linux/arch/arm/kernel/setup.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/efi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/stddef.h>
  14#include <linux/ioport.h>
  15#include <linux/delay.h>
  16#include <linux/utsname.h>
  17#include <linux/initrd.h>
  18#include <linux/console.h>
  19#include <linux/bootmem.h>
  20#include <linux/seq_file.h>
  21#include <linux/screen_info.h>
  22#include <linux/of_iommu.h>
  23#include <linux/of_platform.h>
  24#include <linux/init.h>
  25#include <linux/kexec.h>
  26#include <linux/of_fdt.h>
  27#include <linux/cpu.h>
  28#include <linux/interrupt.h>
  29#include <linux/smp.h>
  30#include <linux/proc_fs.h>
  31#include <linux/memblock.h>
  32#include <linux/bug.h>
  33#include <linux/compiler.h>
  34#include <linux/sort.h>
  35#include <linux/psci.h>
  36
  37#include <asm/unified.h>
  38#include <asm/cp15.h>
  39#include <asm/cpu.h>
  40#include <asm/cputype.h>
  41#include <asm/efi.h>
  42#include <asm/elf.h>
  43#include <asm/early_ioremap.h>
  44#include <asm/fixmap.h>
  45#include <asm/procinfo.h>
  46#include <asm/psci.h>
  47#include <asm/sections.h>
  48#include <asm/setup.h>
  49#include <asm/smp_plat.h>
  50#include <asm/mach-types.h>
  51#include <asm/cacheflush.h>
  52#include <asm/cachetype.h>
  53#include <asm/tlbflush.h>
  54#include <asm/xen/hypervisor.h>
  55
  56#include <asm/prom.h>
  57#include <asm/mach/arch.h>
  58#include <asm/mach/irq.h>
  59#include <asm/mach/time.h>
  60#include <asm/system_info.h>
  61#include <asm/system_misc.h>
  62#include <asm/traps.h>
  63#include <asm/unwind.h>
  64#include <asm/memblock.h>
  65#include <asm/virt.h>
  66
  67#include "atags.h"
  68
  69
  70#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  71char fpe_type[8];
  72
  73static int __init fpe_setup(char *line)
  74{
  75        memcpy(fpe_type, line, 8);
  76        return 1;
  77}
  78
  79__setup("fpe=", fpe_setup);
  80#endif
  81
  82extern void init_default_cache_policy(unsigned long);
  83extern void paging_init(const struct machine_desc *desc);
  84extern void early_paging_init(const struct machine_desc *);
  85extern void sanity_check_meminfo(void);
  86extern enum reboot_mode reboot_mode;
  87extern void setup_dma_zone(const struct machine_desc *desc);
  88
  89unsigned int processor_id;
  90EXPORT_SYMBOL(processor_id);
  91unsigned int __machine_arch_type __read_mostly;
  92EXPORT_SYMBOL(__machine_arch_type);
  93unsigned int cacheid __read_mostly;
  94EXPORT_SYMBOL(cacheid);
  95
  96unsigned int __atags_pointer __initdata;
  97
  98unsigned int system_rev;
  99EXPORT_SYMBOL(system_rev);
 100
 101const char *system_serial;
 102EXPORT_SYMBOL(system_serial);
 103
 104unsigned int system_serial_low;
 105EXPORT_SYMBOL(system_serial_low);
 106
 107unsigned int system_serial_high;
 108EXPORT_SYMBOL(system_serial_high);
 109
 110unsigned int elf_hwcap __read_mostly;
 111EXPORT_SYMBOL(elf_hwcap);
 112
 113unsigned int elf_hwcap2 __read_mostly;
 114EXPORT_SYMBOL(elf_hwcap2);
 115
 116
 117#ifdef MULTI_CPU
 118struct processor processor __read_mostly;
 119#endif
 120#ifdef MULTI_TLB
 121struct cpu_tlb_fns cpu_tlb __read_mostly;
 122#endif
 123#ifdef MULTI_USER
 124struct cpu_user_fns cpu_user __read_mostly;
 125#endif
 126#ifdef MULTI_CACHE
 127struct cpu_cache_fns cpu_cache __read_mostly;
 128#endif
 129#ifdef CONFIG_OUTER_CACHE
 130struct outer_cache_fns outer_cache __read_mostly;
 131EXPORT_SYMBOL(outer_cache);
 132#endif
 133
 134/*
 135 * Cached cpu_architecture() result for use by assembler code.
 136 * C code should use the cpu_architecture() function instead of accessing this
 137 * variable directly.
