
2345        if (err < 0)
2346                return err;
2347        runtime = substream->runtime;
2348        nonblock = !!(substream->f_flags & O_NONBLOCK);
2349        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2350                return -EINVAL;
2351        return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2352}
2353
2354EXPORT_SYMBOL(snd_pcm_lib_read);
2355
2356static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2357                                      unsigned int hwoff,
2358                                      unsigned long data, unsigned int off,
2359                                      snd_pcm_uframes_t frames)
2360{
2361        struct snd_pcm_runtime *runtime = substream->runtime;
2362        int err;
2363        void __user **bufs = (void __user **)data;
2364        int channels = runtime->channels;
2365        int c;
2366        if (substream->ops->copy) {
2367                for (c = 0; c < channels; ++c, ++bufs) {
2368                        char __user *buf;
2369                        if (*bufs == NULL)
2370                                continue;
2371                        buf = *bufs + samples_to_bytes(runtime, off);
2372                        if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2373                                return err;
2374                }
2375        } else {
2376                snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2377                for (c = 0; c < channels; ++c, ++bufs) {
2378                        char *hwbuf;
2379                        char __user *buf;
2380                        if (*bufs == NULL)
2381                                continue;
2382
2383                        hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2384                        buf = *bufs + samples_to_bytes(runtime, off);
2385                        if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2386                                return -EFAULT;
2387                }
2388        }
2389        return 0;
2390}
2391 
2392snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2393                                    void __user **bufs,
2394                                    snd_pcm_uframes_t frames)
2395{
2396        struct snd_pcm_runtime *runtime;
2397        int nonblock;
2398        int err;
2399
2400        err = pcm_sanity_check(substream);
2401        if (err < 0)
2402                return err;
2403        runtime = substream->runtime;
2404        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2405                return -EBADFD;
2406
2407        nonblock = !!(substream->f_flags & O_NONBLOCK);
2408        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2409                return -EINVAL;
2410        return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2411}
2412
2413EXPORT_SYMBOL(snd_pcm_lib_readv);
2414
2415/*
2416 * standard channel mapping helpers
2417 */
2418
2419/* default channel maps for multi-channel playbacks, up to 8 channels */
2420const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2421        { .channels = 1,
2422          .map = { SNDRV_CHMAP_MONO } },
2423        { .channels = 2,
2424          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2425        { .channels = 4,
2426          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2427                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2428        { .channels = 6,
2429          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2430                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2431                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2432        { .channels = 8,
2433          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2434                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2435                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2436                   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2437        { }
2438};
2439EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2440
2441/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2442const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2443        { .channels = 1,
2444          .map = { SNDRV_CHMAP_MONO } },
2445        { .channels = 2,
2446          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2447        { .channels = 4,
2448          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2449                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2450        { .channels = 6,
2451          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2452                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2453                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2454        { .channels = 8,
2455          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2456                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2457                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2458                   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2459        { }
2460};
2461EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2462
2463static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2464{
2465        if (ch > info->max_channels)
2466                return false;
2467        return !info->channel_mask || (info->channel_mask & (1U << ch));
2468}
2469
2470static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2471                              struct snd_ctl_elem_info *uinfo)
2472{
2473        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2474
2475        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2476        uinfo->count = 0;
2477        uinfo->count = info->max_channels;
2478        uinfo->value.integer.min = 0;
2479        uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2480        return 0;
2481}
2482
2483/* get callback for channel map ctl element