 138 */
 139int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 140
 141struct stack {
 142        u32 irq[3];
 143        u32 abt[3];
 144        u32 und[3];
 145        u32 fiq[3];
 146} ____cacheline_aligned;
 147
 148#ifndef CONFIG_CPU_V7M
 149static struct stack stacks[NR_CPUS];
 150#endif
 151
 152char elf_platform[ELF_PLATFORM_SIZE];
 153EXPORT_SYMBOL(elf_platform);
 154
 155static const char *cpu_name;
 156static const char *machine_name;
 157static char __initdata cmd_line[COMMAND_LINE_SIZE];
 158const struct machine_desc *machine_desc __initdata;
 159
 160static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 161#define ENDIANNESS ((char)endian_test.l)
 162
 163DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 164
 165/*
 166 * Standard memory resources
 167 */
 168static struct resource mem_res[] = {
 169        {
 170                .name = "Video RAM",
 171                .start = 0,
 172                .end = 0,
 173                .flags = IORESOURCE_MEM
 174        },
 175        {
 176                .name = "Kernel code",
 177                .start = 0,
 178                .end = 0,
 179                .flags = IORESOURCE_SYSTEM_RAM
 180        },
 181        {
 182                .name = "Kernel data",
 183                .start = 0,
 184                .end = 0,
 185                .flags = IORESOURCE_SYSTEM_RAM
 186        }
 187};
 188
 189#define video_ram   mem_res[0]
 190#define kernel_code mem_res[1]
 191#define kernel_data mem_res[2]
 192
 193static struct resource io_res[] = {
 194        {
 195                .name = "reserved",
 196                .start = 0x3bc,
 197                .end = 0x3be,
 198                .flags = IORESOURCE_IO | IORESOURCE_BUSY
 199        },
 200        {
 201                .name = "reserved",
 202                .start = 0x378,
 203                .end = 0x37f,
 204                .flags = IORESOURCE_IO | IORESOURCE_BUSY
 205        },
 206        {
 207                .name = "reserved",
 208                .start = 0x278,
 209                .end = 0x27f,
 210                .flags = IORESOURCE_IO | IORESOURCE_BUSY
 211        }
 212};
 213
 214#define lp0 io_res[0]
 215#define lp1 io_res[1]
 216#define lp2 io_res[2]
 217
 218static const char *proc_arch[] = {
 219        "undefined/unknown",
 220        "3",
 221        "4",
 222        "4T",
 223        "5",
 224        "5T",
 225        "5TE",
 226        "5TEJ",
 227        "6TEJ",
 228        "7",
 229        "7M",
 230        "?(12)",
 231        "?(13)",
 232        "?(14)",
 233        "?(15)",
 234        "?(16)",
 235        "?(17)",
 236};
 237
 238#ifdef CONFIG_CPU_V7M
 239static int __get_cpu_architecture(void)
 240{
 241        return CPU_ARCH_ARMv7M;
 242}
 243#else
 244static int __get_cpu_architecture(void)
 245{
 246        int cpu_arch;
 247
 248        if ((read_cpuid_id() & 0x0008f000) == 0) {
 249                cpu_arch = CPU_ARCH_UNKNOWN;
 250        } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 251                cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 252        } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 253                cpu_arch = (read_cpuid_id() >> 16) & 7;
 254                if (cpu_arch)
 255                        cpu_arch += CPU_ARCH_ARMv3;
 256        } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 257                /* Revised CPUID format. Read the Memory Model Feature
 258                 * Register 0 and check for VMSAv7 or PMSAv7 */
 259                unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 260                if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 261                    (mmfr0 & 0x000000f0) >= 0x00000030)
 262                        cpu_arch = CPU_ARCH_ARMv7;
 263                else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 264                         (mmfr0 & 0x000000f0) == 0x00000020)
 265                        cpu_arch = CPU_ARCH_ARMv6;
 266                else
 267                        cpu_arch = CPU_ARCH_UNKNOWN;
 268        } else
 269                cpu_arch = CPU_ARCH_UNKNOWN;
 270
 271        return cpu_arch;
 272}
 273#endif
 274
 275int __pure cpu_architecture(void)
 276{
 277        BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 278
 279        return __cpu_architecture;
 280}
 281
 282static int cpu_has_aliasing_icache(unsigned int arch)
 283{
 284        int aliasing_icache;
 285        unsigned int id_reg, num_sets, line_size;
 286
 287        /* PIPT caches never alias. */
 288        if (icache_is_pipt())
 289                return 0;
 290
 291        /* arch specifies the register format */
 292        switch (arch) {
 293        case CPU_ARCH_ARMv7:
 294                asm("mcr        p15, 2, %0, c0, c0, 0 @ set CSSELR"
 295                    : /* No output operands */
 296                    : "r" (1));
 297                isb();
 298                asm("mrc        p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 299                    : "=r" (id_reg));
 300                line_size = 4 << ((id_reg & 0x7) + 2);
 301                num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 302                aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 303                break;
 304        case CPU_ARCH_ARMv6:
 305                aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 306                break;
 307        default:
 308                /* I-cache aliases will be handled by D-cache aliasing code */
 309                aliasing_icache = 0;
 310        }
 311
 312        return aliasing_icache;
 313}
 314
 315static void __init cacheid_init(void)
 316{
 317        unsigned int arch = cpu_architecture();
 318
 319        if (arch == CPU_ARCH_ARMv7M) {
 320                cacheid = 0;
 321        } else if (arch >= CPU_ARCH_ARMv6) {
 322                unsigned int cachetype = read_cpuid_cachetype();
 323                if ((cachetype & (7 << 29)) == 4 << 29) {
 324                        /* ARMv7 register format */
 325                        arch = CPU_ARCH_ARMv7;
 326                        cacheid = CACHEID_VIPT_NONALIASING;
 327                        switch (cachetype & (3 << 14)) {
 328                        case (1 << 14):
 329                                cacheid |= CACHEID_ASID_TAGGED;
 330                                break;
 331                        case (3 << 14):
 332                                cacheid |= CACHEID_PIPT;
 333                                break;
 334                        }
 335                } else {
 336                        arch = CPU_ARCH_ARMv6;
 337                        if (cachetype & (1 << 23))
 338                                cacheid = CACHEID_VIPT_ALIASING;
 339                        else
 340                                cacheid = CACHEID_VIPT_NONALIASING;
 341                }
 342                if (cpu_has_aliasing_icache(arch))
 343                        cacheid |= CACHEID_VIPT_I_ALIASING;
 344        } else {
 345                cacheid = CACHEID_VIVT;
 346        }
 347
 348        pr_info("CPU: %s data cache, %s instruction cache\n",
 349                cache_is_vivt() ? "VIVT" :
 350                cache_is_vipt_aliasing() ? "VIPT aliasing" :
 351                cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 352                cache_is_vivt() ? "VIVT" :
 353                icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 354                icache_is_vipt_aliasing() ? "VIPT aliasing" :
 355                icache_is_pipt() ? "PIPT" :
 356                cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 357}
 358
 359/*
 360 * These functions re-use the assembly code in head.S, which
 361 * already provide the required functionality.
 362 */
 363extern struct proc_info_list *lookup_processor_type(unsigned int);
 364
 365void __init early_print(const char *str, ...)
 366{
 367        extern void printascii(const char *);
 368        char buf[256];
 369        va_list ap;
 370
 371        va_start(ap, str);
 372        vsnprintf(buf, sizeof(buf), str, ap);
 373        va_end(ap);
 374
 375#ifdef CONFIG_DEBUG_LL
 376        printascii(buf);
 377#endif
 378        printk("%s", buf);
 379}
 380
 381#ifdef CONFIG_ARM_PATCH_IDIV
 382
 383static inline u32 __attribute_const__ sdiv_instruction(void)
 384{
 385        if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 386                /* "sdiv r0, r0, r1" */
 387                u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 388                return __opcode_to_mem_thumb32(insn);
 389        }
 390
 391        /* "sdiv r0, r0, r1" */
 392        return __opcode_to_mem_arm(0xe710f110);
 393}
 394
 395static inline u32 __attribute_const__ udiv_instruction(void)
 396{
 397        if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 398                /* "udiv r0, r0, r1" */
 399                u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 400                return __opcode_to_mem_thumb32(insn);
 401        }
 402
 403        /* "udiv r0, r0, r1" */
 404        return __opcode_to_mem_arm(0xe730f110);
 405}
 406
 407static inline u32 __attribute_const__ bx_lr_instruction(void)
 408{
 409        if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 410                /* "bx lr; nop" */
 411                u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 412                return __opcode_to_mem_thumb32(insn);
 413        }
 414
 415        /* "bx lr" */
 416        return __opcode_to_mem_arm(0xe12fff1e);
 417}
 418
 419static void __init patch_aeabi_idiv(void)
 420{
 421        extern void __aeabi_uidiv(void);
 422        extern void __aeabi_idiv(void);
 423        uintptr_t fn_addr;
 424        unsigned int mask;
 425
 426        mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 427        if (!(elf_hwcap & mask))
 428                return;
 429
 430        pr_info("CPU: div instructions available: patching division code\n");
 431
 432        fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 433        asm ("" : "+g" (fn_addr));
 434        ((u32 *)fn_addr)[0] = udiv_instruction();
 435        ((u32 *)fn_addr)[1] = bx_lr_instruction();
 436        flush_icache_range(fn_addr, fn_addr + 8);
 437
 438        fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 439        asm ("" : "+g" (fn_addr));
 440        ((u32 *)fn_addr)[0] = sdiv_instruction();
 441        ((u32 *)fn_addr)[1] = bx_lr_instruction();
 442        flush_icache_range(fn_addr, fn_addr + 8);
 443}
 444
 445#else
 446static inline void patch_aeabi_idiv(void) { }
 447#endif
 448
 449static void __init cpuid_init_hwcaps(void)
 450{
 451        int block;
 452        u32 isar5;
 453
 454        if (cpu_architecture() < CPU_ARCH_ARMv7)
 455                return;
 456
 457        block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 458        if (block >= 2)
 459                elf_hwcap |= HWCAP_IDIVA;
 460        if (block >= 1)
 461                elf_hwcap |= HWCAP_IDIVT;
 462
 463        /* LPAE implies atomic ldrd/strd instructions */
 464        block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 465        if (block >= 5)
 466                elf_hwcap |= HWCAP_LPAE;
 467
 468        /* check for supported v8 Crypto instructions */
 469        isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 470
 471        block = cpuid_feature_extract_field(isar5, 4);
 472        if (block >= 2)
 473                elf_hwcap2 |= HWCAP2_PMULL;
 474        if (block >= 1)
 475                elf_hwcap2 |= HWCAP2_AES;
 476
 477        block = cpuid_feature_extract_field(isar5, 8);
 478        if (block >= 1)
 479                elf_hwcap2 |= HWCAP2_SHA1;
 480
 481        block = cpuid_feature_extract_field(isar5, 12);
 482        if (block >= 1)
 483                elf_hwcap2 |= HWCAP2_SHA2;
 484
 485        block = cpuid_feature_extract_field(isar5, 16);
 486        if (block >= 1)
 487                elf_hwcap2 |= HWCAP2_CRC32;
 488}
 489
 490static void __init elf_hwcap_fixup(void)
 491{
 492        unsigned id = read_cpuid_id();
 493
 494        /*
 495         * HWCAP_TLS is available only on 1136 r1p0 and later,
 496         * see also kuser_get_tls_init.