2484 * stores the channel position firstly matching with the current channels
2485 */
2486static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2487                             struct snd_ctl_elem_value *ucontrol)
2488{
2489        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2490        unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2491        struct snd_pcm_substream *substream;
2492        const struct snd_pcm_chmap_elem *map;
2493
2494        if (snd_BUG_ON(!info->chmap))
2495                return -EINVAL;
2496        substream = snd_pcm_chmap_substream(info, idx);
2497        if (!substream)
2498                return -ENODEV;
2499        memset(ucontrol->value.integer.value, 0,
2500               sizeof(ucontrol->value.integer.value));
2501        if (!substream->runtime)
2502                return 0; /* no channels set */
2503        for (map = info->chmap; map->channels; map++) {
2504                int i;
2505                if (map->channels == substream->runtime->channels &&
2506                    valid_chmap_channels(info, map->channels)) {
2507                        for (i = 0; i < map->channels; i++)
2508                                ucontrol->value.integer.value[i] = map->map[i];
2509                        return 0;
2510                }
2511        }
2512        return -EINVAL;
2513}
2514
2515/* tlv callback for channel map ctl element
2516 * expands the pre-defined channel maps in a form of TLV
2517 */
2518static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2519                             unsigned int size, unsigned int __user *tlv)
2520{
2521        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2522        const struct snd_pcm_chmap_elem *map;
2523        unsigned int __user *dst;
2524        int c, count = 0;
2525
2526        if (snd_BUG_ON(!info->chmap))
2527                return -EINVAL;
2528        if (size < 8)
2529                return -ENOMEM;
2530        if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2531                return -EFAULT;
2532        size -= 8;
2533        dst = tlv + 2;
2534        for (map = info->chmap; map->channels; map++) {
2535                int chs_bytes = map->channels * 4;
2536                if (!valid_chmap_channels(info, map->channels))
2537                        continue;
2538                if (size < 8)
2539                        return -ENOMEM;
2540                if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2541                    put_user(chs_bytes, dst + 1))
2542                        return -EFAULT;
2543                dst += 2;
2544                size -= 8;
2545                count += 8;
2546                if (size < chs_bytes)
2547                        return -ENOMEM;
2548                size -= chs_bytes;
2549                count += chs_bytes;
2550                for (c = 0; c < map->channels; c++) {
2551                        if (put_user(map->map[c], dst))
2552                                return -EFAULT;
2553                        dst++;
2554                }
2555        }
2556        if (put_user(count, tlv + 1))
2557                return -EFAULT;
2558        return 0;
2559}
2560
2561static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2562{
2563        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2564        info->pcm->streams[info->stream].chmap_kctl = NULL;
2565        kfree(info);
2566}
2567
2568/**
2569 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2570 * @pcm: the assigned PCM instance
2571 * @stream: stream direction
2572 * @chmap: channel map elements (for query)
2573 * @max_channels: the max number of channels for the stream
2574 * @private_value: the value passed to each kcontrol's private_value field
2575 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2576 *
2577 * Create channel-mapping control elements assigned to the given PCM stream(s).
2578 * Return: Zero if successful, or a negative error value.
2579 */
2580int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2581                           const struct snd_pcm_chmap_elem *chmap,
2582                           int max_channels,
2583                           unsigned long private_value,
2584                           struct snd_pcm_chmap **info_ret)
2585{
2586        struct snd_pcm_chmap *info;
2587        struct snd_kcontrol_new knew = {
2588                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2589                .access = SNDRV_CTL_ELEM_ACCESS_READ |
2590                        SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2591                        SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2592                .info = pcm_chmap_ctl_info,
2593                .get = pcm_chmap_ctl_get,
2594                .tlv.c = pcm_chmap_ctl_tlv,
2595        };
2596        int err;
2597
2598        info = kzalloc(sizeof(*info), GFP_KERNEL);
2599        if (!info)
2600                return -ENOMEM;
2601        info->pcm = pcm;
2602        info->stream = stream;
2603        info->chmap = chmap;
2604        info->max_channels = max_channels;
2605        if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2606                knew.name = "Playback Channel Map";
2607        else
2608                knew.name = "Capture Channel Map";
2609        knew.device = pcm->device;
2610        knew.count = pcm->streams[stream].substream_count;
2611        knew.private_value = private_value;
2612        info->kctl = snd_ctl_new1(&knew, info);
2613        if (!info->kctl) {
2614                kfree(info);
2615                return -ENOMEM;
2616        }
2617        info->kctl->private_free = pcm_chmap_ctl_private_free;
2618        err = snd_ctl_add(pcm->card, info->kctl);
2619        if (err < 0)
2620                return err;
2621        pcm->streams[stream].chmap_kctl = info->kctl;
2622        if (info_ret)
2623                *info_ret = info;
2624        return 0;
2625}
2626EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2627