 497         */
 498        if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 499            ((id >> 20) & 3) == 0) {
 500                elf_hwcap &= ~HWCAP_TLS;
 501                return;
 502        }
 503
 504        /* Verify if CPUID scheme is implemented */
 505        if ((id & 0x000f0000) != 0x000f0000)
 506                return;
 507
 508        /*
 509         * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 510         * avoid advertising SWP; it may not be atomic with
 511         * multiprocessing cores.
 512         */
 513        if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 514            (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 515             cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 516                elf_hwcap &= ~HWCAP_SWP;
 517}
 518
 519/*
 520 * cpu_init - initialise one CPU.
 521 *
 522 * cpu_init sets up the per-CPU stacks.
 523 */
 524void notrace cpu_init(void)
 525{
 526#ifndef CONFIG_CPU_V7M
 527        unsigned int cpu = smp_processor_id();
 528        struct stack *stk = &stacks[cpu];
 529
 530        if (cpu >= NR_CPUS) {
 531                pr_crit("CPU%u: bad primary CPU number\n", cpu);
 532                BUG();
 533        }
 534
 535        /*
 536         * This only works on resume and secondary cores. For booting on the
 537         * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 538         */
 539        set_my_cpu_offset(per_cpu_offset(cpu));
 540
 541        cpu_proc_init();
 542
 543        /*
 544         * Define the placement constraint for the inline asm directive below.
 545         * In Thumb-2, msr with an immediate value is not allowed.
 546         */
 547#ifdef CONFIG_THUMB2_KERNEL
 548#define PLC     "r"
 549#else
 550#define PLC     "I"
 551#endif
 552
 553        /*
 554         * setup stacks for re-entrant exception handlers
 555         */
 556        __asm__ (
 557        "msr    cpsr_c, %1\n\t"
 558        "add    r14, %0, %2\n\t"
 559        "mov    sp, r14\n\t"
 560        "msr    cpsr_c, %3\n\t"
 561        "add    r14, %0, %4\n\t"
 562        "mov    sp, r14\n\t"
 563        "msr    cpsr_c, %5\n\t"
 564        "add    r14, %0, %6\n\t"
 565        "mov    sp, r14\n\t"
 566        "msr    cpsr_c, %7\n\t"
 567        "add    r14, %0, %8\n\t"
 568        "mov    sp, r14\n\t"
 569        "msr    cpsr_c, %9"
 570            :
 571            : "r" (stk),
 572              PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 573              "I" (offsetof(struct stack, irq[0])),
 574              PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 575              "I" (offsetof(struct stack, abt[0])),
 576              PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 577              "I" (offsetof(struct stack, und[0])),
 578              PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 579              "I" (offsetof(struct stack, fiq[0])),
 580              PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 581            : "r14");
 582#endif
 583}
 584
 585u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 586
 587void __init smp_setup_processor_id(void)
 588{
 589        int i;
 590        u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 591        u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 592
 593        cpu_logical_map(0) = cpu;
 594        for (i = 1; i < nr_cpu_ids; ++i)
 595                cpu_logical_map(i) = i == cpu ? 0 : i;
 596
 597        /*
 598         * clear __my_cpu_offset on boot CPU to avoid hang caused by
 599         * using percpu variable early, for example, lockdep will
 600         * access percpu variable inside lock_release
 601         */
 602        set_my_cpu_offset(0);
 603
 604        pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 605}
 606
 607struct mpidr_hash mpidr_hash;
 608#ifdef CONFIG_SMP
 609/**
 610 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 611 *                        level in order to build a linear index from an
 612 *                        MPIDR value. Resulting algorithm is a collision
 613 *                        free hash carried out through shifting and ORing
 614 */
 615static void __init smp_build_mpidr_hash(void)
 616{
 617        u32 i, affinity;
 618        u32 fs[3], bits[3], ls, mask = 0;
 619        /*
 620         * Pre-scan the list of MPIDRS and filter out bits that do
 621         * not contribute to affinity levels, ie they never toggle.
 622         */
 623        for_each_possible_cpu(i)
 624                mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 625        pr_debug("mask of set bits 0x%x\n", mask);
 626        /*
 627         * Find and stash the last and first bit set at all affinity levels to
 628         * check how many bits are required to represent them.
 629         */
 630        for (i = 0; i < 3; i++) {
 631                affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 632                /*
 633                 * Find the MSB bit and LSB bits position
 634                 * to determine how many bits are required
 635                 * to express the affinity level.
 636                 */
 637                ls = fls(affinity);
 638                fs[i] = affinity ? ffs(affinity) - 1 : 0;
 639                bits[i] = ls - fs[i];
 640        }
 641        /*
 642         * An index can be created from the MPIDR by isolating the
 643         * significant bits at each affinity level and by shifting
 644         * them in order to compress the 24 bits values space to a
 645         * compressed set of values. This is equivalent to hashing
 646         * the MPIDR through shifting and ORing. It is a collision free
 647         * hash though not minimal since some levels might contain a number
 648         * of CPUs that is not an exact power of 2 and their bit
 649         * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 650         */
 651        mpidr_hash.shift_aff[0] = fs[0];
 652        mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 653        mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 654                                                (bits[1] + bits[0]);
 655        mpidr_hash.mask = mask;
 656        mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 657        pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 658                                mpidr_hash.shift_aff[0],
 659                                mpidr_hash.shift_aff[1],
 660                                mpidr_hash.shift_aff[2],
 661                                mpidr_hash.mask,
 662                                mpidr_hash.bits);
 663        /*
 664         * 4x is an arbitrary value used to warn on a hash table much bigger
 665         * than expected on most systems.
 666         */
 667        if (mpidr_hash_size() > 4 * num_possible_cpus())
 668                pr_warn("Large number of MPIDR hash buckets detected\n");
 669        sync_cache_w(&mpidr_hash);
 670}
 671#endif
 672
 673static void __init setup_processor(void)
 674{
 675        struct proc_info_list *list;
 676
 677        /*
 678         * locate processor in the list of supported processor
 679         * types.  The linker builds this table for us from the
 680         * entries in arch/arm/mm/proc-*.S
 681         */
 682        list = lookup_processor_type(read_cpuid_id());
 683        if (!list) {
 684                pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 685                       read_cpuid_id());
 686                while (1);
 687        }
 688
 689        cpu_name = list->cpu_name;
 690        __cpu_architecture = __get_cpu_architecture();
 691
 692#ifdef MULTI_CPU
 693        processor = *list->proc;
 694#endif
 695#ifdef MULTI_TLB
 696        cpu_tlb = *list->tlb;
 697#endif
 698#ifdef MULTI_USER
 699        cpu_user = *list->user;
 700#endif
 701#ifdef MULTI_CACHE
 702        cpu_cache = *list->cache;
 703#endif
 704
 705        pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 706                cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 707                proc_arch[cpu_architecture()], get_cr());
 708
 709        snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 710                 list->arch_name, ENDIANNESS);
 711        snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 712                 list->elf_name, ENDIANNESS);
 713        elf_hwcap = list->elf_hwcap;
 714
 715        cpuid_init_hwcaps();
 716        patch_aeabi_idiv();
 717
 718#ifndef CONFIG_ARM_THUMB
 719        elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 720#endif
 721#ifdef CONFIG_MMU
 722        init_default_cache_policy(list->__cpu_mm_mmu_flags);
 723#endif
 724        erratum_a15_798181_init();
 725
 726        elf_hwcap_fixup();
 727
 728        cacheid_init();
 729        cpu_init();
 730}
 731
 732void __init dump_machine_table(void)
 733{
 734        const struct machine_desc *p;
 735
 736        early_print("Available machine support:\n\nID (hex)\tNAME\n");
 737        for_each_machine_desc(p)
 738                early_print("%08x\t%s\n", p->nr, p->name);
 739
 740        early_print("\nPlease check your kernel config and/or bootloader.\n");
 741
 742        while (true)
 743                /* can't use cpu_relax() here as it may require MMU setup */;
 744}
 745
 746int __init arm_add_memory(u64 start, u64 size)
 747{
 748        u64 aligned_start;
 749
 750        /*
 751         * Ensure that start/size are aligned to a page boundary.
 752         * Size is rounded down, start is rounded up.
 753         */
 754        aligned_start = PAGE_ALIGN(start);
 755        if (aligned_start > start + size)
 756                size = 0;
 757        else
 758                size -= aligned_start - start;
 759
 760#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 761        if (aligned_start > ULONG_MAX) {
 762                pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 763                        (long long)start);
 764                return -EINVAL;
 765        }
 766
 767        if (aligned_start + size > ULONG_MAX) {
 768                pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 769                        (long long)start);
 770                /*
 771                 * To ensure bank->start + bank->size is representable in
 772                 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 773                 * This means we lose a page after masking.
 774                 */
 775                size = ULONG_MAX - aligned_start;
 776        }
 777#endif
 778
 779        if (aligned_start < PHYS_OFFSET) {
 780                if (aligned_start + size <= PHYS_OFFSET) {
 781                        pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 782                                aligned_start, aligned_start + size);
 783                        return -EINVAL;
 784                }
 785
 786                pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 787                        aligned_start, (u64)PHYS_OFFSET);
 788
 789                size -= PHYS_OFFSET - aligned_start;
 790                aligned_start = PHYS_OFFSET;
 791        }
 792
 793        start = aligned_start;
 794        size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 795
 796        /*
 797         * Check whether this memory region has non-zero size or
 798         * invalid node number.
 799         */
 800        if (size == 0)
 801                return -EINVAL;
 802
 803        memblock_add(start, size);
 804        return 0;
 805}
 806
 807/*
 808 * Pick out the memory size.  We look for mem=size@start,
 809 * where start and size are "size[KkMm]"
 810 */
 811
 812static int __init early_mem(char *p)
 813{
 814        static int usermem __initdata = 0;
 815        u64 size;
 816        u64 start;
 817        char *endp;
 818
 819        /*
 820         * If the user specifies memory size, we
 821         * blow away any automatically generated
 822         * size.
 823         */
 824        if (usermem == 0) {
 825                usermem = 1;
 826                memblock_remove(memblock_start_of_DRAM(),
 827                        memblock_end_of_DRAM() - memblock_start_of_DRAM());
 828        }
 829
 830        start = PHYS_OFFSET;
 831        size  = memparse(p, &endp);
 832        if (*endp == '@')
 833                start = memparse(endp + 1, NULL);
 834
 835        arm_add_memory(start, size);
 836
 837        return 0;
 838}
 839early_param("mem", early_mem);
 840
 841static void __init request_standard_resources(const struct machine_desc *mdesc)
 842{
 843        struct memblock_region *region;
 844        struct resource *res;
 845
 846        kernel_code.start   = virt_to_phys(_text);
 847        kernel_code.end     = virt_to_phys(_etext - 1);
 848        kernel_data.start   = virt_to_phys(_sdata);
 849        kernel_data.end     = virt_to_phys(_end - 1);
 850
 851        for_each_memblock(memory, region) {
 852                res = memblock_virt_alloc(sizeof(*res), 0);
 853                res->name  = "System RAM";
 854                res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 855                res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 856                res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 857
 858                request_resource(&iomem_resource, res);
 859
 860                if (kernel_code.start >= res->start &&
 861                    kernel_code.end <= res->end)
 862                        request_resource(res, &kernel_code);
 863                if (kernel_data.start >= res->start &&
 864                    kernel_data.end <= res->end)
 865                        request_resource(res, &kernel_data);
 866        }
 867
 868        if (mdesc->video_start) {
 869                video_ram.start = mdesc->video_start;
 870                video_ram.end   = mdesc->video_end;
 871                request_resource(&iomem_resource, &video_ram);
 872        }
 873
 874        /*
 875         * Some machines don't have the possibility of ever
 876         * possessing lp0, lp1 or lp2
 877         */
 878        if (mdesc->reserve_lp0)
 879                request_resource(&ioport_resource, &lp0);
 880        if (mdesc->reserve_lp1)
 881                request_resource(&ioport_resource, &lp1);
 882        if (mdesc->reserve_lp2)
 883                request_resource(&ioport_resource, &lp2);
 884}
 885
 886#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 887struct screen_info screen_info = {
 888 .orig_video_lines      = 30,
 889 .orig_video_cols       = 80,
 890 .orig_video_mode       = 0,
 891 .orig_video_ega_bx     = 0,
 892 .orig_video_isVGA      = 1,
 893 .orig_video_points     = 8
 894};
 895#endif
 896
 897static int __init customize_machine(void)
 898{
 899        /*
 900         * customizes platform devices, or adds new ones
 901         * On DT based machines, we fall back to populating the
 902         * machine from the device tree, if no callback is provided,
 903         * otherwise we would always need an init_machine callback.
 904         */
 905        of_iommu_init();
 906        if (machine_desc->init_machine)
 907                machine_desc->init_machine();
 908#ifdef CONFIG_OF
 909        else
 910                of_platform_populate(NULL, of_default_bus_match_table,
 911                                        NULL, NULL);
 912#endif
 913        return 0;
 914}
 915arch_initcall(customize_machine);
 916
 917static int __init init_machine_late(void)
 918{
 919        struct device_node *root;
 920        int ret;
 921
 922        if (machine_desc->init_late)
 923                machine_desc->init_late();
 924
 925        root = of_find_node_by_path("/");
 926        if (root) {
 927                ret = of_property_read_string(root, "serial-number",
 928                                              &system_serial);
 929                if (ret)
 930                        system_serial = NULL;
 931        }
 932
 933        if (!system_serial)
 934                system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 935                                          system_serial_high,
 936                                          system_serial_low);
 937
 938        return 0;
 939}
 940late_initcall(init_machine_late);
 941
 942#ifdef CONFIG_KEXEC
 943static inline unsigned long long get_total_mem(void)
 944{
 945        unsigned long total;
 946
 947        total = max_low_pfn - min_low_pfn;
 948        return total << PAGE_SHIFT;
 949}
 950
 951/**
 952 * reserve_crashkernel() - reserves memory are for crash kernel
 953 *
 954 * This function reserves memory area given in "crashkernel=" kernel command
 955 * line parameter. The memory reserved is used by a dump capture kernel when
 956 * primary kernel is crashing.
 957 */
 958static void __init reserve_crashkernel(void)
 959{
 960        unsigned long long crash_size, crash_base;
 961        unsigned long long total_mem;
 962        int ret;
 963
 964        total_mem = get_total_mem();
 965        ret = parse_crashkernel(boot_command_line, total_mem,
 966                                &crash_size, &crash_base);
 967        if (ret)
 968                return;
 969
 970        ret = memblock_reserve(crash_base, crash_size);
 971        if (ret < 0) {
 972                pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
 973                        (unsigned long)crash_base);
 974                return;
 975        }
 976
 977        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 978                (unsigned long)(crash_size >> 20),
 979                (unsigned long)(crash_base >> 20),
 980                (unsigned long)(total_mem >> 20));
 981
 982        crashk_res.start = crash_base;
 983        crashk_res.end = crash_base + crash_size - 1;
 984        insert_resource(&iomem_resource, &crashk_res);
 985}
 986#else
 987static inline void reserve_crashkernel(void) {}
 988#endif /* CONFIG_KEXEC */
 989
 990void __init hyp_mode_check(void)
 991{
 992#ifdef CONFIG_ARM_VIRT_EXT
 993        sync_boot_mode();
 994
 995        if (is_hyp_mode_available()) {
 996                pr_info("CPU: All CPU(s) started in HYP mode.\n");
 997                pr_info("CPU: Virtualization extensions available.\n");
 998        } else if (is_hyp_mode_mismatched()) {
 999                pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1000                        __boot_cpu_mode & MODE_MASK);
1001                pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1002        } else
1003                pr_info("CPU: All CPU(s) started in SVC mode.\n");
1004#endif
1005}
1006
1007void __init setup_arch(char **cmdline_p)
1008{
1009        const struct machine_desc *mdesc;
1010
1011        setup_processor();
1012        mdesc = setup_machine_fdt(__atags_pointer);
1013        if (!mdesc)
1014                mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1015        machine_desc = mdesc;
1016        machine_name = mdesc->name;
1017        dump_stack_set_arch_desc("%s", mdesc->name);
1018
1019        if (mdesc->reboot_mode != REBOOT_HARD)
1020                reboot_mode = mdesc->reboot_mode;
1021
1022        init_mm.start_code = (unsigned long) _text;
1023        init_mm.end_code   = (unsigned long) _etext;
1024        init_mm.end_data   = (unsigned long) _edata;
1025        init_mm.brk        = (unsigned long) _end;
1026
1027        /* populate cmd_line too for later use, preserving boot_command_line */
1028        strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1029        *cmdline_p = cmd_line;
1030
1031        early_fixmap_init();
1032        early_ioremap_init();
1033
1034        parse_early_param();
1035
1036#ifdef CONFIG_MMU
1037        early_paging_init(mdesc);
1038#endif
1039        setup_dma_zone(mdesc);
1040        efi_init();
1041        sanity_check_meminfo();
1042        arm_memblock_init(mdesc);
1043
1044        early_ioremap_reset();
1045
1046        paging_init(mdesc);
1047        request_standard_resources(mdesc);
1048
1049        if (mdesc->restart)
1050                arm_pm_restart = mdesc->restart;
1051
1052        unflatten_device_tree();
1053
1054        arm_dt_init_cpu_maps();
1055        psci_dt_init();
1056        xen_early_init();
1057#ifdef CONFIG_SMP
1058        if (is_smp()) {
1059                if (!mdesc->smp_init || !mdesc->smp_init()) {
1060                        if (psci_smp_available())
1061                                smp_set_ops(&psci_smp_ops);
1062                        else if (mdesc->smp)
1063                                smp_set_ops(mdesc->smp);
1064                }
1065                smp_init_cpus();
1066                smp_build_mpidr_hash();
1067        }
1068#endif
1069
1070        if (!is_smp())
1071                hyp_mode_check();
1072
1073        reserve_crashkernel();
1074
1075#ifdef CONFIG_MULTI_IRQ_HANDLER
1076        handle_arch_irq = mdesc->handle_irq;
1077#endif
1078
1079#ifdef CONFIG_VT
1080#if defined(CONFIG_VGA_CONSOLE)
1081        conswitchp = &vga_con;
1082#elif defined(CONFIG_DUMMY_CONSOLE)
1083        conswitchp = &dummy_con;
1084#endif
1085#endif
1086
1087        if (mdesc->init_early)
1088                mdesc->init_early();
1089}
1090
1091
1092static int __init topology_init(void)
1093{
1094        int cpu;
1095
1096        for_each_possible_cpu(cpu) {
1097                struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1098                cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1099                register_cpu(&cpuinfo->cpu, cpu);
1100        }
1101
1102        return 0;
1103}
1104subsys_initcall(topology_init);
1105
1106#ifdef CONFIG_HAVE_PROC_CPU
1107static int __init proc_cpu_init(void)
1108{
1109        struct proc_dir_entry *res;
1110
1111        res = proc_mkdir("cpu", NULL);
1112        if (!res)
1113                return -ENOMEM;
1114        return 0;
1115}
1116fs_initcall(proc_cpu_init);
1117#endif
1118
1119static const char *hwcap_str[] = {
1120        "swp",
1121        "half",
1122        "thumb",
1123        "26bit",
1124        "fastmult",
1125        "fpa",
1126        "vfp",
1127        "edsp",
1128        "java",
1129        "iwmmxt",
1130        "crunch",
1131        "thumbee",
1132        "neon",
1133        "vfpv3",
1134        "vfpv3d16",
1135        "tls",
1136        "vfpv4",
1137        "idiva",
1138        "idivt",
1139        "vfpd32",
1140        "lpae",
1141        "evtstrm",
1142        NULL
1143};
1144
1145static const char *hwcap2_str[] = {
1146        "aes",
1147        "pmull",
1148        "sha1",
1149        "sha2",
1150        "crc32",
1151        NULL
1152};
1153
1154static int c_show(struct seq_file *m, void *v)
1155{
1156        int i, j;
1157        u32 cpuid;
1158
1159        for_each_online_cpu(i) {
1160                /*
1161                 * glibc reads /proc/cpuinfo to determine the number of
1162                 * online processors, looking for lines beginning with
1163                 * "processor".  Give glibc what it expects.
1164                 */
1165                seq_printf(m, "processor\t: %d\n", i);
1166                cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1167                seq_printf(m, "model name\t: %s rev %d (%s)\n",
1168                           cpu_name, cpuid & 15, elf_platform);
1169
1170#if defined(CONFIG_SMP)
1171                seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1172                           per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1173                           (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1174#else
1175                seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1176                           loops_per_jiffy / (500000/HZ),
1177                           (loops_per_jiffy / (5000/HZ)) % 100);
1178#endif
1179                /* dump out the processor features */
1180                seq_puts(m, "Features\t: ");
1181
1182                for (j = 0; hwcap_str[j]; j++)
1183                        if (elf_hwcap & (1 << j))
1184                                seq_printf(m, "%s ", hwcap_str[j]);
1185
1186                for (j = 0; hwcap2_str[j]; j++)
1187                        if (elf_hwcap2 & (1 << j))
1188                                seq_printf(m, "%s ", hwcap2_str[j]);
1189
1190                seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1191                seq_printf(m, "CPU architecture: %s\n",
1192                           proc_arch[cpu_architecture()]);
1193
1194                if ((cpuid & 0x0008f000) == 0x00000000) {
1195                        /* pre-ARM7 */
1196                        seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1197                } else {
1198                        if ((cpuid & 0x0008f000) == 0x00007000) {
1199                                /* ARM7 */
1200                                seq_printf(m, "CPU variant\t: 0x%02x\n",
1201                                           (cpuid >> 16) & 127);
1202                        } else {
1203                                /* post-ARM7 */
1204                                seq_printf(m, "CPU variant\t: 0x%x\n",
1205                                           (cpuid >> 20) & 15);
1206                        }
1207                        seq_printf(m, "CPU part\t: 0x%03x\n",
1208                                   (cpuid >> 4) & 0xfff);
1209                }
1210                seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1211        }
1212
1213        seq_printf(m, "Hardware\t: %s\n", machine_name);
1214        seq_printf(m, "Revision\t: %04x\n", system_rev);
1215        seq_printf(m, "Serial\t\t: %s\n", system_serial);
1216
1217        return 0;
1218}
1219
1220static void *c_start(struct seq_file *m, loff_t *pos)
1221{
1222        return *pos < 1 ? (void *)1 : NULL;
1223}
1224
1225static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1226{
1227        ++*pos;
1228        return NULL;
1229}
1230
1231static void c_stop(struct seq_file *m, void *v)
1232{
1233}
1234
1235const struct seq_operations cpuinfo_op = {
1236        .start  = c_start,
1237        .next   = c_next,
1238        .stop   = c_stop,
1239        .show   = c_show
1240};
1241